
University of Huddersfield Repository

Becker, Christoph, Betz, Stefanie, Chitchyan, Ruzanna, Duboc, Leticia, Easterbrook, Steve,

Penzenstadler, Birgit, Seyff, Norbert and Venters, Colin

Requirements: The Key to Sustainability

Original Citation

Becker, Christoph, Betz, Stefanie, Chitchyan, Ruzanna, Duboc, Leticia, Easterbrook, Steve,

Penzenstadler, Birgit, Seyff, Norbert and Venters, Colin (2016) Requirements: The Key to

Sustainability. IEEE Software, 33 (1). pp. 56-65. ISSN 0740-7459

This version is available at http://eprints.hud.ac.uk/26850/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/30734314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract— The critical role that software plays in society

demands a paradigm shift in the mindset of Software

Engineering. The focus of this shift begins in Requirements

Engineering.

Keywords— Software Engineering, Requirements,

Sustainability, Sustainability Design

I. INTRODUCTION

oftware systems are a major driver of social and economic

activity. Software Engineering (SE) tends to focus on the

technical elements - artificial systems with clear boundaries

and identifiable parts and connections, modules and

dependencies. But software systems are embedded in other

technical systems, and in socio-economic and natural systems.

This embedding is obvious when the interaction is explicit,

such as environmental monitoring or flight control software.

However, software-intensive systems have become such an

essential part of the fabric of social systems that the

boundaries and interactions of the resulting socio-technical

systems are often hard to identify. For example,

communication, travel booking or procurement systems

influence the socio-economic and natural environment through

far-reaching effects on how we form relationships, how we

travel, and what we buy. These effects are rarely made explicit

in the engineering process. The lack of visibility of these

effects makes it hard to assess the long-term and cumulative

impacts of a software system. Designing for sustainability is a

major challenge that can profoundly change the role of

software engineering in society. But what does it mean to

establish sustainability as a major concern in SE? We argue

that as software engineers, we are responsible for the long-

term consequences of our software irrespective of the primary

purpose of the system under design. In this paper, we focus on

requirements as the key leverage point for practitioners who

want to develop sustainable software-intensive systems. We

use a case adapted from a real-world software project to

provide examples for the changes needed in SE, and show

how considering sustainability explicitly will affect

requirements activities.

II. SUSTAINABILITY IN SOFTWARE ENGINEERING

Sustainability is the capacity to endure, so the sustainability

of a system describes how well this system will continue to

exist and function, even as circumstances may change.

Sustainability has often been equated with environmental

issues, but it is increasingly clear that it requires simultaneous

consideration of environmental resources, societal and

individual well-being, economic prosperity, and long-term

viability of technical infrastructure.

Sustainability of a technical system is very different from

the sustainability of a socio-economic system. Software

engineers tend to focus on the technical dimension of

sustainability, where it is simply a measure of the software

system’s longevity [1]. However, to understand broader

sustainability issues, we need to ask which system to sustain,

for whom, over which time frame, and at what cost [2]. Five

interrelated dimensions must be considered [3]:

• The individual dimension covers individual freedom and

agency (the ability to act in an environment), human

dignity and fulfillment. It includes the ability of

individuals to thrive, exercise their rights and develop

freely.

• The social dimension covers relationships between

individuals and groups. For example, this aspect covers

the structures of mutual trust and communication in a

social system and the balance between conflicting

interests.

• The economic dimension covers financial aspects and

business value. It includes capital growth and liquidity,

questions of investment, and financial operations.

• The technical dimension covers the ability to maintain

and evolve artificial systems (such as software) over time.

It refers to maintenance and evolution, resilience, and the

ease of system transitions.

• The environmental dimension covers the use of and

stewardship of natural resources. It includes questions

ranging from immediate waste production and energy

consumption to the balance of local ecosystems and

concerns of climate change.

Complex software-intensive systems can affect

sustainability in any of these dimensions. Changes in one

system, in one dimension, often have impacts in other

dimensions and other systems. For example, consider a

software system that is hard to maintain (technical

sustainability). Excessive maintenance costs affect the

financial liquidity of the owning company (a social and

economic system). This may limit its growth and even

threaten its survival (economic sustainability).

Similar trade-offs occur across other dimensions. For

example, carbon offsets incentivize environmentally

Requirements: The Key to Sustainability

Christoph Becker, Stefanie Betz, Ruzanna Chitchyan, Leticia Duboc, Steve M. Easterbrook, Birgit

Penzenstadler, Norbert Seyff, and Colin C. Venters

S

sustainable behaviour through trade-offs with the economic

dimension. The triple bottom line perspective [4] requires a

business to account for social and environmental as well as

financial outcomes. The corresponding business practices have

led to a surge in the number of social enterprises, which

achieve survival rates above average for newly-founded

businesses [5].

Increasingly, software engineers need to understand the

effects by which decisions taken in the design of software

systems can enable or undermine sustainability of socio-

economic and natural systems over time (see sidebar 1). Since

the concept of sustainability is inherently multidisciplinary,

any effort to define sustainability involves concepts,

principles, and methods from a range of disciplines and makes

an integrated view crucial for an effective systems design

process. The notion of sustainability design brings these

concerns together using systems thinking principles (see

sidebar 2) [6].

III. REQUIREMENTS: A TALE OF TWO PROJECTS

The impact a software system will have on its environment

is often determined by how the software engineers understand

its requirements. The foundation of this impact is set in the

decisions on which system to build (if any at all); in the

choices of whom to ask and whom to involve, and in the

specification of what constitutes success.

The following example illustrates how requirements

activities are usually carried out. It describes a procurement

system that supports the process of purchasing products and

contracting services in a private company in the energy sector.

Products, services and suppliers must pass the company’s

approval process and be registered in the system prior to a

purchase. This approval considers the supplier’s reliability and

capacity to deliver, and in some cases, adherence to

international standards of environmental management, health

and safety management.

The example is inspired by a real-world case studied by one

of the authors [7]. The basis for our example is taken from this

case; the description is adapted to be representative of what

typically happens in software projects. Further below we show

how a commitment to sustainability changes the project.

A. As it often happens: System development without

sustainability design

The project purpose is to maximize the procurement

efficiency of the organization, increase financial return, and

ensure suppliers’ compliance with certain rules. The criteria

for selecting products and services focus on price, delivery

time and payment conditions. Using a stakeholder influence

matrix, the project leader focuses on those stakeholders who

can `stop the show'. The project scope is determined by a few

influential stakeholders early on, so that the project can focus

on minimal design scope in order to maximize project speed.

The project team moves swiftly to determine the boundaries

of the software to be, and the only scoping questions revolve

around the software’s interfaces with neighboring systems.

The success criteria for the project are to develop and

deliver the system within the given budget and time. The

question of feasibility centers on the expected amortization

period of the software project investment. Risk analysis

focuses on economic risks that could inhibit project

completion.

Sidebar 1: Classifying the systemic effects of software.

Many critical effects that occur in socio-technical systems play out over time,

so we need to consider not just immediate features and effects of our systems,

but longer-running, aggregate and cumulative impact. We distinguish three

orders of effects, adapted from [8]:

Immediate effects are direct effects of the production, use and disposal of

software systems. This includes the immediate benefit of system features and

the full lifecycle impacts, as would be included in a Life-Cycle Assessment

(LCA) approach, which evaluates the environmental impact of a product’s life

from the extraction of raw materials to its disposal or recycling.

Enabling effects arise from the application of a system over time. This

includes opportunities to consume more (or less) resources, but also other

changes induced by the usage of a system.

Structural effects represent “persistent changes observable at the macro

level. Structures emerge from the entirety of actions at the micro level and, in

turn, influence these actions” [8]. Ongoing use of a new software system can

lead to shifts in accumulation of capital, drive changes in social norms,

policies and laws, and alter our relationship with the natural world.

Consider the airbnb.com service. Its immediate effects include resources

consumed and jobs created during its development, energy consumed during

its deployment, and the room renting and booking services it offers. Its

enabling effects include changes in how its users make travel arrangements as

alternatives to hotel bookings, and how property owners rent out space. These

enabling effects (the so-called “sharing economy”) have been alternatively

praised and criticized for their far-reaching structural impacts. For example,

airbnb represents a substantial share of the buy-to-let market in major cities,

and the continuing price surges in the hot-spots of these cities have been

linked to the density of buy-to-let properties. Many of these exist only because

of the arbitrage provided by services such as airbnb: The system enables

transactions that provide higher return on investment than long-term rentals.

This has caused major concerns in several large cities.

Requirements elicitation requests input from the

stakeholders through structured forms to identify what they

want the system to do. Additionally, previous systems are

analyzed and business process documents consulted.

Requirements prioritization is determined by functional

requirements and economic constraints and completed

quickly, as the core stakeholder group has strong consensus.

The requirements specification is documented following the

IEEE 830 Requirements Specifications Template. System

measurement and monitoring uses indicators about

performance and availability. The system is completed on time

and within budget and shows a reasonably low rate of faults,

so the project is considered a success at completion.

B. As it can happen: System development practicing

sustainability design

Consider conducting the same project with a commitment to

treating sustainability as a first-class concern in line with the

principles of sustainability design (sidebar 2).

Sidebar 2: Sustainability principles for Software Engineering [6]

1. Sustainability is systemic; the system under consideration can never

be treated in isolation from its environment.

2. Sustainability is multi-dimensional; five key dimensions are

economic, social, environmental, technical, and individual

sustainability.

3. Sustainability is inter-disciplinary; sustainability design in SE

requires appreciation of concepts from other disciplines and must

work across multiple disciplines.

4. Sustainability transcends the purpose of the software; any software

that is intended to be used can impact the sustainability of its

containing socio-economic, sociotechnical, cultural and natural

environments.

5. Sustainability is multi-level; it requires us to consider at least two

spheres in the system design process: the system under design and its

sustainability, and the wider system of which it will be part.

6. Sustainability is multi-opportunity; it requires us to seek

interventions that have the most leverage on a system [9] and

consider the opportunity costs.

7. Sustainability is multi-timescaled; long-term thinking is required to

address the multiple timescales on which sustainability effects take

place.

8. Sustainability is non-zero-sum; changing the design of a system to

consider the long-term effects does not automatically imply making

sacrifices in the present.

9. System visibility is a necessary precondition and enabler for

sustainability design because only a transparent status of the system

and its context, made visible at different levels of abstraction and

perspectives, can enable informed responsible choices of system

designers.

See www.sustainabilitydesign.org and [6].

When the purpose of the project is discussed, the initial

project team discusses the company’s values and

responsibilities and identifies opportunities to support the

sustainable development of the company. For example, the

system can support sustainability in the supply chain by

making transparent the carbon footprint of purchases and

facilitate the selection of providers who apply sustainable

practices. This does not change the overall project objectives,

but influences subsequent steps.

The scope of requirements analysis starts with an inclusive

and integrated view of the procurement processes, material

flows into the company, and the social and political

environment of the local community. When defining possible

system boundaries, the team experiments with multiple

perspectives and works jointly with the procurement

department and others.

They expand the set of stakeholders and draw on

knowledge beyond the project team by using a stakeholder

impact analysis that considers enabling and structural effects

to identify those most affected by the project, including those

external to the company. Stakeholders include local supplier

representatives, service delivery organizations, process

analysts, the CTO, and the strategic planning and foresight

group.

To keep the number of stakeholders manageable, a

sustainability expert acts as a surrogate stakeholder for others

in the community and the further environment that may be

affected by the system. A team member is assigned to each of

the five sustainability dimensions, so that responsibility for

identifying possible effects is clear and effective

communication with additional stakeholders can take place.

These team members consult relevant experts in areas such as

supply chain sustainability, carbon accounting, socially

responsible procurement, and anthropologists analyzing and

interpreting current technological developments and its impact

on our societies.

The team agrees that the success criteria of the project are

not restricted to whether it is delivered on time and within

budget, but will be measured and monitored over a period of

36 months after project completion. In this period, a set of

indicators will be measured that cover the five dimensions of

sustainability. The team will attempt to measure technical

debt, social reputation and the improvement of relations with

the local community, individual aspects such as privacy

compliance and the satisfaction of those involved in the

procurement process, environmental aspects such as the total

carbon footprint of the products and services acquired, and

amortization of the project costs and improved cost-benefit

relations in procurement.

During risk analysis, the team considers internal and

external risks related to systemic effects in all five dimensions.

For example, considering the evolving regulations on

environmental accountability as a risk, the team develops a set

of transparency requirements for the system. They also

identify uncertainties about future shifts in procurement as

sustainable products become more competitive. As a result,

they include a feature to monitor these uncertainties.

During requirements elicitation, participatory techniques

are employed, and the inclusive perspective enables the

project to leverage contributions from a broader set of

stakeholders, including local service providers. In a series of

workshops, they use a sustainability reference goal model to

derive specific sustainability goals for their project and align

them with other system goals, while deriving extended usage

scenarios with the local community representatives.

The resulting requirements document is based on a

template that includes checklists for sustainability criteria and

standards compliance in all five dimensions. The document is

circulated among all stakeholders, and is shared with

regulatory agencies to demonstrate the project meets relevant

sustainability rules. As a result, it is also used more actively in

subsequent stages.

IV. SUSTAINABILITY DEBT

The system that results from this procurement project is

different when sustainability principles and therefore long-

term consequences are considered.

Focusing on sustainability design, software engineers have

to adopt a mindset quite different from the puzzle-solving

attitude often found in engineering and business. The objective

is to identify and understand “wicked problems”: problems

that are deeply embedded in a complex system with no

definitive formulation, and no clear stopping rule. In such

cases, every solution changes the nature of the problem, so

there is little opportunity for learning through trial and error

[10]. What is needed, instead, is an adaptive, responsive,

iterative approach that emphasizes shared understanding.

Figure 1 highlights selected direct, enabling and structural

effects of the procurement system in the five sustainability

dimensions. Consider a system feature that tracks the carbon

footprint of individual products. The feature enables users to

choose products with lower carbon footprints. The compound

structural effect in the economic dimension can benefit local

suppliers with environmentally sustainable production and

lead to an overall reduction of the carbon footprint.

The diagram serves as a visual aid to support interactive

collaboration among stakeholders to discover, document and

validate potential effects of the system. Not all effects will be

positive: For example, automating product selection rules to

minimize carbon footprint takes away the freedom of the

manager to take decisions in the procurement process [11].

This can reduce mutual trust between members of the

organization.

Figure 1. Selected systemic effects of the procurement system

The diagram also facilitates a conversation about

``sustainability debt'' [12]: the invisible effects of taking

decisions for the present that accumulate over time in each of

the five dimensions. When we increase energy consumption,

reduce individual privacy, impose technical barriers, or incur

additional financial costs, we incur debts in these dimensions

towards different stakeholders. Making these effects visible is

the first step to understanding and considering them in systems

design decisions.

V. REQUIREMENTS ARE THE KEY

In the tale of two projects, we have seen a series of decision

points in the process of designing a system. Many of these are

requirements engineering activities that will occur repeatedly

in all iterations throughout the project. Each decision

influences the decision space of subsequent choices and has a

profound impact on the system to be designed and the effects

it will have. Table 1 highlights how key activities change

when we consider sustainability design principles.

The leverage of requirements becomes clear when we

consider their relationships with engineering techniques. We

develop techniques in order to quantify, construct, and test

artifacts and to control whether the results fall within an

acceptable range. However, for design concerns such as

usability, performance, maintainability, or sustainability, such

technique are only applied once a need has been identified.

Without such a need, the engineering techniques will remain

unused, and hence have no effect on the project. For example,

techniques for increasing technical sustainability abound,

ranging from architectural design patterns to documentation

guidelines. Yet, since applying these techniques often involves

an upfront investment of effort, it is only done when a longer

life expectancy of a system is recognized and expressed. On

the other hand, a stated requirement for which no current

technique exists will lead to an identified gap in technological

ability. This means that in practice, systemic changes to the

activities in Table 1 will dominate the effects of whatever

techniques we develop to support these activities.

Requirement engineers therefore play a key role in

sustainability. As ``sustainability engineers'', they go beyond a

narrow system perspective and follow an interdisciplinary,

systems-oriented, stakeholder-focused approach, supported by

higher management and executives. Their task is to understand

the nature of software-intensive systems and the impact those

can have on their social, technical, economic and natural

environment and the individuals in that environment.

This responsibility is reflected in the new UK Standard for

Professional Engineering Competence (UK-SPEC), which

Table 1 SE practices for sustainability

Task Standard current practice Future practice focuses on

Mindsetting The world is a puzzle, and we should

“solve the problem”

The world is complex, and we should first “understand the

dilemmas”.

Project objective,

System purpose

and boundary

scoping

Focus on the immediate business need

and key system features. Do not question

the purpose of the project or the purpose

of the system.

Emphasize the effects that the project can have on

sustainability in all dimensions. Strive to advance

sustainability in multiple dimensions simultaneously.

Experiment with different system boundaries to understand

the difference this might cause in its impact.

External

constraints

identification

See constraints as imposed by the direct

environment of the system and its

technical interfaces. Minimize the

constraints considered, but include legal,

safety, security, technical, and business

resources.

See constraints in each dimension as opportunities. Look for

constraints from additional sources, starting with company

Corporate Social Responsibility policies, legislation and

standards for sustainability.

Stakeholder

identification

Minimize the number of stakeholders

involved and focus on stakeholders who

have influence. Focus on internal

stakeholders and exclude unreachable

stakeholders.

Maximize stakeholder involvement in an inclusive

perspective integrating external stakeholders and involve

those who are affected. Assign a dedicated role to be

responsible for sustainability and introduce surrogate

stakeholders to represent outside interests.

Success criteria

definition

Focus on the financial bottom line at

project completion. Measure business

outcome and financial return on

investment.

Focus on advancing multiple dimensions simultaneously,

including financial aspects, and take into account that most

of the effects occur after project completion.

Requirements

Elicitation

Focus on the features and the immediate

effects the stakeholders want.

Help stakeholders to understand the enabling effects the

system will have. Use creativity techniques and long-term

scenarios to forecast potential structural impact.

Risk

identification

Identify risks that threaten timely project

completion within budget.

Include effects on the system’s wider environment. Include

enabling and structural effects and risks that can develop

over time.

Trade-off analysis View it as a prioritization and selection

problem and let the key stakeholders

decide.

Strive to transform sustainability trade-offs into mutually

beneficial situations. Make sure that sustainability trade-offs

are discussed by a wider range of stakeholders (or their

surrogates).

Go/No-Go

decision

Base the decision on feasibility, financial

cost/benefit and risk exposure to project

participants, i.e. internal stakeholders.

This continues to be an internal business decision, but is

documented to show to external audiences that sustainability

indicators and enabling effects were taken into account. The

decision is based on a consideration of positive and negative

effects on all five dimensions.

Requirements

validation

Let key stakeholders verify that their

interests are captured.

Ensure broad community involvement focused on

understanding effects.

Project

completion

Verify whether success criteria are met

on completion date. After that, focus on

maintenance and evolution.

Evaluate the effects on all five dimensions over a certain

timeframe after completion aligned with the expected

timescale of effects.

Requirements

documentation

Current templates ignore long-term

effects and sustainability considerations.

Templates require information about sustainability as a

design concern and support analysts with checklists.

	 	

explicitly defines the role of engineers such that they shall

``Act in accordance with the principles of sustainability, and

prevent avoidable adverse impact on the environment and

society.'' [13]. It is up to SE curricula developers to equip

future software engineers with the competences required to

simultaneously advance goals in all five dimensions, beyond

the technical and economic.

For a long time, concerns about such effects have taken a

backseat in SE, but this is changing as standards are being

adjusted. For example, the working group WG42 on ISO/IEC

42030 (Architecture evaluation) is discussing energy

efficiency and environmental concerns at the software

architecture level and the IEEE P1680.1 for Environmental

Assessment of PC products is being revised.

While this is an important step, a full consideration of all

five sustainability dimensions is needed on the level of quality

models, systems documentation templates, and the analysis of

systemic effects throughout system lifecycle stages. It will

often be the responsibility of the requirements engineers to

introduce relevant standards in each of the five dimensions

into the elicitation and specification process. To support this,

sustainability considerations related to quality attributes of

software systems in use should be integrated into revisions of

the ISO 25000 series, while ISO 29148 should acknowledge

the importance of system characteristics beyond the

interaction with human users and encourage consideration of

the systemic effects of software systems in RE.

VI. SOFTWARE ENGINEERING IN SOCIETY

The critical role that software plays in society demands a

paradigm shift in the mindset of SE. Sustainability design

emphasizes an appreciation of ‘wicked problems’ over a focus

on puzzles and pieces; systems thinking over computational

problem solving; and an integrated understanding of systems

over a divide-and-conquer approach to systems analysis.

While these are challenging shifts that do not come easy,

taking such perspectives provides an opportunity to stand out,

an invitation to innovate, and an occasion for software

engineers and companies to distinguish themselves with a

unique selling point in a competitive market. We also have an

opportunity to help shape broader sustainability policy. A shift

to a sustainable society requires both large-scale change in

government policy and a change in engineering and business

practice; neither on their own will suffice. But regulatory

change is much easier if it builds on established best practice,

so software practitioners need to lead the way.

If you agree that we, as software engineers, have a

responsibility for the long-term impacts of the systems we

design, the principles of sustainability design provide an

opportunity to get started. We can and should start now, and

practitioners can lead the way: We need to collect experiences

in applying sustainability principles in software engineering

and learn from the process. An important way to make this

vision of software as a force for sustainability a reality is by

cooperation between industry and academia.

Successful collaborations to integrate sustainability

concerns into established practices can have significant impact

on the long-term effects of the systems we design. To facilitate

this, we must:

• Identify and tackle causes of unsustainable software

design. For this, industry can invite academics to

research, analyze, and re-engineer their current

development processes and practices for improved

sustainability;

• Develop a number of exemplar case studies that

demonstrate the benefits of sustainability design in

software engineering. For this, early-adopter industrial

collaborators can partner with academics to apply

research findings such as those summarized in Table 1

and report on longer term results;

• Build competencies in the theory and practice of

sustainable design into the training of all software

engineers. Industry can make the demand for software

practitioners trained in sustainability principles explicit

by requiring specific competences from potential

employees. Researchers and educators should develop

improved curricula that incorporate sustainability

principles and ensure that future software professional

possess the competences needed to advance

sustainability goals through SE.

Let's get started.

VII. ACKNOWLEDGMENTS

This work is supported by DFG EnviroSiSE (PE2044/1-1),

FAPERJ (210.551/2015), CNPQ (14/2014), NSERC

(RGPIN-2014-06638), the European Social Fund, Ministry of

Science, Research and the Arts Baden-Württemberg, and

WWTF through project BenchmarkDP (ICT2012-46).

Special thanks to our friend and colleague Sedef Akinli

Kocak, PhD researcher at Ryerson University in Toronto, for

her contributions to this article.

HIGHLIGHTS

• The critical role that software plays in society

demands a paradigm shift in the mindset of Software

Engineering.

• Sustainability design favors integrated understanding

over a divide-and-conquer approach to systems

analysis.

• Sustainability Design requires an appreciation of

‘wicked problems’ in Requirements Engineering.

• Integrating sustainability concerns can significantly

impact the long-term effects of the systems we

design.

• Sustainability design provides an opportunity for

software companies to stand out with a unique value

proposition.

REFERENCES

[1] H. Koziolek, “Sustainability evaluation of software architectures: a

systematic review,” in Proc. of QoSA-ISARCS‘11. ACM, 2011, pp. 3–

12.

[2] J. A. Tainter, “Social complexity and sustainability,” Ecological

Complexity, vol. 3, no. 2, pp. 91–103, 2006.

[3] B. Penzenstadler, A. Raturi, D. Richardson, and B. Tomlinson, “Safety,

security, now sustainability: The nonfunctional requirement for the 21st

century,” IEEE Software, vol. 31, no. 3, pp. 40–47, 2014.

[4] J. Elkington, “Enter the triple bottom line,” The triple bottom line: Does

it all add up, pp. 1–16, 2004.

[5] E3M, “Who Lives the Longest? Busting the Social Venture Survival

Myth.” [Online]. Available: http://socialbusinessint.com/wp-

content/uploads/Who-lives-the-longest_-FINAL-version2.pdf

[6] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler, N.

Seyff, and C. C. Venters, “Sustainability Design and Software: The

Karlskrona Manifesto,” in Proc. 2015 Int’l Conf. Software Eng.

(ICSE’15), 2015.

[7] C. Bomfim, W. Nunes, L. Duboc, and M. Schots, “Modelling

sustainability in a procurement system: An experience report,” in Proc.

2014 Requirements Engineering (RE’14). IEEE, 2014, pp. 402–411.

[8] L. M. Hilty and B. Aebischer, “ICT for sustainability: An emerging

research field,” in ICT Innovations for Sustainability. Springer, 2015,

pp. 3–36.

[9] D. H. Meadows, Leverage points: Places to intervene in a system.

Sustainability Institute Hartland, VT, 1999.

[10] J. A. Klein, “A reexamination of autonomy in light of new

manufacturing practices,” Human Relations, vol. 44, no. 1, pp. 21–38,

1991.

[11] S. Betz, C. Becker, R. Chitchyan, L. Duboc, S. M. Easterbrook, B.

Penzenstadler, N. Seyff, and C. C. Venters, “Sustainability debt: A

metaphor to support sustainability design decisions,” in Proc. RE4SuSy

2015. http://ceur-ws.org/Vol-1416/, 2015.

[12] UK Standard for Professional Engineering Competence (UK-SPEC).

The Engineering Council, 2014.

Christoph Becker is an Assistant

Professor at the University of Toronto,

where he leads the Digital Curation

Institute, and a Senior Scientist at the

Vienna University of Technology in

Austria. His research focuses on

sustainability in software engineering and

information systems design; digital

curation and digital preservation; and

digital libraries. Becker received his PhD in computer science

from the Vienna University of Technology. Contact him at

christoph.becker@utoronto.ca.

Stefanie Betz is a senior research scientist

at the Department of Applied Informatics

and Formal Description Methods,

Karlsruhe Institute of Technology,

Germany. Her research is centered on

sustainable software and systems

engineering, particularly from the

perspective of requirements engineering

and business process management. Betz received her PhD in

Applied Informatics at Karlsruhe Institute of Technology.

Contact her at stefanie.betz@kit.edu.

Ruzanna Chitchyan is a lecturer at the

Department of Computer Science,

University of Leicester, UK and a member

of the Centre for Landscape and Climate

Research. Her research is centred on

requirements engineering and architecture

design for software-intensive socio-

technical systems engineering and

sustainability. Chitchyan received her PhD in Software

Engineering from the Lancaster University, UK. Contact her

at rc256@leicester.ac.uk.

Leticia Duboc Leticia Duboc is a lecturer at the State

University of Rio de Janeiro, Brazil and an

Honorary Research Fellow at the University

of Birmingham, UK. Her research focuses

on sustainability and scalability of software

systems, particularly from the perspective

of requirements engineering and early

analysis of software qualities. Duboc

received her PhD in computer science from the University

College London UK. Contact her at leticia@ime.uerj.br.

Steve M. Easterbrook is a professor at

the University of Toronto and a member

of Centre for Environment and Centre for

Global Change Science. His research

focuses on climate informatics, and more

specifically, the applications of computer

science and software engineering to the

challenge posed by global climate change. Easterbrook

received his PhD in Computing from Imperial College,

London. Contact him at sme@cs.toronto.edu.

Birgit Penzenstadler is an Assistant

Professor of software engineering at the

California State University, Long Beach.

Her research focusses on software

engineering for sustainability and

resilience and she leads the Resilience Lab

at CSULB. Penzenstadler received her

PhD and a habilitation degree from the

Technical University of Munich, Germany. Contact her at

birgit.penzenstadler@csulb.edu.

Norbert Seyff is a professor at the

University of Applied Sciences and Arts

Northwestern Switzerland and a senior

research associate at the University of

Zurich. His current research focus on

requirements engineering and software

modeling. He has a particular interest in

empowering and supporting end-users

participation in system development. Seyff received his PhD

in computer science from Johannes Kepler University Linz,

Austria. Contact him at norbert.seyff@fhnw.ch.

Colin C. Venters is a senior lecturer in

Software Systems Engineering at the

University of Huddersfield, UK. His

current research focuses on sustainable

software systems engineering from a

software architecture perspective for pre-

system understanding and post-system

maintenance and evolution. Venters

received his PhD in computer science from

the University of Manchester, UK. Contact him at

c.venters@hud.ac.uk.

