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Abstract— The critical role that software plays in society 

demands a paradigm shift in the mindset of Software 

Engineering. The focus of this shift begins in Requirements 

Engineering. 

 
Keywords— Software Engineering, Requirements, 

Sustainability, Sustainability Design 

I. INTRODUCTION 

oftware systems are a major driver of social and economic 

activity. Software Engineering (SE) tends to focus on the 

technical elements - artificial systems with clear boundaries 

and identifiable parts and connections, modules and 

dependencies. But software systems are embedded in other 

technical systems, and in socio-economic and natural systems. 

This embedding is obvious when the interaction is explicit, 

such as environmental monitoring or flight control software. 

However, software-intensive systems have become such an 

essential part of the fabric of social systems that the 

boundaries and interactions of the resulting socio-technical 

systems are often hard to identify. For example, 

communication, travel booking or procurement systems 

influence the socio-economic and natural environment through 

far-reaching effects on how we form relationships, how we 

travel, and what we buy. These effects are rarely made explicit 

in the engineering process. The lack of visibility of these 

effects makes it hard to assess the long-term and cumulative 

impacts of a software system. Designing for sustainability is a 

major challenge that can profoundly change the role of 

software engineering in society. But what does it mean to 

establish sustainability as a major concern in SE? We argue 

that as software engineers, we are responsible for the long-

term consequences of our software irrespective of the primary 

purpose of the system under design. In this paper, we focus on 

requirements as the key leverage point for practitioners who 

want to develop sustainable software-intensive systems. We 

use a case adapted from a real-world software project to 

provide examples for the changes needed in SE, and show 

how considering sustainability explicitly will affect 

requirements activities. 

II. SUSTAINABILITY IN SOFTWARE ENGINEERING 

Sustainability is the capacity to endure, so the sustainability 

of a system describes how well this system will continue to 

exist and function, even as circumstances may change. 

 
 

Sustainability has often been equated with environmental 

issues, but it is increasingly clear that it requires simultaneous 

consideration of environmental resources, societal and 

individual well-being, economic prosperity, and long-term 

viability of technical infrastructure. 

Sustainability of a technical system is very different from 

the sustainability of a socio-economic system. Software 

engineers tend to focus on the technical dimension of 

sustainability, where it is simply a measure of the software 

system’s longevity [1]. However, to understand broader 

sustainability issues, we need to ask which system to sustain, 

for whom, over which time frame, and at what cost [2]. Five 

interrelated dimensions must be considered [3]: 

• The individual dimension covers individual freedom and 

agency (the ability to act in an environment), human 

dignity and fulfillment. It includes the ability of 

individuals to thrive, exercise their rights and develop 

freely. 

• The social dimension covers relationships between 

individuals and groups. For example, this aspect covers 

the structures of mutual trust and communication in a 

social system and the balance between conflicting 

interests. 

• The economic dimension covers financial aspects and 

business value. It includes capital growth and liquidity, 

questions of investment, and financial operations. 

• The technical dimension covers the ability to maintain 

and evolve artificial systems (such as software) over time. 

It refers to maintenance and evolution, resilience, and the 

ease of system transitions. 

• The environmental dimension covers the use of and 

stewardship of natural resources. It includes questions 

ranging from immediate waste production and energy 

consumption to the balance of local ecosystems and 

concerns of climate change. 

 

Complex software-intensive systems can affect 

sustainability in any of these dimensions. Changes in one 

system, in one dimension, often have impacts in other 

dimensions and other systems. For example, consider a 

software system that is hard to maintain (technical 

sustainability). Excessive maintenance costs affect the 

financial liquidity of the owning company (a social and 

economic system). This may limit its growth and even 

threaten its survival (economic sustainability). 

Similar trade-offs occur across other dimensions. For 

example, carbon offsets incentivize environmentally 
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sustainable behaviour through trade-offs with the economic 

dimension. The triple bottom line perspective [4] requires a 

business to account for social and environmental as well as 

financial outcomes. The corresponding business practices have 

led to a surge in the number of social enterprises, which 

achieve survival rates above average for newly-founded 

businesses [5]. 

Increasingly, software engineers need to understand the 

effects by which decisions taken in the design of software 

systems can enable or undermine sustainability of socio-

economic and natural systems over time (see sidebar 1). Since 

the concept of sustainability is inherently multidisciplinary, 

any effort to define sustainability involves concepts, 

principles, and methods from a range of disciplines and makes 

an integrated view crucial for an effective systems design 

process. The notion of sustainability design brings these 

concerns together using systems thinking principles (see 

sidebar 2) [6]. 

III. REQUIREMENTS: A TALE OF TWO PROJECTS 

The impact a software system will have on its environment 

is often determined by how the software engineers understand 

its requirements. The foundation of this impact is set in the 

decisions on which system to build (if any at all); in the 

choices of whom to ask and whom to involve, and in the 

specification of what constitutes success. 

The following example illustrates how requirements 

activities are usually carried out. It describes a procurement 

system that supports the process of purchasing products and 

contracting services in a private company in the energy sector. 

Products, services and suppliers must pass the company’s 

approval process and be registered in the system prior to a 

purchase. This approval considers the supplier’s reliability and 

capacity to deliver, and in some cases, adherence to 

international standards of environmental management, health 

and safety management.  

The example is inspired by a real-world case studied by one 

of the authors [7]. The basis for our example is taken from this 

case; the description is adapted to be representative of what 

typically happens in software projects. Further below we show 

how a commitment to sustainability changes the project. 

A. As it often happens: System development without 

sustainability design 

The project purpose is to maximize the procurement 

efficiency of the organization, increase financial return, and 

ensure suppliers’ compliance with certain rules. The criteria 

for selecting products and services focus on price, delivery 

time and payment conditions. Using a stakeholder influence 

matrix, the project leader focuses on those stakeholders who 

can `stop the show'. The project scope is determined by a few 

influential stakeholders early on, so that the project can focus 

on minimal design scope in order to maximize project speed. 

The project team moves swiftly to determine the boundaries 

of the software to be, and the only scoping questions revolve 

around the software’s interfaces with neighboring systems. 

The success criteria for the project are to develop and 

deliver the system within the given budget and time. The 

question of feasibility centers on the expected amortization 

period of the software project investment. Risk analysis 

focuses on economic risks that could inhibit project 

completion. 

 

 

Sidebar 1: Classifying the systemic effects of software.  

 

Many critical effects that occur in socio-technical systems play out over time, 

so we need to consider not just immediate features and effects of our systems, 

but longer-running, aggregate and cumulative impact. We distinguish three 

orders of effects, adapted from [8]: 

Immediate effects are direct effects of the production, use and disposal of 

software systems. This includes the immediate benefit of system features and 

the full lifecycle impacts, as would be included in a Life-Cycle Assessment 

(LCA) approach, which evaluates the environmental impact of a product’s life 

from the extraction of raw materials to its disposal or recycling.  

Enabling effects arise from the application of a system over time. This 

includes opportunities to consume more (or less) resources, but also other 

changes induced by the usage of a system.  

Structural effects represent “persistent changes observable at the macro 

level. Structures emerge from the entirety of actions at the micro level and, in 

turn, influence these actions” [8]. Ongoing use of a new software system can 

lead to shifts in accumulation of capital, drive changes in social norms, 

policies and laws, and alter our relationship with the natural world.  

Consider the airbnb.com service. Its immediate effects include resources 

consumed and jobs created during its development, energy consumed during 

its deployment, and the room renting and booking services it offers. Its 

enabling effects include changes in how its users make travel arrangements as 

alternatives to hotel bookings, and how property owners rent out space. These 

enabling effects (the so-called “sharing economy”) have been alternatively 

praised and criticized for their far-reaching structural impacts. For example, 

airbnb represents a substantial share of the buy-to-let market in major cities, 

and the continuing price surges in the hot-spots of these cities have been 

linked to the density of buy-to-let properties. Many of these exist only because 

of the arbitrage provided by services such as airbnb: The system enables 

transactions that provide higher return on investment than long-term rentals. 

This has caused major concerns in several large cities. 

 

Requirements elicitation requests input from the 

stakeholders through structured forms to identify what they 

want the system to do. Additionally, previous systems are 

analyzed and business process documents consulted. 

Requirements prioritization is determined by functional 

requirements and economic constraints and completed 

quickly, as the core stakeholder group has strong consensus. 

The requirements specification is documented following the 

IEEE 830 Requirements Specifications Template. System 

measurement and monitoring uses indicators about 

performance and availability. The system is completed on time 

and within budget and shows a reasonably low rate of faults, 

so the project is considered a success at completion. 

B. As it can happen: System development practicing 

sustainability design 

Consider conducting the same project with a commitment to 

treating sustainability as a first-class concern in line with the 

principles of sustainability design (sidebar 2). 

 
Sidebar 2: Sustainability principles for Software Engineering [6] 

1. Sustainability is systemic; the system under consideration can never 

be treated in isolation from its environment. 

2. Sustainability is multi-dimensional; five key dimensions are 

economic, social, environmental, technical, and individual 

sustainability. 



3. Sustainability is inter-disciplinary; sustainability design in SE 

requires appreciation of concepts from other disciplines and must 

work across multiple disciplines. 

4. Sustainability transcends the purpose of the software; any software 

that is intended to be used can impact the sustainability of its 

containing socio-economic, sociotechnical, cultural and natural 

environments. 

5. Sustainability is multi-level; it requires us to consider at least two 

spheres in the system design process: the system under design and its 

sustainability, and the wider system of which it will be part. 

6. Sustainability is multi-opportunity; it requires us to seek 

interventions that have the most leverage on a system [9] and 

consider the opportunity costs.  

7. Sustainability is multi-timescaled; long-term thinking is required to 

address the multiple timescales on which sustainability effects take 

place. 

8. Sustainability is non-zero-sum; changing the design of a system to 

consider the long-term effects does not automatically imply making 

sacrifices in the present. 

9. System visibility is a necessary precondition and enabler for 

sustainability design because only a transparent status of the system 

and its context, made visible at different levels of abstraction and 

perspectives, can enable informed responsible choices of system 

designers. 

See www.sustainabilitydesign.org and [6]. 

 

When the purpose of the project is discussed, the initial 

project team discusses the company’s values and 

responsibilities and identifies opportunities to support the 

sustainable development of the company. For example, the 

system can support sustainability in the supply chain by 

making transparent the carbon footprint of purchases and 

facilitate the selection of providers who apply sustainable 

practices. This does not change the overall project objectives, 

but influences subsequent steps.  

The scope of requirements analysis starts with an inclusive 

and integrated view of the procurement processes, material 

flows into the company, and the social and political 

environment of the local community. When defining possible 

system boundaries, the team experiments with multiple 

perspectives and works jointly with the procurement 

department and others. 

They expand the set of stakeholders and draw on 

knowledge beyond the project team by using a stakeholder 

impact analysis that considers enabling and structural effects 

to identify those most affected by the project, including those 

external to the company. Stakeholders include local supplier 

representatives, service delivery organizations, process 

analysts, the CTO, and the strategic planning and foresight 

group. 

To keep the number of stakeholders manageable, a 

sustainability expert acts as a surrogate stakeholder for others 

in the community and the further environment that may be 

affected by the system. A team member is assigned to each of 

the five sustainability dimensions, so that responsibility for 

identifying possible effects is clear and effective 

communication with additional stakeholders can take place. 

These team members consult relevant experts in areas such as 

supply chain sustainability, carbon accounting, socially 

responsible procurement, and anthropologists analyzing and 

interpreting current technological developments and its impact 

on our societies. 

The team agrees that the success criteria of the project are 

not restricted to whether it is delivered on time and within 

budget, but will be measured and monitored over a period of 

36 months after project completion. In this period, a set of 

indicators will be measured that cover the five dimensions of 

sustainability. The team will attempt to measure technical 

debt, social reputation and the improvement of relations with 

the local community, individual aspects such as privacy 

compliance and the satisfaction of those involved in the 

procurement process, environmental aspects such as the total 

carbon footprint of the products and services acquired, and 

amortization of the project costs and improved cost-benefit 

relations in procurement. 

During risk analysis, the team considers internal and 

external risks related to systemic effects in all five dimensions. 

For example, considering the evolving regulations on 

environmental accountability as a risk, the team develops a set 

of transparency requirements for the system. They also 

identify uncertainties about future shifts in procurement as 

sustainable products become more competitive. As a result, 

they include a feature to monitor these uncertainties. 

During requirements elicitation, participatory techniques 

are employed, and the inclusive perspective enables the 

project to leverage contributions from a broader set of 

stakeholders, including local service providers. In a series of 

workshops, they use a sustainability reference goal model to 

derive specific sustainability goals for their project and align 

them with other system goals, while deriving extended usage 

scenarios with the local community representatives. 

The resulting requirements document is based on a 

template that includes checklists for sustainability criteria and 

standards compliance in all five dimensions. The document is 

circulated among all stakeholders, and is shared with 

regulatory agencies to demonstrate the project meets relevant 

sustainability rules. As a result, it is also used more actively in 

subsequent stages. 

IV. SUSTAINABILITY DEBT 

The system that results from this procurement project is 

different when sustainability principles and therefore long-

term consequences are considered. 

Focusing on sustainability design, software engineers have 

to adopt a mindset quite different from the puzzle-solving 

attitude often found in engineering and business. The objective 

is to identify and understand “wicked problems”: problems 

that are deeply embedded in a complex system with no 

definitive formulation, and no clear stopping rule. In such 

cases, every solution changes the nature of the problem, so 

there is little opportunity for learning through trial and error 

[10]. What is needed, instead, is an adaptive, responsive, 

iterative approach that emphasizes shared understanding. 

Figure 1 highlights selected direct, enabling and structural 

effects of the procurement system in the five sustainability 

dimensions. Consider a system feature that tracks the carbon 

footprint of individual products. The feature enables users to 

choose products with lower carbon footprints. The compound 

structural effect in the economic dimension can benefit local 



suppliers with environmentally sustainable production and 

lead to an overall reduction of the carbon footprint. 

The diagram serves as a visual aid to support interactive 

collaboration among stakeholders to discover, document and 

validate potential effects of the system. Not all effects will be 

positive: For example, automating product selection rules to 

minimize carbon footprint takes away the freedom of the 

manager to take decisions in the procurement process [11]. 

This can reduce mutual trust between members of the 

organization.

 

 
 

Figure 1. Selected systemic effects of the procurement system 

The diagram also facilitates a conversation about 

``sustainability debt'' [12]: the invisible effects of taking 

decisions for the present that accumulate over time in each of 

the five dimensions. When we increase energy consumption, 

reduce individual privacy, impose technical barriers, or incur 

additional financial costs, we incur debts in these dimensions 

towards different stakeholders. Making these effects visible is 

the first step to understanding and considering them in systems 

design decisions. 

V. REQUIREMENTS ARE THE KEY 

In the tale of two projects, we have seen a series of decision 

points in the process of designing a system. Many of these are 

requirements engineering activities that will occur repeatedly 

in all iterations throughout the project. Each decision 

influences the decision space of subsequent choices and has a 

profound impact on the system to be designed and the effects 

it will have. Table 1 highlights how key activities change 

when we consider sustainability design principles. 

The leverage of requirements becomes clear when we 

consider their relationships with engineering techniques. We 

develop techniques in order to quantify, construct, and test 

artifacts and to control whether the results fall within an 

acceptable range. However, for design concerns such as 

usability, performance, maintainability, or sustainability, such 

technique are only applied once a need has been identified. 

Without such a need, the engineering techniques will remain 

unused, and hence have no effect on the project. For example, 

techniques for increasing technical sustainability abound, 

ranging from architectural design patterns to documentation 

guidelines. Yet, since applying these techniques often involves 

an upfront investment of effort, it is only done when a longer 

life expectancy of a system is recognized and expressed. On 

the other hand, a stated requirement for which no current 

technique exists will lead to an identified gap in technological 

ability. This means that in practice, systemic changes to the 

activities in Table 1 will dominate the effects of whatever 

techniques we develop to support these activities. 

Requirement engineers therefore play a key role in 

sustainability. As ``sustainability engineers'', they go beyond a 



narrow system perspective and follow an interdisciplinary, 

systems-oriented, stakeholder-focused approach, supported by 

higher management and executives. Their task is to understand 

the nature of software-intensive systems and the impact those 

can have on their social, technical, economic and natural 

environment and the individuals in that environment. 

This responsibility is reflected in the new UK Standard for 

Professional Engineering Competence (UK-SPEC), which 

Table 1  SE practices for sustainability 

Task Standard current practice Future practice focuses on 

Mindsetting The world is a puzzle, and we should 

“solve the problem” 

The world is complex, and we should first “understand the 

dilemmas”. 

Project objective, 

System purpose 

and boundary 

scoping 

Focus on the immediate business need 

and key system features. Do not question 

the purpose of the project or the purpose 

of the system. 

Emphasize the effects that the project can have on 

sustainability in all dimensions. Strive to advance 

sustainability in multiple dimensions simultaneously. 

Experiment with different system boundaries to understand 

the difference this might cause in its impact. 

External 

constraints 

identification 

See constraints as imposed by the direct 

environment of the system and its 

technical interfaces. Minimize the 

constraints considered, but include legal, 

safety, security, technical, and business 

resources. 

See constraints in each dimension as opportunities. Look for 

constraints from additional sources, starting with company 

Corporate Social Responsibility policies, legislation and 

standards for sustainability. 

Stakeholder 

identification 

Minimize the number of stakeholders 

involved and focus on stakeholders who 

have influence. Focus on internal 

stakeholders and exclude unreachable 

stakeholders. 

Maximize stakeholder involvement in an inclusive 

perspective integrating external stakeholders and involve 

those who are affected. Assign a dedicated role to be 

responsible for sustainability and introduce surrogate 

stakeholders to represent outside interests. 

Success criteria 

definition 

Focus on the financial bottom line at 

project completion. Measure business 

outcome and financial return on 

investment. 

Focus on advancing multiple dimensions simultaneously, 

including financial aspects, and take into account that most 

of the effects occur after project completion. 

Requirements 

Elicitation 

Focus on the features and the immediate 

effects the stakeholders want. 

Help stakeholders to understand the enabling effects the 

system will have. Use creativity techniques and long-term 

scenarios to forecast potential structural impact. 

Risk 

identification 

Identify risks that threaten timely project 

completion within budget. 

Include effects on the system’s wider environment. Include 

enabling and structural effects and risks that can develop 

over time. 

Trade-off analysis View it as a prioritization and selection 

problem and let the key stakeholders 

decide. 

Strive to transform sustainability trade-offs into mutually 

beneficial situations. Make sure that sustainability trade-offs 

are discussed by a wider range of stakeholders (or their 

surrogates). 

Go/No-Go 

decision 

Base the decision on feasibility, financial 

cost/benefit and risk exposure to project 

participants, i.e. internal stakeholders. 

This continues to be an internal business decision, but is 

documented to show to external audiences that sustainability 

indicators and enabling effects were taken into account. The 

decision is based on a consideration of positive and negative 

effects on all five dimensions. 

Requirements 

validation 

Let key stakeholders verify that their 

interests are captured. 

Ensure broad community involvement focused on 

understanding effects. 

Project 

completion 

Verify whether success criteria are met 

on completion date. After that, focus on 

maintenance and evolution. 

Evaluate the effects on all five dimensions over a certain 

timeframe after completion aligned with the expected 

timescale of effects. 

Requirements 

documentation 

Current templates ignore long-term 

effects and sustainability considerations. 

Templates require information about sustainability as a 

design concern and support analysts with checklists. 

	 	

 

explicitly defines the role of engineers such that they shall 

``Act in accordance with the principles of sustainability, and 

prevent avoidable adverse impact on the environment and 

society.'' [13].  It is up to SE curricula developers to equip 

future software engineers with the competences required to 

simultaneously advance goals in all five dimensions, beyond 

the technical and economic. 

For a long time, concerns about such effects have taken a 

backseat in SE, but this is changing as standards are being 

adjusted. For example, the working group WG42 on ISO/IEC 

42030 (Architecture evaluation) is discussing energy 

efficiency and environmental concerns at the software 



architecture level and the IEEE P1680.1 for Environmental 

Assessment of PC products is being revised.  

While this is an important step, a full consideration of all 

five sustainability dimensions is needed on the level of quality 

models, systems documentation templates, and the analysis of 

systemic effects throughout system lifecycle stages. It will 

often be the responsibility of the requirements engineers to 

introduce relevant standards in each of the five dimensions 

into the elicitation and specification process. To support this, 

sustainability considerations related to quality attributes of 

software systems in use should be integrated into revisions of 

the ISO 25000 series, while ISO 29148 should acknowledge 

the importance of system characteristics beyond the 

interaction with human users and encourage consideration of 

the systemic effects of software systems in RE. 

VI. SOFTWARE ENGINEERING IN SOCIETY 

The critical role that software plays in society demands a 

paradigm shift in the mindset of SE. Sustainability design 

emphasizes an appreciation of ‘wicked problems’ over a focus 

on puzzles and pieces; systems thinking over computational 

problem solving; and an integrated understanding of systems 

over a divide-and-conquer approach to systems analysis. 

While these are challenging shifts that do not come easy, 

taking such perspectives provides an opportunity to stand out, 

an invitation to innovate, and an occasion for software 

engineers and companies to distinguish themselves with a 

unique selling point in a competitive market. We also have an 

opportunity to help shape broader sustainability policy. A shift 

to a sustainable society requires both large-scale change in 

government policy and a change in engineering and business 

practice; neither on their own will suffice. But regulatory 

change is much easier if it builds on established best practice, 

so software practitioners need to lead the way. 

If you agree that we, as software engineers, have a 

responsibility for the long-term impacts of the systems we 

design, the principles of sustainability design provide an 

opportunity to get started. We can and should start now, and 

practitioners can lead the way: We need to collect experiences 

in applying sustainability principles in software engineering 

and learn from the process. An important way to make this 

vision of software as a force for sustainability a reality is by 

cooperation between industry and academia. 

Successful collaborations to integrate sustainability 

concerns into established practices can have significant impact 

on the long-term effects of the systems we design. To facilitate 

this, we must: 

• Identify and tackle causes of unsustainable software 

design. For this, industry can invite academics to 

research, analyze, and re-engineer their current 

development processes and practices for improved 

sustainability; 

• Develop a number of exemplar case studies that 

demonstrate the benefits of sustainability design in 

software engineering. For this, early-adopter industrial 

collaborators can partner with academics to apply 

research findings such as those summarized in Table 1 

and report on longer term results; 

• Build competencies in the theory and practice of 

sustainable design into the training of all software 

engineers. Industry can make the demand for software 

practitioners trained in sustainability principles explicit 

by requiring specific competences from potential 

employees. Researchers and educators should develop 

improved curricula that incorporate sustainability 

principles and ensure that future software professional 

possess the competences needed to advance 

sustainability goals through SE.  

 

Let's get started. 
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HIGHLIGHTS 

• The critical role that software plays in society 

demands a paradigm shift in the mindset of Software 

Engineering. 

• Sustainability design favors integrated understanding 

over a divide-and-conquer approach to systems 

analysis. 

• Sustainability Design requires an appreciation of 

‘wicked problems’ in Requirements Engineering. 

• Integrating sustainability concerns can significantly 

impact the long-term effects of the systems we 

design. 

• Sustainability design provides an opportunity for 

software companies to stand out with a unique value 

proposition. 
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