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AN OPERATIONAL INDICATOR FOR NETWORK MOBILITY USING 

FUZZY LOGIC 

by 

Rawia Ahmed EL-Rashidy* and Susan M. Grant-Muller† 

 

ABSTRACT 

This paper proposes a fuzzy logic model for assessing the mobility of road transport 

networks from a network perspective. Two mobility attributes are introduced to account 

for the physical connectivity and road transport network level of service. The relative 

importance of the two mobility attributes has been established through the fuzzy 

inference reasoning procedure that was implemented to estimate a single mobility 

indicator. The advantage of quantifying two mobility attributes is that it improves the 

ability of the mobility indicator developed to assess the level of mobility under different 

types of disruptive events. 

A case study of real traffic data from seven British cities shows a strong correlation 

between the proposed mobility indicator and the Geo distance per minute, 

demonstrating the applicability of the proposed fuzzy logic model. The second case 

study of a synthetic road transport network for Delft city illustrates the ability of the 

proposed network mobility indicator to reflect variation in the demand side (i.e. 

departure rate) and supply side (i.e. network capcity and link closure). Overall, the 

proposed mobility indicator offers a new tool for decision makers in understanding the 

dynamic nature of mobility under various disruptive events. 
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1 Introduction 

Mobility is essential to economic growth and social activities, including commuting, 

manufacturing and supplying energy (Rodrigue et al., 2009). Higher mobility (or in 

other words, a better ability of the network to deliver an improved service) is a very 

important issue for decision makers and operators as it relates to the main function of 

the road transport network. Consequently, an assessment of road transport network 

mobility is essential in order to evaluate the impact of disruptive events on network 

functionality and to investigate the influence of different policies and technologies on 

the level of mobility. Disruptive events may be classified as manmade or climate 

change related events, the scale of which will also have an impact on road transport 

network mobility. For example, a small accident may lead to the closure of one lane of 

a local road or a major accident may cause the closure of a motorway for several 

hours, with cascading effects on the entire network. Climate change related events 

(e.g. floods, inclement weather and heavy snowfall) have seen significant increase 

with resulting impacts on the road transport network. As an example, at the European 

level, the financial cost of network interruption from extreme weather is estimated to 

be in excess of €15 billion (FEHRL, 2004) whereas, in the USA, the estimated network 

repair costs due to snow and ice is 5 bn US$ (Enei et al., 2011). 

Mobility could have two dimensions (Berdica, 2002). Firstly, mobility as “the ability of 

people and goods to move from one place (origin) to another (destination) by use of 

an acceptable level of transport service” - commonly measured by vehicle kilometres 

and evaluated through surveys (Litman, 2008). Secondly, from the road transport 

network prospective, mobility is defined as the ability of a road transport network to 

provide access to jobs, education, health service, shopping, etc., therefore travellers 

are able to reach their destinations at an acceptable level of service (Kaparias and 

Bell, 2011, Hyder, 2010). Therefore, mobility is a measure of the performance of the 

transport system in connecting spatially separated sites, which is normally identified 

by system indicators such as travel time and speed. However, here the mobility 

concept is used as a key performance indicator to measure the functionality of the 

road network under a disruptive event, as in the second case above. It is therefore 

used to reflect the ability of a network to offer users a certain level of service in terms 

of movement. 
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The main objective of this study is to develop a single mobility indicator based on two 

mobility attributes using the fuzzy logic approach. Two case studies are considered to 

validate the technique: the first case based on real traffic data between seven British 

cities and the second case study concerned with a synthetic road transport network 

for Delft city. 

2 Mobility Assessment  

As with many transport concepts, there are no universally agreed indicators to assess 

road transport network mobility from a network prospective. According to the National 

Research Council (2002), mobility assessment should take into account system 

performance indicators such as time and costs of travel. They propose that the mobility 

level is inversely proportional to variations in travel time and cost, whereas, Zhang et 

al. (2009) suggested that travel time and average trip length are two key indicators to 

evaluate system mobility. The study (Zhang et al., 2009) developed a performance 

index to evaluate the mobility of an intermodal system, measured by the ratio of travel 

speed to the free flow speed weighted by truck miles travelled. However the 

performance index could be adapted to measure road transport mobility by 

considering total traffic flow rather than average daily truck volume. In line with this 

approach, Wang and Jim (2006) used the average travel time per mile as a mobility 

indicator, where the distance is the Geo distance rather than actual distance travelled. 

The use of the Geo distance rather than travel distance could lead to an overestimation 

of mobility as the Geo mileage is generally shorter than the actual travel distance 

between two locations. 

Cianfano et al. (2008) suggested a number of indicators based on link travel time and 

speed to evaluate road network mobility. Specifically, they (Cianfano et al., 2008) 

introduced a vehicle speed indicator, 𝑉𝑆𝐼, measuring the variation in speed compared 

to free flow conditions. A value of 𝑉𝑆𝐼 of 1 would indicate that vehicles are experiencing 

a travel speed across the network equal to the free flow speed (i.e. the average free 

flow speed of the network). Under extreme conditions 𝑉𝑆𝐼 = 0 indicates a fully 

congested road network. Cianfano et al., (2008) also proposed a mobility indicator 

based on travel time. According to Lomax and Schrank (2005), transport performance 

measures based on travel time fulfil a range of mobility purposes. However, other 

researchers (Zhang et al., 2009, Cianfano et al., 2008) have used simple and 



4 

applicable indictors that could be easily implemented at a real-life network scale. They 

only considered the impact of traffic flow conditions (presented as the variation in travel 

speed compared with free flow speed) and took into account the impact of 

unconnected zones. If some links are not available (e.g. closed due to an incident) 

they are omitted from the indicator calculations, producing misleading values. 

Murray-Tuite (2006) proposed a number of indicators to estimate mobility under 

disruptive events, some of which were scenario based measures such as the time 

needed to vacate a towns’ population and the capability of emergency vehicles 

(ambulance, police) to pass from one zone through to another. Murray-Tuite (2006) 

also suggested that the average queue time per vehicle, the queue length on the link 

and finally, the amount of time that a link can offer average speeds lower than its 

nominal speed limit could also be considered as mobility indicators. 

Chen and Tang (2011) introduced the notion of link mobility reliability, calculated using 

a statistical method based on historical data i.e. speed data for 3 months derived from 

floating cars. They also investigated the possible influencing factors on mobility 

reliability. Their results showed that the mobility reliability of an urban road network is 

correlated with network saturation (volume/capacity ratio) and road network density. 

At the operational level, TAC (2006) carried out a survey including Canadian provincial 

and territorial jurisdictions regarding current practices in performance measurement 

for road networks related to six outcomes including mobility. The study found that 

average speed and traffic volume are widely used as measures of mobility. The study 

also found that the concepts of accessibility and mobility are used interchangeably in 

practice, which could conflict with academic practice, where accessibility and mobility 

are very different concepts. For example, Gutiérrez (2009), emphasised that the 

mobility concept relates to the actual movements of passengers or goods over space, 

whereas accessibility refers to a feature of either locations or individuals (the facility to 

reach a destination). In other words, accessibility could be defined as the potential 

opportunities for interaction (Hansen, 1959) that are not only influenced by the quality 

of the road transport network, but also by the quality of the land-use system 

(Straatemeier, 2008). Widespread communication technologies could play a crucial 

role in virtual accessibility (Janelle and Hodge, 2000). 
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A number of further mobility indicators have been reported, namely, origin-destination 

travel times, total travel time, average travel time from a facility to a destination, delay 

per vehicle mile travelled, lost time due to congestion and volume/capacity ratio (TAC 

2006). Meanwhile, Hyder (2010) suggested three indictors to measure the mobility of 

the road transport network, namely, maximum volume/capacity ratio, maximum 

intersection delay and minimum speed. The study (Hyder, 2010) used linguistic 

expressions to evaluate the indicators (as shown in Table 1) and suggested that 

mobility is gauged by the lowest value of these indicators. 

However none of this existing research has considered the impact of the road transport 

network infrastructure, such as road density, on network mobility. Therefore, the 

research presented here considers the impact of network infrastructure and network 

configuration using graph theory measures alongside traffic conditions indicators, as 

discussed above. The use of the network configuration and traffic flow conditions will 

reflect the impact of different kinds of disruptive events. For example, in case of a 

flood, some parts of the network could become totally disconnected whilst other parts 

of the network could benefit from lower network loading. Therefore the impact of such 

an event could be masked if the mobility indicator only considers traffic conditions. In 

the case of adverse weather conditions the overall network capacity could decrease 

(Enei et al., 2011) leading to congested conditions, but not necessarily affecting travel 

distance. Consequently, the consideration of both attributes i.e. physical connectivity 

and traffic conditions, is necessary to cover both cases. In section 3 below, mobility 

attributes are introduced. 

3 Mobility Modelling of Road Transport Networks 

In the research here, the mobility concept is treated as a performance measure 

expressing the level of road transport network functionality under a disruptive event. 

Therefore, mobility is used as a concept to reflect the ability of a network to offer its 

users a certain level of service in terms of movement. To obtain a single mobility 

indicator a number of mobility attributes are used to capture a range of mobility issues, 

as outlined above. 
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3.1 Mobility Attributes 

Based on the definition of mobility (i.e. the ability of the road transport network to move 

road users from one place to another with an acceptable level of service), two 

attributes are proposed. Firstly, an attribute is used to evaluate physical connectivity, 

i.e. the ability of road transport to offer a route to connect two zones. The second 

attribute is implemented as a measure of the road transport network level of service, 

based on traffic conditions. Figure 1 shows a schematic diagram of the mobility 

attributes and the various factors affecting them. In the following sub-sections both 

attributes are presented and a justification for their selection is provided. 

3.1.1 Physical Connectivity 

The physical connectivity (i.e. existence of a path between OD pairs), is a key factor 

on the level of network mobility. For example, the unavailability of a certain route may 

lead to unsatisfied demand, economic loss or safety concerns arising from the 

disconnection of a group of travellers who are then effectively trapped. 

Physical connectivity can be measured by a number of indicators based on graph 

theory, as shown in Levinson (2012). The influence of network configuration on 

connectivity could be studied by calculating the gamma index (𝛾). The 𝛾 index is 

measured as the percentage of the actual number of links to the maximum number of 

possible links (Rodrigue et al., 2009). The 𝛾 index is a useful measure of the relative 

connectivity of the entire network, as a transport network with a higher gamma index 

has a lower travel cost under the same demand (Scott et al., 2006). However, 𝛾 is not 

able to reflect the zone to zone level of connectivity and its impact on overall 

connectivity. Road density also has drawbacks in similarity to the 𝛾 index. The detour 

index (also referred to as the circuity measure) is defined as the ratio of the network 

distance to the Euclidean distance, or Geo distance, and is another graph theory 

measure that is widely used to investigate the impacts of network structure. According 

to Rodrigue et al. (2009), the detour index is a measure of the ability of road transport 

to overcome distance or the friction of space. Meanwhile, Parthasarathi and Levinson 

(2010) concluded that the network detour index measures the inefficiency of the 

transport network from a travellers’ point of view. 



7 

In the research here a physical connectivity attribute, 𝑃𝐶𝐴, is developed based on the 

detour index but modified to consider zone to zone connectivity (see Eq.1 below).  

 𝑃𝐶𝐴𝑖𝑗(𝑟) =
𝐺𝐷𝑖𝑗

𝑇𝐷𝑖𝑗(𝑟)
 (1) 

where 𝐺𝐷𝑖𝑗 is the Geo distance between zone 𝑖 and zone 𝑗. 𝑇𝐷𝑖𝑗 is the actual travel 

distance between zone 𝑖 and zone 𝑗 using route 𝑟. The value of 𝑃𝐶𝐴𝑖𝑗(𝑟) varies from 

1 (representing 100% physical connectivity), to zero (where there is no connectivity). 

In the case of a high impact disaster the degree of connectivity would intuitively be 

expected to be zero. In such a case, the actual travel distance, 𝑇𝐷𝑖𝑗(𝑟), may be 

mathematically assumed to be infinity to express the unsatisfied demand and, 

accordingly, the value of 𝑃𝐶𝐴𝑖𝑗(𝑟) becomes zero. 

To explain the importance of physical connectivity (represented by 𝑃𝐶𝐴), 9 routes 

listed in Table 2 with very similar free flow travel speeds were investigated to eliminate 

the impact of traffic conditions on mobility. The data for the 7 routes was obtained 

using google map, i.e. travel distance (𝑇𝐷), free flow travel time (𝐹𝐹𝑇𝑇), as shown in 

Figure 2 for the Leeds to Birmingham route. The free flow travel and actual travel 

speeds, (𝐹𝐹𝑇𝑆  and 𝑇𝑆) were calculated based on the traffic from the google map 

website (maps.google.co.uk). The 𝐺𝐷𝑖𝑗 between each OD pair was calculated using 

the Euclidean distance based on Pythagorean theorem (i.e. 𝐺𝐷𝑖𝑗 =

√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2) where 𝑥 and 𝑦 are the National Grid Coordinates obtained 

using a “gazetteer” query that allows search for and download particular records from 

the Ordnance Survey's 1:50,000 Landranger series maps‡. 

The 𝑃𝐶𝐴 was then calculated for each route using Eq. (1) with 𝐺𝐷𝑖𝑗 and 𝑇𝐷𝑖𝑗. 

Furthermore, the mobility indicator developed by Wang and Jim (2006) (average travel 

time per mile of Geo distance, i.e. 𝑇𝑇𝑖𝑗/𝐺𝐷𝑖𝑗) was also calculated for free flow 

conditions and under different traffic conditions. For compatibility, an inverse of the 

indicator developed by Wang and Jim (2006) should be considered for comparisons 

with the 𝑃𝐶𝐴. For example, the higher the Geo distance per minute (𝐺𝐷𝑝𝑀), the more 

                                            

‡ © Crown Copyright and database rights 2014; an Ordnance Survey/EDINA-supplied service. 



8 

miles are travelled in a minute, hence a higher mobility level. The trend for 𝑃𝐶𝐴 in 

comparison with 𝐺𝐷𝑝𝑀 and the free flow Geo distance per minute (𝐹𝐹𝐺𝐷𝑝𝑀) can then 

be calculated, as shown in Figure 3. 

The coefficient of determination 𝑅2 was used to reflect the correlation between 𝑃𝐶𝐴  

and 𝐹𝐹𝐺𝐷𝑝𝑀. A very high correlation (𝑅2 = 0.99) between 𝑃𝐶𝐴  and 𝐹𝐹𝐺𝐷𝑝𝑀 is 

shown in Figure 3(a), highlighting the importance of 𝑃𝐶𝐴 in estimating the mobility 

level in the case of the free flow conditions. 𝑅2 decreases to 0.8, however, in the case 

of traffic flow with a lower travel speed. The travel speeds presented in Table 2 are 

close to the free flow speeds and, consequently, the correlation is still relatively high. 

As traffic speed decreases, the correlation is expected to be weaker. These findings 

indicate that 𝑃𝐶𝐴 is insufficient to assess the level of mobility under different traffic flow 

conditions. As a result, the impact of traffic conditions should also be taken into 

account, as explained below. 

3.1.2 Traffic Condition Attribute 

A wide range of mobility attributes have been developed that are based on traffic 

conditions, as discussed in section 1.3. Some of these are defined using link data, 

such as 𝑉𝑆𝐼, while others are based at zone level such as the performance index (𝑃𝐼) 

and road transport network mobility (𝑀). As physical connectivity is calculated at zone 

level, the variation in travel speed between each OD pair can be adopted to indicate 

the level of service, given it is widely accepted as a mobility attribute (TAC, 2006). The 

travel speed between each OD pair (𝑇𝑆𝑖𝑗) can then be calculated using Eq. (2) and 

the traffic condition attribute (𝑇𝐶𝐴) is obtained using Eq. (3) below. 

 𝑇𝑆𝑖𝑗(r) =
𝑇𝐷𝑖𝑗(𝑟)

𝑇𝑇𝑖𝑗(𝑟)
 (2) 

 𝑇𝐶𝐴(𝑟) =
𝑇𝑆𝑖𝑗(𝑟)

𝐹𝐹𝑇𝑆
 (3) 

where 𝑇𝑆𝑖𝑗 is the travel speed between zone 𝑖 and zone 𝑗 for a route 𝑟, 𝑇𝑇𝑖𝑗 is the 

actual travel time between zone 𝑖 and zone 𝑗 for a route 𝑟 and 𝐹𝐹𝑇𝑆 is the free flow 

travel speed in the network considered. For example, in the case of motorways, 𝐹𝐹𝑇𝑆 

could be taken as 70 mi/hr. The value of 𝑇𝐶𝐴 varies between 1 and zero. A value of 

𝑇𝐶𝐴 = 1 indicates that vehicles have a travel speed across the network equal to the 
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free flow speed (i.e. the average free flow speed of the network). Under extreme 

conditions 𝑇𝐶𝐴 = 0, indicating a fully congested road network. 

A number of routes with a very high 𝑃𝐶𝐴 (≈ 0.80) are presented in Table 3 to show 

the impact of 𝑇𝐶𝐴 in the case of high physical connectivity. A very high correlation was 

found between 𝑇𝐶𝐴 and 𝐺𝐷𝑝𝑀 in the case of routes with very high 𝑃𝐶𝐴, as shown in 

Figure 4(a). A low correlation was, however, obtained between 𝑇𝐶𝐴 and 𝐺𝐷𝑝𝑀 in the 

case of routes presented in Table 2 (𝑅2 = 0.0061; see Figure 4(b)). Consequently, it 

could be concluded that the combined impact of both 𝑃𝐶𝐴 and 𝑇𝐶𝐴 on mobility is not 

linear and requires a flexible approach that has the ability to estimate the impact of 

each attribute according to its level. 

3.2 Mobility Indicator Using Fuzzy Logic Approach 

The fuzzy logic approach has a wide range of applications in different disciplines e.g. 

transport, engineering, economics, environmental, social, medical and management 

fields due to its ability to model the dynamics of a complex nonlinear system that 

cannot be mathematically modelled (Bianchi and Gaudenzi, 2013; Ross, 2010). 

Furthermore, the fuzzy logic approach has the ability to interpolate the inherent 

vagueness of the human mind and to determine a course of action, when the existing 

circumstances are not clear (Zadeh, 1965). In other words, it can deal with the 

uncertainty arising when the boundaries of a class of objects are not sharply defined 

(Nguyen and Walker, 1997). 

In environmental applications, Camastra et al. (2015) proposed a fuzzy decision 

system for genetically modified plant environmental risk assessment using Mamdani 

inference and Liu and Lai (2009) developed an integrated decision-support framework 

for environmental impact assessment considering air, water, soil, noise, solid waste, 

terrestrial, aquatic, economics, society and culture. In transport fields, fuzzy logic 

applications could be categorized into two main areas, namely soft and hard 

applications. Hard applications refer to the use of fuzzy logic in hardware design, for 

example, a fuzzy controller for a traffic junction (e.g. Bi et al., 2014), ramp metering 

and variable speed limit control (e.g. Pham et al. 2014; Ghods et al. 2007). Soft 

applications refer to the use of fuzzy logic in modelling the uncertainty associated with 

various parameters such as travel demand. According to Kalic´ and Teodorovic 

(2003), the fuzzy logic technique is successfully used in transport modelling including 



10 

route choice, trip generation, trip distribution, model split and traffic assignment. For 

example, Sabounchi et al. (2014) used the fuzzy logic approach to model the impact 

of users’ perceptions on the travel mode selection, whereas Foulds et al. (2013) 

developed a fuzzy set O–D estimation model. Furthermore, Errampalli et al. (2012) 

introduced a microscopic traffic simulation model based on the fuzzy logic approach 

to model traveller behavior on the urban road network. 

However, like any other approach, the fuzzy logic technique has its own merits and 

drawbacks. Davarynejad and Vrancken (2009) and Ross (2010) highlighted a number 

of these merits and drawbacks based on a comprehensive review. For example, it is 

a simple method as it uses an easy modelling language and is a powerful tool due to 

its ability to model experience and knowledge of human operator. It has also the ability 

to deal with imprecise information. The criticism by Davarynejad and Vrancken (2009) 

of the fuzzy logic approach focused on its application in hardware, for example, its 

limited use in traffic control signal or isolated ramp metering rather than traffic control 

due to the complexity of describing large-scale applications using quantitative 

information. Fuzzy systems are also limited to the problem solver knowledge, as 

expressed linguistically, which is of a shallow and meager nature (Ross, 2010). 

Furthermore, fuzzy models can sometimes be difficult to develop and need numerous 

simulations before they can be used (Velasquez and Hester, 2011). 

In this research, a fuzzy logic approach has been implemented to scale both attributes 

and combine their impact to measure the mobility level. The flexibility of fuzzy logic 

approach has allowed the developed model to be adapted to different scenarios as 

different relative importance of each attribute can be allocated. This has been 

achieved through using fuzzy reasoning, (the process of deriving conclusions from a 

set of IF–THEN fuzzy rules). The fuzzy logic approach includes four main steps, 

namely fuzzification, fuzzy rule base, fuzzy interference engine and defuzzification. 

The first step, fuzzification, converts 𝑃𝐶𝐴 and 𝑇𝐶𝐴 crisp values to degrees of 

membership by means of a lookup to one or more of several membership functions. 

In the fuzzy rule base, all possible fuzzy relationships between 𝑃𝐶𝐴 and 𝑇𝐶𝐴 form the 

input whilst the output for the mobility indicator 𝑀𝐼 is then found using an ‘IF–THEN’ 

format. The fuzzy interference engine collects all the fuzzy rules in the fuzzy rule base 

and learns how to transform a set of inputs to related outputs. The final step, 

defuzzification, converts the resulting fuzzy outputs from the fuzzy interference engine 



11 

to a crisp number representing the mobility indicator 𝑀𝐼. A brief introduction on the 

implementation of these steps to estimate a single mobility indicator 𝑀𝐼 from the 

proposed two attributes, 𝑃𝐶𝐴 and 𝑇𝐶𝐴 is described below. 

3.2.1 Fuzzy Membership of Mobility Attributes 

The relative importance of both 𝑃𝐶𝐴 and 𝑇𝐶𝐴 has been established through the 

definition of membership functions as inputs to the fuzzy inference reasoning 

procedure. In the proposed method, both 𝑃𝐶𝐴 and 𝑇𝐶𝐴 are expressed by fuzzy sets 

labelled using gradual linguistic terms, i.e. the crisp values of 𝑃𝐶𝐴 and 𝑇𝐶𝐴 are 

converted to fuzzy values, for example high, medium and low. Each attribute is divided 

into a number of fuzzy subsets and represented by membership grade functions (𝜇). 

Various membership functions have been proposed in the literature (Ross, 2010), for 

example triangular, trapezoid, Gaussian distribution and sigmoid functions. However, 

the triangular and trapezoid membership functions were adopted to fuzzify different 

assessed levels of the mobility attributes and indicator as they are by far the most 

common forms encountered in practice. They also have the benefit of simplicity for 

grade membership calculations (Ross, 2005, Torlak et al., 2011, El-Rashidy and 

Grant-Muller, 2014). Other membership functions may also be used, however, 

previous research (Shepard, 2005) indicated that real world systems are relatively 

insensitive to the shape of the membership function. Membership functions were also 

recently determined using optimization procedures, provided that a comprehensive 

database is available (Jiang et al., 2008). The fuzzy triangular and trapezoidal 

membership grade functions for each attribute (𝑃𝐶𝐴, 𝑇𝐶𝐴 and 𝑀𝐼), are presented in 

Figure 5. Five assessment levels i.e. very low, low, medium, high and very high were 

proposed to model 𝑃𝐶𝐴, 𝑇𝐶𝐴 and 𝑀𝐼, where each level is defined by a fuzzy function 

having membership grades varying from 0 to 1. A value of 1.0 means a 100% 

membership whereas a value of 0 represents non-membership (e.g. 𝜇𝑙𝑜𝑤(𝑃𝐶𝐴) =

1  𝑖𝑓 𝑃𝐶𝐴 ≤ 0.25 as shown in Figure 5). The membership grade function adopted can 

be adjusted or re-scaled to reflect real life conditions and expert opinion. 

3.2.2 Fuzzy interference system and fuzzy rule base 

A fuzzy inference system (FIS) is concerned with developing explicit rules in the form 

of IF-Then statements. These rules convert implicit knowledge and expertise of the 

particular application then build a block of rules determining the decision outputs. The 
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FIS adopted here is based on Mamdani and Assilian (1975) as it is the most common 

in practice and literature due to its simplicity (Ross 2010).  

Generally, there are mn fuzzy rules where m is the number of subsets used to define 

the ‘n’ input parameters. As the number of subsets m used for either 𝑃𝐶𝐴 or 𝑇𝐶𝐴 is 5, 

the total number of fuzzy rules is 25. The fuzzy base rules have been identified through 

analysis of the relationship between 𝑃𝐶𝐴, 𝑇𝐶𝐴 and 𝐺𝐷𝑝𝑀 for 110 routes. These rules 

could be modified to include expert opinion or new data sets. These fuzzy base rules 

have the following descriptive form: 

R1 IF 𝑃𝐶𝐴 is Very Low and 𝑇𝐶𝐴 is Very Low Then 𝑀𝐼 is Very Low 

R2 IF 𝑃𝐶𝐴 is Very Low and 𝑇𝐶𝐴 is Low Then 𝑀𝐼 is Very Low 

… … ….     ….. 

R25 IF 𝑃𝐶𝐴 is Very High and 𝑇𝐶𝐴 is Very High Then 𝑀𝐼 is Very High 

The Mamdani method has several functions that qualify as fuzzy intersection, referred 

to in the literature as t-norms as introduced by Menger (1942), (quoted in Ross 2010). 

T-norms are used for the connectives of inputs; for example ‘min’ or ‘product’ operator. 

The ‘product’ t-norm was chosen for the fuzzy inference rules determined here as it 

makes the output sensitive to every input, whereas, only one input controls the 

conclusion in case of the ‘min’ t-norm operator. The ‘product’ t-norm inference formula 

adopted in the current formulation is given by: 

 𝜇𝑐(𝑀𝐼) = 𝜇𝐴(𝑃𝐶𝐴)𝜇𝐵(𝑇𝐶𝐴) (4) 

where 𝐴, 𝐵 and 𝐶 are fuzzy subsets. 

3.2.3 Defuzzification of mobility indicator 

Defuzzification is the inverse process of fuzzification, whereby the calculated fuzzy 

values of the mobility indicator are converted to crisp values. There are a number of 

defuzzification techniques, such as the max membership principle, centroid method 

(centre of area or centre of gravity) and weighted average method. For more details 

of these techniques and their uses, see Ross (2010). Here the centroid method, that 

calculates the centre of gravity for the area under the curve, was used as it allows for 
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an accumulating effect for each assessment level on the calculated 𝑀𝐼 (Ross, 2010). 

It is also the most prevalent and appealing technique (Ross 2010). 

Figure 6 shows a surface plot representation of all these rules using the ‘product’ t-

norm operator and the centroid method. This figure reflects the importance of both 

𝑃𝐶𝐴 and 𝑇𝐶𝐴 on the mobility indicator 𝑀𝐼, as high mobility can only be achieved when 

both 𝑃𝐶𝐴 and 𝑇𝐶𝐴 are high. The maximum values of 𝑃𝐶𝐴 or 𝑇𝐶𝐴 could only, however, 

achieve a medium to low mobility level on their own. The above rules are only used 

for demonstration purposes of the effective application of fuzzy logic in determining 

the mobility indicator. However, the validity of these rules were studied using data from 

a real life case study, as presented in Section 4. Following the fuzzification of the two 

input parameters using the membership functions shown in Figure 5, the applicable 

rules were activated and the results generated. 

3.2.4 Numerical example illustrating FL processes 

In this section a numerical example is used to demonstrate the main steps of the fuzzy 

logic approach in combining the two attributes to estimate the mobility indicator. The 

route between Birmingham and London was chosen for this purpose. The full details 

of the route are presented in Tables 4 and 5 (route 3 between the two cities) where 

𝑃𝐶𝐴 = 0.71 and 𝑇𝐶𝐴 = 0.58 . Based on Figure 7, defuzzification of 𝑃𝐶𝐴 = 0.71 gives 

a membership grade of the very high and high subsets of 0.55 and 0.40, respectively. 

Similarly defuzzification of 𝑇𝐶𝐴 = 0.58  provides a membership grade of the high and 

medium subsets of 0.53 and 0.47, respectively. Consequently, four If-Then rules were 

activated, as listed in Figure 7. These four rules identify the mobility level to be 

members of the high and medium subsets. For each rule, the compatibility of the rule 

was calculated using the ‘product’ t-norm, for example for rule 1, the compatibility level 

for the mobility high subset is 0.53x0.40=0.21. For each rule, a trapezoid conclusion 

was truncated based on the rule compatibility value. The truncated membership 

functions for each rule were then aggregated using the ‘min’ operator. The centre of 

gravity technique was then employed to defuzzificate the aggregated membership 

function obtained and the value of the mobility indicator was calculated, as presented 

in Figure 7. 

The fuzzy logic toolbox Graphical User Interface (GUI) in MATLAB environment was 

used to build the FIS described and to model 𝑀𝐼 from the two attributes 𝑃𝐶𝐴 and 𝑇𝐶𝐴. 
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To test the validity of the proposed model a number of scenarios of real transport 

networks were studied, as presented in more detail in Section 4 below. 

3.3 NETWORK MOBILITY INDICATOR 

Despite the importance of an OD based mobility indicator, a network wide indicator 

could be needed to assess the level of mobility under different conditions. To evaluate 

network mobility, the network mobility indicator (𝑁𝑀𝐼) was estimated from the mobility 

indicator 𝑀𝐼 obtained from the fuzzy logic inference system described above. Each 

𝑀𝐼𝑖𝑗 is aggregated based on the level of demand between each OD pair, as presented 

in Eq. (5) below: 

 𝑁𝑀𝐼 =
∑ 𝑀𝐼𝑖𝑗𝑑𝑖𝑗𝑖≠𝑗 

∑ 𝑑𝑖𝑗𝑖≠𝑗
 (5) 

𝑑𝑖𝑗 is the demand between zone 𝑖 and zone 𝑗. 

4 CASE STUDY 1 

Different routes between 7 British cities, namely London, Bath, Leeds, Birmingham, 

Bradford, Brighton and Manchester were chosen to show the applicability of the 

proposed technique. For each OD pair (e.g. Brighton and Manchester), various 

alternative routes available in Google maps in both directions were considered. For 

example, Figure 8 shows different routes from Bath, Birmingham, Bradford, Leeds, 

Brighton and Manchester to London. For each route, the travel distance in addition to 

the free flow travel time is shown in Figure 8. The travel time for each route was 

obtained from the google maps website based on the traffic conditions at the time of 

data collection (between 8:00am and 10:00am on 10 March 2014). Table 3 presents 

the routes’ characteristics including travel distance, time and speed, in addition to the 

free flow time and speed. Table 4 shows a numerical example of the calculated values 

of 𝑃𝐶𝐴, 𝑇𝐶𝐴 and 𝐺𝐷𝑝𝑀 for the routes presented in Table 3, in addition to the estimated 

values of 𝑀𝐼 produced using the FIS rules presented in Section 3.2.2. Figure 9 shows 

the correlation between 𝑀𝐼 and 𝐺𝐷𝑝𝑀. The high value of 𝑅2 (=0.9) between 𝑀𝐼 and 

𝐺𝐷𝑝𝑀 shows the efficiency of the proposed mobility fuzzy model in estimating 𝑀𝐼 

values for different routes using both attributes, 𝑃𝐶𝐴 and 𝑇𝐶𝐴. 
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To check the validity of the technique on a wider scale, all the routes between the 

seven cities (110 routes) were used. Figure 10 shows the correlation between the 

mobility indicator and travel distance per minute for all the routes between the seven 

cities: Figure 10(a) for free flow conditions and Figure 10(b) with current traffic 

conditions. Figure 10(a) shows a high correlation between the mobility level under free 

flow conditions 𝐹𝐹𝑀𝐼 and 𝐹𝐹𝐺𝐷𝑝𝑀 (𝑅2= 0.90) whereas Figure 10(b) shows a high 

correlation under different traffic flow conditions. These findings further support the 

successful application of the proposed technique. 

5 Case study 2 

Case study 1 (explained above) was used to show the validity of the proposed 

technique in a real life application. However, there is still a need to check the variation 

of 𝑀𝐼 under different scenarios. To achieve this, a synthetic road transport network for 

Delft city was employed to illustrate the mobility of the road network under different 

scenarios using the proposed methodology. Delft is a city and municipality in the 

province of South Holland in the Netherlands. The total population is 98675 with a 

density of 4,324.1 per km2 (Statistics Netherlands, 2012). In general, cars are widely 

used in the Netherlands and people use this mode for almost half their trips (Statistics 

Netherlands, 2012). The synthetic Delft road network model is made available with 

OmniTrans software (Ver. 6.022). The network is only a representation and may 

deviate from the real network for the city of Delft. The Delft case study was chosen 

due to the availability of the data needed to illustrate the methodology. However, the 

focus of the research is the methodology itself rather than the empirical findings and 

the method should be applicable to any road transport network. 

The Delft road transport network consists of 25 zones; two of which are under 

development (24 & 25), and 1142 links; 483 links are two-way whilst 176 are one-way 

including connectors and different road types (as shown in Figure 11). 

A dynamic assignment model (Madam), available in the four steps transport modelling 

software OmniTrans, was implemented to investigate the ability of 𝑀𝐼 to respond to 

variations in demand i.e. applying different departure rates every 5 minutes. The 

Madam model uses turning movements (proportions) calculated for each node in the 

network and created using static assignment for route choice, which was carried out 
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prior to the Madam model. The main drawback of this approach is that modelling route 

choice in such a way leads to fixed routes during dynamic simulation time. 

Consequently, 𝑃𝐶𝐴 does not change in response to demand variations. However, the 

traffic data obtained from the simulation was based on static assignment as opposed 

to ‘real-world’ observations. This approach cannot capture the full effects of 

unexpected link closures or increases in demand as it is not able to capture queuing, 

imperfect information, etc. To obtain more realistic impact results, two issues should 

be considered; traveller behaviour (e.g. the proportion of travellers who will change 

their route with congestion or the closure of a link) and the availability of an en-route 

choice model implemented within the traffic assignment software. However, the main 

aim of the analysis reported here is to investigate the ability of the attributes to reflect 

the importance of traffic conditions. 

5.1 DEMAND VARIATION SCENARIO 

Different departure rates every 5 minutes were used to investigate the impact of 

demand variations on the network mobility indicator estimated by the FIS proposed. 

15 minute aggregated travel data (i.e. travel time and distance between each OD in 

the network) were obtained. A computer programme was developed using MATLAB 

(R2011a) to calculate 𝑃𝐶𝐴 and 𝑇𝐶𝐴 (Eqs. 1, 2 and 3) for each OD pair (i.e. 484 routes 

for each 15 minutes time step; in total 9 time periods from 7:00pm to 9:00pm) and 𝑀𝐼 

was then estimated using the FIS proposed. The network mobility indicator, 𝑁𝑀𝐼, was 

calculated using Eq. (5). Similar to the real life case study, a very high correlation was 

achieved between 𝑁𝑀𝐼 and 𝐺𝐷𝑝𝑀 for the 9 time periods, as presented in Figure 12. 

Figure 13 presents the variations in 𝑃𝐶𝐴, 𝑇𝐶𝐴 and 𝑁𝑀𝐼 different departure rates. 𝑃𝐶𝐴 

does not show any change with demand variations as route choice does not change 

within the Madam model in OmniTrans (as explained earlier). Consequently, the 

network mobility indicator 𝑁𝑀𝐼 shows the same trend as 𝑇𝐶𝐴. Figure 13 also 

demonstrates that the proposed 𝑁𝑀𝐼 decreases as the departure rate increases, 

reflecting the ability of the network to accommodate the increase in demand. However 

as the departure rate decreases, for example between 7:30 and 8:15, 𝑁𝑀𝐼, is seen to 

increase. 
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5.2 Disruptive Event 

The road transport network may be exposed to a wide range of disruption, which varies 

in type, magnitude and consequences. Disruptive events can be classified as 

manmade (i.e. a traffic accident) or natural events such climate change related events 

(e.g. floods and extreme weather conditions). In this section, an accident impact will 

be modelled using a single link closure, whereas a natural event impact is simulated 

using network wide capacity reductions, as explained below. 

5.2.1 Link Closure 

A number of links were selected to investigate the ability of the proposed attributes to 

reflect the impact of link closure on mobility. 10 link closure scenarios were carried out 

using a static assignment model for the morning peak for the purposes of illustration, 

though many more links could be considered if needed. In each scenario, only one 

link was blocked, e.g. closed due to a road accident or roadwork (see Figure 14 for 

link closure locations). Both attributes, the physical connectivity attribute (𝑃𝐶𝐴) and 

traffic condition attribute (𝑇𝐶𝐴), were calculated based on the zone level data output. 

Figure 15 and Table 6 show the results for 𝑃𝐶𝐴, 𝑇𝐶𝐴 and 𝑁𝑀𝐼 due to the 10 link 

closures. The impact of link closure on both attributes, 𝑃𝐶𝐴 and 𝑇𝐶𝐴, is seen to vary 

from one link to another. For example links 1 and 5 have the greatest impact on 𝑃𝐶𝐴 

as the closure of this links leads to a 5% decrease in 𝑃𝐶𝐴 when compared with full 

network operation. The closure of links 3, 4, 6 and 7 has the highest impact on 𝑇𝐶𝐴 

as each link closure leads to a 10% reduction in 𝑇𝐶𝐴 in comparison to full network 

operation. The highest aggregated impact of a link closure, measured by the 

corresponding decrease in 𝑁𝑀𝐼, occurs with the closure of links 2, 3, 4, 6 and 7. 

5.2.2 Impact of a Network Wide Disruptive Event 

Overall network capacity could be reduced in real life due to the effect of network wide 

events such as heavy rain or snowfall. The levels of reduction in network capacity and 

speed were assumed based on evidence in the literature (Enei et al., 2011; Pisano 

and Goodwin, 2004; Koetse and Rietveld, 2009). The main aim of this analysis was to 

examine the ability of 𝑁𝑀𝐼 to capture the impact of a reduction in network capacity 

under similar variations in demand. This group of scenarios involved a reduction in 

capacity of 5%, 10% and 15% in order to model the impact of a weather related event. 
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Figure 16 shows the variations in the network mobility indicator, 𝑁𝑀𝐼, for the reduced 

network capacity and similar variations in the departure rate as illustrated in Figure 13. 

From Figure 16, 𝑁𝑀𝐼 shows variations during the modelling period (7:00-9:00) for 

reduced capacity compared with the full network capacity. In general, the largest 

reduction in the level of network mobility occurs with a 15% capacity reduction under 

different departure rates. It is worth noting that the response rate in terms of 

improvement in mobility associated with a decrease in the departure rate is dependent 

on network capacity. For example, when the reduction in network capacity is 15%, 

network mobility does not improve much with varying departure rates in comparison 

with lower reductions in network capacity. 

5.3 CONCLUSIONS 

A fuzzy model incorporating two mobility attributes, namely a physical connectivity 

attribute and traffic condition attribute, has been proposed to obtain a single mobility 

indicator. The merit of using both attributes is to allow the inclusion of different types 

of disruptive events and their impacts on network mobility. This is in contrast to the 

case of a single mobility attribute that may refer to the level of mobility without providing 

insight into the cause. Furthermore, the fuzzy inference reasoning procedure was able 

to accommodate the relative importance of each attribute under different conditions 

compared with alternatives such as the use of fixed weights for each attribute. For 

example, under a free flow condition, the technique was able to estimate the level of 

mobility that is more influenced by the physical connectivity than the traffic condition. 

The applicability of the mobility fuzzy model is confirmed by comparing the proposed 

mobility indicator by the Geo distance per minute for two case studies. The two case 

studies showed that the mobility is highly affected by the traffic condition in case of 

high physical connectivity, i.e. the travel distance is very close from the Geo distance 

between two zones. Furthermore, the importance of considering both attributes is 

emphasised by the second case study of the synthetic road transport network for Delft 

city, e.g. individual link closures could have different impacts on either attribute. For 

example, a link closure could lead to detours decreasing the physical connectivity 

attribute causing longer travel distances among some zones. Therefore, the network 

loading is reassigned, leading to improved flow in some parts of the network. 
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The synthetic road transport network for Delft city demonstrated that the network 

mobility indicator changes with the demand variation; as the departure rate increases, 

the network mobility indicator decreases. Furthermore, the network mobility indicator 

varies with the supply side variations (i.e. network capacity reduction and link closure). 

Together these findings indicate that the mobility indicator behaves in an intuitively 

correct manner. The network mobility could be used by policy makers, local road 

authorities or strategic Highway Agencies to evaluate the overall effectiveness of 

particular policies or, for example, to assess the implementation of new technologies. 

Although the proposed approach has been demonstrated by two case studies, further 

investigation is needed in the future, including the involvement of expert opinions and 

the use of other datasets to improve fuzzy rules. Furthermore, type-2 fuzzy logic could 

be implemented to improve the fuzzy interference system and compared with type-1 

fuzzy logic outcome used in this paper. 
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Mobility Indicator Low Medium High 

Maximum volume/capacity >75% 50-75% <50% 

Maximum intersection delay >300 seconds 60-300 seconds <60 seconds 

Minimum speed <25 kph 25-50 kph >50 kph 

Table 1 Linguistic expressions and corresponding values of mobility indicators (Hyder 

2010). 

 

 

Route 
𝐺𝐷 
(mi) 

𝑇𝐷 
(mi) 

𝐹𝐹𝑇𝑆 
(mi/hr) 

𝑇𝑆 
(mi/hr) 

𝑃𝐶𝐴 
 

𝐹𝐹𝐺𝐷𝑝𝑀 
(mi/min) 

𝐺𝐷𝑝𝑀 
(mi/min) 

Bradford-Birmingham 88.46 128 57.31 51.2 0.69 0.66 0.59 

Brighton-Birmingham 133.01 208 57.78 52.88 0.64 0.62 0.56 

Leeds-Birmingham 90.48 133 57.83 53.56 0.68 0.66 0.61 

Brighton-Bradford 210.64 272 57.87 54.95 0.77 0.75 0.71 

Leeds-London 166 195 57.64 48.95 0.86 0.82 0.69 

London-Manchester 160.05 200 57.42 50.21 0.80 0.77 0.67 

Brighton-Manchester 199.48 266 57.82 54.85 0.75 0.72 0.69 

London-Bradford 168.23 203 57.7 50.33 0.83 0.80 0.70 

Bath-Manchester 142.69 181 57.46 51.96 0.79 0.75 0.68 

Table 2 𝐺𝐷, traffic information, 𝑃𝐶𝐴, 𝐹𝐹𝐺𝐷𝑝𝑀 and 𝐺𝐷𝑝𝑀 for different routes. 

 

 

 
𝐺𝐷 
(mi) 

𝑇𝐷 
(mi) 

𝐹𝐹𝑇𝑆 
(mi/hr) 

𝑇𝑆 
(mi/hr) 

𝑃𝐶𝐴 
 

𝐺𝐷𝑝𝑀 
(mi/min) 

𝑇𝐶𝐴 
 

Brighton- Bath 101.99 127 43.05 35.61 0.80 0.48 0.51 

Leeds- Bath 168.029 209 49.37 43.09 0.80 0.58 0.62 

London-Manchester 160.06 200 57.42 50.21 0.80 0.67 0.72 

Leeds-Bradford 8.62 10.8 25.92 20.90 0.80 0.28 0.30 

Leeds-London 165.99 208 56.73 49.33 0.80 0.66 0.70 

Table 3 𝐺𝐷, traffic information, 𝑃𝐶𝐴, 𝐺𝐷𝑝𝑀 and 𝑇𝐶𝐴 for different routes. 
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 London 

GDij 

(mi) 

Route 1 Route 2 Route 3 

TDij 

(mi) 

TTij 

(min) 

FFTTij 

(min) 

TSij 

(mi/hr) 

TDij 

(mi) 

TTij 

(min) 

FFTTij 

(min) 

TSij 

(mi/hr) 

TDij 

(mi) 

TTij 

(min) 

FFTTij 

(min) 

TSij 

(mi/hr) 

Bath 96.23 116 154 130 45.19 122 174 149 42.41 -* -* -* -* 

Birmingham 98.48 118 162 127 43.70 139 204 157 40.88 152 204 164 47.35 

Bradford 168.23 203 261 212 46.67 212 283 222 43.04 216 287 228 45.16 

Brighton 45.70 53.3 127 87 25.18 63.2 130 94 29.17 -* -* -* -* 

Leeds 166.00 195 239 203 48.95 195. 250 150 46.80 225 253 229 53.36 

Manchester 160.10 200 242 211 49.59 202. 258 223 46.98 209 240 214 52.25 

-* indicates no third route between the two cities at the time of data collection (between 8:00am and 10:00am on 10 March 2014) 

Table 4 Different routes to London City with their traffic performance measures. 

  

𝑗 

𝑖 
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 London 

Route 1 Route 2 Route 3 

𝑃𝐶𝐴𝑖𝑗 𝑇𝐶𝐴𝑖𝑗 𝑀𝐼𝑖𝑗 𝐺𝐷𝑝𝑀𝑖𝑗 𝑃𝐶𝐴𝑖𝑗 𝑇𝐶𝐴𝑖𝑗 𝑀𝐼𝑖𝑗 𝐺𝐷𝑝𝑀𝑖𝑗 𝑃𝐶𝐴𝑖𝑗 𝑇𝐶𝐴𝑖𝑗 𝑀𝐼𝑖𝑗 𝐺𝐷𝑝𝑀𝑖𝑗 

Bath 
0.83 0.65 0.63 0.62 0.79 0.60 0.58 0.55 -* -* -* -* 

Birmingham 
0.83 0.62 0.60 0.61 0.78 0.69 0.75 0.63 0.71 0.58 0.57 0.48 

Bradford 0.83 0.67 0.70 0.64 0.83 0.61 0.59 0.59 0.79 0.63 0.61 0.59 

Brighton 
0.86 0.36 0.38 0.36 0.72 0.42 0.47 0.35 -* -* -* -* 

Leeds 0.85 0.7 0.77 0.69 0.85 0.67 0.70 0.66 0.74 0.76 0.84 0.66 

Manchester 
0.80 0.71 0.79 0.66 0.79 0.67 0.70 0.62 0.77 0.75 0.85 0.67 

-* indicates no third route between the two cities at the time of data collection (between 8:00am and 10:00am on 10 March 2014) 

Table 5 𝑃𝐶𝐴, 𝑇𝐶𝐴, 𝑀𝐼 and 𝐺𝐷𝑝𝑀 values for routes presented in Table 4. 

𝑖 

𝑗 
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 PCA TCA NMI 

Full Network 0.76 0.65 0.61 

Link 1 0.71 0.58 0.54 

Link 2 0.72 0.56 0.53 

Link 3 0.75 0.55 0.53 

Link 4 0.75 0.55 0.53 

Link 5 0.71 0.61 0.56 

Link 6 0.75 0.55 0.53 

Link 7 0.75 0.55 0.53 

Link 8 0.74 0.60 0.57 

Link 9 0.74 0.56 0.55 

Link 10 0.75 0.59 0.57 

Table 6 𝑃𝐶𝐴, 𝑇𝐶𝐴 and 𝑁𝑀𝐼 variations arising from individual link closure. 
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Figure 1 Conceptual Framework for the Proposed Mobility Model. 

 

 

 

Figure 2 Routes between Leeds and Birmingham (Google. 2014). 
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(a) 𝑃𝐶𝐴 and 𝐹𝐹𝐺𝐷𝑝𝑀 

 

(b) 𝑃𝐶𝐴  and  𝐺𝐷𝑝𝑀 

Figure 3 Relationship between 𝑃𝐶𝐴  and 𝐺𝐷𝑝𝑀, 𝐹𝐹𝐺𝐷𝑝𝑀. 

 

 

 

(a) 𝑇𝐶𝐴 and 𝐺𝐷𝑝𝑀 for routes in Table 3 

 

(b) 𝑇𝐶𝐴 and 𝐺𝐷𝑝𝑀 for routes in Table 2 

Figure 4 Correlation between 𝑇𝐶𝐴 and 𝐺𝐷𝑝𝑀 for routes presented in Table 3 and 
Table 2. 

 

  

R² = 1.00

0.5

0.6

0.7

0.8

0.9

0.50 0.60 0.70 0.80 0.90

F
F

G
D

p
M

PCA

R² = 0.80

0.5

0.6

0.7

0.8

0.50 0.60 0.70 0.80 0.90

G
D

p
M

PCA

R² = 1.00

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

G
D

p
M

TCA

R² = 0.003

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

G
D

p
M

TCA



29 

 

Figure 5 Triangular and trapezoidal membership functions for 𝑃𝐶𝐴, 𝑇𝐶𝐴 and 𝑀𝐼. 

 

 

Figure 6 Surface plot of 𝑃𝐶𝐴, 𝑇𝐶𝐴 and 𝑀𝐼. 
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PCA TCA MI 

   

IF PCA is Very high              and TCA is High                Then MI is High 

   

IF PCA is Very high              and TCA is Medium           Then MI is Medium 

   

IF PCA is high                     and TCA is High                Then MI is High 

   

IF PCA is high                     and TCA is Medium          Then MI is Medium 

 

𝑃𝐶𝐴 = 0.71 𝑇𝐶𝐴 = 0.58 

 
 
 
 
 

𝑀𝐼 = 0.57 
 

Figure 7 Graphical representation of fuzzy reasoning. 
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(a) Bath-London routes (b) Birmingham-London routes 

  

(c) Leeds-London routes (d) Bradford-London routes 

  

(e) Brighton-London routes (f) Manchester-London routes 

Figure 8 Route maps with travel distance and free flow travel time (Google. 2014). 
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Figure 9 Correlation between 𝑀𝐼 and 𝐺𝐷𝑝𝑀 for routes shown in Table 3. 

 

 

(a) 𝑀𝐼 and 𝐹𝐹𝐺𝐷𝑝𝑀 

 

(b) 𝑀𝐼 and 𝐺𝐷𝑝𝑀 

Figure 10 Correlation of 𝑀𝐼, 𝐹𝐹𝐺𝐷𝑝𝑀 and 𝐺𝐷𝑝𝑀 for the 110 routes between the 

seven British cities. 
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Figure 11 Delft Road Transport Network. 

 

 

Figure 12 Correlation between 𝑁𝑀𝐼 and 𝐺𝐷𝑝𝑀. 
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Figure 13 𝑃𝐶𝐴, 𝑇𝐶𝐴 and 𝑁𝑀𝐼 variations under different departure rates against time. 

 

Figure 14 Link closure locations for different scenarios. 
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Figure 15 𝑃𝐶𝐴, 𝑇𝐶𝐴 and 𝑁𝑀𝐼 variations due to link closure. 
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Figure 16 Variation in network mobility indicator against time for different levels of 

network capacity. 
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