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* Wheelset maintenance and renewal activities account for a large™
proportion of a fleets whole-life costs

* Influenced by a large number of factors:
— Depot constraints
— Wheel tread damage
— Fleet availability
— Vehicle design

* Optimisation of maintenance and renewal regimes will help to
increase wheelset life and reduce costs




Background

* Tools currently exist for prediction of track damage, replacement™
and maintenance costs
— Whole Life Rail Model (rail RCF & wear)
— Track-Ex (NR decision support tool)
— VTISM (links vehicle-track characteristics to track costs)

* Stage 2 development of VTISM enhanced the rolling stock
modelling capabilities
— Strategic planning of wheelset maintenance and renewal activities
— Examine benefits and cost impact of a range of different scenarios
— Optimise wheelset management strategies

* These enhancements go some way to determining the whole life
costs for the complete system (vehicle-track)
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* Rates of damage are included to describe how the
attributes of the wheel deteriorate over time
— Tread/flange wear
— Change in conicity
— RCF damage
— Probability of flats

e Compared with pre-defined limits - trigger maintenance
or renewal activity

 This information can be obtained from observation data

e Alternatively, the WPDM can be used to predict the
damage rates



Wheel Profile Damage Model (WPDM) is a standalone tool for the
prediction of deterioration rates of the wheel tread

Uses VAMPIRE vehicle dynamics simulation software to predict
wear and RCF damage

WPDM methodology

— Characterises a vehicle’s route diagram in terms of parameters which
influence wheel damage

— Predicts wheel-rail forces for the chosen route conditions using vehicle
dynamics simulations

— Post-process the calculated wheel-rail forces to predict the formation of
wear (Archard model) and RCF (Ty-damage model) on the wheel

— Plot and save the results for use within VTISM and WMM
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Analysis Scenarios

 Mileage-based turning regime (Base Case)

— Turning interval set to 140,000 miles to represent current practice

 Reduced mileage-based turning interval

— Turning interval reduced to 100,000 miles to represent a ‘little and often’
turning regime

* Condition-based turning regime

— Turning triggered by the condition of the wheelset only

e Lubrication strategy

— Coefficient of friction at the flange contact was reduced to p=0.1

— Inspection and maintenance of the lubrication system included

— Includes modified wear and RCF damage rates for all wheelset types
 Modified primary yaw stiffness

— Includes modified wear and RCF damage rates for all wheelset types
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e Total costs for varying wheel turning interval
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* Low mileages — cut depth is governed by the amount of*
material loss required to restore the profile shape

* Higher mileages — similar cut depth to restore profile,
but additional material removed due to RCF damage
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Whole System Costs R

* Increased intervals between wheel turning may result in a cost
benefit to vehicle operators/maintainers

* Butincreases in wheel/rail conformality may result = increasing
the probability of RCF damage on the track

* To reduce whole system costs (vehicle-track) it is therefore
important to optimise both sides of the interface
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* New tools have been developed which allow users to:

— Evaluate wheelset whole life costs using fleet asset inventory data,
deterioration rates and maintenance regimes

— Determine annual inspection, maintenance and renewal costs

— Optimise wheelset maintenance strategy

— Carry out ‘what if’ analysis
* (Capabilities of these new tools have been demonstrated by

predicting the whole life costs for a typical DMU fleet

— Cost implications of number of scenarios presented
* Tools can be used to determine the impact of system changes on

both vehicle and track costs = potential for reducing whole

system costs
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