
University of Huddersfield Repository

AlNedawe, Basman M.

Microelectronic Implementation of Dicode PPM System Employing RS Codes

Original Citation

AlNedawe, Basman M. (2014) Microelectronic Implementation of Dicode PPM System Employing
RS Codes. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/26229/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or notforprofit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

MICROELECTRONIC IMPLEMENTATION OF DICODE PPM

SYSTEM EMPLOYING RS CODES

BASMAN MONTHER AL-NEDAWE

A thesis submitted to the University of Huddersfield

in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

The University of Huddersfield

December 2014

ii

Copyright statement

The author of this thesis (including any appendices and/or schedules to this thesis) owns

any copyright in it (the “Copyright”) and s/he has given The University of Huddersfield

the right to use such copyright for any administrative, promotional, educational and/or

teaching purposes.

Copies of this thesis, either in full or in extracts, may be made only in accordance with

the regulations of the University Library. Details of these regulations may be obtained

from the Librarian. This page must form part of any such copies made.

The ownership of any patents, designs, trademarks and any and all other intellectual

property rights except for the Copyright (the “Intellectual Property Rights”) and any

reproductions of copyright works, for example graphs and tables (“Reproductions”),

which may be described in this thesis, may not be owned by the author and may be

owned by third parties. Such Intellectual Property Rights and Reproductions cannot and

must not be made available for use without the prior written permission of the owner(s)

of the relevant Intellectual Property Rights and/or Reproductions.

iii

Abstract

Optical fibre systems have played a key role in making possible the extraordinary growth

in world-wide communications that has occurred in the last 25 years, and are vital in

enabling the proliferating use of the Internet. Its high bandwidth capabilities, low

attenuation characteristics, low cost, and immunity from the many disturbances that can

afflict electrical wires and wireless communication links make it ideal for gigabit

transmission and a major building block in the telecommunication infrastructure.

A number of different techniques are used for the transmission of digital information

between the transmitter and receiver sides in optical fibre system. One type of coding

scheme is Pulse Position Modulation (PPM) in which the location of one pulse during 2M

time slots is used to convey digital information from M bits. Although all the studies refer

to advantages of PPM, it comes at a cost of large bandwidth and a complicated

implementation. Therefore, variant PPM schemes have been proposed to transmit the

data such as: Multiple Pulse Position Modulation (MPPM), Differential Pulse Position

Modulation (DPPM), Pulse Interval Modulation (PIM), Digital Pulse Interval Modulation

(DPIM), Dual Header Pulse Interval Modulation (DH-PIM), Dicode Pulse Position

Modulation (DiPPM).

The DiPPM scheme has been considered as a solution for the bandwidth consumption

issue that other existing PPM formats suffer from. This is because it has a line rate that

is twice that of the original data rate. DiPPM can be efficiently implemented as it employs

two slots to transmit one bit of pulse code modulation (PCM). A PCM conversion from

logic zero to logic one provides a pulse in slot RESET (R) and from one to zero provides a

pulse in slot SET (S). No pulse is transmitted if the PCM data is unvarying. Like other

PPM schemes, DiPPM suffers from three types of pulse detection errors wrong slot, false

alarm, and erasure.

The aim of this work was to build an error correction system, Reed Solomon (RS) code,

which would overcome or reduce the error sources in the DiPPM system. An original

mathematical program was developed using the Mathcad software to find the optimum

RS parameters which can improve the DiPPM system error performance, number of

photons and transmission efficiency. The results showed that the DiPPM system

employing RS code offered an improvement over uncoded DiPPM of 5.12 dB, when RS

operating at the optimum code rate of approximately ¾ and a codeword length of 25

symbols.

Moreover, the error performance of the uncoded DiPPM is compared with the DiPPM

system employing maximum likelihood sequence detector (MLSD), and RS code in terms

iv

of number of photons per pulse, transmission efficiency, and bandwidth expansion. The

DiPPM with RS code offers superior performance compared to the uncoded DiPPM and

DiPPM using MLSD, requiring only 4.5x103 photons per pulse when operating at a

bandwidth equal to or above 0.9 times the original data rate.

Further investigation took place on the DiPPM system employing RS code. A Matlab

program and very high speed circuit Hardware Description language (VHDL) were

developed to simulate the designed communication system. Simulation results were

considered and agreed with the previous DiPPM theory. For the first time, this thesis

presents the practical implementation for the DiPPM system employing RS code using

Field Programmable Gate Array (FPGA).

v

Acknowledgements

Praise belongs to God, the Lord of Mercy and the Giver of Mercy, for his blessing

that made this work possible and completed.

I would like to take the opportunity to express my sincere gratitude to Dr Martin M

J N Sibley, my supervisor, for his continuous guidance and support throughout the

research work and particularly during the writing up stage. His useful critiques and

valuable suggestions have always been very much appreciated.

I would also like to thank Dr Peter J Mather, my second supervisor for his

assistance with a software program for the research work.

My special thanks and appreciation must go to the Iraqi Ministry of Higher

Education and Scientific Research, for awarding me the fee-waiver scholarship to purse

this PhD. It would have been difficult for me to pursue a research degree without this

great opportunity.

A very special thanks to my family for all their constant support and encouragement

that made my research easier.

I can hardly overlook the co-operation, timely help and moral support extended by my

friends, colleagues, and university staff. Acknowledgements are inherently endless and

incomplete, and I request indulgence from many friendly and helpful people whom I

could not name here, due to paucity of space.

vi

Contents

ABSTRACT ...III

ACKNOWLEDGEMENTS ... V

CONTENTS ... VI

LIST OF FIGURES ... XI

LIST OF TABLES ... XVII

LIST OF ABBREVIATIONS .. XVIII

CHAPTER1: INTRODUCTION ... 20

1.1. OPTICAL COMMUNICATIONS ... 20

1.1.1. Lasers .. 20

1.1.2. Optical fibre Transmitter .. 20

1.1.3. Optical fibre Receiver .. 22

1.1.4. Optical fibre .. 23

1.1.5. Principle of dispersion ... 24

1.1.6. Wave division multiplexing principle .. 24

1.1.7. Coding Schemes .. 25

1.2. ERROR CORRECTION .. 25

1.3. DESIGN AUTOMATION ... 26

1.4. AIMS AND OBJECTIVES ... 27

1.5. THESIS LAYOUT ... 28

1.6. ORIGINAL WORK CONTRIBUTIONS .. 29

CHAPTER2: LITERATURE REVIEW ... 31

2.1. INTRODUCTION ... 31

2.2. CODING SCHEMES IN OPTICAL FIBRE ... 31

2.2.1. Characteristics of Line Coding ... 32

2.2.2. Rate Adaptive Modulation and Coding for Optical Fibre Transmission Systems 34

2.2.3. Pulse Position Modulation .. 36

2.3. DIPPM CODING SCHEME FOR OPTICAL FIBRE COMMUNICATIONS ... 37

2.3.1. Maximum Likelihood Sequence Detector .. 39

2.3.2. Implementation .. 42

2.3.3. Performance Analysis ... 43

2.3.4. Suboptimal Filtering in Zero Guard DiPPM ... 47

2.4. PPM EMPLOYING REED SOLOMON CODES .. 48

2.4.1. Reed Solomon Codes ... 49

2.4.2. Reed Solomon Encoding and Decoding ... 52

vii

2.4.3. Reed Solomon Codes Applications .. 55

2.4.4. Implementation and Performance of Reed Solomon Codes ... 56

2.5. FIELD PROGRAMMABLE GATE ARRAY (FPGA) .. 58

2.5.1. VHDL and Applications .. 61

2.6. SUMMARY ... 64

CHAPTER3: DICODE PULSE POSITION MODULATION ... 65

3.1. INTRODUCTION ... 65

3.2. DICODE PULSE POSITION MODULATION: UNDERSTANDING OF THE THEORY ... 66

3.2.1. DiPPM system optical power .. 69

3.3. ERRORS AFFECTING DIPPM .. 71

3.3.1. Wrong-slot Errors.. 71

3.3.2. Erasure Errors ... 72

3.3.3. False Alarm Errors ... 73

3.3.4. DiPPM Error Probabilities ... 75

3.4. CODER AND DECODER CIRCUITS FOR THE DIPPM ... 77

CHAPTER4: FINDING OPTIMUM PARAMETERS FOR REED SOLOMON CODE WORKING WITH DICODE PULSE

POSITION MODULATION SYSTEM .. 81

4.1. INTRODUCTION .. 81

4.2. FORWARD ERROR CORRECTION SYSTEM MODEL .. 81

4.2.1. Slope Detection Approach... 82

4.2.2. Central Detection Approach .. 83

4.2.3. DiPPM Employing RS vs PCM Employing RS ... 84

4.3. RESULTS .. 86

4.3.1. Finding Optimum RS System Parameters ... 86

4.3.2. DiPPM Employing RS vs DiPPM Employing MLSD ... 92

4.3.3. PCM Employing RS .. 95

4.4. SUMMARY ... 100

CHAPTER5: MATLAB SIMULATION FOR THE DICODE PULSE POSITION MODULATION SYSTEM WITH REED

SOLOMON CODE .. 101

5.1. INTRODUCTION ... 101

5.2. DIPPM SYSTEM SIMULATION ... 101

5.3. DIPPM WITH RS CODE SYSTEM SIMULATION .. 103

5.4. DIPPM WITH RS SYSTEM IN AWGN CHANNEL .. 108

5.5. DIPPM WITH RS SYSTEM (UPGRADED VERSION) .. 113

5.6. SUMMARY ... 116

viii

CHAPTER6: VHDL SOURCE CODE AND SIMULATION ENVIRONMENT FOR THE DICODE PULSE POSITION

MODULATION SYSTEM WITH REED SOLOMON CODE .. 117

6.1. INTRODUCTION ... 117

6.2. SYSTEM SCHEMATIC .. 117

6.2.1. Pseudo Random Binary Sequence (PRBS) ... 118

6.2.2. Reed Solomon Coder ... 121

6.2.3. Bridge Coder (Parallel Input Serial Output)... 127

6.2.4. DiPPM Coder ... 129

6.2.5. DiPPM Decoder ... 131

6.2.6. Bridge Decoder (Serial Input Parallel Output) ... 133

6.2.7. Reed Solomon Decoder ... 135

6.3. SUMMARY ... 141

CHAPTER7: ERASURE AND ERROR SIMULATION ENVIRONMENTS FOR THE DICODE PULSE POSITION

MODULATION SYSTEM WITH REED SOLOMON CODE .. 142

7.1. INTRODUCTION ... 142

7.2. ERASURE ONLY TEST BENCH ... 142

7.2.1. Correctable codeword ... 142

7.2.2. Uncorrectable codeword... 143

7.3. ERROR ONLY TEST BENCH .. 147

7.3.1. Correctable codeword ... 147

7.3.2. Uncorrectable codeword... 147

7.4. ERASURE AND ERROR TEST BENCH .. 152

7.4.1. Correctable codeword ... 152

7.4.2. Uncorrectable codeword... 152

7.5. SUMMARY ... 156

CHAPTER8: DIPPM EMPLOYING RS CODE SYSTEM IMPLEMENTATION BY USING FPGA 157

8.1. INTRODUCTION ... 157

8.2. EXPERIMENT HARDWARE RESOURCES ... 159

8.2.1. Cyclone III Development Board ... 159

8.2.1.1. Board Component Blocks .. 159

8.2.2. SMA Breakout Cables .. 161

8.2.3. Optical Fibre Communication System ... 162

8.2.3.1. Optical Transmitter .. 162

8.2.3.2. Optical Receiver ... 163

8.2.3.3. The Comparator ... 164

8.2.3.4. Plastic Optical Fibre (POF) .. 165

8.3. TEST ONE: IMPLEMENTATION OF DIPPM SYSTEM... 166

ix

8.4. TEST TWO IMPLEMENTATION OF DIPPM WITH RS CODE SYSTEM .. 168

8.4.1. PRBS Entity .. 170

8.4.2. RS Coder Entity .. 171

8.4.3. DiPPM Coder Entity ... 172

8.4.4. DiPPM Decoder Entity ... 173

8.4.5. RS Decoder Entity .. 175

8.4.6. Summary ... 177

CHAPTER9: CONCLUSION AND FURTHER WORK .. 178

9.1. CONCLUSION.. 178

9.2. FURTHER WORK ... 180

CHAPTER10: APPENDICES .. 181

10.1. APPENDIX 1 ... 181

10.1.1. DiPPM & RS Mathcad simulation for slope detection method. .. 181

10.1.2. DiPPM & RS Mathcad simulation for central detection method. ... 195

10.2. APPENDIX 2 ... 228

10.2.1. DiPPM Matlab simulation. .. 228

10.2.2. Function of DiPPM coder. ... 231

10.2.3. Function of DiPPM decoder. ... 232

10.2.4. DiPPM & RS Matlab Simulation. ... 233

10.2.5. Function of Galois field to decimal transformation. ... 238

10.3. APPENDIX 3 ... 239

10.3.1. PRBS VHDL source code. ... 239

10.3.2. RS coder VHDL source code. .. 241

10.3.3. Parallel to searial bridge VHDL source code. .. 246

10.3.4. DiPPM coder VHDL source code. ... 250

10.3.5. Channel model VHDL source code. ... 252

10.3.6. DiPPM decoder VHDL source code. ... 254

10.3.7. Searial to parallel bridge VHDL source code. .. 256

10.3.8. RS decoder VHDL source code. .. 260

10.4. APPENDIX 4 ... 277

10.4.1. Erasure only test bench VHDL source code. .. 277

10.4.2. Error only test bench VHDL source code. .. 284

10.4.3. Erasure & Error test bench VHDL source code. ... 291

10.5. APPENDIX 5 ... 298

10.5.1. Field of (31,23)RS code.. 298

10.6. APPENDIX 6 ... 299

10.6.1. SMA breakout cables data sheet. ... 299

x

10.6.2. Optical transmitter & receiver data sheet. ... 302

10.6.3. Comparator data sheet. .. 314

10.6.4. POF data sheet. ... 325

CHAPTER11: REFERENCES .. 334

xi

List of Figures

FIGURE 1.1 THE BASIC STRUCTURE OF AN OPTICAL RECEIVER (SIBLEY, 1995) .. 22

FIGURE 1.2 TYPES OF OPTICAL FIBRE (SIBLEY, 1995) .. 23

FIGURE 1.3 40 VIRTUAL HIGH SPEED CHANNELS PER PHYSICAL FIBRE .. 24

FIGURE 2.1 OVER OF ADAPTIVE MODULATION SYSTEM (SASAOKA, 2000) ... 35

FIGURE 2.2 PULSE POSITION MODULATION (LIU, 2002) .. 37

FIGURE 2.3 ABOVE IMAGE REPRESENTING DECODER INPUT, BELOW IMAGE REPRESENTING MLSD RESULTS (CHARITOPOULOS, SIBLEY,

& MATHER, 2011) .. 40

FIGURE 2.4 MLSD FLOWCHART WITH MLSD CORRECTOR (CHARITOPOULOS, SIBLEY, & MATHER, 2010) 41

FIGURE 2.5 BLOCK DIAGRAM OF RECEIVER SYSTEM (SIBLEY, 2005) ... 45

FIGURE 2.6 PACKET ERROR RATE COMPARISONS OF OOK, 4-PPM, 8-PPM, 16-PPM AND DIPPM (WANG ET AL, 2007) 46

FIGURE 2.7 BLOCK DIAGRAM OF DICODE PPM RECEIVER USED IN SIMULATIONS (SIBLEY, 2004) ... 47

FIGURE 2.8 SYSTEM OF REED SOLOMON CODE (RILEY & RICHARDSON, 1998) ... 51

FIGURE 2.9 SYSTEMATIC ENCODING WITH AN (N - K)–STAGE SHIFT REGISTER (SKLAR, N.D) ... 53

FIGURE 2.10 BLOCK DIAGRAM OF CIRC (PAVERT, 2011) ... 54

FIGURE 2.11 THE HARDWARE SETUP FOR LINKAGE AND PERFORMANCE OF THE FPGA WITH COMMUNICATION CHANNELS (KADRIC,

2011) ... 58

FIGURE 2.12 MICROWAVE AND OPTICAL COMPONENTS OF THE DIGITALLY PROGRAMMABLE OPTICAL TRANSMITTER (WATTS ET AL,

2006.) .. 59

FIGURE 2.13 THE DESIGN OF THE FPGA (WATTS ET AL, 2006) .. 60

FIGURE 2.14 THE DIPPM VHDL CODER (CHARITOPOULOS, 2009) .. 61

FIGURE 2.15 DIPPM UPGRADED VERSIONS OF CODER DECODER (CHARITOPOULOS, 2009) ... 62

FIGURE 2.16 VHDL: DIPPM CODER PROCESS IN QUARTUS (CHARITOPOULOS, 2009) ... 63

FIGURE 2.17 DIPPM IN (TOP TRACE), DIPPM OUT (MIDDLE TRACE), CLOCK RECOVERED (BOTTOM TRACE) (CHARITOPOULOS, 2009)

 .. 64

FIGURE 3.1 PCM DATA (TOP TRACE), DICODE TECHNIQUE (MIDDLE TRACE), AND DICODE PPM (BOTTOM TRACE) 66

FIGURE 3.2 SCHEMATIC REPRESENTATION OF THE DICODE PPM RECEIVER (SIBLEY, 2003) ... 68

FIGURE 3.3 BLOCK DIAGRAM OF PROPOSED TIMING EXTRACTION SYSTEM AND RELATED TIMING DIAGRAM (SIBLEY, 2003) 68

FIGURE 3.4 BER AGAINST RECEIVED SIGNAL POWER AT 622 MBIT/S. C1, DIPPM—USING EQUATION (3.2) (FOR FN=3 AT N=10

AND FN=10 AT N=10); C2, PPM (FOR FN=3 AT M=4 AND FN=10 AT M=7); C3, DIPPM—USING EQUATION (3.3) (FOR

FN=3 AT N=10 AND FN=10 AT N=10); C4, OOK NRZ; ------FN=3; ______ FN=10 (AL-SULEIMANI, PHILLIPS & WOOLFSON,

2008). .. 70

FIGURE 3.5 SENSITIVITY AS A FUNCTION OF CODING LEVEL (PPM) OR RUN LENGTH (DIPPM) AT B=2.5 GBIT/S. C1, DIPPM; C2,

PPM; ----- FN=3; ______ FN=10 (AL-SULEIMANI, PHILLIPS & WOOLFSON, 2008). ... 70

xii

FIGURE 3.6 DIPPM CODER CIRCUIT (CHARITOPOULOS, 2009) .. 77

FIGURE 3.7 DIPPM PSD OF DETERMINISTIC SEQUENCE (HARDWARE) (CHARITOPOULOS, 2009) .. 78

FIGURE 3.8 DIPPM CODER’S WAVEFORMS (CHARITOPOULOS, 2009) ... 78

FIGURE 3.9 DIPPM DECODER CIRCUIT (CHARITOPOULOS, 2009) ... 79

FIGURE 3.10 DIPPM DECODER’S WAVEFORMS (CHARITOPOULOS, 2009) ... 79

FIGURE 4.1 BLOCK DIAGRAM OF FORWARD ERROR CORRECTION ... 82

FIGURE 4.2 BLOCK DIAGRAM OF DIPPM SYSTEM RECEIVER ... 84

FIGURE 4.3 THE RECEIVED DIPPM SIGNAL ... 86

FIGURE 4.4 DIPPM SET & RESET PULSES AT TWO NORMALISED BANDWIDTHS .. 86

FIGURE 4.5 NUMBER OF PHOTONS FOR THE CODED DIPPM SYSTEM FUNCTION OF RS CODE RATE AT DIFFERENT RS CODEWORD

LENGTH USING THE SLOPE DETECTION METHOD (FN=1.8) .. 87

FIGURE 4.6 NUMBER OF PHOTONS FOR THE CODED DIPPM SYSTEM FUNCTION OF THE RS CODE RATE AT DIFFERENT RS CODEWORD

LENGTH USING THE CENTRAL DETECTION METHOD (FN=1.8)... 88

FIGURE 4.7 COMPARISON BETWEEN DETECTION METHODS IN TERM OF THE NUMBER OF PHOTONS FOR CODED DIPPM SYSTEM AT

DIFFERENT RS CODEWORD LENGTH (FN=1.8) .. 88

FIGURE 4.8 TRANSMISSION EFFICIENCY OF THE CODE DIPPM SYSTEM FUNCTION OF THE RS CODE RATE AT DIFFERENT RS CODEWORD

LENGTH USING THE SLOPE DETECTION METHOD (FN=1.8) .. 89

FIGURE 4.9 TRANSMISSION EFFICIENCY FOR CODED DIPPM SYSTEM FUNCTION OF THE RS CODE RATE AT DIFFERENT RS CODEWORD

LENGTH USING THE CENTRAL DETECTION METHOD (FN=1.8)... 90

FIGURE 4.10 COMPARISON BETWEEN DETECTION METHODS IN TERM OF THE TRANSMISSION EFFICIENCY FOR CODED DIPPM SYSTEM

AT DIFFERENT RS CODEWORD LENGTH (FN=1.8) .. 90

FIGURE 4.11 COMPARISON BETWEEN DETECTION METHODS IN TERM OF THE NUMBER OF PHOTONS FOR CODED DIPPM SYSTEM AT

DIFFERENT BER AND RS CODEWORD LENGTH (FN=5) ... 91

FIGURE 4.12 TRANSMISSION EFFICIENCY OF THE CODE DIPPM SYSTEM FUNCTION OF THE RS CODE RATE AT DIFFERENT BER USING

THE CENTRAL DETECTION METHOD (FN=5) .. 92

FIGURE 4.13 NUMBERS OF PHOTONS PER PULSE AS A FUNCTION OF NORMALISED BANDWIDTH ... 93

FIGURE 4.14 TRANSMISSION EFFICIENCY AS A FUNCTION OF NORMALISED BANDWIDTH ... 94

FIGURE 4.15 ERASURE, FALSE ALARM, AND WRONG SLOT ERROR PROBABILITIES FOR THE CODED DIPPM SYSTEM 95

FIGURE 4.16 THE RECEIVED DIPPM SIGNAL ... 96

FIGURE 4.17 NUMBER OF PHOTONS FOR THE CODED PCM SYSTEM AS FUNCTION OF RS CODE RATE AT DIFFERENT NORMALISED

BANDWIDTH (BER=1.10
-9

) .. 96

FIGURE 4.18 TRANSMISSION EFFICIENCY FOR THE CODED PCM SYSTEM AS FUNCTION OF RS CODE RATE AT DIFFERENT NORMALISED

BANDWIDTH (BER=1.10-9) ... 97

FIGURE 4.19 TRANSMISSION EFFICIENCY FOR CODED PCM SYSTEM AS A FUNCTION OF RS CODE RATE AT DIFFERENT RS CODEWORD

LENGTH USING THE CENTRAL DETECTION METHOD (FN=5).. 98

xiii

FIGURE 4.20 TRANSMISSION EFFICIENCY FOR CODED PCM SYSTEM AS A FUNCTION OF RS CODE RATE AT A DIFFERENT BER (FN=5) 98

FIGURE 4.21 BER AGAINST SIGNAL-TO-NOISE RATIO PARAMETER, Q, AT NORMALISE BW= 100 .. 99

FIGURE 4.22 COMPARISON BETWEEN CODED DIPPM AND CODED PCM IN TERM OF TRANSMISSION EFFICIENCY AT DIFFERENT BER,

NORMALISED BW=5 .. 99

FIGURE 5.1 DIPPM SYSTEM FOR A DIFFERENT PCM SEQUENCE ... 102

FIGURE 5.2 DIPPM SYSTEM FOR A DIFFERENT PCM SEQUENCE ... 103

FIGURE 5.3 DIPPM WITH RS CODE TRANSMITTER OUTPUT WAVEFORM ... 105

FIGURE 5.4 DIPPM WITH RS CODE RECEIVER OUTPUT WAVEFORM ... 106

FIGURE 5.5 DIPPM WITH RS CODE TX OUTPUT WAVEFORM .. 107

FIGURE 5.6 DIPPM WITH RS CODE RX OUTPUT WAVEFORM ... 107

FIGURE 5.7 DIPPM WITH RS CODE TX OUTPUT WAVEFORM .. 107

FIGURE 5.8 DIPPM WITH RS CODE RX OUTPUT WAVEFORM ... 108

FIGURE 5.9 DIPPM WITH RS CODE TX OUTPUT WAVEFORM .. 109

FIGURE 5.10 CHANNEL SIGNALS AT SNR=1DB ... 109

FIGURE 5.11 DIPPM WITH RS CODE RX OUTPUT WAVEFORM ... 109

FIGURE 5.12 DIPPM WITH RS CODE TX OUTPUT WAVEFORM .. 110

FIGURE 5.13 CHANNEL SIGNALS AT SNR=10DB ... 110

FIGURE 5.14 DIPPM WITH RS CODE RX OUTPUT WAVEFORM ... 110

FIGURE 5.15 DIPPM WITH RS CODE TX OUTPUT WAVEFORM .. 111

FIGURE 5.16 CHANNEL SIGNALS AT SNR=11DB ... 111

FIGURE 5.17 DIPPM WITH RS CODE RX OUTPUT WAVEFORM ... 111

FIGURE 5.18 DIPPM WITH RS CODE TX OUTPUT WAVEFORM .. 112

FIGURE 5.19 CHANNEL SIGNALS AT SNR=12DB ... 112

FIGURE 5.20 DIPPM WITH RS CODE RX OUTPUT WAVEFORM ... 112

FIGURE 5.21 DIPPM WITH RS CODE RECEIVED IMAGES .. 114

FIGURE 5.22 DIPPM WITH RS CODE RECEIVED IMAGES .. 115

FIGURE 6.1 DIPPM AND REED SOLOMON SYSTEM SCHEMATIC .. 118

FIGURE 6.2 PRBS TOP BLOCK VIEW .. 119

FIGURE 6.3 PRBS INPUT/OUTPUT WAVEFORM ... 120

FIGURE 6.4 PRBS INPUT/OUTPUT ONE CODEWORD ZOOM .. 120

FIGURE 6.5 RS(31,23) CODER TOP BLOCK VIEW ... 122

FIGURE 6.6 RS(31,23) CODER CIRCUIT ... 123

FIGURE 6.7 RS(31,23) CODER INNER BLOCK VIEW ... 124

FIGURE 6.8 RS(31,23) CODER TIMING CHART .. 125

xiv

FIGURE 6.9 RS(31,23) CODER INPUT/OUTPUT WAVEFORM .. 126

FIGURE 6.10 RS(31,23) CODER INPUT/OUTPUT ONE CODEWORD ZOOM ... 126

FIGURE 6.11 BRIDGE CODER TOP BLOCK VIEW ... 127

FIGURE 6.12 BRIDGE CODER I/O WAVEFORM ... 128

FIGURE 6.13 BRIDGE CODER I/O WAVEFORM ONE CODEWORD ZOOM ... 128

FIGURE 6.14 DIPPM CODER TOP BLOCK VIEW .. 129

FIGURE 6.15 DIPPM CODER I/O WAVEFORM .. 130

FIGURE 6.16 DIPPM CODER I/O WAVEFORM ONE CODEWORD ZOOM .. 130

FIGURE 6.17 DIPPM DECODER TOP BLOCK VIEW ... 131

FIGURE 6.18 DIPPM DECODER I/O WAVEFORM ... 132

FIGURE 6.19 DIPPM DECODE I/O WAVEFORM ONE CODEWORD ZOOM... 132

FIGURE 6.20 BRIDGE DECODER TOP BLOCK VIEW ... 133

FIGURE 6.21 BRIDGE DECODER I/O WAVEFORM.. 134

FIGURE 6.22 BRIDGE DECODER I/O WAVEFORM ONE CODEWORD ZOOM ... 134

FIGURE 6.23 TYPICAL RS CODEWORD ... 135

FIGURE 6.24 REED SOLOMON DECODER STAGES .. 136

FIGURE 6.25 RS(31,23) DECODER TOP BLOCK VIEW .. 137

FIGURE 6.26 RS(31,23) DECODER INNER BLOCK VIEW ... 138

FIGURE 6.27 RS(31,23) DECODER TIMING CHART ... 139

FIGURE 6.28 RS(31,23) DECODER I/O WAVEFORM .. 140

FIGURE 6.29 RS(31,23) DECODER I/O WAVEFORM ONE CODEWORD ZOOM .. 140

FIGURE 7.1 ERASURE ONLY TEST BENCH FLOWCHART .. 143

FIGURE 7.2 SYSTEM INPUT/OUTPUT SIGNALS WITH 8 ERASURE SYMBOLS .. 144

FIGURE 7.3 SYSTEM INPUT/OUTPUT SIGNALS WITH 5 ERASURE SYMBOLS .. 145

FIGURE 7.4 SYSTEM INPUT/OUTPUT SIGNALS WITH 9 ERASURE SYMBOLS .. 146

FIGURE 7.5 ERROR ONLY TEST BENCH FLOWCHART ... 148

FIGURE 7.6 SYSTEM INPUT/OUTPUT SIGNALS WITH 4 ERROR SYMBOLS ... 149

FIGURE 7.7 SYSTEM INPUT/OUTPUT SIGNALS WITH 2 ERROR SYMBOLS ... 150

FIGURE 7.8 SYSTEM INPUT/OUTPUT SIGNALS WITH 5 ERROR SYMBOLS ... 151

FIGURE 7.9 ERASURE AND ERROR TEST BENCH FLOW CHART ... 153

FIGURE 7.10 SYSTEM INPUT/OUTPUT SIGNALS WITH 4 ERASURE AND 2 ERROR SYMBOLS ... 154

FIGURE 7.11 SYSTEM ORIGINAL CODEWORD ... 155

FIGURE 7.12 SYSTEM INPUT/OUTPUT SIGNALS WITH 4 ERASURE AND 3 ERROR SYMBOLS ... 155

FIGURE 7.13 SYSTEM INPUT/OUTPUT SIGNALS WITH 5 ERASURE AND 2 ERROR SYMBOLS ... 155

xv

FIGURE 8.1 LABORATORY TESTING FACILITY OF A DESIGN ON CYCLONE III DSP BOARD ... 157

FIGURE 8.2 DIPPM WITH RS TESTING BLOCK DIAGRAM .. 158

FIGURE 8.3 CYCLONE III DEVELOPMENT BOARD BLOCK DIAGRAM (ALTERA, 2010) ... 160

FIGURE 8.4 TOP VIEW OF THE CYCLONE III DEVELOPMENT BOARD (ALTERA, 2010) .. 160

FIGURE 8.5 HSMC CONNECTORS (ALTERA, 2009) ... 161

FIGURE 8.6 SMA BREAKOUT CABLE (ALTERA, 2009) .. 162

FIGURE 8.7 OPTICAL TRANSMITTER CIRCUIT ... 163

FIGURE 8.8 RECOMMENDED FILTER CIRCUIT FOR OPTICAL RECIEVER... 164

FIGURE 8.9 THE COMPARATOR CIRCUIT ... 164

FIGURE 8.10 MAX941 PIN CONFUGARATIONS .. 165

FIGURE 8.11 SINGLE MODE PLASTIC OPTICAL FIBRE .. 165

FIGURE 8.12 DIPPM SYSTEM DESIGN ON ALTERA QUARTUS II ... 167

FIGURE 8.13 THE DIPPM OPTICAL SYSTEM WAVEFORM .. 168

FIGURE 8.14 THE DIPPM WITH (31,23) RS CODE SYSTEM .. 169

FIGURE 8.15 THE PRBS WAVEFORM OUTPUT MULTI CODEWORDS ... 170

FIGURE 8.16 FIGURE 8.15 THE PRBS WAVEFORM OUTPUT SINGLE CODEWORD ... 170

FIGURE 8.17 THE PRBS WAVEFORM OUTPUT MULTI CODEWORDS USING THE STA ... 170

FIGURE 8.18 THE PRBS WAVEFORM OUTPUT SINGLE CODEWORD USING THE STA .. 170

FIGURE 8.19 THE (31,23) RS CODER WAVEFORM OUTPUT MULTI CODEWORDS ... 171

FIGURE 8.20 THE (31,23) RS CODER WAVEFORM OUTPUT SINGLE CODEWORD .. 171

FIGURE 8.21 THE (31,23) RS CODER WAVEFORM OUTPUT MULTI CODEWORDS BY USING STA ... 171

FIGURE 8.22 THE (31,23) RS CODER WAVEFORM OUTPUT SINGLE CODEWORD BY USING STA .. 171

FIGURE 8.23 THE DIPPM CODER WAVEFORM MULTI CODEWORDS OUTPUT ... 172

FIGURE 8.24 THE DIPPM CODER WAVEFORM SINGLE CODEWORD OUTPUT .. 172

FIGURE 8.25 THE SYSTEM TRANSMITTER WAVEFORM MULTI CODEWORDS OUTPUT ... 173

FIGURE 8.26 THE SYSTEM TRANSMITTER WAVEFORM SINGLE CODEWORD OUTPUT .. 173

FIGURE 8.27 THE DIPPM DECODER WAVEFORM MULTI CODEWORDS OUTPUT ... 173

FIGURE 8.28 THE DIPPM DEODER WAVEFORM SINGLE CODEWORD OUTPUT .. 174

FIGURE 8.29 COMPARISON BETWEEN RS CODER (BLUE), DIPPM CODER (PURPLE), AND DIPPM DECODER (GREEN) MULTI

CODEWORDS OUTPUT WAVEFORMS ... 174

FIGURE 8.30 COMPARISON BETWEEN RS CODER (BLUE), DIPPM CODER (PURPLE), AND DIPPM DECODER (GREEN) SINGLE

CODEWORD OUTPUT WAVEFORMS .. 174

FIGURE 8.31 THE PRBS (BLUE), RS CODER (PURPLE), AND RS DECODER (GREEN) MULTI CODEWORDS OUTPUT WAVEFORM 175

FIGURE 8.32 THE PRBS (BLUE), RS CODER (PURPLE), AND RS DECODER (GREEN) SINGLE CODEWORD OUTPUT WAVEFORM 175

xvi

FIGURE 8.33 THE PRBS, RS CODER, AND RS DECODER MULTI CODEWORDS OUTPUT USING STA ... 175

FIGURE 8.34 THE PRBS, RS CODER, AND RS DECODER MULTI CODEWORDS OUTPUT USING STA ... 176

FIGURE 9.1 COMMUNICATION SYSTEM MODEL WITH RS ENCODER/ RS DECODER OVER AWGN CHANNEL 180

xvii

List of Tables

TABLE 2.1 BANDWIDTH CHARACTERISTICS FOR DIFFERENT TYPES OF LINE CODES (OSTERBERG, 2003) .. 38

TABLE 2.2 MLSD DETECTION OF A DICODE PPM SEQUENCE IN WHICH AN R PULSE HAS BEEN ERASED (SIBLEY, 2005). 43

TABLE 2.3 COMPARISON OF ERROR PROBABILITIES AT SPECIFIC NORMALISED LINK BANDWIDTHS FOR DICODE PPM OPERATING WITH

AND WITHOUT MLSD (SIBLEY, 2005). .. 45

TABLE 2.4 2-6PPM TO REED-SOLOMON SYMBOL MAPPING (LAPSTUN, 2009) ... 51

TABLE 2.5 PERFORMANCE OF THE DECODER FOR T = 8 (204,188,8) CODE (SANKARAN, 2000). ... 57

TABLE 2.6 CODE SIZE FOR (204,188,8) DECODER (SANKARAN, 2000) .. 57

TABLE 2.7 SIMULATION PARAMETERS (WATTS ET AL, 2006) ... 60

TABLE 3.1 DICODE PPM TECHNIQUE (SIBLEY, 2003) .. 67

TABLE 3.2 TRANSMITTED AND RECEIVED SEQUENCES WITH A WRONG-SLOT ERROR (SIBLEY, 2003) ... 71

TABLE 3.3 WRONG-SLOT PULSE ERROR AND METHOD OF DETECTION FOR MLSD OF DICODE PPM (SIBLEY, 2005). 72

TABLE 3.4 TRANSMITTED AND RECEIVED SEQUENCES WITH A FALSE-ALARM ERROR (SIBLEY, 2003) ... 74

TABLE 3.5 MLSD DETECTION OF A DIPPM SEQUENCE IN WHICH A FALSE R SYMBOL HAS BEEN DETECTED (SIBLEY, 2005) 74

TABLE 4.1 DIPPM SYSTEM WITH AND WITHOUT MLSD OR RS .. 92

TABLE 6.1 PRBS SOURCE CODE ... 119

TABLE 6.2 PRBS INPUT/OUTPUT SIGNALS .. 119

TABLE 6.3 RS (31,23) CODER SOURCE CODE .. 122

TABLE 6.4 RS(31,23) CODER IO SIGNALS .. 124

TABLE 6.5 BRIDGE CODER SOURCE CODE ... 127

TABLE 6.6 BRIDGE CODER I/O SIGNALS .. 127

TABLE 6.7 DIPPM CODER SOURCE CODE ... 129

TABLE 6.8 DIPPM I/O SIGNALS ... 129

TABLE 6.9 DIPPM DECODER SOURCE CODE .. 131

TABLE 6.10 DIPPM DECODER I/O SIGNALS .. 131

TABLE 6.11 BRIDGE DECODER SOURCE CODE .. 133

TABLE 6.12 BRIGE DECODER I/O SIGNALS .. 133

TABLE 6.13 RS(31,23) DECODER SOURCE CODE ... 137

TABLE 6.14 RS(31,23) DECODER I/O SIGNALS ... 137

xviii

List of abbreviations

Symbol Definition

B Bit rate

b The number of photons

BCH Bose, Chaudhuri, and Hocquenghem codes

c(X) The codeword polynomial

CIRC Cross-Interleaved Reed Solomon Code

DH-PIM dual header pulse interval modulation

DiPPM Dicode Pulse Position Modulation

dmin Code minimum distance

DPIM digital pulse interval modulation

DPPM Differential Pulse Position Modulation

DVB Digital Video Broadcasting

FEC Forward Error Correction

FPGA Field Programmable Gate Array

g(X) generator polynomial

k Message symbol number

kB Bandwidth factor

m Number of bits per symbol

m(X) Message polynomial

MLSD Maximum Likelihood Sequence Detection

MPPM Multiple Pulse Position Modulation

nDiPPM DiPPM maximum number of consecutive like symbols

nRS RS Codeword symbol number

No(t)
2

The mean square noise of the receiver

OOK On Off keying

p(X) parity polynomial

PCM Pulse Code Modulation

PDD Proportional-Derivative-Delay

Pe Equivalent PCM probability of error

PE The probability of Reed Solomon error

Peb The average binary error probability

Per The probability of an erasure error at DiPPM

PER Packet Error Rate

Pes The probability for wrong slot error

xix

Pf The probability of a false alarm error.

PIM pulse interval modulation

POF Plastic Optical Fibre

PPM Pulse Position Modulation

PSD Power Spectral Density

r Code rate

R DiPPM Reset pulse

RS Reed Solomon Codes

S DiPPM Set pulse

t Number of error symbols that RS can correct

Tb The PCM bit-time

v The threshold variable

vd The threshold crossing voltage

VHDL Very High Speed Integrated Circuits Hardware Description Language

vpk The peak voltage of the signal

ρ The transmission efficiency

ωB Filter bandwidth

20

Chapter1: Introduction

1.1. Optical Communications

Optical communication represents the transfer of information in the form of light signals.

There are transmitters that transfer the desired communication message and this

communication often takes place through optical fibres. The major elements necessary

to allow this communication include a modulator and demodulator, a transmitter and

receiver for transmitting and receiving the communicated message, and a channel for

the transfer of the data (Janssen, 2014). The information or signal that is passed

through optical communications can take place in both analog and digital formats with

the signal being converted into a form which is compatible with the system. Often an

A/D converter is used for the transmission of the signal whereas such a block is not

required as the data already exists in the digital form (Bagad & Dhotre, 2009).

1.1.1. Lasers

The term LASER is an acronym for Light Amplification by Stimulated Emission of

Radiation. The light that is emitted by the laser is coherent. The laser has a spatial

coherence and this property of a laser allows the laser beam to remain narrow over long

distances (Svelto, 2010). These special properties of lasers make them ideal for a

number of situations like optical disk driver, barcode scanner, printer, optical

communication, etc. The principle on which a laser works is explained by quantum

physics. According to quantum physics an atom stays in discrete energy levels (Al-

Azzawi, 2006). When the atom is excited it moves to state of higher energy level. If an

incident photon is sent to this atom in the excited state, then the atom falls to the lower

energy level and emits a second photon that is exactly similar to the first photon

(Agrawal, 2010). In designing the laser this principle is utilized and a large number of

excited atoms are placed within two mirrors. When the first photon is sent to the excited

atom a chain reaction begins and a large number of identical photons are created which

are then released as a single coherent beam of laser (Thyagarajan & Ghatak, 2010).

1.1.2. Optical fibre Transmitter

The main part of the optical transmitter is the light wave source. This source must have

minimum characteristics requirements in order to be valid as a light source. According to

Sibley (Sibley, 1995), the light source should operate with a wide range of temperature

for a long time in order to be reliable. He also stated that the source should operate

21

within one window of a wavelength which is suitable with the fibre and that the output

spectrum must be narrow in order to reduce the material dispersion of the fibre link.

Moreover, the light wave source can couple large amount of power by reducing the

emitting area of the device. All these parameters are essential considerations in selecting

a light wave source in fibre optics communication (Sibley, 1995).

The principal light sources used for fibre optic communications applications are

heterojunction semiconductor laser diodes (also referred to as injection laser diodes or

ILDs) and light-emitting diodes (LEDs). A heterojunction consists of two adjoining

semiconductor materials with different band-gap energies. These devices are suitable for

fibre transmission systems because they have adequate output power for a wide range

of applications, their optical power output can be directly modulated by varying the input

current to the device, they have a high efficiency, and their dimensional characteristics

are compatible with those of the optical fibre. Comprehensive treatments of the major

aspects of LEDs and laser diodes are presented in various books and journals (Sibley,

1995; Keiser, 2000).

The selection of LEDs and ILDs depends on the application itself, where each one has

major difference than the other. Laser output light is coherent where the light is

produced in an optical resonant cavity and has spatial and temporal coherence; all of

which makes the output light from laser source is very directional and highly mono-

coherent. On the other hand, LEDs are incoherent sources where there is no cavity for

wavelength selectivity (Keiser, 2010).

Source selection must have certain factors in respect to the fibre, these factors should be

seriously considered as follows;

 Geometry and attenuation as function in wavelength.

 Group delay distortion that limits the bandwidth.

 Spectrum width, radiation pattern, and modulation capability.

Sibley (Sibley, 1995) identified the differences between semiconductor laser diodes

(SLDs) and light emitting diodes (LEDs) in several ways: SLDs emit light by stimulated

emission, whereas LEDs emit light spontaneously; the application of a constant current is

required by a laser diode to preserve stimulated emission; the output is more

directional; and the response time is faster.

22

1.1.3. Optical fibre Receiver

The optical receiver consists of a photodetector, an amplifier, and signal processing

circuitry. Therefore, the basic structure of an optical receiver consists of: a photodiode, a

low-noise pre-amplifier, the front-end, feeds further amplification stages, the post-

amplifier, before filtering. The following figure shows the basic structure of an optical

receiver (Sibley, 1995; Keiser, 2010):

Figure 1.1 The basic structure of an optical receiver (Sibley, 1995)

The main part of the optical receiver is the photo detector which acts as a demodulator

converting the optical signal into an electrical signal. This easily happens when the photo

detector has the ability to detect and absorb the light photons. There are minimum

performance requirements which the photo detector should have in order to perform this

job (Sibley, 1995).

The photo detector should have a high sensitivity at the operating wave length and a

high fidelity that allows it to have a linear characteristic with the optical signal in the

analogue systems. As well, high quantum efficiency is a necessary parameter to produce

the maximum electric signal from the input optical power that enables the receiver to

have larger electric response to the input signal. In addition, as the optical bandwidth is

increasing, the receiver should have short response time to obtain this bandwidth which

expected to achieve terahertz in the future. The size of the photo detector should be

small in order to couple with the fibre. The noise should be as low as possible in the

photo detector and all circuitry should have low noise. However, all of these

requirements should be satisfied while the receiver is being designed, the cost matter

and reliability issues should be considered (Senior, 2008).

There are many types of photo detector, such as PIN photodiode and the avalanche

photodiode (APD), they are different in term of operation and also in materials, but the

selection of these types must be decided according to these performance requirements

Photodiode

Pre-amplifier Pre-detection filter Post-amplifier

23

of the application. Besides, the full receiver structure depends mainly on the application

(Sibley, 1995).

1.1.4. Optical fibre

Optical fibres are actually used as a channel that is used to transmit optical signals from

the transmitter to the receiver stations. In 1964, the use of glass in optical fibre

communication for communicating over long distances was first stated by Charles K. Kao

and it has come into use in the present generation in the form of fibre optic

communication. Optical fibre is considered as a cylindrical dielectric waveguide which is

used to transmit light along the axis of the waveguide through a process that is known

as total internal reflection. The different types of favour that exists are single mode fibre

and multimode fibre (Crisp, 2005).

Single mode fibres are fabricated to support one mode field to propagate where the core

diameter plays this role. The single mode fibre has the advantage that the model

dispersion, which occurs as a result between the delayed modes is avoided. Thus the

single mode fibre is employed in telecommunication due to greater bandwidth and lowest

losses (Senior, 2008). Single mode fibre is divided into step index and graded index

fibres. In the modern communication system there are three classes of single mode fibre

that are used. In includes NDSF or non-dispersion shifted fibre, non-zero dispersion

shifted fibre and dispersion shifted fibre (Downing, 2004). Multimodal fibres are those

which allows for the transmission of a number of modes of light at the same time. There

are two types of multimodal fibre that are step-index and graded index multimodal fibres

(Hecht, 2004).

Figure 1.2 types of optical fibre (Sibley, 1995)

24

1.1.5. Principle of dispersion

In an optical fibre it is found that a short optical pulse actually widens after it propagates

in an optical fibre. This is a phenomenon that is caused by dispersion. Two types of

dispersion that exists are explained below.

Intermodal dispersion: This is caused by the differences in the group velocities that exist

in between the various modes that propagate within an optical fibre (Anderson, Johnson

& Bell, 2004). The intermodal dispersion is actually a phenomenon which leads to the

fact that the group velocity of light that is propagating in a multimode fibre not only

depends on optical frequency but also on the propagation mode that is involved.

Intramodal dispersion- This is in turn caused by the fact that the refractive index of fibre

core is dependent on the wavelength of light. This leads to a velocity difference is

created in between the spectral components of a source of light.

1.1.6. Wave division multiplexing principle

The term wavelength division multiplexing (WDM) refers to the technology, which is used

to multiplex number of optical carrier single on a single piece of optical fibre. It is done

through the use of different colours of laser light in order to carry different signals. A

multiplexer is used at the transmitter end to join the signals together and a

demultiplexer is placed at the receiver in order to split the signals (Sivalingam &

Subramaniam, 2006). There are two types of wavelength division multiplexing. They are

coarse wavelength division multiplexing and dense wavelength division multiplexing.

DWDM refers to the fact that it helps in transmitting more channels which are closely

spaced. On the other hand, in case of CWDM the number of channels is less.

Figure 1.3 40 virtual high speed channels per physical fibre (Infocellar, 2015)

25

1.1.7. Coding Schemes

Particular coding schemes are used in optical communications such as PCM, PPM, Digital

PPM, Multiple PPM, PIM, Dicode PPM.

PCM – PCM or pulse-code modulation is a method based on digital encoding. The

baseband signal in the system is quantised and sampled and there is a series of bits that

encodes the sample. In optical communications a light is turned on and off using binary

signals. This is a good choice for optical communications, particularly when a laser diode

has to be utilized owing to presence of inherent nonlinearity in the source of the optics

(Bandyopadhyay, 2014).

PPM – PPM or pulse position modulation is used for optical communications where the

code scheme involves a bit time divided into two slots. Data can either be 1 or 0. If it is

1, the pulse gets transmitted in the first bit time slot. If the data is 0, then the pulse is

generated in the second slot of the bit time. Expansion of PPM is also possible and

proves to be efficient for optical communications (Alexander, 1997).

Digital PPM – PPM can also be used in the digital transmission of information. It is a

variation of the PPM coding, which can transmit data irrespective of the presence of

time. If delays occur in the transmission, they take reference from falling edge of the

pulse that was earlier transmitted (Lazaridis, 2011).

Multiple PPM and Dicode PPM – Dicode PPM and Multiple PPM are considered as the most

bandwidth efficient codes for PPM transmission. These codes offer a good sensitivity

without the large increase in bandwidth given by digital PPM (Nikolaidis, 2008).

PIM – PIM or pulse interval modulation forms a part of a synchronous PTM technique, the

coding schemes of which have a fixed structure for their symbol. PTM or pulse time

modulation represents a transmission scheme where modulation of the carrier results in

production of several pulses whose position and width in a frame vary according to the

modulation. (Wilson and Ghassemlooy, 1993). Thus, there are variations in the length of

the symbol and can be measured from the content or information that is carried by the

symbol. Therefore, it enables effective transmission of the signals in optical

communications (Herceg, Svedek & Matic, 2010).

1.2. Error Correction

Digital electronic data-storage systems are widely used in the recent times.

Unfortunately, errors can take place and so error correction methods are essential. A

26

most widely developed mechanism includes error detection and correction coding theory.

Detection and recovery are essential for digital systems, hence the mechanisms being

developed. The types of codes are varied and depend on the capabilities of corrections

required, the efficiency of the codes, and the level of complexity associated with the

coding and decoding methods (Fleetwood & Schrimpf, 2004).

The first class of linear block codes that were developed for error correction purposes

included the Hamming codes. Digital communications and data-storage systems have

widely made use of these Hamming codes owing to the availability of variations. A single

bit correction and double bit detection were provided by Hamming codes. While error

correction methods are available, it has to be noted that the processes of coding are

significantly complex in nature (Fleetwood & Schrimpf, 2004).

Reed Solomon error correction codes are used for the purpose of correcting errors in

digital systems. The Reed Solomon codes are widely used to correct the errors that occur

in optical recording systems (McDaniel & Victora, 1995) and in digital TV transmissions.

Reed Solomon Codes represent BCH codes, their length, requiring larger sizes of the

field. However, the codes have significant importance, in error correction. These codes

are used by compact disc players effectively for error correction needs (Betten et al,

2006).

Based on blocks, the Reed Solomon codes are used in several applications that include

digital communications and data storages. The following are some of the most effective

applications of Reed Solomon codes (Riley & Richardson, 1998):

 Devices for storing information – these are generally devices such as tapes,

compact disks, DVDs, barcodes, and other such devices

 Communication links or devices that are mobile or wireless such as mobile

phones, microwave links, and so on

 Devices and networks involved in satellite data transmissions

1.3. Design Automation

Design Automation (DA) is the method by which steps in the design of integrated circuits

can be automated. VHDL represents very high speed integrated circuit describing a

hardware description language – HDL. The purpose of creating VHDL was to make

hardware designs portable for use and VHDL could be used as a stimulator and

developed for this purpose. VHDL is a tool for design-automation. The digital systems

can take advantage of this tool at their different levels of generalisation and

substantiation of functionality. Test data that is generated can also be verified using the

27

design automation tool. Based on such verification, the hardware can be installed in the

systems (Kaur, 2011).

Another effective design automation tool is the FPGA or field programmable gate array.

Embedded processors are offered by manufacturers of FPGA which can be customized for

interfacing with the logic fabric of FPGA. The two types of FPGA embedded processors

are a soft embedded processor and a hard embedded processor. The soft processors

have features of configuration including caches and registered sizes of files, blocks of

RAM/ROM, and necessary instructions for customization. Availability of these processors

is in the form of description language and the hard processors are embedded on the

FPGA in a dedicated form of hardware (Alpert, Mehta & Sapatnekar, 2008).

1.4. Aims and Objectives

Dicode pulse position modulation (DiPPM) systems suffer from three types of pulse

detection errors: wrong slots, false alarm and erasure. The main aim of this work was to

design error correction system, Reed Solomon codes (RS), which will overcome or

reduce the error sources in the DiPPM system. Investigations undertaken and

intermediate objectives fulfilled during PhD research:

 To find the Reed Solomon (RS) optimum parameters, that give lower number of

photons and higher transmission efficiency, by developing a system Mathcad

program. This involves computing the minimum number of photons and the

transmission efficiency to determine the effect of adding a RS system to the

DiPPM system. The two detection methods, slope detection and central decision

detection, will be used to check if the RS optimum parameters are going to be

compatible.

 To verify whether employing RS code with the DiPPM system will improve the

system performance, with the RS working at optimum parameters. This will be

done by comparing the uncoded DiPPM system, the DiPPM employing maximum

likelihood sequence detection (MLSD) system, and the DiPPM employing RS

system in terms of the number of photons and transmission efficiency.

 To confirm whether the RS system will repair the DiPPM system errors that occur

during the transmission process. This will be ascertained by developing a Matlab

program to simulate the system error performance.

 To design a schematic for the DiPPM system working with RS code. Each part of

the system will be described using the VHDL. The optimum RS parameters will be

used to design the system. The simulation result of each part of the system will

be compared to the theoretical to agree that the system working correctly.

28

 To design a test bench environment for the schematic system. The erasure only,

error only, and erasure and error will be applied on the designed system. This will

be achieved by using Modelsim_Altera software to prove whether the system has

the ability to detect and correct the mentioned types of error and the system

limitation.

 To implement the designed system on FPGA, and connect the system (transmitter

and receiver) via an optical fibre system. This will be realised by synthesising the

parts of the system on an FPGA and building an optical transmitter and receiver.

The practical output results will be compared to the simulation results to validate

the system.

1.5. Thesis Layout

The rest of this thesis is organised into eight chapters as follows:

In chapter two, a literature review is presented that considers coding schemes in an

optical fibre system in terms of characteristics, modulation, and transmission. Previous

researches in DiPPM will be considered to illustrate system implementation and

performance analysis. A PPM documentation for RS decoding is clarified that involved

fundamentals of RS codes, encoding and decoding. Finally, a review on FPGA is given

regarding applications and VHDL.

Chapter three, considers explanation of the DiPPM system theory. The errors affecting

DiPPM, wrong slot errors, erasure errors, and false alarm errors, are described in this

chapter. The DiPPM coder and decoder previous practical implementation are also

shown.

Chapter four, investigates employing the RS code with the dicode pulse position

modulation (DiPPM) to find the precise characteristics of the RS code that minimizes the

errors in the DiPPM. The non-coded dicode pulse position modulation which applies MLSD

and the RS coding paradigms are compared with regards to the number of photons

which are contained in each pulse and the transmission efficiency. Moreover, the coded

DiPPM system is compared with the coded PCM system.

In chapter five, Matlab software has been used to simulate the DiPPM with the RS code

system. The simulation was developed through three versions. Although there was a

Matlab simulation of the DiPPM system, a new version of DiPPM (coder & decoder)

29

simulation has been presented in this chapter. In the second version, the RS system has

been employed with the DiPPM system in order to overcome the errors that affect the

system. In the third version, the noise is added to channel to generate the errors by

varying signal to noise ratio. In the third version, a PCM binary sequence was replaced

by a picture’s data to analyse the transmission performance of the system.

In chapter six, a very high speed integrated circuit (VHSIC) hardware description

language (HDL) source code for the DiPPM system employing (31,23) RS error correcting

code system is given. A schematic and a full block description of the system are shown.

Modelsim_Altera version (6.5b) software is used to simulate each part of the system.

In chapter seven, the results of three test bench environments, erasure only, error

only, and erasure and error, are presented. A Modelsim_Altera version (6.5b) software is

used to simulate the system. The system has shown that it has the ability to detect and

correct erasure and error symbols when they are within its limitation.

Chapter eight, presents a practical implementation of the designed system using Altera

Quartus II software, and Cyclone III Field Programmable Gate Array (FPGA) based DSP

development board. The design for the optical system transceiver is demonstrated as

well.

Chapter nine, concludes the work presented in this thesis, highlighting the original

contribution of the designed system and suggesting further work to be done.

1.6. Original Work Contributions

The author has

 Developed a Mathcad program for the DiPPM pulse detection by using the slope

detection method, in order to compute the number of photons for the detected

pulse after added RS codes. The number of photons was computed for different

normalised bandwidth.

 Developed a Mathcad program for the DiPPM pulse detection by using the central

detection method, in order to compute the number of photons for the detected

signal in each pulse after added RS codes. The number of photons was computed

for different normalise bandwidth.

 Calculated the minimum number of photons for each pulse of the uncoded DiPPM

system and a DiPPM system employing RS code for a different normalised

bandwidth at a different code rate and code length. A mathematical formula of

the DiPPM system was derived to calculate the system transmission efficiency for

30

the uncoded and coded system. The simulation results have shown that the use

of RS code can greatly increase the transmission efficiency of DiPPM by reducing

the number of photons. The DiPPM system employing RS code offers a 5.12 dB

improvement over the uncoded system when RS code operates at the optimum

code rate of (3/4).

 Developed a Matlab program to simulate the DiPPM system with the RS code

system. The simulation was developed through three versions. First version was

the DiPPM (coder & decoder) system simulation; the second version was the

DiPPM system employing RS code in order to prevent the errors that affect the

system; the third version was data from a picture to analyse the transmission

performance of the system.

 Developed a very high speed integrated circuit (VHSIC) hardware description

language (HDL) source code for the DiPPM system employing (31,23) RS error

correcting code system. A schematic and a full block description of the system are

given. Modelsim_Altera version (6.5b) software is used to simulate each part of

the system.

 Tested three test bench environments, erasure only, error only, and erasure and

error, on the designed system. A Modelsim_Altera version (6.5b) software was

used to simulate the system. The system has shown that it has the ability to

detect and correct erasure and error symbols when they not overcome its

limitation.

 Established a practical implementation of the designed system by using Altera

Quartus II software, and Cyclone III Field Programmable Gate Array (FPGA)

based DSP development board. The implementation of the optical system

transceiver is done as well.

31

Chapter2: Literature Review

2.1. Introduction

This section of the thesis is an extensive literature review concerned with the use of

coding schemes, Reed Solomon codes and dicode pulse position modulation (PPM).

The topics that will be reviewed in this chapter include,

 Coding schemes in optical fibre.

- Characteristics, modulation, transmission.

 Dicode pulse position modulation.

- Implementation, performance analysis.

 PPM employing Reed Solomon code.

- Reed Solomon codes, encoding and decoding.

 Field programmable gate array.

- VHDL, applications.

2.2. Coding Schemes in Optical Fibre

Transmission of data can occur either through analog transmission, digital transmission,

and digital baseband, line coding, transmission. In the case of analog and digital

transmission of data, carrier transmission is used, whereas with digital baseband

transmission, a digital bit stream over a baseband channel is transfered. This implies

that logic signals are sent for low and high levels of light. For low light level the logic

signal is 0 and for high level of light the signal is 1. Sometimes a certain density of the

transmission is obtained through data coding that can be applied in the process (Goff,

2002). A good balance of 0s and 1s is offered by line coding schemes as discussed by

Senior, and Jamro (2009). FEC refers to Forward Error Correction the method of which is

used for correcting errors in the system of communication and forms an essential

strategy developed within the line code. There are several line codes and schemes that

can be developed in order to accomplish FEC in optical fibre systems of communication

(Senior & Jamro, 2009).

A large number of studies have investigated PPM and its development for use in optical

fibre communication system. During the past 40 years much more information has

become available on the digital PPM scheme (Gagliardi, & Ling, 1986; Davidson, & Sun,

1989; Sibley, 1987; Elmirghani, Cryan, & Clayton, 1992a, 1992b, 1992c). Analysis of

digital PPM over optical fibre channel was first carried out in 1980 (Elmirghani, Cryan, &

32

Clayton, 1992a). The performance of the optical fibre digital system using direct

detection and coherent detection PIN-FET optical receivers for Gaussian received pulse

shape was reported by Dolinar, Garret (Karp, Gagliaridi, 1969; Gol’dsteyn, & Frezinskiy,

1978; Dolinar, 1983). They demonstrated that the PIN-FET PPM receiver gives a

sensitivity of 10 to 12 dB more than that of pulse code modulation (PCM).

In 1988, digital PPM over optical fibre was first demonstrated by Calvert (Calvert, Sibley,

& Unwin, 1988), by means of a theoretical model based on a modified Garrett analysis.

His results showed that the sensitivity of a digital PPM receiver outperformed an

equivalent PCM system by 4.2 dB when the fibre bandwidth is several times that

required by PCM. Although all the studies refer to the advantages of PPM, it comes at a

cost of large bandwidth and a complicated implementation. Therefore, many PPM variant

schemes have been derived or modified to transmit the data such as:

 Multiple Pulse Position Modulation (MPPM) (Lee, & Schroeder, 1977).

 Differential Pulse Position Modulation (DPPM) (Shirokov, & Bukhinnik, 1984).

 Pulse interval modulation (PIM) (Gol’dsteyn, & Frezinskiy, 1978).

 Digital pulse interval modulation (DPIM) (Ghassemlooy, & Hayes, 2000).

 Dual header pulse interval modulation (DH-PIM) (Aldibbiat et al, 2002).

 Dicode Pulse Position Modulation (Sibley, 2003).

These schemes were proposed to reduce the bandwidth expansion inherent in digital PPM

(Sibley, 2012).

2.2.1. Characteristics of Line Coding

Line coding is generally necessary for data passing through a communication channel

and has certain characteristics of its own. Some of the particular aspects of line coding

are signal level versus data level, pulse rate versus bit rate, DC components, and self-

synchronization (Forouzan & Fegan, 2003).

Signal level versus data level – As far as the digital signal is concerned, the number of

values is limited. Few of these values can be used for the purpose of data

representation. The number of levels that are allowed through a specific transmit signal

are referred to as signal level, whereas the levels that perform the representation of

data are referred to as data levels (Forouzan & Fegan, 2003).

Pulse rate versus bit rate – The number of pulses transmitted per second is referred as

the pulse rate. On the other hand, the number of bits per second represents the bit rate

33

for the transmission of the signal. In cases where a signal pulse defines only a single bit,

the pulse rate and bit rate are considered to be the same (Forouzan & Fegan, 2003).

DC Components – In case the transmission signal has to pass through a communication

channel that does not allow DC components, signal must be modified so that the DC

content is zero. Thus, there can be two different line coding schemes depending on the

channel for the DC components one with the DC component, and another without the DC

component (Forouzan & Fegan, 2003).

Self-synchronization – A digital signal which is self-synchronizing in nature includes

information related to timing for the data that is being transmitted through the

communication system. It is possible to achieve this if the signals have transitions that

can create alerts for the receipt of the signals in the beginning, middle, and end of the

transmission (Forouzan & Fegan, 2003).

Some of the other characteristics of line coding that are essentially associated with

optical fibres and its role in communications systems, also considering the difference

between each line code, include power spectral density (PSD), regularity on the

transitions of the signals, immunity of noise, and the capability to detect errors. In many

cases, researchers prefer experimenting with applications of small or no DC content

(Guimaeres, 2002, 2010).

The energy that is carried by the line codes varies from one code to another. Hence,

depending on the information carried and communicated by the line codes, the energy of

the codes may be determined. Also, depending on the energy carried by the line codes,

the noise immunity of the codes also varies and the more energy a line code can carry

would lead to more immunity of noise for that particular code. Synchronization of the

system is obtained through the regularity of the transitions of the signals. If the noise

immunity can be made high, then the chances of errors in the bits reduce significantly,

enhancing the system of communications. Level codes and transition codes are the two

major types of binary line codes. While the level codes are responsible for carrying

information depending on the level of the voltage; the transition codes are responsible

for carrying information that are in the form of changes in the levels. Also, line codes

may be bipolar or unipolar depending on the use of bipolar or unipolar pulses

(Guimaeres, 2002, 2010).

34

2.2.2. Rate Adaptive Modulation and Coding for Optical Fibre

Transmission Systems

As Nam (2006) discussed, wireless communications channels are generally random or

erratic nature. Thus, it often becomes difficult to rely completely on the system or obtain

high rate of data transmission. Hence, reliability of the system needs to be accomplished

by some means. Adaptive modulation refers to a way through which the fading effects of

the wireless channels can be suitably accommodated where, depending on the quality of

the channel of communication, a variable constellation is used for the purpose of

transmission. Adaptive modulation is also therefore referred to as near-capacity

technique for achievement of effective signal transmission (Nam, 2006).

Gho, and Kahn (2012) have proposed a scheme of rate adaptive transmission depending

on a variable rate correction method involving FEC codes (FEC-forward error correction)

along with constellations of different sizes at a fixed rate of symbol, being capable of

quantifying the variation of the rates of bit with distances as can be achieved. Such a

system could be evaluated with the use of a single channel transmission based on inline

distribution return. Researchers have focused on achieving extensions of the distances of

transmissions where the rate adaptive modulation case has been considered. There are

different constellations for different orders of the modulation. If a symbol rate is given as

Rs, an RS-RS rate of code given by rC=k/n, repetition rate of code given by rR=1/fR. The

repetition factor fR denotes the number of repetitions of each bit from the output of the

inner RS encoder, and ranges from 1 to 4. The rate of line code given by rL, and order of

modulation given by M, then the data rate given by Rb can be calculated by the following

equation:

 22 logb L C R sR r r r R M (2.1)

considering an assumption of the polarization multiplexing transmission (Gho and Kahn,

2012).

The working of adaptive modulation systems depends on adaption of modulation

parameters, which responds to the path of propagation associated with the

characteristics and traffic control of the path. The modulations can be either slow

adaptive modulation or fast adaptive modulation, depends on the scheme of the

modulation. A general outline of the adaptive modulation systems can be presented,

figure 2.1, as given by Sasaoka (2000):

35

Figure 2.1 Over of Adaptive Modulation System (Sasaoka, 2000)

The determination of the parameters for the channel of transmission is dependent on the

rate at which the channel varies in its transmission. The estimation error is also affected

in this way. There are times when both slow and fast fading components appear in the

channel system, and the adaptive transmission might get adapted to both the stages.

Generally the techniques of adaptive modulation are based on the variations in any of

these factors – data rate, power, coding, probability of error, and combining these

techniques (Goldsmith, 2005). In general the process involves general of a call request

from a terminal point, which is responded by the slow adaptive modulation system

considering the conditions of the traffic. On the other hand, the role of the fast adaptive

modulation system is such that it monitors the direct conditions of the channel of

propagation that takes place in between the terminal and the base point (Sasaoka,

2000).

As Blogh and Hanzo (2002) discussed in their studies, a reliable method of rate adaptive

modulation for optical fibre transmission systems was given by experiments conducted

by Otsuki et al. According to their finding, the parameters, modulation level, could be

embedded in the mid-amble of the frames of transmission with the use of Walsh codes.

With this, maximum likelihood detection could be possible and the Walsh sequences

could be decoded. The modulation mode that was required could also be estimated with

use of another technique that was suggested by Hanzo and Torrance, where symbols of

unequal protection of errors could be represented by modulation control symbols (Blogh

and Hanzo, 2002).

36

Gho, Klak and Kahn (2011) discussed that, with the use of the FEC scheme, serially

concatenated RS codes can be employed based on decoding of hard decision and varying

the rate of the codes by shortening and puncturing them. Variations of the rate can be

further achieved through a method of inner repetition associated with the soft

combination of the codes. Different coding schemes have different performances and

performance gaps based on which the modulation of the transmission systems can be

used.

2.2.3. Pulse Position Modulation

Pulse position modulation represents a modulation of the position of the pulse relative to

its unmodulated position. There are several advantages of digital pulse modulation as

mentioned by Ko (2011). The major advantages include its performance, ruggedness,

reliability, security, efficiency, and integration of the system. The problems of noise

degradation of the channels and the distortions of signals are reduced with this

demodulation process (Ko, 2011).

In PMM, m bits of binary data which can be represented by means of a solitary pulse.

There is a trade-off between the enhanced bandwidth consumption and the final line

rate. The identical amount of data must be transported in the same time frame.

Consequently, in the consideration of a PCM bit interval where bT is the bit time, the

frame time is represented by bmT , in which there are 2m PPM time slots. This relationship

infers that the PPM rate is 2 /m m faster than the PCM in order to sustain the identical

traffic flow of data. (Shalaby, 1999; Sibley & Massarella, 1993; Sibely, 1994; Sibley,

2003; Sibley, 2004; Zwillinger, 1988).

With use of digital communication system, the tolerance of effects of noises from the

communication channels and signal distortions increases. It is a highly reliable system as

it can exploit strong and powerful coding schemes for control of errors. Encryption

algorithms can be effectively used in order to make the system more secure. Moreover,

digital communication system is more efficient than analog communication system (Ko,

2011). As Liu (2002) explained, in pulse position modulation the bandwidth is exchanged

for the signal to noise ratio.

The problems that are mostly faced in communications are in relation to communicating

the message that has been sent from one point to another. All messages that are

communicated are different and hence have different meanings that need to be

effectively communicated in order to keep the meanings intact. For this purpose an

effective system of communication is essential and engages a source of information, the

37

transmitter, the signals and the receiver. Based on the elements and the processes of

communications, the systems can be discrete, continuous, or mixed (Liu, 2002).

Pulse position modulation has been presented by Liu through the following diagram

figure 2.2 (2002). In the words of Liu (2002), Pulse position modulation is a “method of

encoding information in a signal by varying the position of pulses. The unmodulated

signal consists of a continuous train of pulses of constant frequency, duration, and

amplitude. During modulation the pulse positions are changed to reflect the information

being encoded”.

Figure 2.2 Pulse Position Modulation (Liu, 2002)

An interesting feature of pulse position modulation is that it can provide a low average

power. In case of using digital pulse position modulation, the appropriate channeling and

use of line coding is essential. There are different techniques of coding that are available

for this purpose. These include the convolutional codes, the turbo codes, and the codes

of Reed Solomon. Pulse position modulation proves to be an effective replacement to on-

off keying (OOK). However, while there are advantages of the pulse position modulation,

there are certain disadvantages as well that needs to be realized while using this

technique of communication system, as explained by Xu, Khalighi and Bourennane

(2009).

2.3. DiPPM Coding Scheme for Optical Fibre Communications

As Sibley (2003) discussed, there are various schemes of pulse position modulation that

have been developed for the purpose of using with communication links based on optical

fibre. Significantly better sensitivity than pulse code modulation is obtained with the use

of pulse position modulation.

An original coding scheme explained by Sibley consisted of combining dicode and digital

PPM to form dicode PPM. As the digital PPM is considered, it consists of 4 bits of PCM

being converted into digital PPM. The original word of the PCM is in charge of controlling

the position of the pulse. The level of coding and the index of modulation are the two

38

key variables in signalling of the PPM. The final rate of data, which is in most cases very

high, has been given by the following equation (Sibley, 2003):

 2 /m

DPPMf xm B (2.2)

where, m represents the level of coding, Β represents the bit rate of the PCM, and x

represents the index of modulation of the transmission. The index modulation, x, is

again given by the following equation (Sibley, 2003):

 2 / 2m mx g (2.3)

Here, g represents the number of guard slots present in the frame (Sibley, 2003).

There has been significant interest among the researchers to study and analyze data

transmission based on PPM method and optical fibres, allowing transmission of data to

be more effective. As line codes play a significant role in this regard, the selection of the

novel line codes for the purpose of transmission has been found to be dependent on

specific features of the communication channel as need to be passed or opposed

(Osterberg, 2003). The characteristics of bandwidth for the different types of line codes

that eventually present the novel coding for the optical fibre transmission system have

been presented by researchers as given in the following table 2.1 (Osterberg, 2003):

Table 2.1 Bandwidth characteristics for different types of line codes (Osterberg, 2003)

Line Codes Transmission Bandwidth Transmission Efficiency

RZ ±2B ¼ bit/s/Hz

NRZ ±B ½ bit/s/Hz

Duobinary ±(1/2)B 1 bit/s/Hz

Single sideband ±(1/2)B 1 bit/s/Hz

M-ary ASK (M=2N) ±B/N Log2N

Alis and Faiman (2004) also presented a novel coding, which is dependent on data and

makes use of the phase encoding scheme for the purpose of optical fibre

communications and transmission systems. This particular scheme focused on the

redistribution of energy among 1-bits that enabled the reduction of the optical power

being leaked into the 0-bit time slots. This has been found to be useful and can be

applied for a wide range of input powers in cases of transmissions of signals involving

return-to-zero-features. The coding scheme being dependent on data and being

introduced in the system has been obtained to increase the Q factor (Qualitity factor) by

approximately 4 dB. This has been supported by the tremendous efforts of the part of

39

the researchers over the years that has eventually led to develop of the novel coding for

the optical fibre transmission systems (Alic and Faiman, 2004).

2.3.1. Maximum Likelihood Sequence Detector

In the early years, dicode pulse position modulation was developed as a means to

develop greater advantages over the schemes of the standard digital pulse position

modulation. In the development of the dicode pulse position modulation, the original

method of slope detection could be used for its investigation of performance. However,

the slope detector can be replaced by central decision detection (CDD) (Charitopoulos,

Sibley, & Mather, 2011).

Considering PPM, it is well known that there are three different types of errors of

detection: wrong-slots; erasure; and false-alarm. The occurrence of wrong slots arises in

cases where a pulse appears in the previous slot within the same frame or in the slot in

the same frame in the following section due to the presence of noise. Errors of erasure

occur when noise causes a loss of the pulse. False alarm errors occur when noise causes

a threshold crossing when there is no pulse (Charitopoulos, Sibley, & Mather, 2011).

The advantages of dicode pulse position modulation have been obtained over the

standard pulse position modulation for communications through optical channels. The

construction of MLSD in DiPPM can also be obtained in VHDL, which shall be discussed in

the further sections of the literature review. Researchers focused on construction of the

MLSD in DiPPM including all the components of the pulse position modulation, such as

coder, timing extraction, and decoder, and VHDL could be used for the development of

the structure followed by its implementation on Altera FPGA (Charitopoulos, Sibley, &

Mather, 2011).

For the MLSD to work for the detection of errors in the system of communication, when

constructed in the DiPPM, it is essential that the information that is received through the

channel of communication is stored. This storage of the information enables the system

to determine whether there is an error in the communication and accordingly it can then

be removed from the system. As researchers have conducted experiments of DiPPM

through MLSD based on optical channels of communication, the key components focused

on for the studies included DiPPM coder, the transmitter/receiver of the information

passed through the channel, timing extraction, DiPPM MLSD decoder, and DiPPM decoder

(Charitopoulos, Sibley, & Mather, 2011). Figure 2.3 shows the image of the MLSD output

waveform identical with the optical decoder input, in which case no error appears.

40

Figure 2.3 Above image representing decoder input, below image representing MLSD

results (Charitopoulos, Sibley, & Mather, 2011)

Thus, it obtained by the researchers (Charitopoulos, Sibley, & Mather, 2011) that MLSD

could be used for error detection in DiPPM, the flowchart for which has also been

provided explaining the process in detail. While the errors in the optical communication

can be detected with implementation of the MLSD, the correcting measures can also be

applied for the correction of the errors that are detected (Charitopoulos, Sibley, &

Mather, 2011). The flowchart of the process, figure 2.4, has been given by the

researchers who experimented with the error detection and correction measures using

MLSD. With the help of this flowchart the MLSD can be implemented in DiPPM and used

for error detection and correction in order to obtain effective communications through

optical channels.

41

Figure 2.4 MLSD Flowchart with MLSD Corrector (Charitopoulos, Sibley, & Mather, 2010)

42

2.3.2. Implementation

As presented in the flowchart, the system of the incorporating the MLSD in the DiPPM

occurs through enabling the detector to study the signals obtained when the message is

being passed. As Zhu and Kahn (2003) discussed in their studies, free space turbulence

is a factor that largely affects the effective working of the system. Thus, while the

process is being implemented, researchers have to consider measures to overcome such

impacts in order to mitigate the effects of the external factors. With the use of the

MLSD, the temporal correlation of fading which is induced by turbulence can be

exploited, which, when implemented is expected to go one better than the symbol to

symbol ML detector (Zhu, & Kahn, 2003).

Considering the transmission of n number of bits, the implementation of the MLSD in the

DiPPM can be understood in the way the likelihood ratio of all the sequences are

computed by the MLSD. The possible bit sequences can be represented as s = [s1 s2….

sn] for the 2n possible sequences of the transmitted bits. The signal sequence that is

received may be represented by r = [r1 r2….rn]. Considering this transmission and

receiving of the signals for optical channel communications, the complexity of the MLSD

can be obtained to be proportional to n.2n. This is so in this case it is necessary to

compute n-dimensional essential for all the sequences of the signal being transmitted

(Zhu, & Kahn, 2003).

In order to reduce the problems of complexities associated with the implementation of

the MLSD, MLSD algorithm is derived and implemented in the process. MLSD solutions

have been obtained from multiple input multiple output (MIMO) optical wireless (OW)

systems. It has been obtained by researchers that MLSD can be implemented with MIMO

proving to be highly effective as MIMO encounters significant complexities owing to

which it is not capable of being used for practical reasons. The most effective algorithm

that has been proposed for MLSD effectiveness is the EM (Expectation-Maximization)

algorithm (Chatzidiamantis et al, 2009).

The EM algorithm is a widely used algorithm used for the implementation of the MLSD in

DiPPM for ensuring that the complexities are reduced and the detection of errors and

their corrections can occur effectively. The algorithm is particularly of use because in

most cases there is certain necessary information related to the communications that are

missing and hence make it difficult for the estimation of the state of the channel of

communication. Thus the EM algorithm has been obtained to a low complexity solution

for the implementation of MLSD (Chatzidiamantis et al, 2009).

43

Associated with this, researchers have also investigated the performance of the symbol

by symbol ML detector, PSAM, and MLSD with respect to the MIMO optical wireless

systems. Error detection techniques that are based on the use of MLSD can be engaged

when direct channel state information (CSI) is not accessible at the point of the receiver

of the communication message. In this case, an assumption is made that states that the

receiver end has an understanding of the marginal joint allotment of the variations of

concentrations, but not of their immediate condition (Chatzidiamantis et al, 2009).

The implementation of the MLSD in DiPPM can be well understood through the following

table 2.2 that represent the detection of the PPM sequence by the MLSD in which a R

pulse has been erased. From this table, as Sibley obtained, it could be determined that

for any pulse for it to get corrected, the optimum location is somewhere in between the

two symbols irrespective of where the source of error might exist (Sibley, 2005).

Table 2.2 MLSD detection of a dicode PPM sequence in which an R pulse has been erased

(Sibley, 2005).

Invalid

sequenc

e

S N N N N N N N S Binary representation

 S R N N N N N N S 1 0 0 0 0 0 0 0 1

 S N R N N N N N S 1 1 0 0 0 0 0 0 1

 S N N R N N N N S 1 1 1 0 0 0 0 0 1

 S N N N R N N N S 1 1 1 1 0 0 0 0 1

 S N N N N R N N S 1 1 1 1 1 0 0 0 1

 S N N N N N R N S 1 1 1 1 1 1 0 0 1

 S N N N N N N R S 1 1 1 1 1 1 1 0 1

Average 7/

7

6/

7

5/

7

4/

7

3/

7

2/

7

1/

7

0/

7

7/

7

MLSD

output

S N N N R N N N S 1 1 1 1 0 0 0 0 1

Original

word

S N R N N N N N S 1 1 0 0 0 0 0 0 1

Error

bits (2

off)

 1 1

2.3.3. Performance Analysis

There are three major types of errors related to pulse position modulation systems:

wrong-slot; false alarm; and erasure. These errors are needed to be detected before

they can damage the communication message that is being transmitted through the

signals. Sibley (2005) presented an MLSD algorithm for this purpose that makes use of

sequences of the natural pulses in dicode pulse position modulation and intends to

44

completely remove the detected errors or minimize their effects on the communication

system as much as possible.

It has been obtained that the application of the MLSD algorithm can be done in optical

channels that are non-directed, indoor, free space. This is primarily so because the

errors of the signal sequence can be obtained from ISI or intersymbol interference,

which is initiated by these optical channels of communication. When the MLSD scheme is

used for error detection, the transmission of data makes use of only certain words or

sequences of the signals. The word that is detected is matched with all available words

and sequences to determine if it is an error or not. This function takes place at the

receiver. In the case where the word that is received is corrupted by ISI or the noise

existing in the channel of communication, then the MLSD decoder determines the word

which most likely matches with the sequences being checked, and makes use of that

word for the generation of the data that has been decoded (Sibley, 2005).

The performance of the MLSD in communication error detection in optical channels is

determined by the way the algorithm can effectively detect the errors in the system. The

probability of the errors can be determined as follows, thereby helping in the analysis of

the performance of the MLSD in DiPPM (Sibley, 2005):

If the signal sequence of a general dicode PPM is considered, say SxNRyNS, the average

PCM probability of error that can be calculated occurring owing to an event of error

would be:

,

2 2 1 21 1

, ,

2 1 1 11

, ,

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

x y

x y n yn n

e e x y e n y

y x

x n n nn

e x n e n n

x

P P Error P Error

P Error P Error

 (2.4)

Where Pe represents the probability of error of a certain detection of the pulse (erasure

or false-alarm) and Errorx,y represents the number of PCM errors ensuing from the error

of the detection of the pulse (Sibley, 2005).

The analysis of the performance of the MLSD can also be achieved using a simulation

model. According to this model, an optical receiver is used having a limited bandwidth,

with its output having a white noise spectrum. A classic matched filter could also be

engaged for the purpose of predetection has been included in the system. Sibley also

considered the graded index POF for the transmission of the dicode PPM. The block

diagram of the receiver system has been given by researcher as shown in figure 2.5, and

45

is applicable for the performance analysis of the MLSD in DiPPM (Sibley, 2005). Table 2.3

provides a comparison of error probabilities at specific normalised link bandwidths for

dicode PPM operating with and without MLSD.

Figure 2.5 Block diagram of receiver system (Sibley, 2005)

Table 2.3 Comparison of error probabilities at specific normalised link bandwidths for

dicode PPM operating with and without MLSD (Sibley, 2005).

Normalized

link

bandwidth

 100 10 1 0.46 0.29

Photons per

pulse

(×10^3)

MLSD

Non-MLSD

2.11

2.14

4.59

4.66

14.27

95.75

40.22

658.38

408.16

-

Threshold

parameter,

v

MLSD

Non-MLSD

0.54

0.54

0.53

0.52

0.50

0.93

0.60

0.98

0.97

-

Error

probabilities

×10^-10

Eraser R-N

Eraser S-N

MLSD

Non-MLSD

MLSD

Non-MLSD

1.85

2.68

3.57

2.68

1.73

2.65

3.34

2.65

1.97

4.42

3.16

2.95

1.15

0.22

5.35

0.17

0.37

-

6.21

-

False Alarm

N-R

False Alarm

N-S

MLSD

Non-MLSD

MLSD

Non-MLSD

2.45

1.86

2.13

2.78

2.64

1.88

2.28

2.82

2.82

2.64

2.07

0

1.70

0.94

1.81

0.03

1.66

-

1.77

-

Wrong-slot

R-S

MLSD

Non-MLSD

0

0

0

0

0

0

0

8.64

0

-

46

The DiPPM employing MLSD model needs 4x104 photons in each of the pulses. This

aspect can be contrasted to 66x104 photons for the DiPPM in the model which does not

possess MLSD. This infers an enhancement in sensitivity of 12.2 decibels.Thus the

maximum likelihood sequence detection can be used in dicode pulse position modulation

based on the signal sequences occurring naturally, thereby allowing detection and

correction of system errors that occur during the transmission of the signals of

communication through the optical channels (Sibley, 2005).

The ARQ algorithm (automated repeat request) has also been recommended in order to

diminish the sources of error. Wang et al (2007) had performed this experiment and

obtained that the PER, packet error rate, performance of DiPPM can be improved with

the use of ARQ, automatic repeat request, during the time of the detection of the error.

In this experiment, the structures of modulation of the DiPPM and the requirement of the

optical power have been presented with the PER. It has been shown that the PER for

DiPPM is lower than the cases of OOK and 4-PPM, figure 2.6. The PER performance for

the DiPPM could be enhanced by 19 dB, at average received signal power -54dbm, by

application of the ARQ compare with OOK. Also, DiPPM reflected higher efficiency of

power in comparison with other PPM. However, in comparison with higher order PPM, the

power efficiency is lower for DiPPM with the higher packet error rate, but with lower

requirement of the bandwidths (Wang et al, 2007).

Figure 2.6 Packet error rate comparisons of OOK, 4-PPM, 8-PPM, 16-PPM and DiPPM

(Wang et al, 2007)

47

2.3.4. Suboptimal Filtering in Zero Guard DiPPM

Optimal filters that are used for the DiPPM are comprised of a noise whitening matched

filter along with proportional-derivative-delay (PDD) network. It has been found that the

PDD network can be removed from the system and such removal would only cause a

slight loss of sensitivity of the system. However, the process of implementation of the

rest of the structure consisting of the matched filter without the PDD network has been

found to be highly complex in nature. In order to reduce such complexities, one of the

alternative methods that has been obtained as effective is the use of suboptimal filtering

along with third order Butterworth filter in a zero-guard interval dicode PPM system that

has the capability to operate over a dispersive optical channel (Sibley, 2004).

In early researches, the use of a classical matched filter was considered for the purpose

of predetection filter. Such filters were advantageous in their own ways but

implementation was difficult due to certain factors. Firstly they required a noise

whitening filter before the signal could be matched with the filter. The main problem in

this was that the noise whitening filter could not be realized owing to its varying

frequency and characteristics associated with the noise of the preamplifier. Another

problem associated with this was that the filter section that was to be matched was

matched to the shape of the pulse that was received, however this was dependent on

the optical channel. Hence, it necessitated construction of filters for every link

individually (Sibley, 2004).

The suboptimal filtering in zero guard makes use of a simulation system based on a

receive system, the process of which can be realized from the following diagram:

Figure 2.7 Block diagram of dicode PPM receiver used in simulations (Sibley, 2004)

48

The Butterworth filter has the frequency response:

3 2 2 3

1

2 2
f

B B B

H w
jw jw w jww w

 (2.5)

Where ωB is the -3dB bandwidth of the filter and is given by

2 2

B

B

ln
w

k
 (2.6)

Here kB represents the bandwidth factor (Sibley, 2004).

With the use of suboptimal filtering in zero guard, based on Butterworth filter,

researchers obtained the inter symbol interference effects of the system. It could be

obtained that less photons are required by the Butterworth filter per pulse in comparison

to other filters involving noise whitening attributes. Also, the Butterworth filter is capable

of functioning in cases where the channel bandwidths are lower. The bandwidths of the

filter and the receiver system are not dependent on the bandwidth of the channel,

thereby enabling a simple design of the link to be obtained (Sibley, 2004).

2.4. PPM Employing Reed Solomon Codes

The performance of optical communication link can be improved by adding an error

correction code. Considering this factor, researchers have found that Reed Solomon

block codes are of significant benefits as against the frames of the PPM for the purpose

of detection of error to the highest extent possible. Reed Solomon codes are capable of

correcting the errors of the symbols as well as erasures that occur over the symbols. In

this case, the focus is considered on demodulation of the laser fields of the PPM, which in

turn leads to generation of input symbols for the decoder of the Reed Solomon codes

(Divsalar et al, 1982).

It depends largely on the method chosen for the process of demodulation that allows

conversion of the received laser fields into digital formats that the probability of errors is

able to be detected either occurring in the form of erasures or symbol errors. This in turn

leads to defining the symbols of the communication channels being transmitted. There

are several demodulating schemes that are available. The effects of the different

schemes on the performance of the Reed Solomon coding and decoding. Computations

have been performed by researchers for several models of the optical receiver to obtain

the different possible results (Divsalar et al, 1982).

49

The determination of the probabilities of error in the communication channels is also

associated with the length of the Reed Solomon codes as used in the system. It has been

shown that the simple threshold detection of the pulses is capable of degrading

performance, which can degrade even faster with the rate of the increase of noise in the

system. This happens mainly because of the fact that for the Reed Solomon decoder to

be used, too many erasures are generated in the process. Researchers have thus

suggested a decision scheme, delta-max demodulation, which can overcome the existing

problems and improve upon the threshold detection of the system with the generation of

the erasures being newly defined (Divsalar et al, 1982).

In cases where no Reed Solomon codes are used, the MLSD of the DiPPM is in need for

greatest count assortment for each individual frame of the PPM with the choice of the

codes and frames being random in nature (Divsalar et al, 1982). In order to achieve

near-capacity performance of the optical communication channels, it is essential, as

obtained by early researchers to ensure proper modulation and coding of the optical

signal. Optical PPM is chosen as it is considered as an efficient method for the purpose of

modulation (Hemmati, 2006).

With the selection of the modulation format, it is also essential to select the suitable

channel coding. Researchers are continuously focused on developing upon the steps and

measures of modulation such that the channel coding for the optical channels can be

developed for effective communication purposes. The use of Reed Solomon Codes has

been considered as efficient by the early researchers considering their ability to naturally

map to the 2m – ary alphabet representing the symbol of the PPM (Hemmati, 2006).

2.4.1. Reed Solomon Codes

The development of the Reed Solomon Codes can be dated back to 1960 when Irving

Reed and Gus Solomon researched and reported their findings describing a set of codes

that could correct errors in a new way and were named as the Reed Solomon codes.

These codes have significant usage in the optical channel systems of communication for

the purpose of correction errors, supported by the MLSD that performs in the detection

of the errors in the system. The power and utility of these codes are extremely high. In

the present times the codes are used widely in several applications for the benefits that

they provide, particularly in wireless communications systems (Sklar, n.d).

Some of the basic features of the Reed Solomon Codes include (Sklar, n.d):

50

 These codes are nonbinary cyclic in nature and are formed of symbols involving

sequences of m-bit, where m represents any positive integer whose value is

greater than 2.

 Considering the m-bit symbols for the Reed Solomon codes, there are associated

symbols for the system such as n and k that can be represented as

 0 2 2mk (2.7)

In this case, the ‘k’ represents the number of symbols of the data that are decoded in

the process of data transmission with the use of Reed Solomon codes. ‘nRS’ represents

the total number of symbols of the codes that are present in the block which is

embedded with the codes.

 With the use of Reed Solomon codes, it is possible to achieve the code that is the

largest possible with minimum distance (dmin) being covered for any code that is

in linear position from the encoder input and output system.

 Reed Solomon Codes are capable of correcting communications channel errors of

t or fewer combinations, which can be represented as follows:

 1 / 2 / 2mint d n k (2.8)

where in this case [x] represents the largest integer that should not exceed the value of

x.

 Reed Solomon codes are particularly useful for the correction of burst error. This

is primarily because these codes are highly effective for memory based channels

of communication. The use of the codes is also effective in cases where the input

symbols for the channels are large.

 The Reed Solomon symbol error probability ΡΕ, in the context of the channel

symbolic error possibility can be demonstrated as the following relationship

(Sklar, n.d):

2 1

2 1

1

2 11
1

2 1

m
m

m
jj

E m
j t

P j p p
j

 (2.9)

 The symbol error probability is associated with the binary error probability Ρeb by

the following formula

1

2

2 1

M

eb EM
P P

 (2.10)

51

A typical system of the Reed Solomon codes can be represented through the following

diagram figure 2.8:

Figure 2.8 System of Reed Solomon Code (Riley & Richardson, 1998)

Table 2.4 presents the Reed Solomon codes as researchers obtained through

experiments for symbol mapping of 2-6 PPM. Similarly, other PPM modes can also be

mapped with the Reed Solomon codes, as researchers obtained them. The pattern of

coding of the Reed Solomon codes constitutes a plurality of target elements that

eventually form the target grid associated with the channel of communication (Lapstun,

2009).

Table 2.4 2-6PPM to Reed-Solomon symbol mapping (Lapstun, 2009)

2-6 PPM symbol value (p5 – p0) Corresponding Reed Solomon Symbol

Value (base 15)

000011 0

000101 1

000110 2

001001 3

001010 4

001100 5

010001 6

010010 7

010100 8

011000 9

100001 a

100010 b

100100 c

101000 d

110000 e

52

2.4.2. Reed Solomon Encoding and Decoding

Reed Solomon encoding can most effectively be expressed by the following equation that

expresses the codes based on the most conventional parameters such as n,k,t and

positive integers represented by m the value of which has to be greater than 2 (Sklar,

n.d).

The equation of the Reed Solomon codes for encoding is (Sklar, n.d):

 , 2 1,2 1 2m mn k t (2.11)

where 2n k t represents the number of parity symbols, and t represents the symbol-

error correcting capability of the Reed Solomon code.

The generating polynomial for a Reed Solomon code is represented by the following

equation (Sklar, n.d):

 2 2

0 1 2 2 1 2 1

t

t tg X g g X g X g X X (2.12)

As Irving Reed and Gus Solomon have obtained the codes of Reed Solomon are

represented through the codes of Bose, Chaudhuri, and Hocquenghem (BCH) codes. The

encoding of the Reed Solomon Codes can also be performed systematically. Since these

codes are cyclic in nature, hence the systematic approach has proved to be equivalent to

the procedure of the binary encoding. In this case, a message polynomial, m(X) can be

considered to be shifting into the stages of codeward register, the stages being

represented by k, followed by appending of a parity polynomial, p(X). This is generally

placed in the stages that are on the left most and are designated by n-k positions. Thus

in order to shift the message polynomial, manipulation can be done in it through

multiplication of the m(X) by Xn-k. It can then be divided by g(X), which is the generator

polynomial, and hence can be represented through the following equation (Sklar, n.d):

 n kX m X q X g X p X (2.13)

where q X and p X are quotient and remainder polynomials, respectively.

The decoding of the Reed Solomon codes can be understood from the early researchers’

views and analysis as well. It is generally assumed that during the transmission of the

communication signal, the codewords involved are corrupted as a result of errors in the

system.

53

The process of systematic encoding of the Reed Solomon codes based on (n-k) shifter of

stage and register has been explained by researchers through the following diagram

figure 2.9.

Figure 2.9 Systematic Encoding with an (n - k)–Stage Shift Register (Sklar, n.d)

Pavert (2011) discussed that with addition of extra bits to the communication data, the

capacity of binary channel gets enhanced. As a result the quality of the digital data gets

improved. Channel encoding represents this addition of the extra data bits while there

could be cases where the errors are not randomly distributed on the sites. Reed Solomon

codes are also available as the Cross-Interleaved Reed Solomon Code (CIRC) where the

errors that occur during the initiation of the system, are spread over larger frames

enabling enhanced process of decoding.

The process of decoding of the codes depends on linear equation systems being solved

simultaneously as the data transmission takes place. One algorithm that can be used for

this purpose is the Berlekamp-Massey algorithm. This algorithm enables solutions to

linear equations therefore allowing decoding to occur of the Reed Solomon codes

(Pavert, 2011). Block diagram figure 2.10 of the CIRC has been given by researchers as

follows (Pavert, 2011):

54

Figure 2.10 Block diagram of CIRC (Pavert, 2011)

55

2.4.3. Reed Solomon Codes Applications

Reed Solomon codes are the codes that are mainly used for correcting errors, and are

based on blocks. This section studies and presents the applications of Reed Solomon

codes, which are mainly found in digital communications and storage of data (Riley &

Richardson, 1998).

The applications of Reed Solomon codes are mainly obtained in data storage and digital

communications. The following major applications can be listed for Reed Solomon

codes:-

Data Storage – In case of both CDs, and DVDs, it is possible to apply codes for

correction of errors and measure the raw errors before correcting them. The application

is in holographic data storage or optical storage and the two major schemes that are

applicable include CIRC for CDs and a Reed-Solomon Product Code (RS-PC) for DVDs.

Each bit of data is considered for a firm decision by both these codes to understand if the

bit is 1 or 0. Following this, the correction scheme of the codes can fix the errors in the

data storage devices (Curtis et al, 2010).

The application is most effective in cases where error occurs in bursts. Reed Solomon

codes are capable of correcting up to 2 byte errors per 32 byte block. Up to 4000 bits of

error bursts can be corrected by CIRC as a result of the features and applications of the

codes (Prosch & Daskalaki, 2011).

Data Transmission – Reed Solomon codes can be used in several applications for the

purpose of transmission of data. Data can be transmitted from the receiver to the

transmitter. The applications include transmission systems for mobile data, and for

highly reliable military systems of communications (Wicker & Bhargava, 1999). There

are specialized forms of RS codes enabling data transmission, such as Caucy-RS and

Vandermonde-RS where the code performing the task is an RS(n,k) code (Kythe &

Kythe, 2012).

DVB-T Transmission – Digital Video Broadcasting or DVB-T comprises of a bandwidth

of 8MHz. For purpose of transmission, it needs correction of its errors, and Reed

Solomon codes can be effectively applied in this case. It is used as an outer code

(204,188, T=8). The error control takes place by combining the Reed Solomon codes

with inner convolutional codes (Lamba et al, 2005).

Space Transmission – In several planetary exploration events set by NASA and ESA,

the use of Reed Solomon Codes has already been done. With combined use of

56

convolutional and Reed Solomon codes, it has been found to be possible to gain coding

at high levels. The Reed Solomon codes can be used to correct errors. The Voyager

expeditions represent the most popular case of applications of the Reed Solomon codes,

led to other planets such as Uranus and Neptune. These codes could be used for

transmission of images from these further planets and hence communicated to earth

(Wicker & Bhargava, 1999; Houghton, 2001).

2.4.4. Implementation and Performance of Reed Solomon Codes

Sankaran (2000) experimented and reported implementation of Reed Solomon decoder

on TMS320C64xE DSP family. The codes of Reed Solomon have been accepted over for

several applications for the purpose of error control in ADSL networks, digital cellular

phones and high-definition television systems. As these codes are extremely robust in

correcting errors, their popularity has also largely increased increasing their usage in

data communications systems, particularly in optical channels and DiPPM.

Implementations of the Reed Solomon codes lead to offering the designer of the

communication system with such flexibility that is unique in nature. Such an

arrangement and the high flexibility of the system allow achieving a trade-off between

the bandwidth of the data. As a result, variation in the errors takes place allowing

correction capability to increase for particular communication channels (Sankaran,

2000).

One of the algorithms that allow effective implementation of the Reed Solomon code

decoding is the Peteren-Gorenstein-Zierler (PGZ) algorithm. With use of the

TMS320C64xE DSP family, there are digital signal processes that enable exploitation of

the data level along with the level of instructions presenting several units of the ALU that

can work in combination in order to obtain performance of high level. There are four

basic steps of the Peteren-Gorenstein-Zierler (PGZ) algorithm that need to be performed

for decoding of the Reed Solomon codes. These steps are (Sankaran, 2000):

 Syndrome Computation.

 Berlekamp Massey Algorithm for solving the error locator polynomial.

 Chien Search Algorithm for solving for the roots of the error locator polynomial.

 Forney algorithm for computing the error magnitudes.

When the algorithms are considered, the focus is on maximizing the number of Galois

field multiplies that can be used. Generally there are four cycles of latency in the Galois

field thereby necessitating certain loops to be unrolled such that the latency of the field

can be taken complete advantage of. Of all the steps the computation of the syndrome is

the first major step in the process of implementation where the number of cases may

57

vary depending on the data bits and accordingly the syndrome is computed (Sankaran,

2000).

The performance of the decoder has also been studied by Sankaran and the results

obtained have been provided for a detailed understanding for the current research. The

performance results for the case of t=8 is provided table 2.5 below as obtained from the

research:

Table 2.5 Performance of the Decoder for t = 8 (204,188,8) Code (Sankaran, 2000).

Name of Module C Code Assembly Optimizer Hand Optimized

Syndrome

Accumulate
480 cycles 470 cycles 470 cycles

Chien Search 1110 cycles 326 cycles 318 cycles

Berlekamp-Massey 340 cycles 263 cycles 246 cycles

Forney 180 cycles 154 cycles 150 cycles

Driver Function 80 cycles 80 cycles 80 cycles

Reed Solomon

Decoder
2180 cycles 1293 cycles 1268 cycles

In cases where there are no errors in the system, the computation of the syndromes

would come to zero value. In that case, the decoder can be preceded for decoding the

next block and this does not require the decoder to exit from the other algorithms

associated in the process. For the case of t=8, as obtained from the experiment

conducted by Sankaran, the performance can be further optimized that would enable

obtaining a decoder under 1000 cycles of data bits. For this purpose it is essential to

know the code sizes that have also been provided by Sankaran as follows in table 2.6

(Sankaran, 2000).

Table 2.6 Code Size for (204,188,8) Decoder (Sankaran, 2000)

Name of Module C Code Assembly Optimizer Hand Optimized

Syndrome

Accumulate
1084 bytes 1100 bytes 1128 bytes

Chien Search 792 bytes 920 bytes 872 bytes

Berlekamp-Massey 460 bytes 628 bytes 296 bytes

Forney 696 bytes 1036 bytes 792 bytes

Total Code Size 3032 bytes 3684 bytes 3088 bytes

Besides these, the optimizations can be further modified and used for the purpose of

implementation of the decoder and measuring its performance in data communication

channels using the Reed Solomon Codes.

58

2.5. Field Programmable Gate Array (FPGA)

The use of field programmable gate array (FPGA) is another popular measure for optical

channels communications. This is focused on the implementation of optical fibre on the

interface between two computers. The FPGA can be placed between the two computers

and the link of the optical channel for communication. Kadric (2011) experimented with

the implementation of the FPGA considering the use of two nodes comprising high level

of bandwidth that could be obtained in between them. FPGA has been used in the form

of a chip using which the channels of the optical fibre could be connected to the interface

of the communication medium. Use of transceivers allows control over the channels. In

cases where the communication environments where there is a scarcity of the CPU

cycles, use of the FPGA has been found to be lower the load that otherwise prevails on

the CPU (Kadric, 2011).

Some of the common tasks of the FPGA thus include correction of the error, encryption,

and compression of the communication channels as and when needed. Different systems

of the FPGA can be developed depending on its need and use in the system. In cases

where the PCIe card is used, it enables a master control over the front end cards that

can be scaled according to usage. With the help of the PCIe cards, a computer system

can be linked with the FPGA board which in turn is associated with links from the fibre

optic channels passing over to the front end cards. Researchers have obtained rates of

stability in this system at 1.6Gbit/s. With such high rates of stability it is possible to

develop and enhance the performance of the communication channels. The use of FPGA

in communication links has made it applicable in wide range of applications related to

communications channels (Kadric, 2011).

The system as explained in this experiment has also been given in the form of a diagram

for better understanding of the association of the FPGA with communication links as

follows in figure 2.11.

Figure 2.11 The hardware setup for linkage and performance of the FPGA with

communication channels (Kadric, 2011)

59

Watts et al (2006) discussed the design of “a digitally programmable optical transmitter

for creating advanced signal formats and predistorted signals using FPGA technology”.

The system that this experiment could obtain involves a tool which is flexible and can be

used for experimental processes in DSP for the purpose of communications through

optical channels. As the study reflects, the use of DSP or digital signal processing is

mostly used in cases of the wireless systems. However the use of the same in optical

channels has been found to be limited owing to the high rates of bits that it presents.

Over the years, researchers have developed CMOS digital technology thereby increasing

the interest of the researchers in DSP for communications through optical channels

(Watts et al, 2006).

An example of this is the forward error correction that functions by detection of the bits

that passes through the system. On the other hand, the other techniques that are

available are in need for ADC/DAC with higher power of resolutions, which also includes

the maximum likelihood sequence detection process for estimation, the reception of the

diversity of the polarization, the transmission of the single sideband, and predistortion of

the optical signal (Watts et al, 2006).

The FPGA has been found to be beneficial as it can be reprogrammed depending on use

in the optical channels. It is in the present trend of the use of the FPGA that FPGAs are

being produced by interfaces of high speeds (Watts et al, 2006). The design of the

transmitter based on the use of the FPGA can be understood from the following two

diagrams, figures 2.12 & 2.13, as given by researchers based upon their experiments.

Figure 2.12 Microwave and optical components of the digitally programmable optical

transmitter (Watts et al, 2006.)

60

Figure 2.13 The design of the FPGA (Watts et al, 2006)

The control of the electric field amplitude in the above designed set up could be obtained

by the use of the Cartesian (triple) Mach-Zehnder modulator (MZM). For each of the

signals that are driven from the modulator, the serial outputs of the FPGA are

multiplexed. The DeBrujn sequence that needs to be transmitted through the system can

be stored as a pattern of memory in the FPGA. The processing of the signal in the

system can be implemented with the use of look-up tables thereby enabling

implementation of arbitrary and non linear responses (Watts et al, 2006). Simulation

parameters are also available that can be used for the experiments and are given as in

table 2.7.

Table 2.7 Simulation Parameters (Watts et al, 2006)

Simulation Type

Semi-analytic,

Gaussian

noise approx

2:1 MUX output

pulses

Raised Cosine,

20 ps rise/fall

time

Signal format OOK-NRZ
Transmitted bit

sequence

Sequence of

DeBrujn

MZM Bandwidth 18GHz Transmission fibre
17 ps/nm.km,

linear, lossless

Performance criteria
Required

OSNR (0.1nm)
Rx electrical filter

7 GHz, 4th order

Bessel

61

2.5.1. VHDL and Applications

VHDL typically represents a hardware language that is extremely versatile in nature and

is powerful and useful in electronic systems that can be modelled with the help of this

language. Being widely available for use and its effectiveness for describing the

electronic systems, the language has become highly popular. It enables transfer of the

information of the system (Introduction to the VHDL Language, n.d.). The use of the

language has also been obtained by Charitopoulos in the design of dicode pulse position

modulation coder and decoder (Charitopoulos, 2009).

Experiments by Charitopoulos (2009) explained the development of both DiPPM coder

and decoder in VHDL, which is also the focus of the current research. The use of the

VHDL has been useful in the way it allowed programming of the timing extraction. It was

done with the use of the digital, analogue and mathematical equations with the program

being developed in VHDL-AMS. Also, construction of the DiPPM MLSD is possible through

the use of VHDL. The results of the theoretical understanding could be obtained from the

simulations, proving the experiments to be successful (Charitopoulos, 2009).

With the use of the VHDL, a complete system of the DiPPM could be developed. A source

code is used for the development of the FPGA involving high speed integrated circuits.

The specific functions of the devices are programmed and determined by the VHDL (Very

High Speed Integrated Circuits Hardware Description Language). FPGA is associated with

the programming for the development of the coder and decoder of the DiPPM to ensure

that the level of noise in the external medium is lower also, with focus on reducing any

internal delays that could take place from the earlier implementations of the systems

(Charitopoulos, 2009). The VHDL program runs the coder simulation of the DiPPM as

follows:

Figure 2.14 The DiPPM VHDL coder (Charitopoulos, 2009)

62

Figure 2.14 presents the process of the software of the DiPPM VHDL coder. The

waveforms as could be obtained by the researcher match with the theoretical

backgrounds. The coding of the PCM waveform has been found to be correct in relation

to the format of the DiPPM. The DiPPM coder-decoder as programmed by VHDL based on

the formation of the FPGA has been given by the researcher as in figure 2.15

(Charitopoulos, 2009).

Figure 2.15 DiPPM upgraded versions of coder decoder (Charitopoulos, 2009)

For the purpose of simulation of the coder, the upgraded version of the DiPPM was

needed to be used in order to generate the input signal of the DiPPM decoder. An FPGA

was used for the real time measurements of the DiPPM coder and decoder. It could be

obtained from researchers that for the development of the DiPPM coder and decoder in

VHDL, thereby enhancing their applications in communication channels, the VHDL

program could be used with use of software from the ALTERA Company. Programming

can be obtained from the Quartus software as well. The DiPPM process for coder and

decoder based on VHDL in the Quartus software has been given through the following

representation figure 2.16 (Charitopoulos, 2009).

In the words of Charitopoulos (2009), “in line 3, nclk is set as invert clock (not clk) and

is used in line 4 with the input DiPPM sequence. Positive pulse has to be produced when

the DiPPM SET pulses appear and the nclk is equal to ‘1’. Thus, positive PCM is achieved

with a half clock delay. While a RESET pulse appears the positive PCM false until a SET

DiPPM pulse appears again”.

63

Figure 2.16 VHDL: DiPPM coder process in Quartus (Charitopoulos,

2009)

In order to complete the system of the DiPPM, the process being represented by coder-

timing extraction- decoder, timing extraction was required to be simulated by the use of

the software based upon the format of the DiPPM. However, there is a need for the use

of the VCO in the program of the timing extraction as could be obtained from the

researchers experiments. In order to achieve this, different languages and software had

to be developed having commonness with the VHDL language (Charitopoulos, 2009).

Thus, for the timing extraction programming of the coder decoder development of

DiPPM, the development of VHDL-AMS language has been obtained and made successful

for applications in optical communication channel. With the help of the VHDL-AMS

language, digital and analogue signals can be accepted. Signals can be transformed from

digital to analogue and from analogue to digital as per need of the communications data.

PLL circuit can be obtained with the use of the VHDL-AMS language. Following this, the

timing extraction of the DiPPM can be obtained through methods of simulation

(Charitopoulos, 2009).

The five major elements of the timing extraction process of DiPPM coder-decoder include

the buffer, the phase detector, the loop filter, the VCO, and the digitaliser. When all

these elements are used in combination, the process naturally becomes more complex.

The complete timing extraction of the DiPPM as obtained has been represented in figure

2.17.

64

Figure 2.17 DiPPM in (top trace), DiPPM out (middle trace), clock recovered (bottom

trace) (Charitopoulos, 2009)

2.6. Summary

The overview of the existing literature can be said to be highly beneficial in

understanding the concepts, implementation and performance of DiPPM, its coder and

decoder, based on programming, which will assist in the performance of the current

research. Thus, it could be realized from the experiments, views and opinions of the

early researchers that DiPPM has significant advantages over the standard system of

communication systems. Thus, investigation of the DiPPM scheme through the optical

channels holds significant importance in the world of electronic and optical

communications. Development of the DiPPM coder and decoder in the VHDL language

has also been significantly realized from the review of the literature.

The VHDL development is essential for the effective development of the coder and

decoder based on which the timing extraction is also delivered, which in a combined way

would lead to the effective implementation and investigation of performance of the

Dicode PPM over dispersive optical channels. Another essential point which is part of the

current research, and has been successfully reviewed from the literature as well, is the

error correction method. The types of errors could be studied and the measures by which

these may be corrected, could also be learnt well from the literature review. These

understandings would now be utilized for the research and its findings.

65

Chapter3: DICODE PULSE POSITION MODULATION

3.1. Introduction

The availability of lasers which emit narrow pulses with high peak power means that

pulse position modulation (PPM) is an attractive modulation scheme. PPM represents a

method of intensity modulation, in which information to be communicated is located in

the position of the optical pulse within a time frame divided into a certain number of

segments (Band, 2006).

Thus, this technique involves the process of optical communication to occur in specific

time slots, with the optical pulses being transmitted in these time slots. Two major

advantages of PPM include its high intensity for the optical pulses, and low average

power. These two factors are essential for the purpose of wireless communications and

hence prove to be advantageous for the overall system. However, one problem with PPM

is that the receiver is highly complex in nature and it needs to be synchronized

effectively with the time slots and the frame (Band, 2006).

Several alternatives have been developed by researchers that reflect smaller expansion

of bandwidth. Of these, multiple PPM and dicode PPM have been obtained to offer the

lowest expansion of bandwidths. With DiPPM, only a single pulse is transmitted during

availability of transitions between different levels of communication. Errors are also

associated with the PPM techniques, which if not corrected, may result in corruption of

the system (Ghosna & Sibley, 2010; Sibley, 2012).

Researchers have focused on determining the advantages of dicode pulse position

modulation over digital pulse position modulation. It has been shown that the receiver of

the DiPPM technique can be simplified by using central decision detection instead of

slope. This is associated with achievement of the corresponding act of sensitivity in the

fibres representing higher bandwidths and significantly superior performance at the

lower bandwidths (Charitopoulos & Sibley, 2009).

Owing to the above reasons, the implementation of the DiPPM technique is found to be

easy. This is more because with the technique of DiPPM, two slots are used for the

process of transmission allowing transmission of one bit of PCM. Also, improved

sensitivity is obtained with DiPPM and the slot rate is two times higher than the rate

which PCM has in its original form. The coding of the data takes two steps as follows

(Charitopoulos & Sibley, 2009):

 A PCM transition from zero to one with production of a pulse in slot S.

66

 A one to zero transition with production of a pulse in slot R.

There is no transmission of pulses in case when the data of the PCM is constant at 1 or

0. The functioning of the system is found to be advantageous for optical communications

(Charitopoulos & Sibley, 2009).

3.2. Dicode Pulse Position Modulation: Understanding of the

Theory

As explained in the introduction, the dicode pulse position modulation is mainly used

owing to its advantages over the normal pulse position modulation. The simplification of

the system makes it more convenient for use in optical communications. The processing

of the data coding through the dicode pulse position modulation can be represented by

the following figure 3.1:

Figure 3.1 PCM data (top trace), Dicode technique (middle trace), and dicode PPM

(bottom trace)

The dicode technique is mostly used in channels that are involved in magnetic recordings

where in general there is limitation of bandwidths. The signalling format of this technique

is such that no signal transmission occurs in this case when the data remains constant.

Instead, transitions of data are sent. The formation of the dicode pulse position

modulation takes place through combination of the original scheme of coding with a

dicode. Considering the figure 3.1 above, in a dicode signalling format, the transitions of

the data from logic zero to logic one are represented through code +V. On the other

hand, -V represents the code for transition of data from logic one to logic zero. In case

67

when there is no change in the PCM signal, the signal transmitted through the system is

the zero signal (Sibley, 2003).

Two pulses can be obtained from the transmission of the signal. These include a positive

pulse and a negative pulse. When the data is set to logic one, it is reflected through the

positive pulse. At this time, the pulse is SET. When the data is reset to logic zero, the

negative pulse is obtained as pulse RESET. These signals of the SET and RESET pulses

can be transformed into two pulse positions within the frame of a data. Hence the

transition of the PCM from logic zero to one results in production of a pulse in slot S

(representing SET pulse) and transition of logic one to zero results in production of the

pulse in slot R (representing RESET pulse). Depending on the number of slots used in

the system, the line rate can be determined. For instance, when four slots are used, the

line rate is four times from that of the original PCM (Sibley, 2003).

The requirement of bandwidth in case of dicode PPM is much less than the digital PPM.

Hence the use of dicode PPM is suitable in dense wavelength division multiplexing

(DWDM) systems. The technique makes use of four symbol alphabets for representation

of the PCM and dicode PPM. These are as shown in table 3.1 (Sibley, 2003).

Table 3.1 Dicode PPM Technique (Sibley, 2003)

PCM Dicode PPM Symbol

00 No pulse N

01 SET S

10 RESET R

11 No pulse N

The probabilities of the symbols R, N, S are ¼, (1/2)x, and ½ respectively. After the

transmission of an R pulse takes place, there are only two sequences of the PCM which

are possible – 00 or 01. This is the reason for which the probability of the signal S is ½.

With line coding in the original PCM, and limiting the run of the like symbols to n, the

maximum run of the dicode PPM that would be achieved is R, nN, S. In this situation, the

probability of the S symbol is one. This is so because in this case, the presence of the S

symbol is certain at the end of the run which involves n number of N symbols (Sibley,

2003)

One act which is common to the digital PPM is that in the optimum filter for the dicode

PPM receiver; there is a filter which is noise-whitened matched, along with a PDD

network. The data for transmission is sliced by a voltage comparator and a flip-flop is

used for application of the pulses, which is programmed depending on the rules of the

decoding (Sibley, 2003). The working of the receiver can be understood from figure 3.2.

68

Figure 3.2 Schematic representation of the Dicode PPM Receiver (Sibley, 2003)

Only the active slots of the data to be transmitted are examined, and the process of

decoding halts when the frame receives a valid pulse of the data. The synchronization of

the frame can be maintained by extracting the slot clock from the data followed by

generation of different phases of the signal of data. This can be presented through figure

3.3 (Sibley, 2003)

Figure 3.3 Block diagram of proposed timing extraction system and related timing

diagram (Sibley, 2003)

69

3.2.1. DiPPM system optical power

The required optical power for the digital PPM system, PDPPM, can be found by using

equation

DPPM

B
P bhv

m
 (3.1)

Where b is the minimum number of photons, m is the number of PCM coded bits and B is

the original data rate (1/Tb).

For the DiPPM system, the required optical power, PDiPPM, is given by (Sibley, 2003)

1

8
DiPPM

n
P bhv B

n

 (3.2)

Where n is the maximum number of consecutive like symbols for DiPPM.

Al-Suleimani et al (2008), argued that in case n→∞ the probability of having a pulse in

the frame tend to 1/2 and not 1/8. Hence, a new power equation was derived

1

2

2 1

n

DiPPM n
P bhv B

 (3.3)

By using equation (3.3), the researchers found that the optimal PPM scheme

outperforms the DiPPM by between 3 and 5dB, depending on the normalised fibre

bandwidth, figure 3.4 (Al-Suleimani, Phillips & Woolfson, 2008). However, Sibley claims

that digital PPM has a single pulse in a frame of slots - empty apart from the active slot.

Hence the average signal is going to be 1/slots = 1/2m. In DiPPM there are four

codewords each equiprobable with a probability of 1/4. There is a one pulse in a frame of

two slots. Therefore the average is b/2*1/4 + b/2*1/4 + 0*1/4 + 0*1/4. This gives an

average of b/4 (Sibley, 2003).

Al-Suleimani et al (2008), also investigated the performance of DiPPM and compared

with the PPM an OOK NRZ, in term of sensitivity as a function of DiPPM run length at two

different bandwidths 622Mbit/s, 2.5Gbit/s, depending on equation (3.3). The researchers

argued that the PPM significantly outperforms DiPPM, however the PPM coding level

should not overcome 4 at fn=3 and 7 at fn=10. Moreover, the DiPPM becomes more

sensitive with increasing n, as shown in figure 3.5. This results was dependent on their

new derived sensitivity equation (Al-Suleimani, Phillips & Woolfson, 2008). Sibley

(2003), showed that there is an improvement in sensitity of 0.2dB if the DiPPM line

coding n increases form 5 to 10.

70

Figure 3.4 BER against received signal power at 622 Mbit/s. C1, DiPPM—using Equation

(3.2) (for fn=3 at n=10 and fn=10 at n=10); C2, PPM (for fn=3 at M=4 and fn=10 at

M=7); C3, DiPPM—using Equation (3.3) (for fn=3 at n=10 and fn=10 at n=10); C4, OOK

NRZ; ------fn=3; ______ fn=10 (Al-Suleimani, Phillips & Woolfson, 2008).

Figure 3.5 Sensitivity as a function of coding level (PPM) or run length (DiPPM) at B=2.5

Gbit/s. C1, DiPPM; C2, PPM; ----- fn=3; ______ fn=10 (Al-Suleimani, Phillips &

Woolfson, 2008).

71

3.3. Errors Affecting DiPPM

There are three types of errors that affect the system: wrong-slot errors, erasure errors,

and false alarm errors. With the use of the DiPPM technique in optical communications,

the probabilities of the errors need to be determined (Sibley, 2003).

3.3.1. Wrong-slot Errors

These errors take place in cases when a pulse is caused to arrive early or late due to

noise on the slope of a detected pulse being large enough to cause a false trigger. In

order to reduce this error, it is essential to detect the pulse in the center of the time slot

the width of which represented as Ts. Hence, the generation of the errors occurs with the

movement of the edge takes place by |Ts/2|. The probability of the error is represented

as Pes, which appears in the preceding slot. It has been given by (Sibley, 2003):

 0.5 / 2es esP erfc Q (3.4)

Here, Qs is given by (Sibley, 2003):

 2/ 2es s d oQ T slope t n
 (3.5)

Where, no
2 represents the mean square of the noise of the receiver, and slope (td)

represents the slope of the pulse that has been received at the instant of the threshold

crossing, marked at td (Sibley, 2003).

In the case dicode PPM, there are four possible errors that can take place as a result of a

wrong-slot event. Depending on the position of the pulse in the slot, the edge can

appear in the preceding slot or in the following. In case it appears in the preceding slot,

detection error will not be obtained and no recognition of the false threshold crossing

would be obtained by the decoder. Hence such a detection error results in error in the

PCM and the bits that follow from this step until the R pulse is received (Sibley, 2003).

The transmission and receiving of sequences in case of a wrong slot event have been

given in the following table 3.2 (Sibley, 2003):

Table 3.2 Transmitted and received sequences with a wrong-slot error (Sibley, 2003)

Transmitted S xN R

Received R xN R

Probability ¼ Ps (1/2)^x 1/2

The above transmission and receiving of signals is achieved when the number of N

signals is x (Sibley, 2003). The theory of MLSD or maximum likelihood of sequence

72

detection has been associated with the correction of these errors and is tried to apply

MLSD for the detection of the errors. This represents detection of all the types of errors

that DiPPM is suffering from (Charitopoulos, Sibley & Mather, 2010).

As the wrong slot error is concerned, a pulse placed in the slot R may appear in the

preceding slot S of the frame or in the slot S which is following in the frame representing

the next frame. The first case has been given in the following table 3.3 (Sibley, 2005):

Table 3.3 Wrong-slot pulse error and method of detection for MLSD of dicode PPM

(Sibley, 2005).

Pulse Error Invalid Sequence Detection Method

S R Sx N SR y N S Double pulse in frame

R S Sx N N S (y-1) N S Three consecutive S

symbols

R S R (y-1) N R Sx N R Corrected to R yN S xN R

S R R y N R x N R Three consecutive R

symbols

Errors related to wrong slot events are associated with pulses that are highly dispersed.

Thus, it is essential to remove them absolutely from the operation of the low bandwidth.

Considering this scenario, the R (y-1) NRS sequence is said to occur owing to the wrong

slot event and irrespective of the source of the error, RyNS is used for the correction of

the error. However, when the maximum number of like symbols gets exceeded, then it is

considered as an exception. This case represents a case where erasure has taken place

in the source of the error, which is another form of error which makes the functioning of

the DiPPM difficult and hence needs to be corrected (Sibley, 2005).

3.3.2. Erasure Errors

Erasure errors occur in cases when the noise on the pulse is large and capable of

reducing the voltage of the peak signal such that it falls below the threshold level. The

probability of the error, which can be represented by Per, can be given by (Sibley, 2003):

 0.5
2

er

er

Q
P erfc

 (3.6)

Here,

 2/er pk d oQ v v n (3.7)

73

Where, vpk represents the voltage of the peak signal as obtained at the receiver’s output,

and vd represents the voltage of the threshold crossing (Sibley, 2003).

In the case of a dicode PPM technique, the same number of PCM errors is generated by

erasure of SET or RESET pulse (Sibley, 2003). As the erasure errors occur in the system

the R and S pulses of the data transmission get erased and they get converted into N

symbols. Thus consecutive like symbols are possible to be generated those are in the

form of SxNNyNS or RxNNyNR. The use of MLSD is done in this case in order to try to

correct the codes that are not valid for the transmission of the data. This correction can

be presented as given in the table 2.2 (Sibley, 2005).

Consecutive S symbols are left as a result of the erasure of the R pulse. These S symbols

are separated by N symbols resulting in different positions for the R pulse that has been

erased owing to the error. All possible sequences of the PCM are detected and from

these the most likely code for the missing pulse is tried to be determined, and the most

likely sequence is determined by averaging all the bits of the sequence (Sibley, 2005).

As owing to the error it is not possible to obtain the exact position of the original R pulse,

hence the MLSD is used for insertion of an R pulse in the next slot of the data sequence

which is given by x/2 or y/2 (Charitopoulos, Sibley & Mather, 2010).

3.3.3. False Alarm Errors

False alarm errors are caused owing to the formation of noise in the data transmission

that results in a threshold crossing event in any slot that has remained unoccupied. The

probability of this error, Pt, has been given by (Sibley, 2003):

 0.5
2

t

t

Q
P erfc

 (3.8)

Where,

2/t d oQ v n (3.9)

The number of samples that are uncorrelated depending upon each time slot can be

determined as /s RT where R represents the time during which the function of the

autocorrelation in the filter of the receiver becomes very small. The probability of the

false alarm error, fP , is given by (Sibley, 2003):

74

 0.5
2

s t

f

R

T Q
P erfc

 (3.10)

In dicode PPM, in order for PCM errors to occur, it is essential for the false alarm error to

be opposite type to that of the symbol with which the sequence had been initiated. For

instance, in case where the false alarm error occurs in the following R slot, caused due to

the pulse in the S slot, then the decoder would stop when it receives the pulse, and

hence the detection of PCM errors would not take place. However, the generation of the

error would take place when false alarm takes place in the N strings of the following slot

of the sequence. In such a case, the error and its severity largely depend on the location

of the occurrence of the false alarm, which has been given in the following table 3.4

(Sibley, 2003):

Table 3.4 Transmitted and received sequences with a false-alarm error (Sibley, 2003)

Transmitted S N N N N N R

Received S N N R N N R

The occurrence of the false alarm error can be better understood from this. In case when

the amplitude of the noise of the sequence is higher than the level of the threshold, then

the occurrence of false S or R pulses is possible if a slot is empty. As a result of the

occurrence of false R pulse, it is possible that the S6NR might get converted into

SNR4NR. This has been presented in the following table 3.5 (Sibley, 2005).

Table 3.5 MLSD detection of a DiPPM sequence in which a false R symbol has been

detected (Sibley, 2005)

Invalid

sequence

S N R N N N N R Binary representation

 S N R S N N N R 1 1 0 1 1 1 1 0

 S N R N S N N R 1 1 0 0 1 1 1 0

 S N R N N S N R 1 1 0 0 0 1 1 0

 S N R N N N S R 1 1 0 0 0 0 1 0

Average 4/4 4/4 0/4 ¼ 2/4 ¾ 4/4 0/4

MLSD output S N R N N/S S N R 1 1 0 0 0/1 1 1 0

Original word S N N N N N N R 1 1 1 1 1 1 1 0

Error bits (2.5

off)

 1 1 1/0

Table 3.5 represents the operation of the MLSD in case of the occurrence of the false

alarm error. The false R pulse is considered as the valid bit and the role of the MLSD

here is to insert a correct S pulse similar to the case of the erasure errors. However as

the PCM provides with an average of 2/4, hence a suitable output is not possible for the

MLSD to provide with, since it is probable that the logic could be either 0 or 1 depending

75

on the rounding up or rounding down of the result. In such a situation, the design of the

decoder can be so obtained such that one of the two decisions can be considered to be

true for the case. Thus as far as the MLSD is concerned, it is capable of introducing

errors in the system as well as correcting them and hence is used in the error detection

and correction mechanism in dicode PPM technique (Sibley, 2005).

Table 2.3 presents a comparison of error probabilities at specific normalised link

bandwidths for dicode PPM operating with and without MLSD for better understanding of

the error formation and detection with implementation of the MLSD in DiPPM.

3.3.4. DiPPM Error Probabilities

DiPPM uses a four symbol alphabet; a typical sequence would be S, xN, R with symbol

probabilities of 1/2, (1/2)x and 1/4. The S signal has a probability of 1/2 because there

are only two possible PCM sequences which are (00 or 01) after an R pulse has been

transmitted. If the original PCM is line coded in order that the run of like aspect of the

symbols is limited to n, the maximum DiPPM run would be R, nN and S. In this

sequence, the S has a probability of one due to its presence being guaranteed at the end

of a run of n lots of N symbols (Cryan, & Sibley, 2006).

In DiPPM, the shape of the S and R pulses will depend on the transmitted pattern. The

new pulse shapes must be found using a general DiPPM sequence S, xN, R, yN and S.

The general form of the total DiPPM binary error probability {Peb} can be computed from

the summation of the equivalent PCM probability of errors for DiPPM error sources that

consider a complete sequence for all x and y (Sibley, 2003; Cryan, & Sibley, 2006):

 etotal es er efR efNP P P P P (3.11)

Where etotalP is the equivalent PCM error probability due to wrong-slot errors, which is

equal to:

2 21

0

1 1
3 (1) (1)

2 2

nn

es s s

x

P P x P n

 (3.12)

The PCM error probability for erasures erP is:

2 21

0

1 1
2 (1) (1)

2 2

nn

er r r

x

P P x P n

 (3.13)

76

False alarm error may occur between S and R pulses where there is no ISI. Hence, the

number of PCM decoding errors will depend on the symbol´s position, k, where the false

alarm error appears within the run of N-symbols. Thus, the equivalent PCM error

probability (Sibley, 2003; Cryan, & Sibley, 2006):

3 21

1 1 1
3 21

2 2 2

1 1
(1) (1)

2 2

1 1
(1) (1)

2 2

x nn x n

efN f f

x k k
x nn x n

f f

x k k

P x k P n k P

x k P n k P

 (3.14)

A numerical evaluation, which had been conducted recently reviewed the production of

DiPPM by applying a slope detection method in a distributed surrounding (Cryan &

Sibley, 2006). In this research, thought is delegated to a distinct discovery perspective

and novel outcomes are introduced. These perspectives demonstrate that the ISI (Inter

Symbol Interference) can be eradicated by the application of the central decision

detection method, which are applied in conjunction with a raise cosine filter. The

pragmatic implementations of this perspective are evaluated and have the outcome of

similar sensitivity tolerance at the elevated fiber bandwidths of the third-order

Butterworth filter and the pre-amplification system (Shalaby, 1999; Sibley & Massarella,

1993; Sibely, 1993; Sibley, 2003; Sibley, 2004; Zwillinger, 2004).

In the Cryan and Sibley study it is demonstrated that establishing the equalizer and the

preamplifier to sixty percent of the dicode slot rate yields tolerance sensibilities which

are within 0.2 dB of the optimal dicode pulse position monitor raised cosine selection and

that this symbolic enables the receiver to function in a broader scope of fiber bandwidths

with minimal decomposition in the tolerance sensibilities (Cryan & Sibley, 2006).

An alternate detection technique for dicode PPM is suggested, which is founded on the

application of central decision discovery and raised cosine filtering. This strategy infers

that the dicode PPM pulse can distributed into adjacent time shifts in the absence

degrading the performance. This is attributed to a pulse being sampled at the centre of

the slot. The application of raised cosine filtering guarantees that the voltage due to

adjacent pulses is established at zero at the decision instance, consequently eliminating

ISI. As a result the likelihood of wrong-slot errors is minimal, and so Petotal converts to:

1 2

1 3 2 5
1 1

2 2 2
etotal r fNn n

n
P P P for n

 (3.15)

77

3.4. Coder and Decoder Circuits for the DiPPM

The coder of DiPPM forms an element of the technique of the DiPPM that enables

formatting of PCM sequences into such sequences that constitute the symbols of the

DiPPM alphabets. The DiPPM coder can be completed with the use of logic components

that include flip-flops, and five NOR gates. This can be presented through the following

figure 3.6 (Charitopoulos, 2009):

Figure 3.6 DiPPM coder circuit (Charitopoulos, 2009)

A two-bit store is formed by Flip-Flop 0 and Flip-Flop 1, and the resulting outputs can be

used for the generation of SET and RESET sequences. The SET sequence is produced by

passing the Q0 and Q1 through the NOR gate 1(a), and the RESET sequence is

generated by passing the pair Q0 and Q1 through the NOR gate 1(b). In order to retime

the SET and RESET sequences of the DiPPM system, the use of the CLK and NOT CLK

would be necessary to obtain. The 2a and 2b NOR gates result in the production of the

SET and RESET sequences of the DiPPM. The final DiPPM sequence is formed by the

combination of the sequences by the NOR gate (Charitopoulos, 2009).

Measurement of DiPPM coder can be done through the Power Spectral Density (PSD).

The diagram figure 3.7 represents the PSD of the deterministic DiPPM signal

(Charitopoulos, 2009). Also, the DiPPM coder waveforms can be understood from the

following figure 3.8:

78

Figure 3.7 DiPPM PSD of deterministic sequence (hardware) (Charitopoulos, 2009)

Figure 3.8 DiPPM coder’s waveforms (Charitopoulos, 2009)

The use of the DiPPM decoder is in conversion of the signal of the DiPPM that has been

coded into its original PCM format. The elements of a DiPPM decoder include a NOR/OR

gate, three NOR gates, a D type Flip-Flop and a Direct Set/Clear component. The DiPPM

decoder has been presented in the following diagram figure 3.9 (Charitopoulos, 2009):

79

Figure 3.9 DiPPM decoder circuit (Charitopoulos, 2009)

A double OR gate can be used for buffering of the clock signal. The output of the buffer

which is synchronized is made to pass through the coaxial wires, which are of same

length one of which passes to the coder and the other to the decoder. This results in

synchronization of both the clock signals. The clock and NOT clock signals are used in

the case of decoder as well and the generation of these signals occurs through passage

of the clock signal by a NOR/OR gate. The NOR gate is capable of inverting the input

signal of the DiPPM to the decoder before it is gated to the clock and NOT clock signals

enabling the production of the SET and RESET sequences which are independent to the

system. The PCM signal is produced by the SET/CLEAR component, with the amplitude

being very high when the sequence SET is one and zero in case when the RESET

sequence is 1 (Charitopoulos, 2009).

The DiPPM decoder’s waveforms can be understood from the following diagram figure

3.10 (Charitopoulos, 2009):

Figure 3.10 DiPPM decoder’s waveforms (Charitopoulos, 2009)

80

Owing to the passage of the SET signal through components other than the RESET

signal, there exists a synchronization fault. Hence an addition of a delay takes place in

the D Flip-Flop component at the sequence of the SET pulse. The measurement of the

decoder is also done similarly like the coder measurement when the input signals result

in the deterministic outcome of the system. The above measures represented the

construction of the coder and decoder circuits of the DiPPM. However, researchers are

still investigating the correctness of the circuits, the errors and their correction towards

effective implementation of the DiPPM system in optical communications (Charitopoulos,

2009).

81

Chapter4: FINDING OPTIMUM PARAMETERS FOR REED

SOLOMON CODE WORKING WITH DICODE

PULSE POSITION MODULATION SYSTEM

4.1. INTRODUCTION

This chapter will review the application of the RS code with regards to DiPPM. DiPPM has

been presented as another paradigm in comparison to the digital pulse position

modulation as it demonstrates similar receiver sensitivity while functioning at

substantially decreased line rates. The precise application of the RS code minimizes the

errors in coding schemes (Shalaby, 1999; Sibley & Massarella, 1993; Sibley, 1993;

Sibley, 2003; Sibley, 2004; Zwillinger, 1988; McEliece, 1979, 1981).

The non-coded DiPPM which applies MLSD and the RS coding paradigms will be

compared with regards to the quantity of photons which are required to be contained in

each pulse and the effectiveness of the transmission. The object of this chapter is to find

the optimum parameters, which achieve higher transmission efficiency and lower

number of photons, for the RS code working with DiPPM.

4.2. FORWARD ERROR CORRECTION SYSTEM MODEL

The slope detection and central detection methods are used to find the optimum

parameters of a RS code with a DiPPM system. First of all a model of that system should

be developed, to start with simulation. A system model attempts to simulate some

characteristics of a system. The model matches up the forward error correction (FEC)

communication scheme, which is dependent on a RS error-control code, and shown in fig

4.1. The performance of each block of the model is described in Mathcad software,

Appendix (1).

82

RS Coder DiPPM Coder
Optic-Transmitter

Optic-Receiver

Timing ExtractionDiPPM Decoder RS Decoder

PCM
DiPPMRS

codewords

O
ptical F

ibre C
hannel

RS

codewords

D
iP

P
M

DiPPM

Clock

PCM

Errors

Figure 4.1 Block diagram of forward error correction

4.2.1. Slope Detection Approach

A fixed bandwidth, 1 GHz, PIN-bipolar (PIN-BJT) transimpedance optical receiver was

considered in the DiPPM receiver with noise spectral density of 24 × 10-24 A2/Hz. An

operating wavelength of 1.55 μm and a photodiode quantum efficiency of 100% were

taken and simulations were carried out using an original NRZ OOK data rate of 1 Gbit/s

with line coding that resulted in n=10. Gaussian shape received pulses were assumed

corresponding to a link bandwidth of 1.8 GHz. A threshold variable v was defined as:

d

pk

v
v
v

 (4.1)

Where {vd} is the threshold crossing voltage and {vpk} is the peak voltage of the signal.

The total equivalent PCM error probability is obtained initially by adding together the

individual probabilities of DiPPM, which should be the same as for a PCM system

considering 1 error in 109 pulses. Then equations (2.9) and (2.10) are used to compute

the probability of error for the coded system with different code rate and code length.

The decision time td, can be determined and the number of photons per bit b, can be

found.

The transmission efficiency {ρ} for the uncoded and coded DiPPM, can be written as in

equations (4.2) and (4.3) respectively. Equation (4.2) shows the transmission efficiency

for uncoded DiPPM, where b is the number of photons while equation (4.3) shows the

transmission efficiency for DiPPM when a RS code is applied. It can be seen from

equation (4.3) that applying an RS code reduces the transmission efficiency of the

system by the code rate r. However, at the optimum code rate, the application of a RS

83

code reduces the number of photons to achieve an overall improvement in transmission

efficiency.

ln 2

 ()
nats

b photon
 (4.2)

ln 2
 ()

nats
r
b photon

 (4.3)

The bandwidth expansion BWE for coded DiPPM can calculate using equation (4.4).

 coded DiPPM DiPPM

n
BWE BW

k
 (4.4)

4.2.2. Central Detection Approach

The model is based on the paradigm suggested by Sibley (2005). A block diagram of the

receiver system is shown in fig. 4.2. The simulation used an optical receiver with a

limited bandwidth ωc, and a white-noise spectrum at its output. A classical matched filter

has been used as the pre-detection filter due to the aspect of the receiver having a

white-noise spectrum. Transmission of dicode PPM through graded-index POF had been

considered and the signal presented to the threshold detector was (Sibley, 2005).

 2 2

2 2
() exp() exp() [()]c t
o T c cv t b qR t erfc

 (4.5)

where b is the number of photons per pulse, η is the quantum efficiency of the detector,

q is the electronic charge, RT is the mid-band transimpedance of the receiver, and α is

the variance of the received Gaussian pulse. This is linked to the fibre bandwidth by

(Sibley, 2005).

0.1874 b

n

T

f
 (4.6)

where bT is the PCM bit-time and nf is the fibre bandwidth normalised to the PCM data

rate. The noise appearing on this signal is given by (Sibley, 2005).

2 2 2 2

2
exp() ()c

o o T c cn S R erfc

 (4.7)

where So is the double-sided, equivalent input-noise current spectral density of the

preamplifier. A PIN photodiode was used so that its shot noise could be neglected. The

84

time, at which the autocorrelation function of the noise at the output of the filter

becomes small, has been taken to be α, thus τR=α. The threshold level, ν, was used as a

system variable defined by equation (4.1), where νpk is the peak voltage of an isolated

pulse. For a given fibre bandwidth, the pulse shape and noise can be determined, and

the optimum value of v that produces the lowest number of photons per pulse, b, can be

found for a specified PCM error rate (1 in 109 in the simulations). A 1 Gbit/s PCM data-

rate system, operating at a wave-length of 650 nm and a photodiode quantum efficiency

of 100%, was considered. The preamplifier had a bandwidth of 10 GHz and white noise

of 50 x 10-24 A2/Hz when referred to the input. These parameters were obtained from a

commercial device. Line-coded PCM data was used so that nDiPPM=10. Simulations were

conducted on DiPPM systems operating with and without RS code.

Matched Filter

Transimpeadance

amplifier

Post amplifier

Voltage

comparator

DiPPM

Optical

Fibre

P
h

o
to

d
io

d
e

Figure 4.2 Block diagram of DiPPM system receiver

4.2.3. DiPPM Employing RS vs PCM Employing RS

To analyse the PCM employing RS system performance, a 1 GHz bandwidth PIN-BJT

receiver having a noise current spectral density of 16x10-24 A2/Hz (double sided) was

used. The optical channel used in the simulation had a Gaussian impulse response, as

obtained from the graded-index plastic optical fibre (GI-POF). An operating wavelength

of 650 nm was taken, corresponding to the first transmission window in POF, and the

photo-diode quantum efficiency was considered to be 100%. An algorithm was used to

calculate the number of photons per pulse (b) needed to give an error rate of 1 error in

109 pulses of the uncoded data.

Let the received pulse shape, HP (t), has the following property:

 1ph t

 (4.8)

85

The impulse response of the channel (GI-POF) can be approximated to a Gaussian and

thus

2

22

1

22
p

t
h t exp

 (4.9)

The pulse variance, , is linked to the fibre bandwidth by equation (4.6). The error

probability can determine from the following equation:

2

1

22
eP erfc

Q

 (4.10)

where

2

max minv v
Q

 (4.11)

Where, max minv and v represent the received signal levels at the output of the detection

filter. Simulations were conducted on PCM systems operating with RS code.

86

4.3. Results

4.3.1. Finding Optimum RS System Parameters

Figure 4.3 shows the PCM code symbolised by the DiPPM signal using different

normalised bandwidth. In DiPPM, the shape of the S and R pulses, figure 4.4, will depend

on the transmitted pattern. The new pulse shapes must be found using a general DiPPM

sequence SxNRyNS.

Figure 4.3 The received DiPPM signal

Figure 4.4 DiPPM SET & RESET pulses at two normalised bandwidths

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0

1x10
10

2x10
10

3x10
10

4x10
10

5x10
10

vo
lta

ge

time

 Fn=0.5

 Fn=1

 Fn=3

 Fn=5

 Fn=10

 Fn=20

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0

2.0x10
9

4.0x10
9

6.0x10
9

8.0x10
9

ISI

RESET

vo
lta

ge

time F
n
=1.8

 F
n
=5

SET

87

Figure 4.5 and 4.6 show the number of photons in the DiPPM coded system when it

works at different code rates using slope, and central detection methods. The data

presented in these figures use code word length 2m, where m=3,4,5,6,7 to compute the

number of photons. It should be noticed that the number of photons increases with the

increasing in the RS code rates. This is because of the number of data symbols is directly

proportional to the RS code rates. Moreover, the results show that the number of

photons is directly proportional to the normalised bandwidth when the slope detection

method is used. This is because of the slope detection method depends on the received

signal shape. Figure 4.7 shows the clear superiority of central detection over slope

detection for number of photons.

Figure 4.5 Number of photons for the coded DiPPM system function of RS code rate at

different RS codeword length using the slope detection method (fn=1.8)

0.0 0.2 0.4 0.6 0.8 1.0

0

1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

6x10
4

7x10
4

P
h

o
to

n
/p

u
ls

e

RS Code Rate

 m=4

 m=5

 m=6

 m=7

 m=3

88

Figure 4.6 Number of photons for the coded DiPPM system function of the RS code rate

at different RS codeword length using the central detection method (fn=1.8)

Figure 4.7 Comparison between detection methods in term of the number of photons for

coded DiPPM system at different RS codeword length (fn=1.8)

0.0 0.2 0.4 0.6 0.8 1.0

4.0x10
3

6.0x10
3

8.0x10
3

1.0x10
4

1.2x10
4

1.4x10
4

1.6x10
4

1.8x10
4

2.0x10
4

P
h

o
to

n
/p

u
ls

e

RS Code Rate

 m=4

 m=5

 m=6

 m=7

 m=3

0.0 0.2 0.4 0.6 0.8 1.0

0

1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

6x10
4

7x10
4

P
h
o
to

n
s
/p

u
ls

e

RS Code Rate Slope Detection

 Central Detection

89

Figure 4.8, and 4.9 clearly showed that there is an optimum code rate approximately

3/4, which is achieved maximum transmission efficiency. When the DiPPM coded system

is operating below this optimum, the number of redundant symbols increases and, as

predicted by equation (4.3), performance is degraded. Above the optimum coding rate,

the number of redundant symbols is decreased, which means the number of correcting

symbols is also decreased and this reduces the transmission efficiency. Figure 4.10,

shows the outperform of the central detection over slope detection method. The central

detection method achieved a lower number of photons in all the normalised bandwidth

ranges.

Figure 4.8 Transmission efficiency of the code DiPPM system function of the RS code rate

at different RS codeword length using the slope detection method (fn=1.8)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0x10
-6

4.0x10
-6

6.0x10
-6

8.0x10
-6

1.0x10
-5

1.2x10
-5

1.4x10
-5

1.6x10
-5

1.8x10
-5

 T
ra

n
s
m

is
s
io

n
 E

ff
ic

ie
n
c
y
 (

n
a
tt
s
/p

h
o
to

n
)

RS Code Rate

 m=4

 m=5

 m=6

 m=7

 m=3

90

Figure 4.9 Transmission efficiency for coded DiPPM system function of the RS code rate

at different RS codeword length using the central detection method (fn=1.8)

Figure 4.10 Comparison between detection methods in term of the transmission

efficiency for coded DiPPM system at different RS codeword length (fn=1.8)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

1.0x10
-5

2.0x10
-5

3.0x10
-5

4.0x10
-5

5.0x10
-5

6.0x10
-5

 m=4

 m=5

 m=6

 m=7

 m=3T
ra

n
s
m

is
s
io

n
 E

ff
ic

ie
n
c
y
 (

n
a
ts

/p
h
o
to

n
)

RS Code Rate

0.0 0.2 0.4 0.6 0.8 1.0

1.0x10
-5

2.0x10
-5

3.0x10
-5

4.0x10
-5

5.0x10
-5

6.0x10
-5

T
ra

n
s
m

is
s
io

n
 E

ff
ic

ie
n
c
y
 (

n
a

ts
/p

h
o

to
n

)

RS Code Rate Slope Detection

 Central Detection

91

Figure 4.11 compares the uncoded and coded DiPPM system in terms of the number of

photons at a different bit error rate by using central and slope detection methods. The

RS code length varied from 15-128 symbols per codeword, and at the code rate equal

approximately 3/4. The figure 4.12 shows the transmission efficiency of the DiPPM coded

system, by using 31 symbols RS code length at different bit error rate. The results

confirm that the RS has a slightly same optimum code rate even when the system works

at a different bit error rate.

Figure 4.11 Comparison between detection methods in term of the number of photons

for coded DiPPM system at different BER and RS codeword length (fn=5)

10
3

10
4

10
5

10
-20

10
-17

10
-14

10
-11

10
-8

10
-5

10
-2

B
E

R

Photons/bit
 Central Detection

Slope Detection

92

Figure 4.12 Transmission efficiency of the code DiPPM system function of the RS code

rate at different BER using the central detection method (fn=5)

4.3.2. DiPPM Employing RS vs DiPPM Employing MLSD

The central detection method has been used to compute the results of this section. Table

4.1 shows the numbers of photons per pulse for DiPPM systems when it is operating with

and without MLSD or RS code. The computing of numbers of photons is held with the

variance in normalised fibre bandwidth. The starting operating bandwidth is varied from

system to another, at a bandwidth below 0.4 times the PCM data rate only the MLSD

system can operate which it requires 4 x 105 photons per pulse.

Table 4.1 DiPPM system with and without MLSD or RS

fn Uncoded DiPPM DiPPM with MLSD DiPPM with RS

0.46 658.4 x 103 40.2 x 103 76.3 x 103

1 95.8 x 103 14.3 x 103 11.4 x 103

1.8 25.6 x 103 10.5 x 103 4.5 x 103

10 4.7 x 103 4.6 x 103 1.4 x 103

100 2.1 x 103 2.1 x 103 0.9 x 103

0.0 0.2 0.4 0.6 0.8 1.0

0.0

3.0x10
-5

6.0x10
-5

9.0x10
-5

1.2x10
-4

1.5x10
-4

1.8x10
-4

T
ra

n
s
m

is
s
io

n
 E

ff
ic

ie
n
c
y
 (

n
a
ts

/p
h
o
to

n
)

RS Code Rate

 1E-6

 1E-7

 1E-8

 1E-9

 1E-10

 1E-12

 1E-15

 1E-20

93

Fig 4.13 shows that RS code required only 14.3 x 103 photons per pulse when it is

operating at bandwidth equal or above 0.9 times the PCM data rate. The MLSD system

achieves a reduction in the number of photons per pulse when it operates at bandwidth

less than 1 normalised. Thus the DiPPM with RS code system outperforms on DiPPM with

MLSD system when it operates at a high bandwidth, because the RS system is expanding

the operating bandwidth for DiPPM system depending on RS code rate.

Fig 4.14 shows the transmission efficiency as a function of normalised bandwidth for

uncoded and coded DiPPM system. The coded DiPPM using RS code realises higher

transmission efficiency when its work in a low dispersive channel. This is due to the

expansion in bandwidth that the RS code consumes by adding the redundancy symbols.

Figure 4.13 Numbers of photons per pulse as a function of normalised bandwidth

0.1 1 10 100

0.0

2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

1.0x10
5

P
h
o
to

n
/p

u
ls

e

Normalised Bandwidth

 Uncoded DiPPM

 DiPPM + RS

 DiPPM + MLSD

94

Figure 4.14 Transmission efficiency as a function of normalised bandwidth

Figure 4.15 shows the relation of the probability of error for using the wrong slot,

erasure, and false alarm error probability. Wrong slot error is the dominant error in low

bandwidth. When the probability of wrong slot error is reduced, the other two

probabilities are increased to maintain the system performance by reducing the pulse

energy. For this reason, an improvement can be seen in the transmission efficiency as

the fibre bandwidth increased. This improvement continues until the wrong slot error

probability is negligible. In the slope detection method the improvement lasts until 1.8

times the normalised bandwidth and then the transmission efficiency starts decreasing,

while in the central detection method the improvement continues with the continuing of

increasing bandwidth.

0 20 40 60 80 100

1.0x10
-4

2.0x10
-4

3.0x10
-4

4.0x10
-4

5.0x10
-4

6.0x10
-4

 Uncoded DiPPM

 DiPPM + RS

 DiPPM + MLSD

T
ra

n
s
m

is
s
io

n
 E

ff
ic

ie
n
c
y
 (

n
a

ts
/p

h
o

to
n

)

Normalised Bandwidth

95

Figure 4.15 Erasure, False Alarm, and Wrong Slot Error Probabilities for the coded DiPPM

system

4.3.3. PCM Employing RS

Figure 4.16 depicts the received PCM pulses, (1s and 0s), levels on the output of the

detection filter. Figure 4.17 compares the number of photons per pulse for many

normalise bandwidths nf at a different RS code rate. From this figure, it can be seen

that as the RS code rate is increased, the number of photons required per pulse will also

increase for a particular bandwidth. Figure 4.18 clarifies that the PCM employing RS code

system has approximately the same optimum code rate of DiPPM employing RS code

system which is about 3/4. The transmission efficiency for the PCM employing RS code

system is computed through equation (4.12).

ln 4

nats

r
b photon

 (4.12)

0 2 4 6 8 10 12 14 16 18 20
4.40x10

-2

6.60x10
-2

8.80x10
-2

0.00

1.60x10
-3

3.20x10
-3

1.82x10
-1

1.95x10
-1

2.08x10
-1

0 2 4 6 8 10 12 14 16 18 20

fa
ls

e
 a

la
rm

 e
rr

o
r

p
ro

b
.

Normalised Bandwidth

w
ro

n
g

 s
lo

t
e

rr
o

r
p

ro
b

a
b

.

e
ra

s
u

re
 e

rr
o

r
p

ro
b

.

96

Figure 4.16 The received DiPPM signal

Figure 4.17 Number of photons for the coded PCM system as function of RS code rate at

different normalised bandwidth (BER=1.10-9)

0.0 0.5 1.0 1.5 2.0

2.0x10
8

4.0x10
8

6.0x10
8

8.0x10
8

1.0x10
9

v
o

lt
a
g

e

time Pulse(0)

 Pulse(1)

0.0 0.2 0.4 0.6 0.8 1.0

0

1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

P
h

o
to

n
/p

u
ls

e

RS Code Rate

 Fn=0.46

 Fn=0.5

 Fn=0.6

 Fn=0.7

 Fn=0.8

 Fn=0.9

 Fn=1

 Fn=1.2

 Fn=1.5

 Fn=1.8

 Fn=5

97

Figure 4.18 Transmission efficiency for the coded PCM system as function of RS code

rate at different normalised bandwidth (BER=1.10-9)

Figure 4.19 gives a picture of the system transmission efficiency with the change of the

RS code rate at different codeword length. Figures 4.19 & 4.20 illustrate that the

optimum RS code rate does not change with the codeword length, or system bit error

rate (BER), and the system performance improved with the increasing the RS codeword

length and decreasing the BER. However, the RS system design complication is

proportional to the codeword length. Figure 4.21 shows that the RS code improves the

signal to noise ratio factor ,Q, when it is added to PCM system. So, Q value of 2.8 for

coded PCM comparing with 6 for uncoded PCM in an error rate of 1 bit in 10-9. Figure

4.22 confirms the outperforming of the DiPPM system over PCM at different BER.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0x10
-5

4.0x10
-5

6.0x10
-5

8.0x10
-5

1.0x10
-4

T
ra

n
s
m

is
s
io

n
 E

ff
ic

ie
n
c
y
 (

n
a
ts

/p
h
o
to

n
)

RS Code Rate

 Fn=0.46

 Fn=0.5

 Fn=0.6

 Fn=0.7

 Fn=0.8

 Fn=0.9

 Fn=1

 Fn=1.2

 Fn=1.5

 Fn=1.8

 Fn=5

98

Figure 4.19 Transmission efficiency for coded PCM system as a function of RS code rate

at different RS codeword length using the central detection method (fn=5)

Figure 4.20 Transmission efficiency for coded PCM system as a function of RS code rate

at a different BER (fn=5)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0x10
-5

4.0x10
-5

6.0x10
-5

8.0x10
-5

1.0x10
-4

1.2x10
-4

1.4x10
-4

1.6x10
-4

RS Code Rate

T
ra

n
s
m

is
s
io

n
 E

ff
ic

ie
n
c
y
 (

n
a

ts
/p

h
o

to
n

)

 m=3

 m=4

 m=5

 m=6

 m=7

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0x10
-5

4.0x10
-5

6.0x10
-5

8.0x10
-5

1.0x10
-4

1.2x10
-4

T
ra

n
s
m

is
s
io

n
 E

ff
ic

ie
n
c
y
 (

n
a
ts

/p
h
o
to

n
)

RS Code Rate

 1E-6

 1E-7

 1E-8

 1E-9

 1E-10

 1E-12

99

Figure 4.21 BER against signal-to-noise ratio parameter, Q, at normalise BW= 100

Figure 4.22 comparison between coded DiPPM and coded PCM in term of transmission

efficiency at different BER, normalised BW=5

0 2 4 6 8 10

1E-11

1E-9

1E-7

1E-5

1E-3

0.1

B
E

R

Q(b)

 UncodedPCM

 CodedPCM

0.0 0.2 0.4 0.6 0.8 1.0

0

2x10
-5

4x10
-5

6x10
-5

8x10
-5

10
-4

1.2x10
-4

1.4x10
-4

1.6x10
-4

1.8x10
-4

T
ra

n
s
m

is
s
io

n
 E

ff
ic

ie
n
c
y
 (

n
a
ts

/p
h
o
to

n
)

RS Code Rate
 PCM + RS

 DiPPM+RS

100

4.4. Summary

This chapter has examined the use of Reed Solomon (RS) codes with Dicode Pulse

Position Modulation (DiPPM) in terms of transmission efficiency, bandwidth expansion

and number of photons required per pulse. The slope detection and central detection

methods have been used to detect the received signal. The simulation results show that

the use of RS codes can greatly increase the transmission efficiency of DiPPM by

reducing the number of photons. The outcomes have demonstrated that the DiPPM

coded system offers a 5.12dB improvement over the uncoded system when it operates

at the optimum code rate of (3/4). The system performance improves with the

increasing the RS codeword and decreasing the BER. Moreover, the results clarify that

the RS optimum code rate does not related to the varying in system parameters or the

type of coding scheme.

101

Chapter5: MATLAB SIMULATION FOR THE DICODE PULSE

POSITION MODULATION SYSTEM WITH REED

SOLOMON CODE

5.1. Introduction

In this thesis, Matlab software has been used as a bridge to connect between the system

simulation and implementation. Matlab software is engaged to simulate the system, the

DiPPM with the RS code, figure 4.1. The simulation was developed through four versions.

Although there was a Matlab simulation for the DiPPM system (Charitopoulos, 2009), a

new version of DiPPM (coder & decoder) simulation has been presented in this chapter.

The reason for that is to produce a DiPPM system working with a random input sequence

and harmonic with RS system. In the second version, the RS system has been employed

with the DiPPM system in order to prevent the errors that affect the system. Then, a

noise is injected into the channel to generate the errors. In the fourth version, a PCM

binary sequence was replaced by a picture’s data to analyse the transmission

performance of the system.

5.2. DiPPM System Simulation

The Matlab software has been used to simulate the DiPPM system, Appendix (2) section

(10.2.1). The system design was dependent on the DiPPM truth table, table 3.1. The

DiPPM system programme contains two main sections, DiPPM coder and DiPPM decoder.

The first step is a clock and a random binary PCM signal generating. The generated PCM

signal is changing every running of the simulation to produce a different binary PCM

signal. Thus, different DiPPM pulses are being shaped.

The second step is calling the DiPPM coder subroutine. The DiPPM coder subroutine was

used to create the DiPPM signal (SET & RESET) from the binary PCM signal. Each change

from zero to one in PCM sequence gives SET in DiPPM signal, and the alternate from one

to zero in PCM sequence produces a RESET pulse in DiPPM. No pulse IS generated in the

DiPPM signal when the PCM sequence does not change state.

The third step in this programme was used to regenerate the original PCM sequence

from the DiPPM sequence (DiPPM decoder). The programme is going to produce a binary

102

one in PCM sequence when it receives a SET pulse, and it continues until a RESET pulse

is received to produce a binary zero.

The fourth step of the programme is employed to change the binary sequence (one &

zero) to pulse shape. Plots output for the DiPPM coder and decoder system were set in

the last part of the program. Figure 5.1 & 5.2, shows the DiPPM system results for two

different PRBS PCM sequences. Each run simulation produces four line output plot, clock

sequence in the first line, then the PCM sequence and DiPPM and Decoded PCM sequence

are coming respectively. It is clear from the figure that the system is working as the

DiPPM theory mentioned, chapter three.

Figure 5.1 DiPPM System for a different PCM Sequence

103

Figure 5.2 DiPPM System for a different PCM Sequence

5.3. DiPPM With RS Code System Simulation

In this programme version, the RS code system has been added to the previous DiPPM

system, Appendix (2) section (10.2.4). The MathWorks team has produced two functions

to simulate the RS code system:-

 , , ,coder rsenc msg n k genpoly

 , , ,decoded rsdec code n k genpoly

The first function is for RS encoder and the second function for RS decoder. The encoder

function encodes the message in (msg) using an [n,k] Reed Solomon code and specifies

the generator polynomial (genpoly) for the code. The message is a Galois array of

symbols having m bits each. Each K element row of MSG represents a message word,

where the leftmost symbol is the most significant symbol. N is at most 2m-1.

The generator polynomial is a Galois row vector that lists the coefficients, in order of

descending powers, of the generator polynomial. The generator polynomial must have

degree n-k, and n-k must be an even integer. The output genpoly is a Galois row vector

104

that represents the coefficients of the generator polynomial in order of descending

powers. The narrow-sense generator polynomial is

 1 2 2 ... tX Alpha X Alpha X Alpha

where:

Alpha represents a root of the default primitive polynomial for the field GF(n+1), and t

represents the code's error-correction capability, (n-k)/2.

The decoded function attempts to decode the received signal in code using an [n,k]

Reed-Solomon decoding process with the narrow-sense generator polynomial. Code is a

Galois array of symbols having m bits each. Each n-element row of code represents a

corrupted systematic codeword, where the parity symbols are at the end, and the

leftmost symbol is the most significant symbol. n is at most 2m-1. If n is not exactly 2m-

1, RS decoder assumes that code is a corrupted version of a shortened code.

In the Galois array decoded, each row represents the attempt at decoding the

corresponding row in code. Decoding failure occurs if the RS decoder detects more

than (n-k)/2 errors in a row of code. In this case, the RS decoder forms the

corresponding row of decoded by merely removing n-k symbols from the end of the row

of code.

The Matlab code for DiPPM with the RS system, Appendix (2) section (10.2.4), contains

three main parts, transmitter side, channel, and the receiver side. The first step in

transmitter is generating the PRBS PCM sequence (integer message generator). Each

codeword encloses 2m-1 symbols, for our design m=5 and the message k=23 symbols

(see chapter four). The next step is using the RS coder function to encode the message.

After that the output of the RS coder was fed to the DiPPM coder. A subroutine,

Appendix (2) section (10.2.5), has been programmed to convert from a Galois array to a

decimal array. Then the decimal array has been converted to a binary array using the

function below:-

 2 _ _dec bin RS code dec

The final step in the transmitter side is calling the DiPPM coder subroutine through the

function shown below:-

 _ _ _ _ _ _ 3DiPPM seq DiPPM Encoder B RS code bin

105

 Figure 5.3, shows the system transmitter side results. The clock is shown in the first

line, and the PRBS PCM sequence displayed in the second line. The RS coded signal

shown in the third line, while the redundancy bits (n-k) shown in the fourth line. The

final line presented the DiPPM (SET & RESET) sequence.

Figure 5.3 DiPPM with RS code transmitter output waveform

The output of the transmitter passes through the channel, error's symbols were injected

into the transmitted codeword. The DiPPM decoder receives the transmitted codeword, in

order to convert the codeword to its original scheme, PCM. This will be done through the

function that calling the DiPPM subroutine.

 _ _ _ _ _DiPPM decoded seq DiPPM Decoder B DiPPM seq

The next step is converting the output of DiPPM from binary form to decimal form, and

then to Galois array form in order to make it in a form proper as input to RS decoder.

Finally, the RS decoder is going to deal with the received codeword to extract the

original message and fix any error or erasure happened via a transmission operation.

106

Figure 5.4, shows the output of the receiver side. The output of the DiPPM decoder is

displayed in the first line. The second line represents the error number, zero in this case.

The third line shows the output of RS decoder, the last line is zero when the process of

decoding is successful.

Figure 5.4 DiPPM with RS code receiver output waveform

The software has been run many times, each time the number of errors that inject to the

channel is changed (0,1,2,3,4,….,8). Figures 5.5 and 5.6 display the output results for

transmitter and receiver system with five bits error. It is clear that the system

successfully corrected these errors and produced the original message. Figures 5.7 and

5.8 show the output results for transmitter and receiver system with symbol errors

greater than four samples errors. The system fails to produce the original message

because it is out of limit.

107

Figure 5.5 DiPPM with RS code Tx output waveform

Figure 5.6 DiPPM with RS code Rx output waveform

Figure 5.7 DiPPM with RS code Tx output waveform

108

Figure 5.8 DiPPM with RS code Rx output waveform

5.4. DiPPM WITH RS SYSTEM IN AWGN CHANNEL

In this programme version, Additive White Gaussian Noise (AWGN) is added into the

channel to affect on the transmitted DiPPM pulses. The MathWorks team has produced

function to add AWGN.

 ,y awgn x snr

where:

“y” is the signal after adding the AWGN, “x” is the transmited signal, and “snr” is the

signl to noise ratio.

The detection errors that the DiPPM suffers from are going to appear in the received

signal due to channel noise. The number of errors depends on the SNR, errors increase

when SNR decrease and vise versa. The software has been run many times, each time

the number of senior is changed to generate a different error number. The simulation

results show that the system succeeds to decode the original data when the SNR is equal

or above 12dB. Figures 5.10, 13, 16, 19 display the Tx And Rx signals for different snr

values.

109

Figure 5.9 DiPPM with RS code Tx output waveform

Figure 5.10 channel signals at snr=1dB

Figure 5.11 DiPPM with RS code Rx output waveform

110

Figure 5.12 DiPPM with RS code Tx output waveform

Figure 5.13 channel signals at snr=10dB

Figure 5.14 DiPPM with RS code Rx output waveform

111

Figure 5.15 DiPPM with RS code Tx output waveform

Figure 5.16 channel signals at snr=11dB

Figure 5.17 DiPPM with RS code Rx output waveform

112

Figure 5.18 DiPPM with RS code Tx output waveform

Figure 5.19 channel signals at snr=12dB

Figure 5.20 DiPPM with RS code Rx output waveform

113

5.5. DiPPM WITH RS SYSTEM (UPGRADED VERSION)

An upgraded version of the DiPPM employing RS code system is presented in this thesis.

The RRBS PCM generator has been replaced by image read function in order to generate

the message data.

 ' . 'imread img jpg

After reading the image data, the message is processed by the RS coder and then sent

through the channel to reach the receiver side. In the receiver side the original message

is processed by the DiPPM decoder and RS decoder, and finally the image reshapes from

the output of the RS decoder by using the function below:-

 _ , _ , _reshape output Img x size y size

The system has been run for many times and the number of symbol errors is changed.

Figures 5.21, and 5.22 shows the output image sample, it is clear that the system

effectively reshapes the original image when the number of symbol errors is equal to or

less than four. The efficiency of the system starts decreasing when the number of error

symbols is greater than its limit.

114

Figure 5.21 DiPPM with RS code received images

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Orignal Image

No. of Symbol Errors=2 No. of Symbol Errors=3

No. of Symbol Errors=1

115

Figure 5.22 DiPPM with RS code received images

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

No. of Symbol Errors=8

No. of Symbol Errors=5 No. of Symbol Errors=4

No. of Symbol Errors=16

116

5.6. Summary

The DiPPM employing RS code system programme has been designed using Matlab

software. The DiPPM system results achieved the theory of the DiPPM scheme. Adding

the RS code system help the DiPPM scheme to overcome the errors that affect the

transmitted data when the SNR is equal or above 12dB. However the RS code system

should work in its optimum code rate.

117

Chapter6: VHDL SOURCE CODE AND SIMULATION

ENVIRONMENT FOR THE DICODE PULSE

POSITION MODULATION SYSTEM WITH REED

SOLOMON CODE

6.1. Introduction

In this chapter, a very high speed integrated circuit (VHSIC) hardware description

language (VHDL) source code for the DiPPM system employing (31,23) RS error

correcting code system is given. A schematic and a full block description of the system is

shown in the second section. Modelsim_Altera version (6.5b) software is used to

simulate the system.

6.2. System Schematic

The DiPPM system employing RS code system schematic is shown in figure 6.1. In the

transmitter side, the PRBS block is used to generate a random PCM message (k=23

symbols) sequence. The PCM message is coded by using (31,23) RS coder by adding

redundancy symbols (n-k=8symbols). The bridge coder is used to convert the parallel

output of the RS coder to serial, in order to be appropriate input for the DiPPM coder. In

the receiver side, the DiPPM decoder receives the message, which is in form of DiPPM

pulses (SET, RESET), to change it into PCM form. Then, the serial PCM converts to

parallel by using the bridge decoder. The final stage is a (31,23) RS decoder used to

extract the original message. A description for each part is given in the next subsections.

118

Figure 6.1 DiPPM and Reed Solomon System Schematic

6.2.1. Pseudo Random Binary Sequence (PRBS)

Linear feedback shift registers (LFSRs) are the logic circuits used to generate PRBS. The

generated binary sequence has N bits length, N=2M-1, which begins from A0, A1, A2…A

(N–1). The logic circuit consists of M registers, as the sum ∑Aj binary ones and N – M

binary zeros, where j=0, 1, 2 …N-1. A primitive polynomial creates a maximal length

sequence, where the LFSR transitions through 2M-1 states before repeating (Katz &

Boriello, 2005; Lala, 1996).

The LFSR can be used to implement both serial and parallel outputs of PRBS. In this

chapter a parallel PRBS VHDL source code has been designed to generate a message of

23 symbols, each symbol contains 5 bits. The Pseudo Random Binary Sequence (PRBS)

source code is shown in table 6.1, Appendix(3) section (10.3.1).

DiPPM

Coder

RS Decoder

RS Coder

PRBS

DiPPM

Decoder

PISO

Data Out

SIPO

PISO

Data Out

119

Table 6.1 PRBS Source Code

file name Description

pbrs.vhd PBRS top module

pbrs_pkg.vhd PBRS module package

The PRBS top block view is depicted in figure 6.2, while the input/output signals are

displayed in table 6.2.

Figure 6.2 PRBS top block view

Table 6.2 PRBS input/output Signals

Signal Name I/O Description

CLK I System clock

RESET I System reset

Enable O Output data enable

startPls O Output start pulse

dataOut [4:0] O Output data

The PRBS input and output waveform for many codewords are shown in figure 6.3.

Figure 6.4 shows one codeword 23 symbols data output, the clock signal in the first line,

and the second line for RESET signal, the third and fourth lines are for the ENABLE and

START PULSE signals respectively, the fifth line for PRBS signal. The simulation runs at

clock 100 MHz, the generated message needs 23 clocks to produce 23 symbols, 8 clocks

are left for the encoding process. The PRBS is repeated every 170 clock in order to give

enough time for the decoding process.

PRBS GENERATOR

120

Figure 6.3 PRBS input/output waveform

Figure 6.4 PRBS input/output one codeword zoom

121

6.2.2. Reed Solomon Coder

The RS code is specified as RS(n, k) with m-bit symbols. The block length contains n

symbols; each symbol consists of m bits. In other words, the RS encoder combines k

symbols data with parity symbols (redundancy) 2t to produce an n symbols codeword

(Sklar, 2001).

The RS encoder receives the message symbols and adds a parity 2t symbols to create

encoded blocks consisting of n=2m-1 symbols each, where m is the symbol size in bits as

described previously. Each message block is equivalent to a message polynomial of

degree k-1, from linear algebra that any k distance points uniquely determine a

polynomial of degree at most k-1, where k is the message length in symbols as

2 1

0 1 2 1() k

km x m m X m X m X

 (6.1)

Where the coefficients m0, m1, m2,…., mk-1 of the polynomial m(X) are the symbols of a

message block. Moreover, these coefficients are elements of GF(2m). Thus, the

information sequence is mapped into an abstract polynomial by setting the coefficients

equal to the symbol value.

The RS codeword is generated using a generator polynomial. The generating polynomial

for an RS code takes the following form:

2 3 2

2 2 1 2

0 1 2 2 1

() ()()()....()

()

t

t t

t

g X X X X X

g X g g X g X g X X

 (6.2)

Where α is a primitive element in GF(2m), and g0, g1, g2,…., g2t-1 are the coefficients from

GF(2m). The degree of the generator polynomial is equal to the number of parity check

symbols. A general RS encoder circuit can be implemented using the generator

polynomial as shown in fig 6.6 (Lin, & Costello, 1983; Sklar, 2001).

Hence, the RS coder will be shifting the message symbols sequence m(X) by n-k

symbols and then dividing the result by generator polynomial g(X) to produce the

codeword c(X) as in equations below:

 () () ()n kc X X m X p X (6.3)

 () (())mod ()n kp X X m X g X (6.4)

where p(X) is the remainder polynomial.

122

The polynomial generator used in this work to generate the field of RS(31,23) is

X5+X2+1. The RS(31,23) coder polynomial, which is driven by using equation (6.2), can

be written as below:

 4 16 23 2 10 3 30 4 21 5 13 6 8 7 8 g x X X X X X X X X (6.5)

Figure 6.5 shows the designed RS(31,23) coder circuit, which consists 8 registers to

generate the codeword.

The Reed Solomon RS(31,23) coder VHDL source code is shown in table 6.3, Appendix

(3) section (10.3.2).

Table 6.3 RS (31,23) coder source code

file name Description

rscoder_31_23_top.vhd RS(31,23) coder top module

rscoder_31_23_top_pkg.vhd RS(31,23) coder top module package

The RS(31,23) coder top block view is depicted in figure 6.5, while the input/output

signals are displayed in table 6.4.

CLK

RESET

enable

startPls

dataIn[4:0] dataOut[4:0]rscoder_31_23_top

Figure 6.5 RS(31,23) coder top block view

123

R1 R4 R5 R6 R7 R8R3R2

Switch

 α4

α16

α23

α10

α30

α21

α18

 α8

Input Output

Figure 6.6 RS(31,23) coder circuit

124

Table 6.4 RS(31,23) coder IO signals

The RS(31,23) coder inner block view is depicted in the following figure 6.7.

Timing
control

enable

startPls

dataIn
[4:0]

genPolynomC
oeff_0

* *

FF
Syndr
ome

Reg_0

xor

genPolynomC
oeff_1

FF
Syndr
ome

Reg_1

*

genPolynomCo
eff_X

xor

FF
Syndr
ome

Reg_7

rscoder_31_23_top

dataOut
[4:0]

mult_0 mult_1 mult_7

Figure 6.7 RS(31,23) coder inner block view

The RS(31,23) coder timing chart is illustrated in the following figure 6.8. The RS(31,23)

coder input and output waveform simulation for many codewords are shown in figure

6.9, while the figure 6.10 shows one codeword 31 symbols data output.

Signal Name I/O Description

CLK I System clock

RESET I System reset

Enable I Input data enable

startPls I Input start pulse

dataIn[4:0] I Input data

dataOut [4:0] O Output data

125

CLK（in）

enable（in）

startPls（in）

dataIn[4:0]

dataOut[4:0]

dIn
[0]

dIn
[1]

dIn
[2]

dOut
[0]

dOut
[1]

dOut
[2]

dIn
[3]

dIn
[4]

Latency: 2CLKs

dIn
[22]

dOut
[20]

dOut
[21]

dOut
[22]

dOut
[23]

dOut
[24]

ALL0ALL0ALL0

ALL0 ALL0
dOut
[29]

dOut
30]

dIn
[0]

dIn
[1]

dIn
[2]

dOut
[0]

dOut
[1]

Start Block1 Start Block2

23 CLKs
Time beetween two codewords:≧31 CLKs

（in）

（out）

need (8) clocks before
next block

≧8 CLKs

RESET（in）

I. reset active

II. Enable System

III. 1st Symbol of Block1

IV. 1st Symbol of Block1

31 CLKs

 Figure 6.8 RS(31,23) coder timing chart

126

Figure 6.9 RS(31,23) coder input/output waveform

Figure 6.10 RS(31,23) coder input/output one codeword zoom

127

6.2.3. Bridge Coder (Parallel Input Serial Output)

The PISO is a shift register circuit which changes the data from parallel to serial. All the

shift register inputs of the data bits enter the parallel input pins simultaneously (Hetzel,

1988). The reading of the input data takes place in a sequential order inside the PISO

register in a shift-right mode (Maini, 2007). The output of the data comes out 1 bit each

time on every clock cycle (Crowell & Press, 2004). The bridge coder source code is

shown in table 6.5, Appendix (3) section (10.3.3).

Table 6.5 Bridge Coder Source Code

file name Description

bridgecoder_top.vhd Bridge coder top module

bridgecoder_dpram.vhd Bridge coder dual port ram memory

bridgecoder_top_pkg.vhd Bridge coder module package

The bridge coder top block view is depicted in figure (6.11), while the input/output

signals are displayed in table (6.6).

Figure 6.11 Bridge coder top block view

Table 6.6 Bridge coder I/O signals

Signal Name I/O Description

CLK I System clock

RESET I System reset

Enable I Input data enable

startPls I Input start pulse

dataIn[4:0] I Input data

dataOut O Output data

startplsOut O Output start pulse

enOut O Output data enable

The bridge coder input and output waveform for many codewords are shown in figure

6.12, while the figure 6.13 shows one codeword data output.

128

Figure 6.12 Bridge coder I/O waveform

Figure 6.13 Bridge coder I/O waveform one codeword zoom

129

6.2.4. DiPPM Coder

The DiPPM coder is the stage of the DiPPM system located at the transmitter side in

which the PCM input data is coded into the DiPPM format. The DiPPM coder circuit is

composed from two Flip-Flops and five NOR gates as shown in figure 3.6 (Charitopoulos,

2009).

The two Flip-Flops use the input PCM format and the CLK pulses to generate the SET and

RESET pulses. Then both pulses combine using the NOR gate to produce the final DiPPM

sequence. Although the VHDL code for the DiPPM coder was designed (Charitopoulos,

2009), a modification is done to deliver a new source code, table 6.7, Appendix (3)

section (10.3.4), in order to be compatible with RS.

Table 6.7 DiPPM coder source code

file name Description

DiPPMcoders.vhd DiPPM coder top module

DiPPMcoders_top_pkg.vhd DiPPM coder module package

The DiPPM coder top block view is depicted in figure 6.14, while the input/output signals

are displayed in table 6.8.

Figure 6.14 DiPPM coder top block view

Table 6.8 DiPPM I/O signals

Signal Name I/O Description

CLK I System clock

PCM I Input data

enableIn I Input data enable

startPlsIn I Input start pulse

DiPPM O Output data

enableOut O Output data enable

startPlsOut O Output start pulse

The DiPPM coder input and output waveform for many codewords are shown in figure

6.15, while the figure 6.16 shows one codeword data output.

130

Figure 6.15 DiPPM coder I/O waveform

Figure 6.16 DiPPM coder I/O waveform one codeword zoom

131

6.2.5. DiPPM Decoder

The DiPPM format is converted to its original PCM format by using DiPPM decoder. The

DiPPM decoder constructed from a one OR gate, four NOR gates, a D Flip-Flop and a

Direct Set/Clear component as shown in figure 3.9 (Charitopoulos,2009).

The DiPPM decoder VHDL code was design by Charitopoulos, a modifications is made to

deliver a new source code table 6.9, Appendix (3) section (10.3.6).

Table 6.9 DiPPM decoder source code

file name Description

DiPPMdecoder.vhd DiPPM decoder top module

DiPPMdecoder_top_pkg.vhd DiPPM decoder module package

The DiPPM decoder top block view is depicted in figure 6.17, while the input/output

signals are displayed in table 6.10.

Figure 6.17 DiPPM decoder top block view

Table 6.10 DiPPM decoder I/O signals

Signal Name I/O Description

CLK I System clock

DiPPM I Input data

enableIn I Input data enable

startPlsIn I Input start pulse

PCM_Out O Output data

enableOut O Output data enable

startPlsOut O Output start pulse

The DiPPM coder input and output waveform for many codewords are shown in figure

6.18, while the figure 6.19 shows one codeword data output.

132

Figure 6.18 DiPPM decoder I/O waveform

Figure 6.19 DiPPM decode I/O waveform one codeword zoom

133

6.2.6. Bridge Decoder (Serial Input Parallel Output)

A serial-in/parallel-out shift register converts data from serial format to parallel format.

If five data bits are shifted in by five clock pulses via a single wire at data-in, the data

becomes available simultaneously on the five Outputs after the fifth clock pulse, (Maini,

2007). The bridge decoder source code is shown in table 6.11, Appendix (3) section

(10.3.7).

Table 6.11 Bridge decoder source code

file name Description

bridgedecoder_top.vhd Bridge decoder top module

bridgedecoder_dpram.vhd Bridge decoder dual port ram memory

bridgedecoder_top_pkg.vhd Bridge decoder module package

The bridge coder top block view is depicted in figure 6.20, while the input/output signals

are displayed in table 6.12.

Figure 6.20 Bridge decoder top block view

Table 6.12 Brige decoder I/O signals

Signal Name I/O Description

CLK I System clock

RESET I System reset

Enable I Input data enable

startPls I Input start pulse

dataIn I Input data

dataOut[4..0] O Output data

startplsOut O Output start pulse

enOut O Output data enable

The bridge coder input and output waveform for many codewords are shown in figure

6.21, while the figure 6.22 shows one codeword data output.

134

Figure 6.21 Bridge decoder I/O waveform

Figure 6.22 Bridge decoder I/O waveform one codeword zoom

135

6.2.7. Reed Solomon Decoder

The RS coder receives the transmitted codeword and then processes it to produce the

message polynomial m(X) (Tocci, 2006). The received codeword may be corrupted

during the transmission; the received corrupted codeword polynomial is then

represented by adding the error pattern polynomial e(X) to the transmitted codeword

polynomial c(X):

 () () ()r X c X e X (6.6)

where r(X) is the received corrupted codeword polynomial. A RS decoder can correct up

to t symbols that contain errors in a codeword, where 2t =n-k. This means that the RS

decoder has the ability to correct up to t symbols that contain errors in a codeword,

where t can be defined as

2

n k
t

 (6.7)

Figure 6.23, shows a typical RS codeword (this is known as a Systematic code because

the data is left unchanged and the parity symbols are appended) (Sklar, 2001):

 Figure 6.23 Typical RS codeword

Equation (6.7) illustrates that for the case of R-S codes, correcting t symbol errors

requires no more than 2t parity symbols (Brown, & Vranesic, 2009). Equation 6.7 lends

itself to the following intuitive reasoning. One can say that the decoder has n-k

redundant symbols to “spend,” which is twice the amount of correctable errors. For each

error, one redundant symbol is used to locate the error, and the other redundant symbol

is used to find its correct value. The erasure-correcting capability, 𝛾, of the code is (Lu,

Willi & Serge, 2005):

min 1d n k (6.8)

Where dmin is the code minimum distance:

min 1d n k (6.9)

136

 Simultaneous error-correction and erasure-correction capability can be expressed as

follows:

min2 d n k ` (6.10)

Where σ is the number of symbols-error patterns that can be corrected and 𝛾 is the

number of symbol erasure patterns that can be corrected. Any linear code is capable of

correcting n-k symbol erasure patterns if the n–k erased symbols all happen to lie on the

parity symbols. However, RS codes have the property that they are able to correct any

set of n-k symbol erasures within the block. RS codes can be designed to have any

redundancy. However, the complexity of a high-speed implementation increases with

redundancy. Thus, the most attractive RS codes have high code rates (low redundancy).

The decoding process consists of four main steps. First, calculating the syndromes, and

then finding the coefficients of the error location polynomial. After that calculating the

error patterns and finally finding the error values and correcting the received codeword.

Figure 6.24, shows the four stages of RS decoder (Sklar, 2001)

Calculating
syndromes

Calculating
error patterns

Finding
coefficient of

error

Finding error
values

+

r(X)

c(X)

e(X)

Figure 6.24 Reed Solomon decoder stages

The RS decoder can correct any number of symbol errors, within the boundaries of

design, without regard to the type of damage suffered by the symbol. In other words,

when a decoder corrects a symbol, it exchanges the incorrect symbol with the correct

one, whether the error was caused by one bit being corrupted or all the bits being

corrupted. That is why RS codes perform well against burst error and also gives RS

codes a burst noise advantage over binary codes (Sklar, 2001). The Reed Solomon

RS(31,23) decoder source code is shown in table 6.13, Appendix (3) section (10.3.8).

137

Table 6.13 RS(31,23) decoder source code

file name Description

rsdecoder_31_23_chien.vhd RS(31,23) decoder chien algorithm

rsdecoder_31_23_degree.vhd RS(31,23) decoder polynomial degree calculation

rsdecoder_31_23_delay.vhd RS(31,23) decoder dual port ram memory controller

rsdecoder_31_23_dpram.vhd RS(31,23) decoder dual port ram memory

rsdecoder_31_23_erasure.vhd RS(31,23) decoder erasure polynomial calculation

rsdecoder_31_23_euclide.vhd RS(31,23) decoder euclide algorithm

rsdecoder_31_23_inv.vhd RS(31,23) decoder inverse in Galois field

rsdecoder_31_23_Mult.vhd RS(31,23) decoder multiplication in Galois field

rsdecoder_31_23_pkg.vhd RS(31,23) decoder package

rsdecoder_31_23_polymul.vhd RS(31,23) decoder syndrome and erasure

polynomial calculation

rsdecoder_31_23_shift_omega.vhd RS(31,23) decoder omega polynomial shift

rsdecoder_31_23_syndrome.vhd RS(31,23) decoder syndrome polynomial calculation

rsdecoder_31_23_top.vhd RS(31,23) decoder top module

rsdecoder_31_23_top_pkg.vhd RS(31,23) decoder top module package

The RS(31,23) decoder top block view is depicted in figure 6.25, while the input/output

signals are displayed in table 6.14.

Figure 6.25 RS(31,23) decoder top block view

Table 6.14 RS(31,23) decoder I/O signals

Signal Name I/O Description

CLK I System clock

RESET I System reset (active low)

Enable I Input data enable (active high)

startPls I Input start pulse (active high)

dataIn[4:0] I Input data

erasureIn I Input erasure signal (‘0’ : no erasure, ‘1’ :erasure)

outData[4:0] O Output data

delayedData[4:0] O Delayed input data

outEnable O Output enable

outStartPls O Output start pulse

outdone O Output done, last data of a codeword (active high)

Fail O Output pass/fail flag（0:sucess, 1:failure）

errorNum[4:0] O
Corrected amount of errors (valid only when decoding

process is succesful)

erasureNum[4:0] O
Corrected amount of erasures (valid only when decoding

process is succesful)

The RS(31,23) decoder inner block view is depicted in the following figure 6.26.

138

RsDecodeSyndrome
(Syndrome polynomial

calculation)

RsDecodeSyndrome
(Syndrome polynomial

calculation)

RsDecodeErasure
(Erasure polynomial calculation)

RsDecodeErasure
(Erasure polynomial calculation)

RsDecodePolymul
(Syndrome&&Erasure polynomial calculation)

RsDecodePolymul
(Syndrome&&Erasure polynomial calculation)

RsDecodeEuclide
(Euclide Algorithm)

RsDecodeEuclide
(Euclide Algorithm)

RsDecodeShiftOmega
(shift Omega data)

RsDecodeShiftOmega
(shift Omega data)

RsDecode
Degree

(Ω)

RsDecode
Degree

(Ω)

RsDecode
Degree

(λ)

RsDecode
Degree

(λ)

RsDecodeChien
(Chien algorithm)

RsDecodeChien
(Chien algorithm)

Error＆Erasure calculation
AND

OUTPUT DATA CALCULATION

Error＆Erasure calculation
AND

OUTPUT DATA CALCULATION

sy
nd

ro
m

e_
0

sy
nd

ro
m

e_
0

sy
nd

ro
m

e_
7

sy
nd

ro
m

e_
7

ε_
0

ε_
0

ε_
8

ε_
8

do
ne

Sy
nd

ro
m

e
do

ne
Sy

nd
ro

m
e

do
ne

do
ne

fa
ilE

ra
su

re
fa

ilE
ra

su
re

de
gr

ee
ε

de
gr

ee
ε

......

po
ly

m
ul

Sy
nd

ro
m

e_
0

po
ly

m
ul

Sy
nd

ro
m

e_
0

po
ly

m
ul

Sy
nd

ro
m

e_
7

po
ly

m
ul

Sy
nd

ro
m

e_
7

do
ne

Po
ly

m
ul

do
ne

Po
ly

m
ul

Ω
_0Ω
_0

Ω
_7Ω
_7......

λ_
0

λ_
0

λ_
7

λ_
7......

do
ne

Eu
cl

id
e

do
ne

Eu
cl

id
e

nu
m

Sh
ift

ed
nu

m
Sh

ift
ed

Ω
Sh

ift
ed

_0
Ω

Sh
ift

ed
_0

Ω
Sh

ift
ed

_7
Ω

Sh
ift

ed
_7......

......
......

do
ne

Ch
ie

n
do

ne
Ch

ie
n

er
ro

r
er

ro
r

nu
m

Er
ro

rB
nu

m
Er

ro
rB

de
gr

ee
Ω

de
gr

ee
Ω

de
gr

ee
λ

de
gr

ee
λ

enableenable startPlsstartPlsdataIn[4:0]dataIn[4:0] erasureInerasureIn

outData[4:0]outData[4:0]

outEnableoutEnable

outStartPlsoutStartPls

outDoneoutDone errorNum[4:0]errorNum[4:0]
erasureNum4:0]erasureNum4:0]
failfail

rsdecoder_31_23_toprsdecoder_31_23_top

Figure 6.26 RS(31,23) decoder inner block view

The RS(31,23) decoder timing chart is illustrated in the following figure (6.27).

139

CLK（in）

enable（in)

startPls（in）

dataIn[4:0] dIn
[0]

dIn
[1]

dIn
[2]

dOut
[0]

dOut
[1]

dOut
[2]

dIn
[3]

dIn
[4]

Decode Process

dIn
[30]

ALL0ALL0
dIn
[0]

dIn
[1]

dIn
[2]

erasureIn

Erasure

Start Block1 Start Block2

outData[4:0]

outEnable（out）

outStartPls（out）

outDone（out）

errorNum[4:0]

erasureNum[4:0]

fail（out）

dOut
[30]

dOut
[0]

dOut
[1]

3

2

ALL0

ALL0

ALL0

ALL0

ALL0

ALL0

ALL0

Start Block1 Start Block2

0: success
1: fail

（in）

（in）

(out)

(out)

delayedData[4:0]
(out)

dIn
[0]

dIn
[1]

dIn
[2]

dIn
[30]

dIn
[0]

dIn
[1]

ALL0

(out)

Num of error
for Block1

Num of erasure
for Block1

Not erasure

Decode result
for Block1
(valid only

when decoding
is succesful)

Delayed data of
Block1

RESET（in）

I. reset active

II. Enable System

III. 1st Symbol of Block1

IV. 1st Symbol of Block1

V. Last block

Figure 6.27 RS(31,23) decoder timing chart

The RS(31,23) decoder input and output waveform for many codewords are shown in

figure 6.28, while the figure 6.29 shows one codeword data output.

140

Figure 6.28 RS(31,23) decoder I/O waveform

Figure 6.29 RS(31,23) decoder I/O waveform one codeword zoom

141

6.3. Summary

This chapter has presented the system source code. Each part of the system has been

described using VHDL. The optimum Reed Solomon code parameters have been used to

design the system. The simulation results showed that all the system parts are working

correctly and agreed with the system theory.

142

Chapter7: ERASURE AND ERROR SIMULATION

ENVIRONMENTS FOR THE DICODE PULSE

POSITION MODULATION SYSTEM WITH REED

SOLOMON CODE

7.1. Introduction

In this chapter, three test bench environments: erasure only, error only, and erasure

and error are applied to the designed system, chapter 6. A Modelsim_Altera version

(6.5b) software is to be used to simulate the system. The system has shown that it has

the ability to detect, correct erasure, and error symbols when they overcome its

limitation.

7.2. Erasure Only Test Bench

A VHDL test bench program, Appendix (4) section (10.4.1), was built to provide an

environment where erasure errors can be injected into the system. According to

equation (6.8), the designed system can correct up to 8 erasure errors only. Above this

number, the system will fail to decode the original message. Figure 7.1 shows the flow

chart for the erasure only test bench.

The following two test scenarios are likely to take place:

7.2.1. Correctable codeword

The number of erasure error symbols that are erased,compatible with the capacity of the

decoder. In this test design, the number of erasure error symbols must be less or equal

to 8 symbols per codeword. Figures 7.2 and 7.3 show the system input/output signals.

Figure 7.2 shows the performance of the system when the number of erasure symbols

equal 8 per codeword, while the figure 7.3 displays the system signals when the number

of erasure symbols equal 5. In these figures, the fail output signal is logic 0. This means

that the system has successfully decoded the original codeword. Erasures can be added

or deleted by updating lines 264 and 265 inside the code.

143

7.2.2. Uncorrectable codeword

The number of erasure error symbols that are erased, greater than the capacity of the

decoder to recover the original data. In this test design, the number of erasure symbols

is greater than 8 symbols per codeword. Figure 7.4 shows the system input/output

signals when the number of erasure symbols equal 9 per codeword. In this figure, the

fail output signal is logic 1, which means that the system has failed to decode the

original codeword. We can add or delete erasures by updating lines 264 and 265.

Figure 7.1 Erasure only test bench flowchart

144

Figure 7.2 System input/output signals with 8 erasure symbols

Erasure

145

Figure 7.3 System input/output signals with 5 erasure symbols

Erasure

146

Figure 7.4 System input/output signals with 9 erasure symbols

Erasure

147

7.3. Error Only Test Bench

A VHDL test bench program, Appendix (4) section (10.4.2), has been built to provide an

environment where errors can be injected into the system. According to equation (6.7),

the designed system has the ability to correct up to 4 errors only. Above this number,

the system will fail to decode the original message. Figure 7.5 shows the flow chart for

the error only test bench.The following two test scenarios are likely to take place:

7.3.1. Correctable codeword

The number of error symbols are compatible with the capacity of the decoder to recover

the original data. In this test design, the number of error symbols must be less or equal

to 4 symbols per codeword. Figures 7.6, & 7.7 show the system input/output signals.

Figure 7.6 shows the performance of the system when the number of error symbols

equal 4 per codeword. The figure 7.7 displays the system signals when the number of

error symbols equal 2. In these figures, the fail output signal is logic 0. This means that

the system has successfully decoded the original codeword. We can add or delete errors

by updating line 264.

7.3.2. Uncorrectable codeword

The number of error symbols is greater than the capacity of the decoder to recover the

original data. In this test design, the number of error symbols is greater than 4 symbols

per codeword. Figure 7.8 shows the system input/output signals when the number of

error symbols equal 5 per codeword. In this figure, the fail output signal is logic 1 which

means that the system has failed to decode the original codeword. Errors can be added

or deleted by updating line 264.

148

Figure 7.5 Error only test bench flowchart

149

Figure 7.6 System input/output signals with 4 error symbols

Error

150

Figure 7.7 System input/output signals with 2 error symbols

Error

151

Figure 7.8 System input/output signals with 5 error symbols

Error

152

7.4. Erasure and Error Test bench

A VHDL test bench program, Appendix (4) section (10.4.3), has been built to provide an

environment to inject erasure and error symbols into the system. According to equation

(6.10), the designed system has the ability to correct up to 4 erasure and 2 error

symbols only. Above this number, the system will fail to decode the original message.

Figure 7.9 shows the flow chart for the erasure only test bench.The following two test

scenarios take place:

7.4.1. Correctable codeword

The number of error symbols are compatible with the capacity of the decoder to recover

the original data. In this test design, the number of error symbols must be less or equal

to 4 erasures and 2 error symbols per codeword. Figure 7.10 shows the system

input/output signals. In this figure, the fail output signal is logic 0 which means that the

system has successfully decoded the original codeword. Erasures and errors can be

added or deleted by updating lines 261 & 265 inside the code.

7.4.2. Uncorrectable codeword

The number of error symbols is greater than the capacity of the decoder to recover the

original data. In this test design, the number of error symbols is greater than 4 erasures

or 2 error symbols per codeword. Figure 7.12 shows the system input/output signals

when the number of error symbols equal 3 per codeword, while the figure 7.13 shows

the system performance when the number of erasure symbols exceeds the system

capability. In these figures, the fail output signal is logic 1 which means that the system

has failed to decode the original codeword. We can add or delete erasures and errors by

updating lines 261 & 265 inside the code.

153

Figure 7.9 Erasure and error test bench flow chart

154

Figure 7.10 System input/output signals with 4 erasure and 2 error symbols

Erasure Error

155

Figure 7.11 System original codeword

Figure 7.12 System input/output signals with 4 erasure and 3 error symbols

Figure 7.13 System input/output signals with 5 erasure and 2 error symbols

Erasure Error

156

7.5. Summary

This chapter has presented three test bench environments, erasure only, error only, and

erasure and error, on the designed system. Modelsim_Altera version (6.5b) software is

used to simulate the system. The system has shown that it has the ability to detect and

correct erasure and error symbols when they do not overcome its limitation.

157

Chapter8: DiPPM EMPLOYING RS CODE SYSTEM

IMPLEMENTATION BY USING FPGA

8.1. Introduction

The VHDL source code for the DiPPM system employing RS codes was designed in

chapter six. In this chapter, Altera Quartus II software and Cyclone III Field

Programmable Gate Array-(FPGA) based DSP development board were utilised to

implement the system (Altera, 2010). The optical transmitter, receiver, and comparator

were designed and constructed. The SMA breakout cables interface was employed to get

the digital input and output signals from the FPGA. Figure 8.1 shows the test bench

equipment, while figure 8.2 shows the experimental design layout.

Figure 8.1 Laboratory testing facility of a design on cyclone III DSP board

Optical

Tx

Optical

Rx

POF

Comparator

SMA i/p & o/p

cables

USB to laptop Power

158

Figure 8.2 DiPPM with RS testing block diagram

159

8.2. Experiment Hardware Resources

This section specifies the detailed laboratory requirements of the experiment and gives

justification for the level of resource requested.

8.2.1. Cyclone III Development Board

The Cyclone III development board presents hardware in the establishment and

prototyping of the high-volume, the low-power, and feature-supported designs. In figure

8.3, the block diagram for the Cyclone III development board is shown. This Cyclone III

development board can be used for wireless, video, and image processing, alongside

high-bandwidth parallel processing systems. For the Cyclone III development board,

various features are apparent, including (Altera, 2010):

 A high logic density for securing more functions.

 An embedded memory to support high-bandwidth designs.

 Expandability via two Altera High-Speed Mezzanine Card (HSMC) connectors.

 256-MB of dual channel DDR2 SDRAM alongside a 72-bit data width.

 Able to support high-speed external memory systems as well as dual-channel

DDR SDRAM and low-power SRAM.

 Four user push-button switches.

 Eight user LEDs.

 Power consumption display.

For the Cyclone III development board, different benefits are experienced:

 A unique combination of low-cost, low-power Cyclone III FPGA that assists in

securing high-volume and memory-intensive standards.

 Most efficient multiplier-to-logic ratio FPGA in the industry.

 Lowest cost but density-and power-optimized FPGA.

 Quartus II development software’s power optimization function.

8.2.1.1. Board Component Blocks

In figure 8.4, a top view of the Cyclone III development board is presented. The board

includes different major component elements (Altera, 2010):

 780-pin Altera Cyclone III EP3C120 FPGA.

 On-board memory.

 FPGA configuration circuitry.

 On-board clocking oscillators to ensure Cyclone III device user logic.

160

 SMA connector to support external clock input and output.

 Eight user LEDs.

 One user reset push-button (CPU reset).

 Four general user push-buttons.

 One system reset push-button (user configuration).

 One factory push-button switch (factory configuration).

 One MAX control DIP switch.

 One JTAG control switch.

 Eight user DIP switches.

 128 × 64 graphics LCD, and 16 × 2 line character LCD.

 Power supply, 14 V – 20 V DC input.

Figure 8.3 Cyclone III Development Board Block Diagram (Altera, 2010)

Figure 8.4 Top View of the Cyclone III Development Board (Altera, 2010)

161

8.2.2. SMA Breakout Cables

The Cyclone III development board includes two HSMC (High Speed Mezzanine Cards)

interfaces, known as Port A and Port B. These interfaces enhance the single-ended and

differential signalling. The connector part number is Samtec ASP-122953-01. The HSMC

interface also supports JTAG, SMBus, clock outputs and inputs, including power for

compatible HSMC cards. The HSMC is an Altera-developed system which allows users to

improve the coverage of the development board with the use of the daughter cards

(HSMC cards) (Altera, 2009).

The HSMC connector includes 172 total pins, as well as 120 signal pins, 39 power pins,

and 13 ground pins. The ground pins are seen between two rows of signal and power

pins, being both the shield and the reference. There are three banks in this system,

including Bank 1, Bank 2 and Bank 3 (Altera, 2009).

The Cyclone III development board does not support Bank 1 transceiver signals meant

for clock-data-recover (CDR) systems including PCI Express and Rapid I/O. These 32

pins are allowed to float. Banks 2 and 3 are fully functional and can be applied in two

different configurations, see figure 8.5 (Altera, 2009).

Altera and Samtec, Appendix (6) section (10.6.1), created a breakout cable, figure 8.6,

for use in managing a single bank of the 3-bank HSMC connector to SMA cables.

Differential pins are used in this case. While the use can be challenging, the cable has

high signal integrity and has a completely flexible connection system by applying the

SMA connectors.

Figure 8.5 HSMC Connectors (Altera, 2009)

162

Figure 8.6 SMA Breakout Cable (Altera, 2009)

8.2.3. Optical Fibre Communication System

The optical fibre communication system is similar to any other type of communication

system in relation to the principle parts which form the system. It has a source of light

which is sent into a fibre as a channel in order to deliver it to an optical receiver which

then converts the modulated light into an electric signal (Senior & Jamro, 2009).

8.2.3.1. Optical Transmitter

The optical transmitter is a light source whose output is modulated using on-off keying.

This technique can be achieved by varying the drive current in the transmitter circuit.

This then causes a proportional change in the transmitter output optical power (Sibley,

1995, Senior, 2009).

The main part of the transmitter is a semiconductor diode which could be a light emitting

diode or a laser semiconductor. It is a forward-biased diode where the output light

intensity is coupling with the semiconductor diameter using an optical fibre (Senior &

Jamro, 2009; Sibley, 1995).

Figure 8.7 shows the deigned optical transmitter system. RC-LED and HFRB-1527Z was

used to provide high optical power which could support a long length of POF cable. The

HFRB-1527Z transmitter operates at a signal rate from 1 to 125 megabaud over 1 mm

163

diameter plastic optical fibre or 200 µm diameter hard clad silica glass optical fibre, see

Appendix (6) section (10.6.2).

Figure 8.7 Optical Transmitter Circuit

8.2.3.2. Optical Receiver

The main part of the optical receiver is the photo detector which acts as demodulator

converting the optical signal into an electrical signal. There are minimum performance

requirements which the photo detector should have. There are many types of photo

detectors. They differ in term of operation and in terms of materials, but the selection of

these types must be decided according to the application requirements (Senior & Jamro,

2009; Sibley, 1995).

The HFBR-2526Z, Appendix (6) section (10.6.2), optical receiver was used in the tests.

The receiver contains a PIN photodiode with integrated transimpedance amplifier. This

type of optical receiver is suitable for POF application providing high bandwidth and high

transimpedance gain. Figure 8.8 displays the power supply filter which was used to

provide the input voltage to the receiver as well as its biases in the PIN photodiode

(inverse biased).

Vin

RC-LED

Q1

100

50

5V

TIA Vout

164

Figure 8.8 Recommended Filter Circuit For Optical Reciever

8.2.3.3. The Comparator

A comparator circuit differentiates between two voltages and outputs from 1 or 0 in

order to determine which is bigger. These are usually applied in order to assess whether

an input has secured a predetermined value. In most instances, a dedicated comparator

IC is used. However, op-amps may be applied as another option (Senior & Jamro, 2009;

Sibley, 1995).

The MAX941, Appendix (6) section (10.6.3), was employed as a comparator. Figure 8.9

shows a MAX941 comparator connected as a simple line transceiver. The output is a

clean square wave signal at the input frequency. The output amplitude is equal to V+.

See figure 8.10 for pin configurations.

Figure 8.9 The Comparator Circuit

165

Figure 8.10 MAX941 Pin Confugarations

8.2.3.4. Plastic Optical Fibre (POF)

The plastic optical fibre is composed of organic polymers for the core and cladding. It is

easily used as well as cheap to manufacture. However, it is limited in terms of the

infrared, which makes gives the POF limited applications. In recent years, the POF has

been made from polymethyl methacrylate and fluorinated acrylic (PMMA). Such a type of

fibre has losses of 110dB/km within the visible wavelength. The loss mechanism of POF

is likened to a glass fibre because of absorption and because of Rayleigh scattering which

are associated to the density changes and anisotropic structure of polymers (Senior &

Jamro, 2009; Sibley, 1995).

A 10 meter of HFBR-R, figure 8.11, single mode plastic optical fibre was used to transfer

data between the optical transmitter and receiver. For further details and specifications

of this type of POF, see Appendix (6) section (10.6.4).

Figure 8.11 Single Mode Plastic Optical Fibre

166

8.3. Test One: Implementation of DiPPM System

In this test, the optical dicode pulse position system was implemented for the first time.

The DiPPM source code was used to build the DiPPM coder and decoder entities. The

optical DiPPM system was fully designed, figure 8.12, using Altera Quartus II version

9.1software and downloaded onto the development board from a laptop via a USB cable

as shown in figure 8.1. A SMA breakout cables interface was employed to get the input

and output signals from the FPGA. The Altera Quartus software offers many MegaCore

functions to parameterize the function that the engineer requires. The PPL MegaCore

function wizard allows the setting of the clock frequency.

In the transmitter side, a 50 MHz internal clock was fed to the PLL to generate 1 MHz

clock frequency. A PRBS was built to produce a random parallel of 23 symbols as a PCM

sequence. The bridgecoder entity was used to convert the parallel PCM sequence to

serial form. The output pin of the DiPPM coder was connected to the optical transmitter.

A 10 meter plastic optical fibre (POF) was used as a channel to transfer the data.

In the receiver side, a comparator was designed as a first stage to receive the signal

from the optical receiver. Then, the received signal was passed to the DiPPM decoder in

order to regenerate the original PCM sequence.

Figure 8.13 shows in the first channel (Yallow Signal) the PRBS sequence output of the

bridgecoder entity, while the DiPPM sequence is seen in channel two (Blue Signal).

Channels two and three (Blue and Purple) compare the received DiPPM sequence before

and after the comparator. The decoded PRBS sequence is shown in channel four (Green

Signal). The designed optical DiPPM system, figure 8.12, produces the correct DiPPM

through FPGA and correctly decodes it back to the original PCM with only a half clock

cycle delay.

167

Figure 8.12 DiPPM system design on Altera Quartus II

168

Figure 8.13 The DiPPM Optical System Waveform

8.4. Test Two Implementation of DiPPM with RS code System

The DiPPM with (31, 23) RS code system was implemented for the first time using Altera

Quartus II software, figure 8.14. A 50 MHz on board clock oscillator was used to provide

input clock to the system and one of the eight IP switches was employed to provide a

RESET signal to the system. The transmitter side was divided into five stages, which are:

PLL to provide 1 MHz clock, PRBS generator, (31,23) RS coder, Bridgecoder to convert

the RS output from parallel data to serial, and the DiPPM coder. The output of the

transmitter is sent via a designed channel entity. On the receiver side, the received data

process in four stages, including the DiPPM decoder, bridgedecoder to alter the DiPPM

decoder output data from serial to parallel form, and (31, 23) the RS decoder. The

output waveform of each stage of the transmitter and receiver was gathered and

compared to the simulation results (chapter 6).

169

Figure 8.14 The DiPPM with (31,23) RS Code System

170

8.4.1. PRBS Entity

The PRBS generator waveform output was collected by using an oscilloscope and using

the Signal Tap Analyzer (STA) tool that Altera provided with the Quartus software which

allowed the reading of the parallel data. Figures 8.15 and 8.16 show the PRBS waveform

output by using the oscilloscope for multi codewords and single codeword respectively.

Figures 8.17 and 8.18 on the other hand, display the PRBS waveform output by using

the STA for multi codewords and single codeword, including the parallel form.

Figure 8.15 The PRBS Waveform Output Multi Codewords

Figure 8.16 Figure 8.15 The PRBS Waveform Output Single Codeword

Figure 8.17 The PRBS Waveform Output Multi Codewords Using the STA

Figure 8.18 The PRBS Waveform Output Single Codeword Using the STA

171

8.4.2. RS Coder Entity

The (31,23) RS coder waveform output is displayed in figures 8.19, 8.20, 8.21, and

8.22. Figures 8.19 and 8.20 show the RS coder serial waveform in both multi and single

codeword mode. The serial data was collected after converting the parallel RS coder

output by using the bridgecoder. Figures 8.21 and 8.22 present the output waveform for

the RS coder in both serial and parallel style.

Figure 8.19 The (31,23) RS Coder Waveform Output Multi Codewords

Figure 8.20 The (31,23) RS Coder Waveform Output Single Codeword

Figure 8.21 The (31,23) RS Coder Waveform Output Multi Codewords by Using STA

Figure 8.22 The (31,23) RS Coder Waveform Output Single Codeword by Using STA

172

8.4.3. DiPPM Coder Entity

The output pins of bridgecoder were connected with the input pins of the DiPPM coder as

shown in figure 8.14. The DiPPM coder waveform output is displayed in figures 8.23 and

8.24, for the multi codewords and single codeword. In both figures, channel one (Yellow)

represents the clock signal, while channels 2, 3 and 4, (Blue, Purple, Green) display the

enable, the start packet, and the DiPPM coder output waveform respectively.

Figure 8.23 The DiPPM Coder Waveform Multi Codewords Output

Figure 8.24 The DiPPM Coder Waveform Single Codeword Output

The system transmitter output waveform is shown in figures 8.25 and 8.26 for the multi

and single codewords. The clock signal is displayed on channel one (Yellow), the PRBS

output waveform is shown on channel two (Blue), the RS coder output waveform is

shown on channel three (Purple), and the DiPPM coder output waveform is shown on

channel four (Green).

173

Figure 8.25 The System Transmitter Waveform Multi Codewords Output

Figure 8.26 The System Transmitter Waveform Single Codeword Output

8.4.4. DiPPM Decoder Entity

The received signal, after detection by the optical receiver, goes to the DiPPM decoder

entity pin. The DiPPM decoder attempts to reconstruct the original RS coder output

waveform in order to permit the RS decoder to regenerate the original PCM codeword.

Figure 8.27 and 8.28 display the output waveform for the DiPPM decoder for the multi

and single codewords. Figures 8.29 and 8.30 illustrate a comparison between RS coder,

the DiPPM coder, and the DiPPM decoder multi and single codewords waveform output.

It is clearly noticed from figure 8.30 that the DiPPM system (coder & decoder) succeeded

in modulating and demodulating the original RS coder output with only half clock cycle

delay.

Figure 8.27 The DiPPM Decoder Waveform Multi Codewords Output

174

Figure 8.28 The DiPPM Deoder Waveform Single Codeword Output

Figure 8.29 Comparison between RS Coder (blue), DiPPM Coder (purple), and DiPPM Decoder (green) Multi

codewords output waveforms

Figure 8.30 Comparison between RS Coder (blue), DiPPM Coder (purple), and DiPPM Decoder (green) Single

codeword output waveforms

175

8.4.5. RS Decoder Entity

The (31,23) RS decoder entity is the final stage of the receiver side. This would try to

regenerate the original PCM data, detect, and correct any errors occurring during the

transmission process. However, the number of erasure and error symbols must be within

its capability (see equation 6.10).

Figures 8.31 and 8.32 show the output waveform for the PRBS, RS coder, and the RS

decoder for the multi and single codewords in serial format. Figures 8.33 and 8.34

display the output waveform for the PRBS, RS coder, and the RS decoder for the multi

and single codewords in parallel format by using STA. It is noticeable from figure 8.32

and 8.34 that the RS decoder has successfully regenerated the PCM data even as there

was a delay in the decoded process.

Figure 8.31 The PRBS (blue), RS Coder (purple), and RS Decoder (green) multi

codewords output waveform

Figure 8.32 The PRBS (blue), RS Coder (purple), and RS Decoder (green) single codeword output waveform

Figure 8.33 The PRBS, RS Coder, and RS Decoder multi codewords output using STA

176

Figure 8.34 The PRBS, RS Coder, and RS Decoder multi codewords output using STA

Encode Process Delay

Decode Process Delay

177

8.4.6. Summary

This chapter has presented a practical implementation of the designed system by using

Altera Quartus II software, and Cyclone III Field Programmable Gate Array (FPGA) based

DSP development board. The implementation of the optical system transceiver is done

as well. The output results agreed with the obtained simulation results of chapter six.

178

Chapter9: CONCLUSION AND FURTHER WORK

The following section provides a conclusion to the work done in this project and a

discussion of the possible further work.

9.1. Conclusion

The Dicode PPM (DiPPM) was found to be a rather easy technique to be implemented

more so because it involved the use of two slots in the transmission process that allowed

the passage of one bit of PCM. In addition, the technique also provided greater

sensitivity and the slot rate were found to be twice as high compared to that of the

original PCM. Even as DiPPM is highly effective in optical communications, it does have

its share of problems in the form of three major types of errors which have affected the

functioning of the technique. These errors include the wrong-slot errors, the erasure

errors, and the false alarm errors.

The major aim of this research was to develop and investigate DiPPM with the Reed

Solomon (RS) Code to reduce the occurrence of errors encountered in the DiPPM

technique. The RS decoder used will help in the correction of symbol errors found within

its boundary without taking into account the type of error caused to the symbol. For

example, while decoding a damaged byte the RS Code simply replaces the incorrect byte

with a correct byte without considering whether the original errors was caused by the

corruption of a single bit or all the eight bits.

The results from the simulation tests have revealed that when the RS decoder is used, it

increases the transmission efficiency of the DiPPM to a large extent by decreasing the

number of photons. In addition the system using the RS code has also been shown to

provide an improvement of 5.12 dB as compared to the systems which do not employ

the RS code. Such an improvement is observed when the code functions at the optimum

rate of (3/4).

Further, the results have also shown that at this optimum code rate, the DiPPM system

achieves maximum transmission efficiency. However, when the system operates below

this optimum level, there is an increase in the number of redundant symbols which in

turn negatively affects the performance of the system. It is only above the optimum

coding rate that the redundant symbols are decrease which implies that the amount of

correct symbols also decrease thereby reducing the transmission efficiency.

179

From the results it is also evident that the DiPPM system while using the RS code

required only about 14.3 x 103 photons per pulse when it is operated at a bandwidth

equal to or above 0.9 times the PCM data rate. On a comparative basis when the DiPPM

system uses the MLSD system, it achieves a reduction in the number of photons per

pulse when it is operated at a bandwidth of less than 1 times the PCM data rate. From

this, it is evident that the DiPPM system when using the RS code outperforms that of the

MLSD system, when it is operated at a high bandwidth. This is essentially due to the

expansion of the operating bandwidth for the system based on the RS code rate.

The DiPPM system using the RS decoder has been designed using the Matlab software.

The DiPPM system confirms what has been predicted from them. With the further

addition of the RS decoder, the DiPPM scheme has been able to overcome the errors that

had initially caused damage to the transmitted message. That has been done by using

the RS decoder optimum code rate.

The VHDL has been used for the design and synthesis of a digital systems simulation.

Source code has been described using VHDL for every part of the system. The optimum

RS code rate has been incorporated into the system design and the results of the

simulation with theory.

A test bench environment comprising of erasure only, error only, and erasure and error,

has been desgined to examine the system. The system has the ability to detect and

correct the erasure and error symbols when it is not overcome by their limitations.

The system VHDL source code has been downloaded on a Cyclone III Field

Programmable Gate Array (FPGA) based DSP development board by using the Altera

Quartus II software. has been done. The implementation of the optical system

transceiver has also been carried out. The practical designed system has been tested

and the output results are in agreement with the obtained simulation results.

180

9.2. Further Work

The following is a proposal for future research to be carried out in this area:

 The Mathcad simulation of the system can be extended by computing the

sensitivity for different bit error rate, and code rate. The system can be further

analysed using other filter types like the tunable filter. The results obtained could

be compared with those of the coded Digital PPM system.

 The Altera DSP builder under the Matlab software can be used in the construction

of the RS code Simulink system (figure 9.1) along with an optical fibre package

which could help in determining the bit error rate performance of the RS decoder

in a noisy communication channel. The DiPPM technique is to be used for this

simulation evaluation of the coded communication system.

Figure 9.1 Communication System Model with RS Encoder/ RS Decoder over AWGN

Channel

 Further the Matlab program in chapter 5 can be upgraded in order to send and

receive an audio video data, and to measure the optical spectrum of the system.

 The RS code can be upgraded by using a rate-adaptive transmission scheme with

variable-rate forward error correction codes along with a fixed signal constellation

and a fixed symbol rate. This would help to quantify the variation of the bit rates

with distance in a long-haul fiber system. The FEC scheme should use the serially

concatenated RS codes.

 The practical implementation of the system can be improved by the addition of a

timing extraction circuit. Further, if high frequencies need to be reached a double

clock frequency can be used for the purpose. This will allow the system to

function as a positive end, even while emulating working for the system on both

edges of a single clock.

181

Chapter10: APPENDICES

10.1. Appendix 1

10.1.1. DiPPM & RS Mathcad simulation for slope detection

method.

182

183

184

185

186

187

188

189

190

191

192

193

194

195

10.1.2. DiPPM & RS Mathcad simulation for central detection

method.

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

10.2. Appendix 2

10.2.1. DiPPM Matlab simulation.

1. %% DiPPM Coder
2. %% Initialaization
3. clear all
4. close all
5. clc
6. %% step one: generating a random binary PCM signal and clock
7. seq_length = 30;
8. PCM_seq = randi([0 1], 1, seq_length);
9. clock_seq = repmat([1 0],1,seq_length/2);
10. %% DiPPM encoder
11. %input: PCM_signal
12. %output: DiPPM_signal
13. DiPPM_seq = DiPPM_Encoder_B(PCM_seq);
14. %% DiPPM Decoder
15. %input: DiPPM_seq
16. %output: PCM_Decoded_seq
17. PCM_Decoded_seq = zeros(1,length(DiPPM_seq)/2);
18. flag1 = false;
19. flag2 = true;
20. for ii=3:2:length(DiPPM_seq)
21. pcm_index = (ii+1)/2;
22. if(DiPPM_seq(ii) == DiPPM_seq(ii+1))
23. if(pcm_index>1)
24. PCM_Decoded_seq(pcm_index) = PCM_Decoded_seq(pcm_index-1);
25. end
26. elseif(DiPPM_seq(ii) == 0 && DiPPM_seq(ii+1)==1)
27. flag1 = true;
28. if(pcm_index>1)
29. PCM_Decoded_seq(pcm_index-1)=1;
30. end
31. PCM_Decoded_seq(pcm_index)=0;
32. elseif(DiPPM_seq(ii) == 1 && DiPPM_seq(ii+1)==0)
33. flag1 = true;
34. if(pcm_index>1)
35. PCM_Decoded_seq(pcm_index-1)=0;
36. end
37. PCM_Decoded_seq(pcm_index)=1;
38. end
39. if(flag1&&flag2)
40. flag1 = false;
41. flag2 = false;
42. PCM_Decoded_seq(1:pcm_index-1)=PCM_Decoded_seq(pcm_index-1);
43. end
44. end
45. %% converting form binary to pulses
46. clock_freq = 1*10^9;
47. pulse_width = 1/(2*clock_freq);
48. t0=0;
49. t1 = pulse_width * seq_length;
50. samples_per_pulse = 200;

229

51. total_no_samples = samples_per_pulse * seq_length;
52. t = t0:(t1/total_no_samples):t1-(t1/total_no_samples);
53. pulse_width_DiPPM = pulse_width/2;
54. samples_per_pulse_DiPPM = samples_per_pulse/2;
55. PCM_signal = zeros(size(t));
56. DiPPM_signal = zeros(size(t));
57. for i=1:length(PCM_signal)
58. PCM_signal(i)=PCM_seq(ceil(i/samples_per_pulse));
59. clock_signal(i)=clock_seq(ceil(i/samples_per_pulse));
60. DiPPM_signal(i)=DiPPM_seq(ceil(i/samples_per_pulse_DiPPM));
61. PCM_Decoded_signal(i)=PCM_Decoded_seq(ceil(i/samples_per_pulse));
62. end
63. %% Ploting the signals:
64. figure(1)
65. subplot(3,1,1),plot(t,clock_signal,'r','LineWidth',1.5);
66. axis([0 1.05*t1 0 1.5]);
67. title('Clock Signal');
68. grid on
69. grid minor
70. subplot(3,1,2), plot(t,PCM_signal,'LineWidth',1.5);
71. axis([0 1.05*t1 0 1.5]);
72. title('PCM Signal');
73. grid on
74. grid minor
75. subplot(3,1,3), plot(t,DiPPM_signal,'LineWidth',1.5);
76. axis([0 1.05*t1 0 1.5]);
77. title('DiPPM Signal');
78. grid minor
79. grid on
80. figure(2)
81. subplot(3,1,1),plot(t,clock_signal,'r','LineWidth',1.5);
82. axis([0 1.05*t1 0 1.5]);
83. title('Clock Signal');
84. grid on
85. grid minor
86. subplot(3,1,2), plot(t,DiPPM_signal,'LineWidth',1.5);
87. axis([0 1.05*t1 0 1.5]);
88. title('DiPPM Signal');
89. grid minor
90. grid on
91. subplot(3,1,3), plot(t,PCM_Decoded_signal,'LineWidth',1.5);
92. axis([0 1.05*t1 0 1.5]);
93. title('PCM Decoded Signal');
94. grid minor
95. grid on
96. %% ploting using stairs
97. figure(3)
98. subplot(4,1,1),stairs(clock_seq,'r','LineWidth',1.5);
99. axis([1 seq_length 0 1.5]);
100. title('Clock Signal');

101. grid on

102. grid minor

103. subplot(4,1,2), stairs(PCM_seq,'LineWidth',1.5);

104. axis([1 seq_length 0 1.5]);

105. title('PCM Signal');

106. grid on

107. grid minor

230

108. subplot(4,1,3), stairs(DiPPM_seq,'LineWidth',1.5);

109. axis([1 seq_length*2 0 1.5]);

110. title('DiPPM Signal');

111. grid minor

112. grid on

113. subplot(4,1,4), stairs(PCM_Decoded_seq,'LineWidth',1.5);

114. axis([1 seq_length 0 1.5]);

115. title('PCM Decoded Signal');

116. grid minor

117. grid on

231

10.2.2. Function of DiPPM coder.

1. function DiPPM_seq = DiPPM_Encoder_B(PCM_seq)
2. %% DiPPM encoder
3. %input: PCM_signal
4. %output: DiPPM_signal
5. seq_length = length(PCM_seq);
6. DiPPM_seq = zeros(1,seq_length*2);
7. for i=2:seq_length
8.
9. if(PCM_seq(i) == PCM_seq(i-1))
10. DiPPM_seq(2*i-1) = 0;
11. DiPPM_seq(2*i) = 0;
12. elseif(PCM_seq(i) == 0 && PCM_seq(i-1)==1)
13. DiPPM_seq(2*i-1) = 0;
14. DiPPM_seq(2*i) = 1;
15. elseif(PCM_seq(i) == 1 && PCM_seq(i-1)==0)
16. DiPPM_seq(2*i-1) = 1;
17. DiPPM_seq(2*i) = 0;
18. end
19. end
20. end

232

10.2.3. Function of DiPPM decoder.

1. %% DiPPM Decoder
2. %input: DiPPM_seq
3. %output: PCM_Decoded_seq
4. function PCM_Decoded_seq = DiPPM_Decoder_B(DiPPM_seq)
5. PCM_Decoded_seq = zeros(1,length(DiPPM_seq)/2);
6. flag1 = false;
7. flag2 = true;
8. for ii=3:2:length(DiPPM_seq)
9.
10. pcm_index = (ii+1)/2;
11. if(DiPPM_seq(ii) == DiPPM_seq(ii+1))
12. if(pcm_index>1)
13. PCM_Decoded_seq(pcm_index) = PCM_Decoded_seq(pcm_index-1);
14. end
15. elseif(DiPPM_seq(ii) == 0 && DiPPM_seq(ii+1)==1)
16. flag1 = true;
17. if(pcm_index>1)
18. PCM_Decoded_seq(pcm_index-1)=1;
19. end
20. PCM_Decoded_seq(pcm_index)=0;
21. elseif(DiPPM_seq(ii) == 1 && DiPPM_seq(ii+1)==0)
22. flag1 = true;
23. if(pcm_index>1)
24. PCM_Decoded_seq(pcm_index-1)=0;
25. end
26. PCM_Decoded_seq(pcm_index)=1;
27. end
28. if(flag1&&flag2)
29. flag1 = false;
30. flag2 = false;
31. PCM_Decoded_seq(1:pcm_index-1)=PCM_Decoded_seq(pcm_index-1);
32. end
33.
34. end

233

10.2.4. DiPPM & RS Matlab Simulation.

1. %% Complete RS_DiPPM Tx Rx system.
2. %% Initialaization
3. clear all
4. close all
5. clc
6.
7.
8. %% Transmitter Side Tx
9.
10. % Parameters:
11.
12. k=23;
13. m = 5;
14. n = 2^m -1;
15. seq_length = 300;
16. pri_poly = 37;
17.
18.
19. % step 1: integer massage generator
20. biggest_int = 2^m -1;
21. PCM_seq = randi([0 biggest_int], 1, seq_length);
22.
23.
24. % Step 2:The RS Encoding
25. msg = gf(PCM_seq(1:k),m);
26. genpoly = rsgenpoly(n,k);
27. RS_code = rsenc(msg,n,k,genpoly);
28.
29.
30. % Step 3: converting to binary
31. RS_code_dec = gf2dec(RS_code,m,pri_poly);
32. RS_code_bin = dec2bin(RS_code_dec);
33. % RS_code_bin_2 = reshape(RS_code_bin,1,m*n);
34. RS_code_bin_3 = zeros(1,155);
35. tt=1;
36. for i=1:n
37. for j=1:5
38. RS_code_bin_3(tt) = str2double(RS_code_bin(i,j));
39. tt = tt+1;
40. end
41. end
42.
43.
44. % Step 4: DiPPM Encoding
45. DiPPM_seq = DiPPM_Encoder_B(RS_code_bin_3);
46.
47.
48.
49. %% Channel
50.
51. %changing bitwise
52. random_seq = ones(size(DiPPM_seq));
53. number_of_changes = 4;

234

54. random_indices = randi([1 length(random_seq)], 1, number_of_changes);
55. % DiPPM_seq(random_indices) = not(DiPPM_seq(random_indices));
56.
57. %changing sample wise;
58. noc = 4;
59. random_indices_1 = zeros(1,noc);
60. interval_step = floor(length(DiPPM_seq)/noc);
61. for ii=1:noc
62. temp = randi([((ii-1)*interval_step)+1 ii*interval_step]);
63. random_indices_1(ii) = temp;
64. end
65. DiPPM_seq(random_indices_1) = not(DiPPM_seq(random_indices_1));
66.
67. %% Reciver Side Rx
68.
69. % Step 1: DiPPM_Decoder
70. DiPPM_decoded_seq = DiPPM_Decoder_B(DiPPM_seq);
71.
72. DiPPM_decoded_seq_1 = zeros(n,m);
73. % Step 2: Convert to Decimal sequence
74. % DiPPM_decoded_seq_1 = reshape(DiPPM_decoded_seq,n,m);
75. tt=1;
76. for i=1:n
77. for j=1:5
78. DiPPM_decoded_seq_1(i,j) = (DiPPM_decoded_seq(tt));
79. tt = tt+1;
80. end
81. end
82. DiPPM_decoded_seq_dec = num2str(DiPPM_decoded_seq_1);
83. DiPPM_decoded_seq_dec = bin2dec(DiPPM_decoded_seq_dec);
84.
85. % Step 3: RS_Decoder
86. msg2 = gf(DiPPM_decoded_seq_dec,m);
87. [RS_decoded_seq,cnumerr] = rsdec(msg2',n,k,genpoly);
88.
89. RS_decoded_dec = gf2dec(RS_decoded_seq,m,pri_poly);
90.
91.
92.
93. %% Display the error between the original message and the received
94. figure(1)
95. subplot(2,1,1), stairs(PCM_seq(1:k),'LineWidth',2);
96. title('original msg (blue) vs RS decoded');
97. hold on
98. stairs(RS_decoded_dec,'r','LineWidth',1.5);
99. grid on
100. subplot(2,1,2), stairs(PCM_seq(1:k)-

RS_decoded_dec,'LineWidth',1.5);

101. grid on

102.

103. figure(2)

104. subplot(2,1,1), stairs(DiPPM_decoded_seq_dec(1:k),'LineWidth',2);

105. hold on

106. title('DiPPM decoded(blue) vs RS decoded');

107. stairs(RS_decoded_dec,'r','LineWidth',1.5);

108. grid on

235

109. subplot(2,1,2), stairs(DiPPM_decoded_seq_dec(1:k)'-

RS_decoded_dec,'LineWidth',1.5);

110. grid on

111.

112. figure(3)

113. stairs(RS_code_dec - DiPPM_decoded_seq_dec','k','LineWidth',1.5);

114. title('difference between sent RS code and the received code');

115. grid minor

116.

117. %% drawing the pulses Tx

118. k2 = 30;

119. clock_seq = repmat([1 0],1,(m*k2)/2);

120.

121. % convert from decimal to binary

122. PCM_binary = dec2bin(PCM_seq(1:k2));

123. % PCM_binary = reshape(PCM_binary,1,m*k2);

124. PCM_bin_2 = zeros(1,k2*m);

125. tt=1;

126. for i=1:length(PCM_binary)

127. for j=1:5

128. PCM_bin_2(tt) = str2double(PCM_binary(i,j));

129. tt = tt+1;

130. end

131. end

132.

133.

134. clock_freq = 1*10^9;

135. pulse_width = 1/(2*clock_freq);

136. t0=0;

137. t1 = 2*pulse_width * m*k2;

138. samples_per_pulse = 50;

139.

140. total_no_samples = samples_per_pulse * m*k2;

141. t = t0:(t1/total_no_samples):t1-(t1/total_no_samples);

142. %

143. pulse_width_DiPPM = pulse_width/2;

144. samples_per_pulse_DiPPM = samples_per_pulse/2;

145. %

146. clock_signal = zeros(size(t));

147. PCM_signal = zeros(size(t));

148. RS_signal = zeros(size(t));

149. DiPPM_signal = zeros(size(t));

150. for i=1:length(PCM_signal)

151. PCM_signal(i)=PCM_bin_2(ceil(i/samples_per_pulse));

152. clock_signal(i)=clock_seq(ceil(i/samples_per_pulse));

153. RS_signal(i) = RS_code_bin_3(ceil(i/samples_per_pulse));

154. DiPPM_signal(i)=DiPPM_seq(ceil(i/samples_per_pulse_DiPPM));

155. %

PCM_Decoded_signal(i)=PCM_Decoded_seq(ceil(i/samples_per_pulse));

156.

157. end

158.

159. figure(4)

160. subplot(5,1,1),plot(t,clock_signal,'r','LineWidth',1.5);

161. axis([0 1.05*t1 0 1.5]);

162. title('Clock Signal');

163. grid on

236

164. grid minor

165. subplot(5,1,2), plot(t,PCM_signal,'LineWidth',1.5);

166. axis([0 1.05*t1 0 1.5]);

167. title('PCM Signal');

168. grid on

169. grid minor

170. subplot(5,1,3), plot(t,RS_signal,'LineWidth',1.5);

171. axis([0 1.05*t1 0 1.5]);

172. title('RS Signal');

173. grid on

174. grid minor

175. subplot(5,1,4), plot(t,abs(RS_signal-

PCM_signal),'LineWidth',1.5);

176. axis([0 1.05*t1 0 1.5]);

177. title('RS Signal - PCM signal');

178. grid on

179. grid minor

180. subplot(5,1,5), plot(t,DiPPM_signal,'LineWidth',1.5);

181. axis([0 1.05*t1 0 1.5]);

182. title('DiPPM Signal');

183. grid minor

184. grid on

185. %% drawing the pulses Rx

186. % convert from decimal to binary

187. RS_decoded_binary = dec2bin(RS_decoded_dec);

188. % PCM_binary = reshape(PCM_binary,1,m*k2);

189. RS_decoded_binary_1 = zeros(1,k2*m);

190. tt=1;

191. for i=1:k

192. for j=1:5

193. RS_decoded_binary_1(tt) = str2double(RS_decoded_binary(i,j));

194. tt = tt+1;

195. end

196. end

197.

198.

199. DiPPM_decoded_signal = zeros(size(t));

200. RS_decoded_signal = zeros(size(t));

201. % RS_signal = zeros(size(t));

202. DiPPM_signal = zeros(size(t));

203. for i=1:length(PCM_signal)

204.

DiPPM_decoded_signal(i)=DiPPM_decoded_seq(ceil(i/samples_per_pulse));

205. RS_decoded_signal(i) =

RS_decoded_binary_1(ceil(i/samples_per_pulse));

206. % DiPPM_signal(i)=DiPPM_seq(ceil(i/samples_per_pulse_DiPPM));

207. %

PCM_Decoded_signal(i)=PCM_Decoded_seq(ceil(i/samples_per_pulse));

208.

209. end

210.

211. figure(5)

212. subplot(4,1,1),plot(t,DiPPM_decoded_signal,'LineWidth',1.5);

213. axis([0 1.05*t1 0 1.5]);

214. title('DiPPM Decoded Signal');

215. grid on

216. grid minor

237

217. subplot(4,1,2),plot(t,abs(DiPPM_decoded_signal-

RS_signal),'r','LineWidth',1.5);

218. axis([0 1.05*t1 -.5 1.5]);

219. title('DiPPM Decoded Signal - RS Signal');

220. grid on

221. grid minor

222. subplot(4,1,3),plot(t,RS_decoded_signal,'LineWidth',1.5);

223. axis([0 1.05*t1 0 1.5]);

224. title('RS Decoded Signal');

225. grid on

226. grid minor

227. subplot(4,1,4),plot(RS_decoded_signal(1:k*m)-

PCM_signal(1:m*k),'LineWidth',1.5);

228. % axis([0 1.05*t1 0 1.5]);

229. title('RS Decoded vs PCM signal');

230. grid on

231. grid minor

1.

238

10.2.5. Function of Galois field to decimal transformation.

1. function [DecOutput] = gf2dec(GFInput,m,prim_poly)
2. GFInput = GFInput(:)';% force a row vector
3. GFRefArray = gf([0:(2^m)-1],m,prim_poly);
4. for i=1:length(GFInput)
5. for k=0:(2^m)-1
6. temp = isequal(GFInput(i),GFRefArray(k+1));
7. if (temp==1)
8. DecOutput(i) = k;
9. end
10. end
11. end

239

10.3. Appendix 3

10.3.1. PRBS VHDL source code.

1. ===
2. -- Project Name: DiPPM & RS
3. -- Name: pbrs. vhd
4. ===
5. -- Description: Pseudo Random Binary Generator Sequence
6. ===
7. -- libraries
8. ===
9. library ieee;
10. use ieee.std_logic_1164.all;
11. use ieee.numeric_std.all;
12. library work;
13. use work.pbrs_pkg.all;
14. ===
15. -- TOP instantiation
16. ===
17. entity pbrs is
18. port (
19. CLK : in std_logic; -- system clock
20. RESET : in std_logic; -- system reset
21. -- outputs
22. enable : out std_logic; -- enable signal
23. startpls : out std_logic; -- start pulse

signal

24. dataOut : out std_logic_vector(4 downto 0) -- data out
25.);
26. end pbrs;
27.
28.
29. ===
30. -- RTL Architecture
31. ===
32. architecture rtl of pbrs is
33. ---
34. -- Signals
35. ---
36. signal shiftreg : std_logic_vector(4 downto 0);
37. signal dataOut_inner : std_logic_vector(4 downto 0);
38. signal ctrl_cnt : std_logic_vector(7 downto 0);
39. signal enable_inner : std_logic;
40. signal startpls_inner : std_logic;
41. begin
42. ---
43. -- Write Pointer
44. pbrs_p : process (CLK,RESET) is
45. begin
46. if RESET = '0' then
47. shiftreg <= "10000";
48. enable_inner <= '0';
49. ctrl_cnt <= (others => '0');

240

50. elsif rising_edge(CLK) then
51. --------------
52. if (ctrl_cnt < "00011111") then
53. enable_inner <= '1';
54. else
55. enable_inner <= '0';
56. end if;
57. if (ctrl_cnt < "00010111") then
58. shiftreg (0) <= shiftreg(1) xor shiftreg(2) xor

shiftreg(4);

59. shiftreg (1) <= shiftreg (0);
60. shiftreg (2) <= shiftreg (1);
61. shiftreg (3) <= shiftreg (2);
62. shiftreg (4) <= shiftreg (3);
63. dataOut_inner <= shiftreg;
64. else
65. dataOut_inner <= (others => '0');
66. end if;
67. if (ctrl_cnt = "10101010") then -- 10011011
68. ctrl_cnt <= "00000000";
69. else
70. ctrl_cnt <= std_logic_vector(unsigned(ctrl_cnt) + 1);
71. end if;
72. if (ctrl_cnt = "00000000") then
73. startpls_inner <= '1';
74. else
75. startpls_inner <= '0';
76. end if;
77. end if;
78. end process;
79. -- Output ports
80. enable <= enable_inner;
81. startpls <= startpls_inner;
82. dataOut <= dataOut_inner;
83. end rtl;

241

10.3.2. RS coder VHDL source code.

1. ==
2. -- Project Name: RSIP
3. -- Name: rscoder_top_31_23. vhd
4. ===
5. -- Description: RS (31,23) encoder module
6. ===
7. -- libraries

8. ===
9. library ieee;
10. use ieee.std_logic_1164.all;
11. use ieee.numeric_std.all;
12. library work;
13. use work.rscoder_31_23_top_pkg.all;
14. ===
15. -- TOP instantiation
16. ===
17. entity rscoder_31_23_top is
18. port (
19. CLK : in std_logic; -- system clock
20. RESET : in std_logic; -- system reset
21. enable : in std_logic; -- rs encoder enable

signal

22. startPls : in std_logic; -- rs encoder sync
signal

23. dataIn : in std_logic_vector(4 downto 0); -- rs encoder data
in

24. -- Data output
25. dataOut : out std_logic_vector(4 downto 0) -- rs encoder data

out

26.);
27. end rscoder_31_23_top;
28.
29. ===
30. -- RTL Architecture
31. ===
32. architecture rtl of rscoder_31_23_top is
33. ---
34. -- Signals
35. ---
36. signal count : std_logic_vector(4 downto 0);
37. signal dataValid : std_logic;
38. signal feedbackReg: std_logic_vector(4 downto 0);
39. signal mult_0: std_logic_vector(4 downto 0);
40. signal mult_1: std_logic_vector(4 downto 0);
41. signal mult_2: std_logic_vector(4 downto 0);
42. signal mult_3: std_logic_vector(4 downto 0);
43. signal mult_4: std_logic_vector(4 downto 0);
44. signal mult_5: std_logic_vector(4 downto 0);
45. signal mult_6: std_logic_vector(4 downto 0);
46. signal mult_7: std_logic_vector(4 downto 0);
47. signal syndromeReg_0: std_logic_vector(4 downto 0);
48. signal syndromeReg_1: std_logic_vector(4 downto 0);
49. signal syndromeReg_2: std_logic_vector(4 downto 0);

242

50. signal syndromeReg_3: std_logic_vector(4 downto 0);
51. signal syndromeReg_4: std_logic_vector(4 downto 0);
52. signal syndromeReg_5: std_logic_vector(4 downto 0);
53. signal syndromeReg_6: std_logic_vector(4 downto 0);
54. signal syndromeReg_7: std_logic_vector(4 downto 0);
55. signal dataReg: std_logic_vector(4 downto 0);
56. signal syndromeRegFF: std_logic_vector(4 downto 0);
57. signal wireOut: std_logic_vector(4 downto 0);
58. signal dataOutInner : std_logic_vector(4 downto 0);
59. begin
60. ---
61. -- count
62. rs_count : process (CLK,RESET) is
63. begin
64. if RESET = '0' then
65. count <= (others => '0');
66. elsif rising_edge(CLK) then
67. if (enable ='1') then
68. if (startPls ='1') then
69. count <= "00001";
70. elsif ((count ="00000") or (count ="11111")) then
71. count <= (others => '0');
72. else
73. count <= std_logic_vector(unsigned(count) + 1);
74. end if;
75. end if;
76. end if;
77. end process;
78. ---
79. -- dataValid
80. dataValid <= '1' when ((startPls = '1') or (count < "10111")) else

'0';

81. ---
82. -- mulitpliers
83. mult_7(0) <= feedbackReg(3);
84. mult_7(1) <= feedbackReg(4);
85. mult_7(2) <= feedbackReg(0) xor feedbackReg(3);
86. mult_7(3) <= feedbackReg(1) xor feedbackReg(4);
87. mult_7(4) <= feedbackReg(2);
88. mult_2(0) <= feedbackReg(2);
89. mult_2(1) <= feedbackReg(3);
90. mult_2(2) <= feedbackReg(2) xor feedbackReg(4);
91. mult_2(3) <= feedbackReg(0) xor feedbackReg(3);
92. mult_2(4) <= feedbackReg(1) xor feedbackReg(4);
93. mult_4(0) <= feedbackReg(0) xor feedbackReg(1) xor feedbackReg(2)

xor feedbackReg(3);

94. mult_4(1) <= feedbackReg(0) xor feedbackReg(1) xor feedbackReg(2)
xor feedbackReg(3) xor feedbackReg(4);

95. mult_4(2) <= feedbackReg(0) xor feedbackReg(4);
96. mult_4(3) <= feedbackReg(0) xor feedbackReg(1);
97. mult_4(4) <= feedbackReg(0) xor feedbackReg(1) xor feedbackReg(2);
98. mult_5(0) <= feedbackReg(2) xor feedbackReg(3);
99. mult_5(1) <= feedbackReg(3) xor feedbackReg(4);
100. mult_5(2) <= feedbackReg(0) xor feedbackReg(2) xor

feedbackReg(3) xor feedbackReg(4);

101. mult_5(3) <= feedbackReg(0) xor feedbackReg(1) xor

feedbackReg(3) xor feedbackReg(4);

243

102. mult_5(4) <= feedbackReg(1) xor feedbackReg(2) xor

feedbackReg(4);

103. mult_6(0) <= feedbackReg(2) xor feedbackReg(3);

104. mult_6(1) <= feedbackReg(3) xor feedbackReg(4);

105. mult_6(2) <= feedbackReg(0) xor feedbackReg(2) xor

feedbackReg(3) xor feedbackReg(4);

106. mult_6(3) <= feedbackReg(0) xor feedbackReg(1) xor

feedbackReg(3) xor feedbackReg(4);

107. mult_6(4) <= feedbackReg(1) xor feedbackReg(2) xor

feedbackReg(4);

108. mult_1(0) <= feedbackReg(0) xor feedbackReg(2) xor

feedbackReg(3) xor feedbackReg(4);

109. mult_1(1) <= feedbackReg(0) xor feedbackReg(1) xor

feedbackReg(3) xor feedbackReg(4);

110. mult_1(2) <= feedbackReg(0) xor feedbackReg(1) xor

feedbackReg(3);

111. mult_1(3) <= feedbackReg(0) xor feedbackReg(1) xor

feedbackReg(2) xor feedbackReg(4);

112. mult_1(4) <= feedbackReg(1) xor feedbackReg(2) xor

feedbackReg(3);

113. mult_3(0) <= feedbackReg(0) xor feedbackReg(2) xor

feedbackReg(4);

114. mult_3(1) <= feedbackReg(0) xor feedbackReg(1) xor

feedbackReg(3);

115. mult_3(2) <= feedbackReg(1);

116. mult_3(3) <= feedbackReg(0) xor feedbackReg(2);

117. mult_3(4) <= feedbackReg(1) xor feedbackReg(3);

118. mult_0(0) <= feedbackReg(1) xor feedbackReg(3);

119. mult_0(1) <= feedbackReg(0) xor feedbackReg(2) xor

feedbackReg(4);

120. mult_0(2) <= feedbackReg(0);

121. mult_0(3) <= feedbackReg(1);

122. mult_0(4) <= feedbackReg(0) xor feedbackReg(2);

123. ---

124. -- syndromeReg

125. rs_syndrome : process (CLK,RESET) is

126. begin

127. if RESET = '0' then

128. syndromeReg_0 <= (others => '0');

129. syndromeReg_1 <= (others => '0');

130. syndromeReg_2 <= (others => '0');

131. syndromeReg_3 <= (others => '0');

132. syndromeReg_4 <= (others => '0');

133. syndromeReg_5 <= (others => '0');

134. syndromeReg_6 <= (others => '0');

135. syndromeReg_7 <= (others => '0');

136. elsif rising_edge(CLK) then

137. if (enable ='1') then

138. if (startPls ='1') then

139. syndromeReg_0 <= mult_0 (4 downto 0);

140. syndromeReg_1 <= mult_1 (4 downto 0);

141. syndromeReg_2 <= mult_2 (4 downto 0);

142. syndromeReg_3 <= mult_3 (4 downto 0);

143. syndromeReg_4 <= mult_4 (4 downto 0);

144. syndromeReg_5 <= mult_5 (4 downto 0);

145. syndromeReg_6 <= mult_6 (4 downto 0);

146. syndromeReg_7 <= mult_7 (4 downto 0);

244

147. else

148. syndromeReg_0 <= mult_0 (4 downto 0);

149. syndromeReg_1 <= syndromeReg_0(4 downto 0) xor mult_1(4 downto

0);

150. syndromeReg_2 <= syndromeReg_1(4 downto 0) xor mult_2(4 downto

0);

151. syndromeReg_3 <= syndromeReg_2(4 downto 0) xor mult_3(4 downto

0);

152. syndromeReg_4 <= syndromeReg_3(4 downto 0) xor mult_4(4 downto

0);

153. syndromeReg_5 <= syndromeReg_4(4 downto 0) xor mult_5(4 downto

0);

154. syndromeReg_6 <= syndromeReg_5(4 downto 0) xor mult_6(4 downto

0);

155. syndromeReg_7 <= syndromeReg_6(4 downto 0) xor mult_7(4 downto

0);

156. end if;

157. end if;

158. end if;

159. end process;

160.

161.

162. ---

163. -- feedbackReg

164. feedbackReg <= (dataIn(4 downto 0)) when (startPls = '1')

else

165. (dataIn(4 downto 0) xor syndromeReg_7(4 downto

0)) when (dataValid = '1') else "00000";

166. ---

167. -- dataReg syndromeRegFF

168. rs_dataReg : process (CLK,RESET) is

169. begin

170. if RESET = '0' then

171. dataReg <= (others => '0');

172. syndromeRegFF <= (others => '0');

173. elsif rising_edge(CLK) then

174. if (enable ='1') then

175. dataReg <= dataIn(4 downto 0);

176. syndromeRegFF <= syndromeReg_7(4 downto 0) ;

177. end if;

178. end if;

179. end process;

180. ---

181. -- wireOut

182. wireOut <= (dataReg(4 downto 0)) when (count <= "10111")

else syndromeRegFF(4 downto 0);

183. ---

184. -- dataOutInner

185. rs_dataOut : process (CLK,RESET) is

186. begin

187. if RESET = '0' then

188. dataOutInner <= (others => '0');

189. elsif rising_edge(CLK) then

190. dataOutInner <= wireOut;

191. end if;

192. end process;

193. ---

245

194. -- Output ports

195. dataOut <= dataOutInner;

196. end rtl;

246

10.3.3. Parallel to searial bridge VHDL source code.

1. ==
2. -- Project Name: bridge coder
3. -- Name: bridgecoder_top. vhd
4. --

===

5. -- Description: bridge for encoder

6. --
===

7. -- libraries
8. ===
9. library ieee;
10. use ieee.std_logic_1164.all;
11. use ieee.numeric_std.all;
12. library work;

13. use work.bridgecoder_top_pkg.all;
14. use work.bridgecoder_dpram_pkg.all;
15. ===
16. -- TOP instantiation
17. ===
18. entity bridgecoder_top is
19. port (
20. CLK : in std_logic; -- system clock
21. RESET: in std_logic; -- system reset
22. enable: in std_logic; -- enable signal
23. startPls: in std_logic; -- sync signal
24. dataIn: in std_logic_vector(4 downto 0); -- data in
25. -- Data output
26. dataOut: out std_logic; -- data out
27. startPlsOut: out std_logic; -- start pulse out
28. enOut: out std_logic -- enable out
29.);
30. end bridgecoder_top;
31. ===
32. -- RTL Architecture
33. ===
34. architecture rtl of bridgecoder_top is
35. --
36. -- Signals
37. --
38. signal enable_ff1 : std_logic;
39. signal enable_ff2 : std_logic;
40. signal enable_ff3 : std_logic;
41. signal writePointer: std_logic_vector(4 downto 0);
42. signal readPointer : std_logic_vector(4 downto 0);
43. signal rdcnt_5clk : std_logic_vector(2 downto 0);
44. signal rdcnt_5clk_ff1 : std_logic_vector(2 downto 0);
45. signal rdcnt_5clk_ff2 : std_logic_vector(2 downto 0);
46. signal rd_enable : std_logic;
47. signal dpramRdData : std_logic_vector(4 downto 0);
48. signal dataOutInner : std_logic;
49. signal rd_enable_ff1 : std_logic;
50. signal rd_enable_ff2 : std_logic;
51. signal rd_enable_ff3 : std_logic;

247

52. signal startPls_ff1 : std_logic;
53. signal startPls_ff2 : std_logic;
54. signal startPls_ff3 : std_logic;
55. signal startPls_ff4 : std_logic;
56. signal startPls_ff5 : std_logic;
57. signal startPls_ff6 : std_logic;
58. begin
59. ---
60. -- RAM memory instantiation
61. u_bridgecoder_dpram : bridgecoder_dpram
62. port map(
63. w_clk => CLK,
64. w_en => enable_ff2,
65. w_addr => writePointer,
66. w_data => dataIn,
67. r_clk => CLK,
68. r_en => rd_enable,
69. r_addr => readPointer,
70. r_data => dpramRdData
71.);
72. ---
73. -- write side process
74. wr_side_p : process (CLK,RESET) is
75. begin
76. if RESET = '0' then
77. writePointer <= (others => '0');
78. enable_ff1 <= '0';
79. enable_ff2 <= '0';
80. enable_ff3 <= '0';
81. elsif rising_edge(CLK) then
82. enable_ff1 <= enable;
83. enable_ff2 <= enable_ff1;
84. enable_ff3 <= enable_ff2;
85. -----------
86. if (enable_ff2 ='1') then
87. if (writePointer = "11110") then
88. writePointer <= "00000";
89. else
90. writePointer <=

std_logic_vector(unsigned(writePointer) + 1);

91. end if;
92. end if;
93. end if;
94. end process;
95. -- read side process
96. rd_side_p : process (CLK,RESET) is
97. begin
98. if RESET = '0' then
99. readPointer <= (others => '0');
100. rdcnt_5clk <= (others => '0');

101. rd_enable <= '0';

102. dataOutInner <= '0';

103. rd_enable_ff1<= '0';

104. rd_enable_ff2<= '0';

105. rd_enable_ff3<= '0';

106. startPls_ff1 <= '0';

107. startPls_ff2 <= '0';

248

108. startPls_ff3 <= '0';

109. startPls_ff4 <= '0';

110. startPls_ff5 <= '0';

111. startPls_ff6 <= '0';

112. elsif rising_edge(CLK) then

113. if ((enable_ff3='0') and (enable_ff2='1')) then

114. rd_enable <= '1';

115. elsif ((readPointer = "11110") and (rd_enable ='1')

and (rdcnt_5clk = "100")) then

116. rd_enable <= '0';

117. end if;

118. if (rd_enable ='1') then

119. if (rdcnt_5clk = "100") then

120. rdcnt_5clk <= (others => '0');

121. else

122. rdcnt_5clk <=

std_logic_vector(unsigned(rdcnt_5clk) + 1);

123. end if;

124. end if;

125. if ((rd_enable ='1') and (rdcnt_5clk = "100")) then

126. if (readPointer = "11110") then

127. readPointer <= "00000";

128. else

129. readPointer <=

std_logic_vector(unsigned(readPointer) + 1);

130. end if;

131. end if;

132. rdcnt_5clk_ff1 <= rdcnt_5clk;

133. rdcnt_5clk_ff2 <= rdcnt_5clk_ff1;

134. if (rd_enable_ff2='1') then

135. case (rdcnt_5clk_ff2) is

136. when "000" => dataOutInner <=

dpramRdData(4);

137. when "001" => dataOutInner <=

dpramRdData(3);

138. when "010" => dataOutInner <=

dpramRdData(2);

139. when "011" => dataOutInner <=

dpramRdData(1);

140. when others => dataOutInner <=

dpramRdData(0);

141. end case;

142. else

143. dataOutInner <= '0';

144. end if;

145. rd_enable_ff1 <= rd_enable;

146. rd_enable_ff2 <= rd_enable_ff1;

147. rd_enable_ff3 <= rd_enable_ff2;

148. startPls_ff1 <= startPls;

149. startPls_ff2 <= startPls_ff1;

150. startPls_ff3 <= startPls_ff2;

151. startPls_ff4 <= startPls_ff3;

152. startPls_ff5 <= startPls_ff4;

153. startPls_ff6 <= startPls_ff5;

154. end if;

155. end process;

156.

249

157. -- Output ports

158. dataOut <= dataOutInner;

159. startPlsOut <= startPls_ff6;

160. enOut <= rd_enable_ff3;

161. end rtl;

250

10.3.4. DiPPM coder VHDL source code.

1. ==
2. -- Project Name: DiPPM
3. -- Name: DiPPMcoders. vhd
4. ===
5. -- Description: DiPPM coder
6. ===
7. -- libraries
8. ===
9. Library IEEE;
10. use IEEE.STD_LOGIC_1164.all;
11. entity DiPPMcoders is
12. port(
13. CLK : in std_logic;
14. PCM : in std_logic;
15. enableIn : in std_logic;
16. startPlsIn : in std_logic;
17. DiPPM:out std_logic;
18. enableOut:out std_logic;
19. startPlsOut:out std_logic
20.);
21. end DiPPMcoders;
22. architecture beh of DiPPMcoders is
23. Signal DiPPM_inner:std_logic;
24. Signal enable_inner:std_logic;
25. Signal startpls_inner:std_logic;
26. signal DiPPMss:std_logic;
27. signal DiPPMr:std_logic;
28. signal DiPPMrr:std_logic;
29. signal DiPPMrrr:std_logic;
30. Signal R:std_logic;
31. Signal S:std_logic;
32.
33. begin
34.
35. dummy_process :process(CLK) is
36. begin
37. if rising_edge(CLK) then
38. enable_inner <= enableIn;
39. startpls_inner <= startPlsIn;
40. end if;
41. end process;
42.
43. process
44. begin
45.
46. wait until clk='0' and clk'event;
47. DiPPMss<=PCM;
48. end process;
49.
50. S<= '1' when PCM='1' and DiPPMss='0' else
51. '0';
52. DiPPMr<='1' when PCM='0'else
53. '0';

251

54.
55. process
56. begin
57. wait until clk='0' and clk'event;
58. DiPPMrr<=DiPPMr;
59. end process;
60.
61. process
62. begin
63. wait until clk='1'and clk'event;
64. DiPPMrrr<=DiPPMrr;
65. end process;
66.
67. R<='1' when DiPPMrrr='0' and DiPPMrr='1' else
68. '0';
69. DiPPM_inner<= '1' when S='1' and R='0'else
70. '1' when S='0' and R='1'else
71. '0';
72.
73. DiPPM <= DiPPM_inner;
74. enableOut <= enable_inner;
75. startPlsOut <= startpls_inner;
76.
77. end beh;

252

10.3.5. Channel model VHDL source code.

1. ==
2. -- Project Name: Channel
3. -- Name: channelmodel_top. vhd
4. ===
5. -- Description: Channel Model
6. ===
7. -- libraries
8. ===
9. library ieee;
10. use ieee.std_logic_1164.all;
11. use ieee.numeric_std.all;
12.
13. use work.channelmodel_top_pkg.all;
14.
15. ===
16. -- TOP instantiation
17. ===
18. entity channelmodel_top is
19. port (
20. CLK : in std_logic; -- system

clock

21. RESET : in std_logic; -- system
reset

22. DATAIN : in std_logic; -- enable
signal

23. ENABLE : in std_logic; -- sync signal
24. STARTPLS : in std_logic; -- data in
25. -- Data output
26. ENABLE_OUT : out std_logic; -- enable

signal

27. STARTPLS_OUT : out std_logic; -- sync
signal

28. DATAOUT : out std_logic -- data out
29.);
30. end channelmodel_top;
31.
32.
33. ===
34. -- RTL Architecture
35. ===
36. architecture rtl of channelmodel_top is
37.
38. --
39. -- Signals
40. --
41. signal enable_inner : std_logic;
42. signal startPls_inner : std_logic;
43. signal data_inner : std_logic;
44.
45. begin
46.
47.
48. ---

253

49. -- channel model process
50. channel_model_p : process (CLK,RESET) is
51. begin
52. if RESET = '1' then
53. enable_inner <= ENABLE;
54. startPls_inner <= STARTPLS;
55. data_inner <= DATAIN;
56.
57. elsif RESET = '0' then
58. enable_inner <= '0';
59. startPls_inner <= '0';
60. data_inner <= '0';
61.
62. end if;
63. end process;
64.
65. --
66. -- Output ports
67. DATAOUT <= data_inner;
68. ENABLE_OUT <= enable_inner;
69. STARTPLS_OUT <= startPls_inner;
70.
71. end rtl;

254

10.3.6. DiPPM decoder VHDL source code.

1. Project Name: DiPPM
2. -- Name: DiPPMdecoder. vhd
3. ===
4. -- Description: DiPPM decoder
5. ===
6. -- libraries

7. ===
8. library ieee;
9. use ieee.std_logic_1164.all;
10. use ieee.std_logic_arith.all;
11. use ieee.std_logic_unsigned.all;
12. entity DiPPMdecoder is
13. port(
14. CLK : in std_logic;
15. DiPPM: in std_logic;
16. enableIn : in std_logic;
17. startPlsIn : in std_logic;
18. PCM_out:out std_logic;
19. enableOut:out std_logic;
20. startPlsOut:out std_logic
21.);
22. end DiPPMdecoder;
23. architecture beh of DiPPMdecoder is
24.
25. Signal enable_inner:std_logic;
26. Signal startpls_inner:std_logic;
27. signal R:std_logic;
28. signal S:std_logic;
29. Signal PCM_inner:std_logic;
30. Signal nclk:std_logic;
31.
32. begin
33. nclk<= clk nor clk;
34. process(clk)
35. begin
36. if rising_edge(clk) then
37. enable_inner<= enableIn;
38. startpls_inner <= startPlsIn;
39. end if;
40. end process;
41.
42. process
43. begin
44. wait until nclk='1' and nclk'event;
45. S<=DiPPM;
46. end process;
47.
48. R<='1' when DiPPM='1' and clk='0' else
49. '0';
50. process (S,R)
51. begin
52. if S='1' then
53. PCM_inner<='1';

255

54. elsif R='1' then
55. PCM_inner<='0';
56. end if;
57. end process;
58.
59. enableOut <= enable_inner;
60. startPlsOut <= startpls_inner;
61. PCM_out <= PCM_inner;
62. end beh;

256

10.3.7. Searial to parallel bridge VHDL source code.

1. ==
2. -- Project Name: bridge decoder
3. -- Name: bridgedecoder_top. vhd
4. ===
5. -- Description: bridge for decoder
6. ===
7. -- libraries
8. ===
9. library ieee;
10. use ieee.std_logic_1164.all;
11. use ieee.numeric_std.all;
12.
13. library work;
14.
15. use work.bridgedecoder_top_pkg.all;
16. use work.bridgedecoder_dpram_pkg.all;
17.
18.
19. ===
20. -- TOP instantiation
21. ===
22. entity bridgedecoder_top is
23. port (
24. CLK : in std_logic; -- system

clock

25. RESET : in std_logic; -- system
reset

26. enableIn : in std_logic; -- enable
signal

27. startPlsIn : in std_logic; -- sync signal
28. dataIn : in std_logic; -- data in
29. -- Data output
30. enableOut : out std_logic; -- enable

signal

31. startPlsOut : out std_logic; -- sync signal
32. dataOut : out std_logic_vector(4 downto 0) -- data out
33.);
34. end bridgedecoder_top;
35.
36.
37.
38. ===
39. -- RTL Architecture
40. ===
41. architecture rtl of bridgedecoder_top is
42.
43.
44. --
45. -- Signals
46. --
47. -----
48. signal cnt_5clk : std_logic_vector(2 downto 0);
49. -----

257

50. signal writePointer: std_logic_vector(4 downto 0);
51. signal writeEn : std_logic;
52. signal wrdataIn : std_logic_vector(4 downto 0);
53. -----
54. signal go_rd_process : std_logic;
55. -----
56. signal rd_enable : std_logic;
57. signal readPointer : std_logic_vector(4 downto 0);
58. signal dpramRdData : std_logic_vector(4 downto 0);
59. -----
60. signal rd_enable_ff1 : std_logic;
61. signal rd_enable_ff2 : std_logic;
62. signal rd_enable_ff3 : std_logic;
63. -----
64. signal dataOut_inner : std_logic_vector(4 downto 0);
65. signal startPlsOut_inner : std_logic;
66. signal enableOut_inner : std_logic;
67.
68. begin
69.
70.
71. ---
72. -- RAM memory instantiation
73. u_bridgedecoder_dpram : bridgedecoder_dpram
74. port map(
75. w_clk => CLK,
76. w_en => writeEn,
77. w_addr => writePointer,
78. w_data => wrdataIn,
79. r_clk => CLK,
80. r_en => rd_enable,
81. r_addr => readPointer,
82. r_data => dpramRdData
83.);
84.
85. ---
86. -- bridge process
87. brdigedec_p : process (CLK,RESET) is
88. begin
89. if RESET = '0' then
90. cnt_5clk <= (others => '0');
91. writePointer <= (others => '0');
92. writeEn <= '0';
93. wrdataIn <= (others => '0');
94. go_rd_process <= '0';
95. rd_enable <= '0';
96. readPointer <= (others => '0');
97. rd_enable_ff1 <= '0';
98. rd_enable_ff2 <= '0';
99. rd_enable_ff3 <= '0';
100. elsif rising_edge(CLK) then

101. -- counter 5 clk

102. if (enableIn ='1') then

103. if (startPlsIn ='1') then

104. cnt_5clk <= "001";

105. elsif(cnt_5clk >= "100") then

106. cnt_5clk <= (others => '0');

258

107. else

108. cnt_5clk <=

std_logic_vector(unsigned(cnt_5clk) + 1);

109. end if;

110. end if;

111. -- writeEn

112. if (startPlsIn ='1') then

113. writeEn <= '0';

114. elsif ((enableIn ='1') and (cnt_5clk = "100")) then

115. writeEn <= '1';

116. else

117. writeEn <= '0';

118. end if;

119. -- writePointer

120. if (startPlsIn ='1') then

121. writePointer <= "00000";

122. elsif (writeEn ='1') then

123. writePointer <=

std_logic_vector(unsigned(writePointer) + 1);

124. end if;

125. -- writeDataIn

126. if (enableIn ='1') then

127. wrdataIn (4 downto 0) <= wrdataIn (3 downto 0) &

dataIn;

128. end if;

129. -- go_rd_process

130. if ((writeEn ='1') and (writePointer="11110")) then

131. go_rd_process <= '1';

132. elsif ((rd_enable ='1') and (readPointer="11101"))

then

133. go_rd_process <= '0';

134. end if;

135. -- rd_enable

136. rd_enable <= go_rd_process;

137. -- readPointer

138. if (rd_enable ='1') then

139. if (readPointer < "11110") then

140. readPointer <=

std_logic_vector(unsigned(readPointer) + 1);

141. else

142. readPointer <= (others => '0');

143. end if;

144. else

145. readPointer <= (others => '0');

146. end if;

147. -- ffs

148. rd_enable_ff1 <= rd_enable;

149. rd_enable_ff2 <= rd_enable_ff1;

150. rd_enable_ff3 <= rd_enable_ff2;

151. -- startPlsOut_inner

152. if ((rd_enable_ff2='1') and (rd_enable_ff3='0'))

then

153. startPlsOut_inner <= '1';

154. else

155. startPlsOut_inner <= '0';

156. end if;

157. -- enableOut_inner

259

158. enableOut_inner <= rd_enable_ff2;

159. -- dataOut_inner

160. if (rd_enable_ff2 ='1') then

161. dataOut_inner <= dpramRdData;

162. else

163. dataOut_inner <= "00000";

164. end if;

165. end if;

166. end process;

167.

168.

169.

170. --

171. -- Output ports

172. dataOut <= dataOut_inner;

173. enableOut <= enableOut_inner;

174. startPlsOut <= startPlsOut_inner;

175.

176. end rtl;

260

10.3.8. RS decoder VHDL source code.

1. ===
2. Project Name: RSIP
3. -- Name: rsdecoder_top_31_23. vhd
4. ===
5. -- Description: RS (31,23) decoder module
6. ===
7. -- libraries
8. ===
9. library ieee;
10. use ieee.std_logic_1164.all;

11. use ieee.numeric_std.all;

12.

13. library work;

14. use work.rsdecoder_31_23_top_pkg.all;

15. use work.rsdecoder_31_23_pkg.all;

16.

17.

18. ===

19. -- TOP instantiation

20. ===

21. entity rsdecoder_31_23_top is

22. port (

23. CLK: in std_logic; --system clock

24. RESET: in std_logic; --system reset

25. enable: in std_logic; --rs decoder enable signal

26. startPls: in std_logic; --rs decoder sync signal

27. erasureIn: in std_logic; -- rs decoder erasure input

28. dataIn: in std_logic_vector(4 downto 0); --rs encoder data in

29. -- Data output

30. outEnable: out std_logic; -- rs decoder data out valid signal

31. outStartPls : out std_logic; -- rs

decoder first decoded symbol trigger

32. outDone : out std_logic; -- rs

decoder last symbol decoded trigger

33. errorNum : out std_logic_vector(4 downto 0); -- rs

decoder number of errors corrected

34. erasureNum : out std_logic_vector(4 downto 0); -- rs

decoder number of erasure corrected

35. fail : out std_logic; -- rs

decoder decoding failure signal

36. delayedData : out std_logic_vector(4 downto 0); -- rs

decoder delayed input data

37. outData : out std_logic_vector(4 downto 0) -- rs

encoder data out

38.);

39. end rsdecoder_31_23_top;

40.

41.

42.

43. ===

44. -- RTL Architecture

45. ===

46. architecture rtl of rsdecoder_31_23_top is

261

47.

48.

49. --

50. -- Signals

51. --

52. signal dataInCheck: std_logic_vector(4 downto 0);

53.

54. signal syndrome_0: std_logic_vector(4 downto 0);

55. signal syndrome_1: std_logic_vector(4 downto 0);

56. signal syndrome_2: std_logic_vector(4 downto 0);

57. signal syndrome_3: std_logic_vector(4 downto 0);

58. signal syndrome_4: std_logic_vector(4 downto 0);

59. signal syndrome_5: std_logic_vector(4 downto 0);

60. signal syndrome_6: std_logic_vector(4 downto 0);

61. signal syndrome_7: std_logic_vector(4 downto 0);

62. signal doneSyndrome : std_logic;

63.

64. signal epsilon_0: std_logic_vector(4 downto 0);

65. signal epsilon_1: std_logic_vector(4 downto 0);

66. signal epsilon_2: std_logic_vector(4 downto 0);

67. signal epsilon_3: std_logic_vector(4 downto 0);

68. signal epsilon_4: std_logic_vector(4 downto 0);

69. signal epsilon_5: std_logic_vector(4 downto 0);

70. signal epsilon_6: std_logic_vector(4 downto 0);

71. signal epsilon_7: std_logic_vector(4 downto 0);

72. signal epsilon_8: std_logic_vector(4 downto 0);

73. signal degreeEpsilon: std_logic_vector(3 downto 0);

74. signal failErasure : std_logic;

75. signal doneErasure : std_logic;

76.

77. signal polymulSyndrome_0: std_logic_vector(4 downto 0);

78. signal polymulSyndrome_1: std_logic_vector(4 downto 0);

79. signal polymulSyndrome_2: std_logic_vector(4 downto 0);

80. signal polymulSyndrome_3: std_logic_vector(4 downto 0);

81. signal polymulSyndrome_4: std_logic_vector(4 downto 0);

82. signal polymulSyndrome_5: std_logic_vector(4 downto 0);

83. signal polymulSyndrome_6: std_logic_vector(4 downto 0);

84. signal polymulSyndrome_7: std_logic_vector(4 downto 0);

85. signal donePolymul : std_logic;

86.

87. signal lambda_0: std_logic_vector(4 downto 0);

88. signal lambda_1: std_logic_vector(4 downto 0);

89. signal lambda_2: std_logic_vector(4 downto 0);

90. signal lambda_3: std_logic_vector(4 downto 0);

91. signal lambda_4: std_logic_vector(4 downto 0);

92. signal lambda_5: std_logic_vector(4 downto 0);

93. signal lambda_6: std_logic_vector(4 downto 0);

94. signal lambda_7: std_logic_vector(4 downto 0);

95. signal lambda_8: std_logic_vector(4 downto 0);

96. signal omega_0: std_logic_vector(4 downto 0);

97. signal omega_1: std_logic_vector(4 downto 0);

98. signal omega_2: std_logic_vector(4 downto 0);

99. signal omega_3: std_logic_vector(4 downto 0);

100. signal omega_4: std_logic_vector(4 downto 0);

101. signal omega_5: std_logic_vector(4 downto 0);

102. signal omega_6: std_logic_vector(4 downto 0);

103. signal omega_7: std_logic_vector(4 downto 0);

262

104. signal doneEuclide : std_logic;

105. signal numShifted: std_logic_vector(3 downto 0);

106. signal degreeEpsilonReg: std_logic_vector(3 downto 0);

107.

108. signal epsilonReg_0: std_logic_vector(4 downto 0);

109. signal epsilonReg_1: std_logic_vector(4 downto 0);

110. signal epsilonReg_2: std_logic_vector(4 downto 0);

111. signal epsilonReg_3: std_logic_vector(4 downto 0);

112. signal epsilonReg_4: std_logic_vector(4 downto 0);

113. signal epsilonReg_5: std_logic_vector(4 downto 0);

114. signal epsilonReg_6: std_logic_vector(4 downto 0);

115. signal epsilonReg_7: std_logic_vector(4 downto 0);

116. signal epsilonReg_8: std_logic_vector(4 downto 0);

117.

118. signal epsilonReg2_0: std_logic_vector(4 downto 0);

119. signal epsilonReg2_1: std_logic_vector(4 downto 0);

120. signal epsilonReg2_2: std_logic_vector(4 downto 0);

121. signal epsilonReg2_3: std_logic_vector(4 downto 0);

122. signal epsilonReg2_4: std_logic_vector(4 downto 0);

123. signal epsilonReg2_5: std_logic_vector(4 downto 0);

124. signal epsilonReg2_6: std_logic_vector(4 downto 0);

125. signal epsilonReg2_7: std_logic_vector(4 downto 0);

126. signal epsilonReg2_8: std_logic_vector(4 downto 0);

127.

128.

129. signal epsilonReg3_0: std_logic_vector(4 downto 0);

130. signal epsilonReg3_1: std_logic_vector(4 downto 0);

131. signal epsilonReg3_2: std_logic_vector(4 downto 0);

132. signal epsilonReg3_3: std_logic_vector(4 downto 0);

133. signal epsilonReg3_4: std_logic_vector(4 downto 0);

134. signal epsilonReg3_5: std_logic_vector(4 downto 0);

135. signal epsilonReg3_6: std_logic_vector(4 downto 0);

136. signal epsilonReg3_7: std_logic_vector(4 downto 0);

137. signal epsilonReg3_8: std_logic_vector(4 downto 0);

138.

139. signal omegaShiftedReg_0: std_logic_vector(4 downto 0);

140. signal omegaShiftedReg_1: std_logic_vector(4 downto 0);

141. signal omegaShiftedReg_2: std_logic_vector(4 downto 0);

142. signal omegaShiftedReg_3: std_logic_vector(4 downto 0);

143. signal omegaShiftedReg_4: std_logic_vector(4 downto 0);

144. signal omegaShiftedReg_5: std_logic_vector(4 downto 0);

145. signal omegaShiftedReg_6: std_logic_vector(4 downto 0);

146. signal omegaShiftedReg_7: std_logic_vector(4 downto 0);

147. signal omegaShiftedReg_8: std_logic_vector(4 downto 0);

148.

149. signal degreeEpsilonReg2: std_logic_vector(3 downto 0);

150. signal degreeEpsilonReg3: std_logic_vector(3 downto 0);

151. signal degreeEpsilonReg4: std_logic_vector(3 downto 0);

152. signal degreeEpsilonReg5: std_logic_vector(3 downto 0);

153. signal doneShiftReg : std_logic;

154. signal doneChien : std_logic;

155. signal doneReg: std_logic_vector(2 downto 0);

156. signal numErasureReg: std_logic_vector(3 downto 0);

157. signal doneShift : std_logic;

158. signal numShiftedReg: std_logic_vector(3 downto 0);

159.

160. signal lambdaReg_0: std_logic_vector(4 downto 0);

263

161. signal lambdaReg_1: std_logic_vector(4 downto 0);

162. signal lambdaReg_2: std_logic_vector(4 downto 0);

163. signal lambdaReg_3: std_logic_vector(4 downto 0);

164. signal lambdaReg_4: std_logic_vector(4 downto 0);

165. signal lambdaReg_5: std_logic_vector(4 downto 0);

166. signal lambdaReg_6: std_logic_vector(4 downto 0);

167. signal lambdaReg_7: std_logic_vector(4 downto 0);

168. signal lambdaReg_8: std_logic_vector(4 downto 0);

169.

170. signal omegaReg_0: std_logic_vector(4 downto 0);

171. signal omegaReg_1: std_logic_vector(4 downto 0);

172. signal omegaReg_2: std_logic_vector(4 downto 0);

173. signal omegaReg_3: std_logic_vector(4 downto 0);

174. signal omegaReg_4: std_logic_vector(4 downto 0);

175. signal omegaReg_5: std_logic_vector(4 downto 0);

176. signal omegaReg_6: std_logic_vector(4 downto 0);

177. signal omegaReg_7: std_logic_vector(4 downto 0);

178.

179. signal omegaShifted_0: std_logic_vector(4 downto 0);

180. signal omegaShifted_1: std_logic_vector(4 downto 0);

181. signal omegaShifted_2: std_logic_vector(4 downto 0);

182. signal omegaShifted_3: std_logic_vector(4 downto 0);

183. signal omegaShifted_4: std_logic_vector(4 downto 0);

184. signal omegaShifted_5: std_logic_vector(4 downto 0);

185. signal omegaShifted_6: std_logic_vector(4 downto 0);

186. signal omegaShifted_7: std_logic_vector(4 downto 0);

187.

188. signal degreeOmega: std_logic_vector(3 downto 0);

189.

190. signal lambdaReg2_0: std_logic_vector(4 downto 0);

191. signal lambdaReg2_1: std_logic_vector(4 downto 0);

192. signal lambdaReg2_2: std_logic_vector(4 downto 0);

193. signal lambdaReg2_3: std_logic_vector(4 downto 0);

194. signal lambdaReg2_4: std_logic_vector(4 downto 0);

195. signal lambdaReg2_5: std_logic_vector(4 downto 0);

196. signal lambdaReg2_6: std_logic_vector(4 downto 0);

197. signal lambdaReg2_7: std_logic_vector(4 downto 0);

198.

199. signal degreeLambda: std_logic_vector(3 downto 0);

200. signal degreeOmegaReg: std_logic_vector(3 downto 0);

201. signal error: std_logic_vector(4 downto 0);

202. signal degreeLambdaReg: std_logic_vector(3 downto 0);

203. signal delayedErasureIn : std_logic;

204.

205. signal delayOut: std_logic_vector(5 downto 0);

206. signal delayIn: std_logic_vector(5 downto 0);

207.

208. signal delayedDataIn: std_logic_vector(4 downto 0);

209.

210. signal startReg: std_logic_vector(3 downto 0);

211. signal OutputValidReg : std_logic;

212. signal numErrorLambdaReg: std_logic_vector(3 downto 0);

213. signal degreeErrorReg : std_logic;

214. signal numErrorReg: std_logic_vector(3 downto 0);

215. signal failErasureReg : std_logic;

216. signal failErasureReg2 : std_logic;

217. signal failErasureReg3 : std_logic;

264

218. signal failErasureReg4 : std_logic;

219. signal failErasureReg5 : std_logic;

220. signal failReg : std_logic;

221.

222. signal DataOutInner: std_logic_vector(4 downto 0);

223. signal DelayedDataOutInner: std_logic_vector(4 downto 0);

224.

225. signal enableFF : std_logic;

226. signal startRegInner : std_logic;

227. signal doneRegInner : std_logic;

228.

229. signal failRegInner : std_logic;

230. signal OutputValidRegInner : std_logic;

231. signal numErrorChien: std_logic_vector(3 downto 0);

232.

233. signal numErrorRegInner: std_logic_vector(4 downto 0);

234. signal numErasureRegInner: std_logic_vector(4 downto 0);

235.

236. signal temp_add: std_logic_vector(4 downto 0);

237. signal temp_add1: std_logic_vector(4 downto 0);

238. signal temp_add2: std_logic_vector(4 downto 0);

239.

240. begin

241.

242.

243. ---

244. -- dataInCheck (assign to 0 if Erasure)

245. dataInCheck <= dataIn when (erasureIn = '0') else "00000";

246.

247.

248. ---

249. -- syndrome_0,...,syndrome_7, doneSyndrome

250. -- RS Syndrome calculation

251. u_rsdecoder_31_23_syndrome : rsdecoder_31_23_syndrome

252. port map (

253. CLK => CLK,

254. RESET => RESET,

255. enable => enable,

256. sync => startPls,

257. dataIn => dataInCheck,

258. syndrome_0 => syndrome_0,

259. syndrome_1 => syndrome_1,

260. syndrome_2 => syndrome_2,

261. syndrome_3 => syndrome_3,

262. syndrome_4 => syndrome_4,

263. syndrome_5 => syndrome_5,

264. syndrome_6 => syndrome_6,

265. syndrome_7 => syndrome_7,

266. done => doneSyndrome

267.);

268.

269.

270. ---

271. -- syndrome_0,...,syndrome_7, doneSyndrome

272. -- RS Erasure calculation

273. u_rsdecoder_31_23_erasure : rsdecoder_31_23_erasure

274. port map (

265

275. CLK => CLK,

276. RESET => RESET,

277. enable => enable,

278. sync => startPls,

279. erasureIn => erasureIn,

280. epsilon_0 => epsilon_0,

281. epsilon_1 => epsilon_1,

282. epsilon_2 => epsilon_2,

283. epsilon_3 => epsilon_3,

284. epsilon_4 => epsilon_4,

285. epsilon_5 => epsilon_5,

286. epsilon_6 => epsilon_6,

287. epsilon_7 => epsilon_7,

288. epsilon_8 => epsilon_8,

289. numErasure => degreeEpsilon,

290. fail => failErasure,

291. done => doneErasure

292.);

293.

294.

295. ---

296. -- polymulSyndrome_0,..., polymulSyndrome_7

297. -- RS Polymul calculation

298. u_rsdecoder_31_23_polymul : rsdecoder_31_23_polymul

299. port map (

300. CLK => CLK,

301. RESET => RESET,

302. enable => enable,

303. sync => doneSyndrome,

304. syndromeIn_0 => syndrome_0,

305. syndromeIn_1 => syndrome_1,

306. syndromeIn_2 => syndrome_2,

307. syndromeIn_3 => syndrome_3,

308. syndromeIn_4 => syndrome_4,

309. syndromeIn_5 => syndrome_5,

310. syndromeIn_6 => syndrome_6,

311. syndromeIn_7 => syndrome_7,

312. epsilon_0 => epsilon_0,

313. epsilon_1 => epsilon_1,

314. epsilon_2 => epsilon_2,

315. epsilon_3 => epsilon_3,

316. epsilon_4 => epsilon_4,

317. epsilon_5 => epsilon_5,

318. epsilon_6 => epsilon_6,

319. epsilon_7 => epsilon_7,

320. epsilon_8 => epsilon_8,

321. syndromeOut_0 => polymulSyndrome_0,

322. syndromeOut_1 => polymulSyndrome_1,

323. syndromeOut_2 => polymulSyndrome_2,

324. syndromeOut_3 => polymulSyndrome_3,

325. syndromeOut_4 => polymulSyndrome_4,

326. syndromeOut_5 => polymulSyndrome_5,

327. syndromeOut_6 => polymulSyndrome_6,

328. syndromeOut_7 => polymulSyndrome_7,

329. done => donePolymul

330.);

331.

266

332.

333. ---

334. -- polymulSyndrome_0,..., polymulSyndrome_7

335. -- RS euclide

336. u_rsdecoder_31_23_euclide : rsdecoder_31_23_euclide

337. port map (

338. CLK => CLK,

339. RESET => RESET,

340. enable => enable,

341. sync => donePolymul,

342. syndrome_0 => polymulSyndrome_0,

343. syndrome_1 => polymulSyndrome_1,

344. syndrome_2 => polymulSyndrome_2,

345. syndrome_3 => polymulSyndrome_3,

346. syndrome_4 => polymulSyndrome_4,

347. syndrome_5 => polymulSyndrome_5,

348. syndrome_6 => polymulSyndrome_6,

349. syndrome_7 => polymulSyndrome_7,

350. numErasure => degreeEpsilonReg,

351. lambda_0 => lambda_0,

352. lambda_1 => lambda_1,

353. lambda_2 => lambda_2,

354. lambda_3 => lambda_3,

355. lambda_4 => lambda_4,

356. lambda_5 => lambda_5,

357. lambda_6 => lambda_6,

358. lambda_7 => lambda_7,

359. omega_0 => omega_0,

360. omega_1 => omega_1,

361. omega_2 => omega_2,

362. omega_3 => omega_3,

363. omega_4 => omega_4,

364. omega_5 => omega_5,

365. omega_6 => omega_6,

366. omega_7 => omega_7,

367. numShifted => numShifted,

368. done => doneEuclide

369.);

370.

371.

372. ---

373. -- epsilonReg_0, ..., epsilonReg_8

374. rs_epsilon : process (CLK,RESET) is

375. begin

376. if RESET = '0' then

377. epsilonReg_0 <= (others => '0');

378. epsilonReg_1 <= (others => '0');

379. epsilonReg_2 <= (others => '0');

380. epsilonReg_3 <= (others => '0');

381. epsilonReg_4 <= (others => '0');

382. epsilonReg_5 <= (others => '0');

383. epsilonReg_6 <= (others => '0');

384. epsilonReg_7 <= (others => '0');

385. epsilonReg_8 <= (others => '0');

386. degreeEpsilonReg<= (others => '0');

387. elsif rising_edge(CLK) then

388. if ((enable ='1') and (doneErasure ='1')) then

267

389. epsilonReg_0 <= epsilon_0;

390. epsilonReg_1 <= epsilon_1;

391. epsilonReg_2 <= epsilon_2;

392. epsilonReg_3 <= epsilon_3;

393. epsilonReg_4 <= epsilon_4;

394. epsilonReg_5 <= epsilon_5;

395. epsilonReg_6 <= epsilon_6;

396. epsilonReg_7 <= epsilon_7;

397. epsilonReg_8 <= epsilon_8;

398. degreeEpsilonReg<= degreeEpsilon;

399. end if;

400. end if;

401. end process;

402.

403.

404. ---

405. -- epsilonReg2_0,..., epsilonReg2_8

406. rs_epsilon2 : process (CLK,RESET) is

407. begin

408. if RESET = '0' then

409. epsilonReg2_0 <= (others => '0');

410. epsilonReg2_1 <= (others => '0');

411. epsilonReg2_2 <= (others => '0');

412. epsilonReg2_3 <= (others => '0');

413. epsilonReg2_4 <= (others => '0');

414. epsilonReg2_5 <= (others => '0');

415. epsilonReg2_6 <= (others => '0');

416. epsilonReg2_7 <= (others => '0');

417. epsilonReg2_8 <= (others => '0');

418. degreeEpsilonReg2<= (others => '0');

419. elsif rising_edge(CLK) then

420. if ((enable ='1') and (donePolymul ='1')) then

421. epsilonReg2_0 <= epsilonReg_0;

422. epsilonReg2_1 <= epsilonReg_1;

423. epsilonReg2_2 <= epsilonReg_2;

424. epsilonReg2_3 <= epsilonReg_3;

425. epsilonReg2_4 <= epsilonReg_4;

426. epsilonReg2_5 <= epsilonReg_5;

427. epsilonReg2_6 <= epsilonReg_6;

428. epsilonReg2_7 <= epsilonReg_7;

429. epsilonReg2_8 <= epsilonReg_8;

430. degreeEpsilonReg2<= degreeEpsilonReg;

431. end if;

432. end if;

433. end process;

434.

435.

436. ---

437. -- omegaShiftedReg_0,..., omegaShiftedReg_8

438. rs_omegashifted : process (CLK,RESET) is

439. begin

440. if RESET = '0' then

441. epsilonReg3_0 <= (others => '0');

442. epsilonReg3_1 <= (others => '0');

443. epsilonReg3_2 <= (others => '0');

444. epsilonReg3_3 <= (others => '0');

445. epsilonReg3_4 <= (others => '0');

268

446. epsilonReg3_5 <= (others => '0');

447. epsilonReg3_6 <= (others => '0');

448. epsilonReg3_7 <= (others => '0');

449. epsilonReg3_8 <= (others => '0');

450. degreeEpsilonReg3<= (others => '0');

451. numShiftedReg<= (others => '0');

452. elsif rising_edge(CLK) then

453. if ((enable ='1') and (doneEuclide ='1')) then

454. epsilonReg3_0 <= epsilonReg2_0;

455. epsilonReg3_1 <= epsilonReg2_1;

456. epsilonReg3_2 <= epsilonReg2_2;

457. epsilonReg3_3 <= epsilonReg2_3;

458. epsilonReg3_4 <= epsilonReg2_4;

459. epsilonReg3_5 <= epsilonReg2_5;

460. epsilonReg3_6 <= epsilonReg2_6;

461. epsilonReg3_7 <= epsilonReg2_7;

462. epsilonReg3_8 <= epsilonReg2_8;

463. degreeEpsilonReg3<= degreeEpsilonReg2;

464. numShiftedReg <= numShifted;

465. lambdaReg_0 <= lambda_0;

466. lambdaReg_1 <= lambda_1;

467. lambdaReg_2 <= lambda_2;

468. lambdaReg_3 <= lambda_3;

469. lambdaReg_4 <= lambda_4;

470. lambdaReg_5 <= lambda_5;

471. lambdaReg_6 <= lambda_6;

472. lambdaReg_7 <= lambda_7;

473. lambdaReg_8 <= lambda_8;

474. omegaReg_0 <= omega_0;

475. omegaReg_1 <= omega_1;

476. omegaReg_2 <= omega_2;

477. omegaReg_3 <= omega_3;

478. omegaReg_4 <= omega_4;

479. omegaReg_5 <= omega_5;

480. omegaReg_6 <= omega_6;

481. omegaReg_7 <= omega_7;

482. end if;

483. end if;

484. end process;

485.

486.

487. ---

488. --

489. rs_epsilon4 : process (CLK,RESET) is

490. begin

491. if RESET = '0' then

492. degreeEpsilonReg4<= (others => '0');

493. elsif rising_edge(CLK) then

494. if ((enable ='1') and (doneShiftReg ='1')) then

495. degreeEpsilonReg4<= degreeEpsilonReg3;

496. end if;

497. end if;

498. end process;

499.

500.

501. ---

502. --

269

503. rs_epsilon5 : process (CLK,RESET) is

504. begin

505. if RESET = '0' then

506. degreeEpsilonReg5<= (others => '0');

507. numErasureReg<= (others => '0');

508. elsif rising_edge(CLK) then

509. if ((enable ='1') and (doneChien ='1')) then

510. degreeEpsilonReg5<= degreeEpsilonReg4;

511. end if;

512. if ((enable ='1') and (doneReg(0)='1')) then

513. numErasureReg <= degreeEpsilonReg5;

514. end if;

515. end if;

516. end process;

517.

518.

519. ---

520. --

521. rs_doneShift : process (CLK,RESET) is

522. begin

523. if RESET = '0' then

524. doneShift<= '0';

525. elsif rising_edge(CLK) then

526. if ((enable ='1')) then

527. doneShift<= doneEuclide;

528. end if;

529. end if;

530. end process;

531.

532.

533. ---

534. --

535. u_rsdecoder_31_23_shiftomega : rsdecoder_31_23_shiftomega

536. port map (

537. omega_0 => omegaReg_0,

538. omega_1 => omegaReg_1,

539. omega_2 => omegaReg_2,

540. omega_3 => omegaReg_3,

541. omega_4 => omegaReg_4,

542. omega_5 => omegaReg_5,

543. omega_6 => omegaReg_6,

544. omega_7 => omegaReg_7,

545. omegaShifted_0 => omegaShifted_0,

546. omegaShifted_1 => omegaShifted_1,

547. omegaShifted_2 => omegaShifted_2,

548. omegaShifted_3 => omegaShifted_3,

549. omegaShifted_4 => omegaShifted_4,

550. omegaShifted_5 => omegaShifted_5,

551. omegaShifted_6 => omegaShifted_6,

552. omegaShifted_7 => omegaShifted_7,

553. numShifted => numShiftedReg

554.);

555. -- 1 clk ff for omegashifted and lambdareg

556. rs_doneShift2 : process (CLK,RESET) is

557. begin

558. if RESET = '0' then

559. omegaShiftedReg_0 <= (others => '0');

270

560. omegaShiftedReg_1 <= (others => '0');

561. omegaShiftedReg_2 <= (others => '0');

562. omegaShiftedReg_3 <= (others => '0');

563. omegaShiftedReg_4 <= (others => '0');

564. omegaShiftedReg_5 <= (others => '0');

565. omegaShiftedReg_6 <= (others => '0');

566. omegaShiftedReg_7 <= (others => '0');

567. lambdaReg2_0 <= (others => '0');

568. lambdaReg2_1 <= (others => '0');

569. lambdaReg2_2 <= (others => '0');

570. lambdaReg2_3 <= (others => '0');

571. lambdaReg2_4 <= (others => '0');

572. lambdaReg2_5 <= (others => '0');

573. lambdaReg2_6 <= (others => '0');

574. lambdaReg2_7 <= (others => '0');

575. elsif rising_edge(CLK) then

576. if ((enable ='1')) then

577. omegaShiftedReg_0 <= omegaShifted_0;

578. omegaShiftedReg_1 <= omegaShifted_1;

579. omegaShiftedReg_2 <= omegaShifted_2;

580. omegaShiftedReg_3 <= omegaShifted_3;

581. omegaShiftedReg_4 <= omegaShifted_4;

582. omegaShiftedReg_5 <= omegaShifted_5;

583. omegaShiftedReg_6 <= omegaShifted_6;

584. omegaShiftedReg_7 <= omegaShifted_7;

585. lambdaReg2_0 <= lambdaReg_0;

586. lambdaReg2_1 <= lambdaReg_1;

587. lambdaReg2_2 <= lambdaReg_2;

588. lambdaReg2_3 <= lambdaReg_3;

589. lambdaReg2_4 <= lambdaReg_4;

590. lambdaReg2_5 <= lambdaReg_5;

591. lambdaReg2_6 <= lambdaReg_6;

592. lambdaReg2_7 <= lambdaReg_7;

593. end if;

594. end if;

595. end process;

596.

597.

598. ---

599. -- omega degree

600. rsdecoder_31_23_degree_1 : rsdecoder_31_23_degree

601. port map (

602. polynom_0 => omegaShiftedReg_0,

603. polynom_1 => omegaShiftedReg_1,

604. polynom_2 => omegaShiftedReg_2,

605. polynom_3 => omegaShiftedReg_3,

606. polynom_4 => omegaShiftedReg_4,

607. polynom_5 => omegaShiftedReg_5,

608. polynom_6 => omegaShiftedReg_6,

609. polynom_7 => omegaShiftedReg_7,

610. degree => degreeOmega

611.);

612. -- lambda degree

613. rsdecoder_31_23_degree_2 : rsdecoder_31_23_degree

614. port map (

615. polynom_0 => lambdaReg2_0,

616. polynom_1 => lambdaReg2_1,

271

617. polynom_2 => lambdaReg2_2,

618. polynom_3 => lambdaReg2_3,

619. polynom_4 => lambdaReg2_4,

620. polynom_5 => lambdaReg2_5,

621. polynom_6 => lambdaReg2_6,

622. polynom_7 => lambdaReg2_7,

623. degree => degreeLambda

624.);

625.

626.

627. ---

628. -- degree reg

629. rs_degreeOmegaLambda : process (CLK,RESET) is

630. begin

631. if RESET = '0' then

632. degreeOmegaReg <= (others => '0');

633. degreeLambdaReg <= (others => '0');

634. elsif rising_edge(CLK) then

635. if ((enable ='1') and (doneShiftReg ='1')) then

636. degreeOmegaReg <= degreeOmega;

637. degreeLambdaReg <= degreeLambda;

638. end if;

639. end if;

640. end process;

641.

642.

643. ---

644. -- doneShiftReg

645. rs_doneShiftReg : process (CLK,RESET) is

646. begin

647. if RESET = '0' then

648. doneShiftReg <= '0';

649. elsif rising_edge(CLK) then

650. if ((enable ='1')) then

651. doneShiftReg <= doneShift;

652. end if;

653. end if;

654. end process;

655.

656.

657. ---

658. -- RSChien

659. u_rsdecoder_31_23_chien : rsdecoder_31_23_chien

660. port map(

661. CLK => CLK,

662. RESET => RESET,

663. enable => enable,

664. sync => doneShiftReg,

665. erasureIn => delayedErasureIn,

666. lambdaIn_0 => lambdaReg2_0,

667. lambdaIn_1 => lambdaReg2_1,

668. lambdaIn_2 => lambdaReg2_2,

669. lambdaIn_3 => lambdaReg2_3,

670. lambdaIn_4 => lambdaReg2_4,

671. lambdaIn_5 => lambdaReg2_5,

672. lambdaIn_6 => lambdaReg2_6,

673. lambdaIn_7 => lambdaReg2_7,

272

674. omegaIn_0 => omegaShiftedReg_0,

675. omegaIn_1 => omegaShiftedReg_1,

676. omegaIn_2 => omegaShiftedReg_2,

677. omegaIn_3 => omegaShiftedReg_3,

678. omegaIn_4 => omegaShiftedReg_4,

679. omegaIn_5 => omegaShiftedReg_5,

680. omegaIn_6 => omegaShiftedReg_6,

681. omegaIn_7 => omegaShiftedReg_7,

682. epsilonIn_0 => epsilonReg3_0,

683. epsilonIn_1 => epsilonReg3_1,

684. epsilonIn_2 => epsilonReg3_2,

685. epsilonIn_3 => epsilonReg3_3,

686. epsilonIn_4 => epsilonReg3_4,

687. epsilonIn_5 => epsilonReg3_5,

688. epsilonIn_6 => epsilonReg3_6,

689. epsilonIn_7 => epsilonReg3_7,

690. epsilonIn_8 => epsilonReg3_8,

691. errorOut => error,

692. numError => numErrorChien,

693. done => doneChien

694.);

695.

696.

697. ---

698. -- Rs Decode Delay

699. u_rsdecoder_31_23_delay : rsdecoder_31_23_delay

700. port map(

701. CLK => CLK,

702. RESET => RESET,

703. enable => enable,

704. dataIn => delayIn,

705. dataOut => delayOut

706.);

707.

708.

709. ---

710. -- delayIn, delayedErasureIn, delayedDataIn

711. delayIn <= erasureIn & dataInCheck;

712. delayedErasureIn <= delayOut(5);

713. delayedDataIn <= delayOut(4 downto 0);

714.

715.

716. ---

717. -- OutputValidReg

718. rs_OutputValidReg : process (CLK,RESET) is

719. begin

720. if RESET = '0' then

721. OutputValidReg <= '0';

722. elsif rising_edge(CLK) then

723. if ((enable ='1')) then

724. if ((startReg(1) ='1')) then

725. OutputValidReg <= '1';

726. elsif (doneReg(0) ='1') then

727. OutputValidReg <= '0';

728. end if;

729. end if;

730. end if;

273

731. end process;

732.

733.

734. ---

735. -- startReg, doneReg

736. rs_startReg : process (CLK,RESET) is

737. begin

738. if RESET = '0' then

739. startReg <= (others => '0');

740. doneReg <= (others => '0');

741. elsif rising_edge(CLK) then

742. if ((enable ='1')) then

743. startReg <= doneShiftReg & startReg(3 downto

1);

744. doneReg <= doneChien & doneReg(2 downto 1);

745. end if;

746. end if;

747. end process;

748.

749.

750. ---

751. -- numErrorLambdaReg

752. rs_numErrorLambdaReg : process (CLK,RESET) is

753. begin

754. if RESET = '0' then

755. numErrorLambdaReg <= (others => '0');

756. elsif rising_edge(CLK) then

757. if ((enable ='1') and (startReg(1)='1')) then

758. numErrorLambdaReg <= degreeLambdaReg;

759. end if;

760. end if;

761. end process;

762.

763.

764. ---

765. -- temp_add

766. temp_add1 <= ('0' & degreeLambdaReg);

767. temp_add2 <= ('0' & degreeEpsilonReg4);

768. temp_add <= std_logic_vector(unsigned(temp_add1) +

unsigned(temp_add2));

769.

770.

771. ---

772. -- degreeErrorReg

773. rs_degreeErrorReg : process (CLK,RESET) is

774. begin

775. if RESET = '0' then

776. degreeErrorReg <= '0';

777. elsif rising_edge(CLK) then

778. if ((enable ='1') and (startReg(1)='1')) then

779. if ('0' & degreeOmegaReg) <= (temp_add) then

780. degreeErrorReg <= '0';

781. else

782. degreeErrorReg <= '1';

783. end if;

784. end if;

785. end if;

274

786. end process;

787.

788.

789. ---

790. -- numErrorReg

791. rs_numErrorReg : process (CLK,RESET) is

792. begin

793. if RESET = '0' then

794. numErrorReg <= (others => '0');

795. elsif rising_edge(CLK) then

796. if ((enable ='1') and (doneReg(0)='1')) then

797. numErrorReg <= numErrorChien;

798. end if;

799. end if;

800. end process;

801.

802.

803. ---

804. -- failErasureReg

805. rs_failErasureReg : process (CLK,RESET) is

806. begin

807. if RESET = '0' then

808. failErasureReg <= '0';

809. failErasureReg2 <= '0';

810. failErasureReg3 <= '0';

811. failErasureReg4 <= '0';

812. failErasureReg5 <= '0';

813. elsif rising_edge(CLK) then

814. if ((enable ='1') and (doneErasure='1')) then

815. failErasureReg <= failErasure;

816. end if;

817. if ((enable ='1') and (donePolymul='1')) then

818. failErasureReg2 <= failErasureReg;

819. end if;

820. if ((enable ='1') and (doneEuclide='1')) then

821. failErasureReg3 <= failErasureReg2;

822. end if;

823. if ((enable ='1') and (doneShiftReg='1')) then

824. failErasureReg4 <= failErasureReg3;

825. end if;

826. if ((enable ='1') and (startReg(1)='1')) then

827. failErasureReg5 <= failErasureReg4;

828. end if;

829. end if;

830. end process;

831.

832.

833. ---

834. -- failReg

835. rs_failReg : process (CLK,RESET) is

836. begin

837. if RESET = '0' then

838. failReg <= '0';

839. elsif rising_edge(CLK) then

840. if ((enable ='1') and (doneReg(0)='1')) then

841. if ((numErrorLambdaReg = numErrorChien) and

(degreeErrorReg='0') and (failErasureReg5='0')) then

275

842. failReg <= '0';

843. else

844. failReg <= '1';

845. end if;

846. end if;

847. end if;

848. end process;

849.

850.

851. ---

852. -- DataOutInner

853. rs_DataOutInner : process (CLK,RESET) is

854. begin

855. if RESET = '0' then

856. DataOutInner <= (others => '0');

857. DelayedDataOutInner <= (others => '0');

858. enableFF <= '0';

859. startRegInner <= '0';

860. doneRegInner <= '0';

861. numErrorRegInner <= (others => '0');

862. numErasureRegInner <= (others => '0');

863. failRegInner <= '0';

864. elsif rising_edge(CLK) then

865. DataOutInner <= delayedDataIn xor error;

866. DelayedDataOutInner <= delayedDataIn;

867. enableFF <= enable;

868. startRegInner <= startReg(0);

869. doneRegInner <= doneReg(0);

870. numErrorRegInner <= '0' & numErrorReg(3 downto

0);

871. numErasureRegInner <= '0' & numErasureReg(3 downto

0);

872. failRegInner <= failReg;

873. end if;

874. end process;

875.

876.

877. ---

878. -- OutputValidRegInner

879. rs_OutputValidRegInner: process (CLK,RESET) is

880. begin

881. if RESET = '0' then

882. OutputValidRegInner <= '0';

883. elsif rising_edge(CLK) then

884. if ((enableFF ='1')) then

885. OutputValidRegInner <= OutputValidReg;

886. else

887. OutputValidRegInner <= '0';

888. end if;

889. end if;

890. end process;

891.

892.

893. --

894. -- Output ports

895. outEnable <= OutputValidRegInner;

276

896. outStartPls <= startRegInner;

897. outDone <= doneRegInner;

898. outData <= DataOutInner;

899. errorNum <= numErrorRegInner;

900. erasureNum <= numErasureRegInner;

901. delayedData <= DelayedDataOutInner;

902. fail <= failRegInner;

903.

904. end rtl;

277

10.4. Appendix 4

10.4.1. Erasure only test bench VHDL source code.

1. Erasure only test bench VHDL source code.
2. ===
3. -- Project Name : RSIP
4. -- Name : simReedSolomon.vhd
5. -- Actual Version : v0.1
6. ===
7. -- Description : erasue only test environment
8. ===
9. -- libraries
10. ===

11. library ieee;

12. use ieee.std_logic_1164.all;

13. use ieee.numeric_std.all;

14. use ieee.std_logic_textio.all;

15. library std;

16. use std.textio.all;

17. library work;

18. use work.rscoder_31_23_top_pkg.all;

19. use work.rsdecoder_31_23_top_pkg.all;

20. ===

21. -- TOP instantiation

22. ===

23. entity simReedSolomon is

24. end simReedSolomon;

25.

26. ===

27. -- RTL Architecture

28. ===

29. architecture TB of simReedSolomon is

30.

31. constant CLK_PER : time := 10 ns; -- 100Mhz

32.

33. --

34. -- Signals

35. --

36. -- decoder --

37. signal CLK : std_logic;

38. signal RESET : std_logic;

39. signal rsdecEnable : std_logic;

40. signal rsdecSync : std_logic;

41. signal rsdecErasureIn : std_logic;

42. signal rsdecDataIn : std_logic_vector(4 downto 0);

43. signal rsdecOutStartPls : std_logic;

44. signal rsdecOutDone : std_logic;

45. signal rsdecOutData : std_logic_vector(4 downto 0);

46. signal rsdecErrorNum : std_logic_vector(4 downto 0);

47. signal rsdecErasureNum : std_logic_vector(4 downto 0);

48. signal rsdecFail : std_logic;

49. signal rsdecOutEnable : std_logic;

50. signal rsdecDelayedData : std_logic_vector(4 downto 0);

278

51.

52. signal rsencEnable : std_logic;

53. signal rsencStartPls : std_logic;

54. signal rsencDataIn : std_logic_vector(4 downto 0);

55. signal rsencDataOut : std_logic_vector(4 downto 0);

56.

57. signal rsdecOutEnableFF : std_logic;

58. signal rsdecOutDataFF : std_logic_vector(4 downto 0);

59. signal rsdecErasureNumFF : std_logic_vector(4 downto 0);

60. signal rsdecErrorNumFF : std_logic_vector(4 downto 0);

61. signal rsdecFailFF : std_logic;

62.

63.

64. signal simStart : std_logic;

65. signal simStart_ff1 : std_logic;

66. signal simStart_ff2 : std_logic;

67. signal simStart_ff3 : std_logic;

68. signal rd_once_decin : std_logic;

69. signal rd_once_decout : std_logic;

70. signal rsdecOutEnable_ff1 : std_logic;

71.

72. signal rsDecDataFlag : std_logic;

73. signal rsDecNGDataFlag : std_logic;

74. signal rsDecErasureFlag : std_logic;

75. signal rsDecNGErasureFlag : std_logic;

76. signal rsDecErrorFlag : std_logic;

77. signal rsDecNGErrorFlag : std_logic;

78. signal rsDecFailPinFlag : std_logic;

79. signal rsDecNGFailPinFlag : std_logic;

80.

81. signal rsdec0_sig : std_logic_vector(23 downto 0);

82.

83. signal rsdecExpData_sig : std_logic_vector(7 downto 0);

84. signal rsdecExpNumErasure : std_logic_vector(4 downto 0);

85. signal rsdecExpNumError : std_logic_vector(4 downto 0);

86. signal rsdecExpFailFlag : std_logic;

87. signal rsdecExpData : std_logic_vector(4 downto 0);

88. signal rsdecExpDelayedData : std_logic_vector(4 downto 0);

89.

90. signal rsdecOutData_ff1 : std_logic_vector(4 downto 0);

91. signal rsdecErrorNum_ff1 : std_logic_vector(4 downto 0);

92. signal rsdecFail_ff1 : std_logic;

93. signal rsdecErasureNum_ff1 : std_logic_vector(4

downto 0);

94.

95. signal data_count : std_logic_vector(5 downto 0);

96. -- coder --

97. signal rd_once_in : std_logic;

98. signal rd_once_out : std_logic;

99. signal rsEncPassFailFlag : std_logic;

100. signal rsEncFailFlag : std_logic;

101. signal rsenc0_sig : std_logic_vector(15 downto 0);

102. signal rsencEnable_ff1 : std_logic;

103. signal rsencEnable_ff2 : std_logic;

104. signal rsencStartPls_ff1 : std_logic;

105. signal rsencStartPls_ff2 : std_logic;

106. signal rsencExpData_sig : std_logic_vector(4 downto 0);

279

107. begin

108.

109. -- RS Decoder Top module Instantiation

110. u_rsdecoder_31_23_top : rsdecoder_31_23_top

111. port map(

112. CLK => CLK, -- system clock

113. RESET => RESET, -- system reset

114. -- IN

115. enable => rsdecEnable, -- RSdec enable in

116. startPls => rsdecSync, -- RSdec sync signal

117. erasureIn => rsdecErasureIn, -- RSdec erasure in

118. dataIn => rsdecDataIn, -- RSdec data in

119. -- OUT

120. outEnable => rsdecOutEnable, -- RSdec enable out

121. outStartPls => rsdecOutStartPls, -- RSdec start pulse

out

122. outDone => rsdecOutDone, -- RSdec done out

123. errorNum => rsdecErrorNum, -- RSdec error number

124. erasureNum => rsdecErasureNum, -- RSdec Erasure number

125. fail => rsdecFail, -- RSdec Pass/Fail flag

126. delayedData => rsdecDelayedData, -- RSdec delayed data

127. outData => rsdecOutData -- Rsdec data out

128.);

129.

130. -- RS Encoder Top module Instantiation

131. u_rscoder_31_23_top: rscoder_31_23_top

132. port map(

133. CLK => CLK, -- system clock

134. RESET => RESET, -- system reset

135. enable => rsencEnable, -- RSenc enable signal

136. startPls => rsencStartPls, -- RSenc sync signal

137. dataIn => rsencDataIn, -- RSenc data in

138. rsdataOut => rsencDataOut -- RSenc data out

139.);

140.

141. -- Generate clock

142. CLK_p:process

143. begin

144. CLK <= '0';

145. wait for (CLK_PER/2);

146. CLK <= '1';

147. wait for (CLK_PER/2);

148. end process;

149.

150. rs_encsim : process (CLK,RESET) is

151. variable file_status_in : file_open_status;

152. variable file_status_out: file_open_status;

153. file mem_file_in : TEXT;

154. file mem_file_out : TEXT;

155. variable mem_line_in : line;

156. variable mem_line_out : line;

157. variable rsenc0 : std_logic_vector(15 downto 0);

158. variable rsencExpData : std_logic_vector(7 downto 0);

159. ---- DECODER

160. variable file_status_decin : file_open_status;

161. variable file_status_decout: file_open_status;

162. file mem_file_decin : TEXT;

280

163. file mem_file_decout : TEXT;

164. variable mem_line_decin : line;

165. variable mem_line_decout : line;

166. variable rsdec0 : std_logic_vector(23 downto 0);

167. variable rsdecExp : std_logic_vector(7 downto 0);

168.

169. begin

170. if RESET = '0' then

171. rsencStartPls <= '0';

172. rsencEnable <= '0';

173. rsencDataIn <= (others => '0');

174. simStart_ff1 <= '0';

175. simStart_ff2 <= '0';

176. simStart_ff3 <= '0';

177. rd_once_in <= '0';

178. rd_once_out <= '0';

179. rsEncPassFailFlag <= '0';

180. rsEncFailFlag <= '0';

181. -----------------------

182. rsdecSync <= '0';

183. rsdecEnable <= '0';

184. rsdecDataIn <= (others => '0');

185. rd_once_decin <= '0';

186. rd_once_decout <= '0';

187. rsdecOutEnable_ff1 <= '0';

188. rsDecDataFlag <= '0';

189. rsDecNGDataFlag <= '0';

190. rsDecErasureFlag <= '0';

191. rsDecNGErasureFlag <= '0';

192. rsDecErrorFlag <= '0';

193. rsDecNGErrorFlag <= '0';

194. rsDecFailPinFlag <= '0';

195. rsDecNGFailPinFlag <= '0';

196.

197. rsdecExpData_sig <= (others => '0');

198. rsdecExpNumErasure <= (others => '0');

199. rsdecExpNumError <= (others => '0');

200. rsdecExpFailFlag <= '0';

201. rsdecExpData <= (others => '0');

202. rsdecExpDelayedData <= (others => '0');

203.

204. rsdecOutData_ff1 <= (others => '0');

205. rsdecErrorNum_ff1 <= (others => '0');

206. rsdecFail_ff1 <= '0';

207. rsdecErasureNum_ff1 <= (others => '0');

208.

209. rsencStartPls_ff1 <= '0';

210. rsencStartPls_ff2 <= '0';

211. data_count <= (others => '0');

212. elsif rising_edge(CLK) then

213. ---------------

214. simStart_ff1 <= simStart;

215. simStart_ff2 <= simStart_ff1;

216. simStart_ff3 <= simStart_ff2;

217. ----------------------------------

218. -- ENCODER INPUT ---

219. ----------------------------------

281

220. if ((simStart_ff1 ='0') and (simStart ='1') and

(rd_once_in='0')) then

221. file_open(file_status_in, mem_file_in,

"RsEncIn.hex", READ_MODE);

222. rd_once_in <= '1';

223. end if;

224. if ((simStart ='1')) then

225. readline(mem_file_in, mem_line_in);

226. hread(mem_line_in, rsenc0);

227. end if;

228. if (simStart ='1') then

229. rsenc0_sig <= rsenc0;

230. rsencStartPls <= rsenc0(12);

231. rsencEnable <= rsenc0(8);

232. rsencDataIn <= rsenc0(4 downto 0);

233. end if;

234. ----------------------------------

235. -- ENCODER OUTPUT ---

236. ----------------------------------

237. rsencEnable_ff1 <= rsencEnable;

238. rsencEnable_ff2 <= rsencEnable_ff1;

239. rsencStartPls_ff1 <= rsencStartPls;

240. rsencStartPls_ff2 <= rsencStartPls_ff1;

241. if ((rsencEnable_ff1 ='0') and (rsencEnable ='1')

and (rd_once_out='0')) then

242. file_open(file_status_out, mem_file_out,

"RsEncOut.hex", READ_MODE);

243. rd_once_out <= '1';

244. end if;

245. if ((simStart_ff2 ='1')) then

246. readline(mem_file_out, mem_line_out);

247. hread(mem_line_out, rsencExpData);

248. rsencExpData_sig <= rsencExpData(4 downto 0);

249. end if;

250. if ((simStart_ff3 ='1')) then

251. if (rsencDataOut = rsencExpData_sig) then

252. rsEncPassFailFlag <= '0';

253. else

254. rsEncPassFailFlag <= '1';

255. rsEncFailFlag <= '1';

256. end if;

257. end if;

258. ----------------------------------

259. -- DECODER INPUT ---

260. ----------------------------------

261. if ((simStart ='1')) then

262. rsdecSync <= rsencStartPls_ff2;

263. rsdecEnable <= rsencEnable_ff2;

264. if ((data_count="000010") or

(data_count="000100") or (data_count="000110") or (data_count="001010")

or

265. (data_count="001100") or

(data_count="001110") or (data_count="010010") or

(data_count="010011")) then

266. rsdecErasureIn <= '1';

267. rsdecDataIn <= (others => '0');

268. else

282

269. rsdecErasureIn <= '0';

270. rsdecDataIn <= rsencDataOut;

271. end if;

272. end if;

273. if ((rsencEnable_ff2='1')) then

274. if (rsencStartPls_ff2='1') then

275. data_count <= (others => '0');

276. else

277. data_count <=

std_logic_vector(unsigned(data_count) + 1);

278. end if;

279. end if;

280. ----------------------------------

281. -- DECODER OUTPUT ---

282. ----------------------------------

283. rsdecOutData_ff1 <= rsdecOutData;

284. rsdecErrorNum_ff1 <= rsdecErrorNum;

285. rsdecFail_ff1 <= rsdecFail;

286. rsdecErasureNum_ff1 <= rsdecErasureNum;

287. rsdecOutEnable_ff1 <= rsdecOutEnable;

288. if ((rsdecOutEnable_ff1 ='0') and (rsdecOutEnable

='1') and (rd_once_decout='0')) then

289. file_open(file_status_decout, mem_file_decout,

"RsDecOut.hex", READ_MODE);

290. rd_once_decout <= '1';

291. end if;

292. if ((rsdecOutEnable ='1')) then

293. readline(mem_file_decout, mem_line_decout);

294. hread(mem_line_decout, rsdecExp);

295. end if;

296. if ((rsdecOutEnable ='1')) then

297. rsdecExpData <= rsdecExp(4 downto 0);

298. end if;

299. ---- Data Pin ----

300. if (rsdecOutEnable_ff1 = '1') then

301. if (rsdecOutData_ff1 = rsdecExpData) then

302. rsDecDataFlag <= '0';

303. else

304. rsDecDataFlag <= '1';

305. rsDecNGDataFlag <= '1';

306. end if;

307. else

308. rsDecDataFlag <= '0';

309. end if;

310. end if;

311. end process;

312. ---

313. -- Generate reset and tb enable stimulus

314. stimulus_p:process

315. begin

316. simStart <= '0';

317. RESET <= '1';

318. wait for 20 ns;

319. RESET <= '0';

320. wait for 20 ns;

321. RESET <= '1';

322. wait for 200 ns;

283

323. simStart <= '1';

324. wait for 1000 ms;

325. assert false report "End of simulation !" severity

failure;

326. wait;

327. end process;

328.

329. end TB;

284

10.4.2. Error only test bench VHDL source code.

1. ===
2. -- Project Name : RSIP
3. -- Name : simReedSolomon.vhd
4. -- Actual Version : v0.1
5. ===
6. -- Description : error only test environment
7. ===
8. -- libraries
9. ===
10. library ieee;

11. use ieee.std_logic_1164.all;

12. use ieee.numeric_std.all;

13. use ieee.std_logic_textio.all;

14. library std;

15. use std.textio.all;

16. library work;

17. use work.rscoder_31_23_top_pkg.all;

18. use work.rsdecoder_31_23_top_pkg.all;

19. ===

20. -- TOP instantiation

21. ===

22. entity simReedSolomon is

23. end simReedSolomon;

24. ==

25. -- RTL Architecture

26. ==

27. ============architecture TB of simReedSolomon is

28. constant CLK_PER : time := 10 ns; -- 100Mhz

29. ---

30. --------------- Signals

31. ---

32. --------------- decoder --

33. signal CLK : std_logic;

34. signal RESET : std_logic;

35. signal rsdecEnable : std_logic;

36. signal rsdecSync : std_logic;

37. signal rsdecErasureIn : std_logic;

38. signal rsdecDataIn : std_logic_vector(4 downto 0);

39. signal rsdecOutStartPls : std_logic;

40. signal rsdecOutDone : std_logic;

41. signal rsdecOutData : std_logic_vector(4 downto 0);

42. signal rsdecErrorNum : std_logic_vector(4 downto 0);

43. signal rsdecErasureNum : std_logic_vector(4 downto 0);

44. signal rsdecFail : std_logic;

45. signal rsdecOutEnable : std_logic;

46. signal rsdecDelayedData : std_logic_vector(4 downto 0);

47.

48. signal rsencEnable : std_logic;

49. signal rsencStartPls : std_logic;

50. signal rsencDataIn : std_logic_vector(4 downto 0);

51. signal rsencDataOut : std_logic_vector(4 downto 0);

52.

53. signal rsdecOutEnableFF : std_logic;

285

54. signal rsdecOutDataFF : std_logic_vector(4 downto 0);

55. signal rsdecErasureNumFF : std_logic_vector(4 downto 0);

56. signal rsdecErrorNumFF : std_logic_vector(4 downto 0);

57. signal rsdecFailFF : std_logic;

58.

59. signal simStart : std_logic;

60. signal simStart_ff1 : std_logic;

61. signal simStart_ff2 : std_logic;

62. signal simStart_ff3 : std_logic;

63. signal rd_once_decin : std_logic;

64. signal rd_once_decout : std_logic;

65. signal rsdecOutEnable_ff1 : std_logic;

66.

67. signal rsDecDataFlag : std_logic;

68. signal rsDecNGDataFlag : std_logic;

69. signal rsDecErasureFlag : std_logic;

70. signal rsDecNGErasureFlag : std_logic;

71. signal rsDecErrorFlag : std_logic;

72. signal rsDecNGErrorFlag : std_logic;

73. signal rsDecFailPinFlag : std_logic;

74. signal rsDecNGFailPinFlag : std_logic;

75.

76. signal rsdec0_sig : std_logic_vector(23 downto 0);

77.

78. signal rsdecExpData_sig : std_logic_vector(7 downto 0);

79. signal rsdecExpNumErasure : std_logic_vector(4 downto 0);

80. signal rsdecExpNumError : std_logic_vector(4 downto 0);

81. signal rsdecExpFailFlag : std_logic;

82. signal rsdecExpData : std_logic_vector(4 downto 0);

83. signal rsdecExpDelayedData : std_logic_vector(4 downto 0);

84.

85. signal rsdecOutData_ff1 : std_logic_vector(4 downto 0);

86. signal rsdecErrorNum_ff1 : std_logic_vector(4 downto 0);

87. signal rsdecFail_ff1 : std_logic;

88. signal rsdecErasureNum_ff1 : std_logic_vector(4

downto 0);

89.

90. signal data_count : std_logic_vector(5 downto 0);

91. -- coder --

92. signal rd_once_in : std_logic;

93. signal rd_once_out : std_logic;

94. signal rsEncPassFailFlag : std_logic;

95. signal rsEncFailFlag : std_logic;

96. signal rsenc0_sig : std_logic_vector(15 downto 0);

97. signal rsencEnable_ff1 : std_logic;

98. signal rsencEnable_ff2 : std_logic;

99. signal rsencStartPls_ff1 : std_logic;

100. signal rsencStartPls_ff2 : std_logic;

101. signal rsencExpData_sig : std_logic_vector(4 downto 0);

102. begin

103. -- RS Decoder Top module Instantiation

104. u_rsdecoder_31_23_top : rsdecoder_31_23_top

105. port map(

106. CLK => CLK, -- system clock

107. RESET => RESET, -- system reset

108. -- IN

109. enable => rsdecEnable, -- RSdec enable in

286

110. startPls => rsdecSync, -- RSdec sync signal

111. erasureIn => rsdecErasureIn, -- RSdec erasure in

112. dataIn => rsdecDataIn, -- RSdec data in

113. -- OUT

114. outEnable => rsdecOutEnable, -- RSdec enable out

115. outStartPls => rsdecOutStartPls, -- RSdec start pulse

out

116. outDone => rsdecOutDone, -- RSdec done out

117. errorNum => rsdecErrorNum, -- RSdec error number

118. erasureNum => rsdecErasureNum, -- RSdec Erasure number

119. fail => rsdecFail, -- RSdec Pass/Fail flag

120. delayedData => rsdecDelayedData, -- RSdec delayed data

121. outData => rsdecOutData -- Rsdec data out

122.);

123.

124. -- RS Encoder Top module Instantiation

125. u_rscoder_31_23_top: rscoder_31_23_top

126. port map(

127. CLK => CLK, -- system clock

128. RESET => RESET, -- system reset

129. enable => rsencEnable, -- RSenc enable signal

130. startPls => rsencStartPls, -- RSenc sync signal

131. dataIn => rsencDataIn, -- RSenc data in

132. dataOut => rsencDataOut -- RSenc data out

133.);

134.

135. -- Generate clock

136. CLK_p:process

137. begin

138. CLK <= '0';

139. wait for (CLK_PER/2);

140. CLK <= '1';

141. wait for (CLK_PER/2);

142. end process;

143.

144. rs_encsim : process (CLK,RESET) is

145. variable file_status_in : file_open_status;

146. variable file_status_out: file_open_status;

147. file mem_file_in : TEXT;

148. file mem_file_out : TEXT;

149. variable mem_line_in : line;

150. variable mem_line_out : line;

151. variable rsenc0 : std_logic_vector(15 downto 0);

152. variable rsencExpData : std_logic_vector(7 downto 0);

153. ---- DECODER

154. variable file_status_decin : file_open_status;

155. variable file_status_decout: file_open_status;

156. file mem_file_decin : TEXT;

157. file mem_file_decout : TEXT;

158. variable mem_line_decin : line;

159. variable mem_line_decout : line;

160. variable rsdec0 : std_logic_vector(23 downto 0);

161. variable rsdecExp : std_logic_vector(7 downto 0);

162.

163. begin

164. if RESET = '0' then

165. rsencStartPls <= '0';

287

166. rsencEnable <= '0';

167. rsencDataIn <= (others => '0');

168. simStart_ff1 <= '0';

169. simStart_ff2 <= '0';

170. simStart_ff3 <= '0';

171. rd_once_in <= '0';

172. rd_once_out <= '0';

173. rsEncPassFailFlag <= '0';

174. rsEncFailFlag <= '0';

175. -----------------------

176. rsdecSync <= '0';

177. rsdecEnable <= '0';

178. rsdecDataIn <= (others => '0');

179. rd_once_decin <= '0';

180. rd_once_decout <= '0';

181. rsdecOutEnable_ff1 <= '0';

182. rsDecDataFlag <= '0';

183. rsDecNGDataFlag <= '0';

184. rsDecErasureFlag <= '0';

185. rsDecNGErasureFlag <= '0';

186. rsDecErrorFlag <= '0';

187. rsDecNGErrorFlag <= '0';

188. rsDecFailPinFlag <= '0';

189. rsDecNGFailPinFlag <= '0';

190.

191. rsdecExpData_sig <= (others => '0');

192. rsdecExpNumErasure <= (others => '0');

193. rsdecExpNumError <= (others => '0');

194. rsdecExpFailFlag <= '0';

195. rsdecExpData <= (others => '0');

196. rsdecExpDelayedData <= (others => '0');

197.

198. rsdecOutData_ff1 <= (others => '0');

199. rsdecErrorNum_ff1 <= (others => '0');

200. rsdecFail_ff1 <= '0';

201. rsdecErasureNum_ff1 <= (others => '0');

202.

203. rsencStartPls_ff1 <= '0';

204. rsencStartPls_ff2 <= '0';

205. data_count <= (others => '0');

206. elsif rising_edge(CLK) then

207. ---------------

208. simStart_ff1 <= simStart;

209. simStart_ff2 <= simStart_ff1;

210. simStart_ff3 <= simStart_ff2;

211. ----------------------------------

212. -- ENCODER INPUT ---

213. ----------------------------------

214. if ((simStart_ff1 ='0') and (simStart ='1') and

(rd_once_in='0')) then

215. file_open(file_status_in, mem_file_in,

"RsEncIn.hex", READ_MODE);

216. rd_once_in <= '1';

217. end if;

218. ---------------

219. if ((simStart ='1')) then

220. readline(mem_file_in, mem_line_in);

288

221. hread(mem_line_in, rsenc0);

222. end if;

223. ---------------

224. if (simStart ='1') then

225. rsenc0_sig <= rsenc0;

226. rsencStartPls <= rsenc0(12);

227. rsencEnable <= rsenc0(8);

228. rsencDataIn <= rsenc0(4 downto 0);

229. end if;

230. ----------------------------------

231. -- ENCODER OUTPUT ---

232. ----------------------------------

233. rsencEnable_ff1 <= rsencEnable;

234. rsencEnable_ff2 <= rsencEnable_ff1;

235. rsencStartPls_ff1 <= rsencStartPls;

236. rsencStartPls_ff2 <= rsencStartPls_ff1;

237. if ((rsencEnable_ff1 ='0') and (rsencEnable ='1')

and (rd_once_out='0')) then

238. file_open(file_status_out, mem_file_out,

"RsEncOut.hex", READ_MODE);

239. rd_once_out <= '1';

240. end if;

241. ---------------

242. if ((simStart_ff2 ='1')) then

243. readline(mem_file_out, mem_line_out);

244. hread(mem_line_out, rsencExpData);

245. rsencExpData_sig <= rsencExpData(4 downto 0);

246. end if;

247. ---------------

248. if ((simStart_ff3 ='1')) then

249. if (rsencDataOut = rsencExpData_sig) then

250. rsEncPassFailFlag <= '0';

251. else

252. rsEncPassFailFlag <= '1';

253. rsEncFailFlag <= '1';

254. end if;

255. end if;

256. ----------------------------------

257. -- DECODER INPUT ---

258. ----------------------------------

259. ---------------

260. if ((simStart ='1')) then

261. rsdecSync <= rsencStartPls_ff2;

262. rsdecEnable <= rsencEnable_ff2;

263. rsdecErasureIn <= '0';

264. if ((data_count="001100") or

(data_count="001110") or (data_count="010010") or

(data_count="010011")) then

265. rsdecDataIn <= not rsencDataOut;

266. else

267. rsdecDataIn <= rsencDataOut;

268. end if;

269. end if;

270. ---------------

271. if ((rsencEnable_ff2='1')) then

272. if (rsencStartPls_ff2='1') then

273. data_count <= (others => '0');

289

274. else

275. data_count <=

std_logic_vector(unsigned(data_count) + 1);

276. end if;

277. end if;

278. -------------------------------

279. -- DECODER OUTPUT ---

280. ----------------------------------

281. rsdecOutData_ff1 <= rsdecOutData;

282. rsdecErrorNum_ff1 <= rsdecErrorNum;

283. rsdecFail_ff1 <= rsdecFail;

284. rsdecErasureNum_ff1 <= rsdecErasureNum;

285. rsdecOutEnable_ff1 <= rsdecOutEnable;

286. if ((rsdecOutEnable_ff1 ='0') and (rsdecOutEnable

='1') and (rd_once_decout='0')) then

287. file_open(file_status_decout, mem_file_decout,

"RsDecOut.hex", READ_MODE);

288. rd_once_decout <= '1';

289. end if;

290. ---------------

291. if ((rsdecOutEnable ='1')) then

292. readline(mem_file_decout, mem_line_decout);

293. hread(mem_line_decout, rsdecExp);

294. end if;

295. if ((rsdecOutEnable ='1')) then

296. rsdecExpData <= rsdecExp(4 downto 0);

297. end if;

298. ---- Data Pin ----

299. if (rsdecOutEnable_ff1 = '1') then

300. if (rsdecOutData_ff1 = rsdecExpData) then

301. rsDecDataFlag <= '0';

302. else

303. rsDecDataFlag <= '1';

304. rsDecNGDataFlag <= '1';

305. end if;

306. else

307. rsDecDataFlag <= '0';

308. end if;

309. end if;

310. end process;

311.

312. ---

313. -- Generate reset and tb enable stimulus

314. stimulus_p:process

315. begin

316. simStart <= '0';

317. RESET <= '1';

318. wait for 20 ns;

319. RESET <= '0';

320. wait for 20 ns;

321. RESET <= '1';

322. wait for 200 ns;

323. simStart <= '1';

324. wait for 1000 ms;

325. assert false report "End of simulation !" severity

failure;

326. wait;

290

327. end process;

328.

329.

330. end TB;

291

10.4.3. Erasure & Error test bench VHDL source code.

1. ==
2. -- Project Name : RSIP
3. -- Name : simReedSolomon.vhd
4. -- Actual Version : v0.1
5. ===
6. -- Description : erasure & error test environment
7. ===
8. -- libraries
9. ===
10. library ieee;

11. use ieee.std_logic_1164.all;

12. use ieee.numeric_std.all;

13. use ieee.std_logic_textio.all;

14. library std;

15. use std.textio.all;

16. library work;

17. use work.rscoder_31_23_top_pkg.all;

18. use work.rsdecoder_31_23_top_pkg.all;

19. ===

20. -- TOP instantiation

21. ===

22. entity simReedSolomon is

23. end simReedSolomon;

24. ===

25. -- RTL Architecture

26. ===

27. architecture TB of simReedSolomon is

28. constant CLK_PER : time := 10 ns; -- 100Mhz

29. --

30. -- Signals

31. --

32. -- decoder --

33. signal CLK : std_logic;

34. signal RESET : std_logic;

35. signal rsdecEnable : std_logic;

36. signal rsdecSync : std_logic;

37. signal rsdecErasureIn : std_logic;

38. signal rsdecDataIn : std_logic_vector(4 downto 0);

39. signal rsdecOutStartPls : std_logic;

40. signal rsdecOutDone : std_logic;

41. signal rsdecOutData : std_logic_vector(4 downto 0);

42. signal rsdecErrorNum : std_logic_vector(4 downto 0);

43. signal rsdecErasureNum : std_logic_vector(4 downto 0);

44. signal rsdecFail : std_logic;

45. signal rsdecOutEnable : std_logic;

46. signal rsdecDelayedData : std_logic_vector(4 downto 0);

47.

48. signal rsencEnable : std_logic;

49. signal rsencStartPls : std_logic;

50. signal rsencDataIn : std_logic_vector(4 downto 0);

51. signal rsencDataOut : std_logic_vector(4 downto 0);

52.

53. Signal rsdecOutEnableFF: std_logic;

292

54. signal rsdecOutDataFF : std_logic_vector(4 downto 0);

55. signal rsdecErasureNumFF : std_logic_vector(4 downto 0);

56. signal rsdecErrorNumFF : std_logic_vector(4 downto 0);

57. signal rsdecFailFF : std_logic;

58.

59. signal simStart : std_logic;

60. signal simStart_ff1 : std_logic;

61. signal simStart_ff2 : std_logic;

62. signal simStart_ff3 : std_logic;

63. signal rd_once_decin : std_logic;

64. signal rd_once_decout : std_logic;

65. signal rsdecOutEnable_ff1 : std_logic;

66.

67. signal rsDecDataFlag : std_logic;

68. signal rsDecNGDataFlag : std_logic;

69. signal rsDecErasureFlag : std_logic;

70. signal rsDecNGErasureFlag : std_logic;

71. signal rsDecErrorFlag : std_logic;

72. signal rsDecNGErrorFlag : std_logic;

73. signal rsDecFailPinFlag : std_logic;

74. signal rsDecNGFailPinFlag : std_logic;

75.

76. signal rsdec0_sig : std_logic_vector(23 downto 0);

77.

78. signal rsdecExpData_sig : std_logic_vector(7 downto 0);

79. signal rsdecExpNumErasure : std_logic_vector(4 downto 0);

80. signal rsdecExpNumError : std_logic_vector(4 downto 0);

81. signal rsdecExpFailFlag : std_logic;

82. signal rsdecExpData : std_logic_vector(4 downto 0);

83. signal rsdecExpDelayedData : std_logic_vector(4 downto 0);

84.

85. signal rsdecOutData_ff1 : std_logic_vector(4 downto 0);

86. signal rsdecErrorNum_ff1 : std_logic_vector(4 downto 0);

87. signal rsdecFail_ff1 : std_logic;

88. signal rsdecErasureNum_ff1 : std_logic_vector(4

downto 0);

89.

90. signal data_count : std_logic_vector(5 downto 0);

91. -- coder --

92. signal rd_once_in : std_logic;

93. signal rd_once_out : std_logic;

94. signal rsEncPassFailFlag : std_logic;

95. signal rsEncFailFlag : std_logic;

96. signal rsenc0_sig : std_logic_vector(15 downto 0);

97. signal rsencEnable_ff1 : std_logic;

98. signal rsencEnable_ff2 : std_logic;

99. signal rsencStartPls_ff1 : std_logic;

100. signal rsencStartPls_ff2 : std_logic;

101. signal rsencExpData_sig : std_logic_vector(4 downto 0);

102. begin

103. ---

104. -- RS Decoder Top module Instantiation

105. u_rsdecoder_31_23_top : rsdecoder_31_23_top

106. port map(

107. CLK => CLK, -- system clock

108. RESET => RESET, -- system reset

109. -- IN

293

110. enable => rsdecEnable, -- RSdec enable in

111. startPls => rsdecSync, -- RSdec sync signal

112. erasureIn => rsdecErasureIn, -- RSdec erasure in

113. dataIn => rsdecDataIn, -- RSdec data in

114. -- OUT

115. outEnable => rsdecOutEnable, -- RSdec enable out

116. outStartPls => rsdecOutStartPls, -- RSdec start pulse

out

117. outDone => rsdecOutDone, -- RSdec done out

118. errorNum => rsdecErrorNum, -- RSdec error number

119. erasureNum => rsdecErasureNum, -- RSdec Erasure number

120. fail => rsdecFail, -- RSdec Pass/Fail flag

121. delayedData => rsdecDelayedData, -- RSdec delayed data

122. outData => rsdecOutData -- Rsdec data out

123.);

124. -- RS Encoder Top module Instantiation

125. u_rscoder_31_23_top: rscoder_31_23_top

126. port map(

127. CLK => CLK, -- system clock

128. RESET => RESET, -- system reset

129. enable => rsencEnable, -- RSenc enable signal

130. startPls => rsencStartPls, -- RSenc sync signal

131. dataIn => rsencDataIn, -- RSenc data in

132. dataOut => rsencDataOut -- RSenc data out

133.);

134. -- Generate clock

135. CLK_p:process

136. begin

137. CLK <= '0';

138. wait for (CLK_PER/2);

139. CLK <= '1';

140. wait for (CLK_PER/2);

141. end process;

142. rs_encsim : process (CLK,RESET) is

143. variable file_status_in : file_open_status;

144. variable file_status_out: file_open_status;

145. file mem_file_in : TEXT;

146. file mem_file_out : TEXT;

147. variable mem_line_in : line;

148. variable mem_line_out : line;

149. variable rsenc0 : std_logic_vector(15 downto 0);

150. variable rsencExpData : std_logic_vector(7 downto 0);

151. ---- DECODER

152. variable file_status_decin : file_open_status;

153. variable file_status_decout: file_open_status;

154. file mem_file_decin : TEXT;

155. file mem_file_decout : TEXT;

156. variable mem_line_decin : line;

157. variable mem_line_decout : line;

158. variable rsdec0 : std_logic_vector(23 downto 0);

159. variable rsdecExp : std_logic_vector(7 downto 0);

160.

161. begin

162. if RESET = '0' then

163. rsencStartPls <= '0';

164. rsencEnable <= '0';

165. rsencDataIn <= (others => '0');

294

166. simStart_ff1 <= '0';

167. simStart_ff2 <= '0';

168. simStart_ff3 <= '0';

169. rd_once_in <= '0';

170. rd_once_out <= '0';

171. rsEncPassFailFlag <= '0';

172. rsEncFailFlag <= '0';

173. -----------------------

174. rsdecSync <= '0';

175. rsdecEnable <= '0';

176. rsdecDataIn <= (others => '0');

177. rd_once_decin <= '0';

178. rd_once_decout <= '0';

179. rsdecOutEnable_ff1 <= '0';

180. rsDecDataFlag <= '0';

181. rsDecNGDataFlag <= '0';

182. rsDecErasureFlag <= '0';

183. rsDecNGErasureFlag <= '0';

184. rsDecErrorFlag <= '0';

185. rsDecNGErrorFlag <= '0';

186. rsDecFailPinFlag <= '0';

187. rsDecNGFailPinFlag <= '0';

188.

189. rsdecExpData_sig <= (others => '0');

190. rsdecExpNumErasure <= (others => '0');

191. rsdecExpNumError <= (others => '0');

192. rsdecExpFailFlag <= '0';

193. rsdecExpData <= (others => '0');

194. rsdecExpDelayedData <= (others => '0');

195.

196. rsdecOutData_ff1 <= (others => '0');

197. rsdecErrorNum_ff1 <= (others => '0');

198. rsdecFail_ff1 <= '0';

199. rsdecErasureNum_ff1 <= (others => '0');

200.

201. rsencStartPls_ff1 <= '0';

202. rsencStartPls_ff2 <= '0';

203. data_count <= (others => '0');

204. elsif rising_edge(CLK) then

205.

206. simStart_ff1 <= simStart;

207. simStart_ff2 <= simStart_ff1;

208. simStart_ff3 <= simStart_ff2;

209. ----------------------------------

210. -- ENCODER INPUT ---

211. ----------------------------------

212. if ((simStart_ff1 ='0') and (simStart ='1') and

(rd_once_in='0')) then

213. file_open(file_status_in, mem_file_in,

"RsEncIn.hex", READ_MODE);

214. rd_once_in <= '1';

215. end if;

216. ---------------

217. if ((simStart ='1')) then

218. readline(mem_file_in, mem_line_in);

219. hread(mem_line_in, rsenc0);

220. end if;

295

221. ---------------

222. if (simStart ='1') then

223. rsenc0_sig <= rsenc0;

224. rsencStartPls <= rsenc0(12);

225. rsencEnable <= rsenc0(8);

226. rsencDataIn <= rsenc0(4 downto 0);

227. end if;

228. ----------------------------------

229. -- ENCODER OUTPUT ---

230. ----------------------------------

231. rsencEnable_ff1 <= rsencEnable;

232. rsencEnable_ff2 <= rsencEnable_ff1;

233. rsencStartPls_ff1 <= rsencStartPls;

234. rsencStartPls_ff2 <= rsencStartPls_ff1;

235. if ((rsencEnable_ff1 ='0') and (rsencEnable ='1')

and (rd_once_out='0')) then

236. file_open(file_status_out, mem_file_out,

"RsEncOut.hex", READ_MODE);

237. rd_once_out <= '1';

238. end if;

239. ---------------

240. if ((simStart_ff2 ='1')) then

241. readline(mem_file_out, mem_line_out);

242. hread(mem_line_out, rsencExpData);

243. rsencExpData_sig <= rsencExpData(4 downto 0);

244. end if;

245. ---------------

246. if ((simStart_ff3 ='1')) then

247. if (rsencDataOut = rsencExpData_sig) then

248. rsEncPassFailFlag <= '0';

249. else

250. rsEncPassFailFlag <= '1';

251. rsEncFailFlag <= '1';

252. end if;

253. end if;

254. ----------------------------------

255. -- DECODER INPUT ---

256. ----------------------------------

257. if ((simStart ='1')) then

258. rsdecSync <= rsencStartPls_ff2;

259. rsdecEnable <= rsencEnable_ff2;

260. -- insert erasures

261. if ((data_count="000010") or

(data_count="000100") or (data_count="000110") or

(data_count="001010")) then

262. rsdecErasureIn <= '1';

263. rsdecDataIn <= (others => '0');

264. -- insert errors

265. elsif ((data_count="001100") or

(data_count="001110")) then

266. rsdecErasureIn <= '0';

267. rsdecDataIn <= not rsencDataOut;

268. -- insert normal data

269. else

270. rsdecErasureIn <= '0';

271. rsdecDataIn <= rsencDataOut;

272. end if;

296

273. end if;

274. ---------------

275. if ((rsencEnable_ff2='1')) then

276. if (rsencStartPls_ff2='1') then

277. data_count <= (others => '0');

278. else

279. data_count <=

std_logic_vector(unsigned(data_count) + 1);

280. end if;

281. end if;

282. ----------------------------------

283. -- DECODER OUTPUT ---

284. ----------------------------------

285. rsdecOutData_ff1 <= rsdecOutData;

286. rsdecErrorNum_ff1 <= rsdecErrorNum;

287. rsdecFail_ff1 <= rsdecFail;

288. rsdecErasureNum_ff1 <= rsdecErasureNum;

289. rsdecOutEnable_ff1 <= rsdecOutEnable;

290. if ((rsdecOutEnable_ff1 ='0') and (rsdecOutEnable

='1') and (rd_once_decout='0')) then

291. file_open(file_status_decout, mem_file_decout,

"RsDecOut.hex", READ_MODE);

292. rd_once_decout <= '1';

293. end if;

294. ---------------

295. if ((rsdecOutEnable ='1')) then

296. readline(mem_file_decout, mem_line_decout);

297. hread(mem_line_decout, rsdecExp);

298. end if;

299. if ((rsdecOutEnable ='1')) then

300. rsdecExpData <= rsdecExp(4 downto 0);

301. end if;

302. ---- Data Pin ----

303. if (rsdecOutEnable_ff1 = '1') then

304. if (rsdecOutData_ff1 = rsdecExpData) then

305. rsDecDataFlag <= '0';

306. else

307. rsDecDataFlag <= '1';

308. rsDecNGDataFlag <= '1';

309. end if;

310. else

311. rsDecDataFlag <= '0';

312. end if;

313. end if;

314. end process;

315. ---

316. -- Generate reset and tb enable stimulus

317. stimulus_p:process

318. begin

319. simStart <= '0';

320. RESET <= '1';

321. wait for 20 ns;

322. RESET <= '0';

323. wait for 20 ns;

324. RESET <= '1';

325. wait for 200 ns;

326. simStart <= '1';

297

327. wait for 1000 ms;

328. assert false report "End of simulation !" severity

failure;

329. wait;

330. end process;

331.

332. end TB;

298

10.5. Appendix 5

10.5.1. Field of (31,23)RS code.

Polynomial Generator is:- X5+X2+1

Power Polynomial a0 a1 a2 a3 a4

0 0 0 0 0 0 0

1 1 1 0 0 0 0

α α 0 1 0 0 0

α 2 α 2 0 0 1 0 0

α 3 α 3 0 0 0 1 0

α 4 α 4 0 0 0 0 1

α 5 α 2+1 1 0 1 0 0

α 6 α 3
+ α

 0 1 0 1 0

α 7 α 4+ α 2 0 0 1 0 1

α 8 α 3+ α 2+1 1 0 1 1 0

α 9 α 4+ α 3+ α 0 1 0 1 1

α 10 α 4+1 1 0 0 0 1

α 11 α 2+ α +1 1 1 1 0 0

α 12 α 3+ α 2+ α 0 1 1 1 0

α 13 α 4+ α 3+ α 2 0 0 1 1 1

α 14 α 4+ α 3+ α 2+1 1 0 1 1 1

α 15 α 4+ α 3+ α 2+ α +1 1 1 1 1 1

α 16 α 4+ α 3+ α +1 1 1 0 1 1

α 17 α 4+ α +1 1 1 0 0 1

α 18 α +1 1 1 0 0 0

α 19 α 2 +α 0 1 1 0 0

α 20 α 3+ α 2 0 0 1 1 0

α 21 α 4+ α 3 0 0 0 1 1

α 22 α 4+ α 2+1 1 0 1 0 1

α 23 α 3 +α 2+ α +1 1 1 1 1 0

α 24 α 4+ α 3+ α 2+ α 0 1 1 1 1

α 25 α 4 +α 3+1 1 0 0 1 1

α 26 α 4+ α 2+ α +1 1 1 1 0 1

α 27 α 3 +α +1 1 1 0 1 0

α 28 α 4+ α 2+ α 0 1 1 0 1

α 29 α 3+1 1 0 0 1 0

α 30 α 4+ α 0 1 0 0 1

299

10.6. Appendix 6

10.6.1. SMA breakout cables data sheet.

300

301

302

10.6.2. Optical transmitter & receiver data sheet.

303

304

305

306

307

308

309

310

311

312

313

314

10.6.3. Comparator data sheet.

315

316

317

318

319

320

321

322

323

324

325

10.6.4. POF data sheet.

326

327

328

329

330

331

332

333

334

Chapter11: REFERENCES

Acton, Q. A. (2012). Issues in Telecommunications Research: 2011 Edition (Google

eBook). Georgia: ScholarlyEditions.

Agrawal, G. (2010). Applications of Nonlinear Fiber Optics: Elsevier Science.

Al-Azzawi, A. (2006). Fiber Optics: Principles and Practices: Taylor & Francis.

Al-Suleimani, I., Phillips, A., & Woolfson, M. (2008). Performance evaluation of optically

preamplified dicode pulse position modulation receivers. European Transactions on

Telecommunications, 19(1), 47-52.

Aldibbiat, N., Ghassemlooy, Z., & McLaughlin, R. (2002). Dual header pulse interval

modulation for dispersive indoor optical wireless communication systems. IEE

Proceedings-Circuits, Devices and Systems, 149(3), 187-192.

Alexander, S. B. (1997). Optical Communication Receiver Design: SPIE Optical

Engineering Press.

Alic, N., & Fainman, Y. (2004). Data-dependent phase coding for suppression of ghost

pulses in optical fibers. IEEE Photonics Technology Letters, 16(4), 1212-1214.

Alpert, C. J., Mehta, D. P., & Sapatnekar, S. S. (2008). Handbook of Algorithms for

Physical Design Automation: Taylor & Francis.

Altera. (2009). High Speed Mezzanine Card (HSMC) Specification Retrieved 10 Feb,

2014, from http://www.altera.co.uk/literature/ds/hsmc_spec.pdf

Altera. (2010). Cyclone III FPGA development kit Retrieved 20 Feb, 2014, from

http://www.altera.com/products/devkits/altera/kit-cyc3.html

Anderson, D. R., Johnson, L. M., & Bell, F. G. (2004). Troubleshooting Optical Fiber

Networks: Understanding and Using Optical Time-Domain Reflectometers: Elsevier

Science.

Atkin, G., & Fung, K. (1990). Performance analysis of coded optical PPM system using

direct and coherent detection. IEE Proceedings I (Communications, Speech and Vision),

137(4), 226-232.

http://www.altera.co.uk/literature/ds/hsmc_spec.pdf
http://www.altera.com/products/devkits/altera/kit-cyc3.html

335

Bagad, V. S., & Dhotre, I. A. (2009). Data Communication Systems: Technical

Publications.

Band, Y. B. (2006). Light and matter: electromagnetism, optics, spectroscopy and lasers

(Vol. 1). New Jersey: John Wiley & Sons.

Bandyopadhyay, N. (2014). OPTICAL COMMUNICATION AND NETWORKS: PHI Learning.

Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., & Wassermann, A.

(2006). Error-Correcting Linear Codes: Classification by Isometry and Applications:

Springer.

Blogh, J. S., & Hanzo, L. L. (2002). Third-generation systems and intelligent wireless

networking: smart antennas and adaptive modulation: John Wiley & Sons.

Brown, S. D., & Vranesic, Z. G. (2009). Fundamentals of digital logic with VHDL design.

New York: McGraw-Hill

Charitopoulos, R. (2009). Implementation & Performance Investigation of Dicode PPM

over Dispersive Optical Channels. Doctoral thesis, University of Huddersfield.

Charitopoulos, R., & Sibley, M. J. (2009). Experimental coder/decoder of dicode pulse

position modulation. Paper presented at the Proceedings of Computing and Engineering

Annual Researchers' Conference, Huddersfield, UK.

Charitopoulos, R., Sibley, M. J. N., & Mather, P. (2011). Maximum likelihood sequence

detector for dicode pulse position modulation. IET, 5(6), 261-264.

Chatzidiamantis, N. D., Uysal, M., Tsiftsis, T. A., & Karagiannidis, G. K. (2009). EM-

based maximum-likelihood sequence detection for MIMO optical wireless systems. Paper

presented at the Communications, 2009. ICC'09. IEEE International Conference on.

Crisp, J. (2005). Introduction to Fiber Optics: Elsevier Science.

Crowell, G., & Press, R. (2004). Using Scan Based Techniques for Fault Isolation in Logic

Devices0871708043, 9780871708045 Microelectronics Failure Analysis: Desk Reference

(pp. 132-138): ASM International.

Cryan, R., & Sibley, M. J. (2006). Minimising intersymbol interference in optical-fibre

dicode PPM systems. Paper presented at the Optoelectronics, IEE Proceedings-.

336

Cryan, R., & Unwin, R. (1990a). Heterodyne n-ary PPM employing Reed-Solomon codes.

Paper presented at the Global Telecommunications Conference, 1990, and

Exhibition.'Communications: Connecting the Future', GLOBECOM'90., IEEE.

Cryan, R., & Unwin, R. (1990b). Reed-Soloman coded optical fibre digital PPM:

Approaching Fundamental Limits. Paper presented at the IEEE International Conference

on Communication Systems, Singapore.

Cryan, R., & Unwin, R. (1992). Reed—solomon coded homodyne digital pulse position

modulation. IEE Proceedings I (Communications, Speech and Vision), 139(2), 140-146.

Curtis, K., Dhar, L., Hill, A., Wilson, W., & Ayres, M. (2010). Holographic data storage.

Wiley.

Cvijetic, M. (2004). Optical Transmission Systems Engineering: Artech House.

Darnell, M. (1985). Error control coding: Fundamentals and applications.

Communications, Radar and Signal Processing, IEE Proceedings F, 132(1), 68.

Davidson, F. M., & Sun, X. (1989). Slot clock recovery in optical PPM communication

systems with avalanche photodiode photodetectors. Communications, IEEE Transactions

on, 37(11), 1164-1172.

Divsalar D, Gagliardi R.M, & J.H. Yuen. (1982). PPM Demodulation for Reed-Solomon

Decoding for Optical Space Channel: Jet Propulsion Laboratory, California Institute of

Technology.

Dolinar Jr, S. (1983). A near-optimum receiver structure for the detection of M-ary

optical PPM signals. The Telecommunications and Data Acquisition Progress Report, 42-

72.

Downing, J. N. (2004). Fiber-optic Communications: Thomson/Delmar Learning.

Elmirghani, J., Cryan, R., & Clayton, M. (1992a). Spectral characterisation and frame

synchronisation of optical fibre digital PPM. Electronics Letters, 25(16), 1482-1483. doi:

10.1049/el:19920941

Elmirghani J. M. H, Cryan R. A, & Clayton F. M. (1992c, 1992). Frame synchronisation

for optical fibre digital PPM.

Elmirghani, J. M., Cryan, R. A., & Clayton, F. (1992b). Optical fiber n-ary PPM: the

question of slot synchronization. Paper presented at the Fibers' 92.

337

Fleetwood, D. M., & Schrimpf, R. D. (2004). Radiation effects and soft errors in

integrated circuits and electronic devices (Vol. 34): World Scientific.

Forouzan, B. A., & Fegan, S. C. (2003). Local area networks (Vol. 1): McGraw-Hill.

Ghassemlooy, Z., & Hayes, A. (2000). Digital pulse interval modulation for IR

communication systems—a review. International Journal of Communication Systems,

13(7‐8), 519-536.

Gho, G.-H., & Kahn, J. M. (2012). Rate-adaptive modulation and coding for optical fiber

transmission systems. Journal of Lightwave Technology, 30(12), 1818-1828.

Gho, G.-H., Klak, L., & Kahn, J. M. (2011). Rate-adaptive coding for optical fiber

transmission systems. Lightwave Technology, Journal of, 29(2), 222-233.

Ghosna, F., & Sibley, M. J. (2010). Pulse position modulation coding schemes for optical

intersatellite links. Electronics Letters, 46(4), 290-291.

Goff, D. (2002). Fiber Optic Reference Guide: Taylor & Francis.

Gol'Dshteyn, Y. A., & Frezinskiy, B. (1979). Investigation of the Transmission of a Multi-

Position PPM Optical Signal Through a Communications Line Containing Repeaters.

RADIO ENG. & ELECTRON. PHYS., 24(7), 65-71.

Goldsmith, A. (2005). Wireless communications: Cambridge university press.

Guimaraes, D. A. (2002). Local Area Networks. New York: Tata Mc-Graw Hill Education.

Guimaraes, D. A. (2010). Digital Transmission: A Simulation-Aided Introduction with

VisSim/Comm: Springer.

Hecht, J. (2004). City of Light: The Story of Fiber Optics: Oxford University Press.

Held, G. (2008). Introduction to Light Emitting Diode Technology and Applications: CRC

Press.

Hemmati, H. (2006). Deep Space Optical Communications (Google eBook ed.). New

Jersey: John Wiley & Sons.

Herceg, M., Švedek, T., & Matić, T. (2010). Pulse interval modulation for ultra-high

speed IR-UWB communications systems. EURASIP Journal on Advances in Signal

Processing, 2010, 48.

338

Hetzel, P. (1988). Time dissemination via the LF transmitter DCF77 using a pseudo-

random phase-shift keying of the carrier. Paper presented at the Proceedings of the 2nd

European Frequency and Time Forum (EFTF).

Houghton, A. (2001). Error coding for engineers. Berlin: Springer, Science & Business

Media.

Infocellar. (2015). Wave Division Multiplexing Computer Technology & Network

Communications Retrieved June, 2015, from http://www.infocellar.com/networks/fiber-

optics/

Introduction to the VHDL Language. (n.d.) Retrieved 20 Feb, 2014, from

http://home.deib.polimi.it/sami/VHDL_merged.pdf

Janssen, C. (2014). Optical Communication Retrieved 20 August, 2014, from

http://www.techopedia.com/definition/24942/optical-communication

Kadrid, E. (2011). An FPGA Implementation for a High-Speed Optical Link with a PCIe

Interface Retrieved 15 Feb, 2014, from

http://www.seas.upenn.edu/~ekadric/masters_thesis.pdf

Karp, S., & Gagliardi, R. M. (1969). The design of a pulse-position modulated optical

communication system. Communication Technology, IEEE Transactions on, 17(6), 670-

676.

Katz, R. H., & Borriello, G. (2005). Contemporary logic design (Second ed.). New York:

Pearson Prentice Hall.

Kaur, G. (2011). VHDL: Basics to Programming. India: Dorling Kindersley.

Kim, C., Rhee, S., Kim, J., & Jee, Y. (2010). Product Reed-Solomon codes for

implementing NAND flash controller on FPGA chip. Paper presented at the Computer

Engineering and Applications (ICCEA), 2010 Second International Conference on.

Ko, Y. C. (2011). Pulse-Position Modulation Retrieved 2 Feb, 2014, from

http://ocw.korea.edu/ocw/college-of-

engineering/d1b5c2e0c774b860/lecturenote23June2.pdf

Kurzweil, H., Seidl, M., & Huber, J. B. (2011). Reduced-complexity collaborative

decoding of interleaved Reed-Solomon and Gabidulin codes. arXiv preprint

arXiv:1102.3126.

http://www.infocellar.com/networks/fiber-optics/
http://www.infocellar.com/networks/fiber-optics/
http://home.deib.polimi.it/sami/VHDL_merged.pdf
http://www.techopedia.com/definition/24942/optical-communication
http://www.seas.upenn.edu/~ekadric/masters_thesis.pdf
http://ocw.korea.edu/ocw/college-of-engineering/d1b5c2e0c774b860/lecturenote23June2.pdf
http://ocw.korea.edu/ocw/college-of-engineering/d1b5c2e0c774b860/lecturenote23June2.pdf

339

Kythe, D. K., & Kythe, P. K. (2012). Algebraic and stochastic coding theory: CRC Press.

Lala, P. K. (1996). Practical digital logic design and testing. USA: Prentice-Hall, Inc.

Lamba, T. S., Biswas, P., & Pathak, S. (2005). Proceedings of the Eleventh National

Conference on Communications: NCC-2005, 28-30 January, 2005: Allied Publishers.

Lapstun, P. (2009). Coding pattern comprising direction codes: Google Patents.

Lazaridis, G. (2011). Pulse Position Modulation and Differential PPM Retrieved 20 August

2014, from http://www.pcbheaven.com/wikipages/Pulse_Position_Modulation/

Lee, G., & Schroeder, G. (1977). Optical pulse position modulation with multiple

positions per pulsewidth. Communications, IEEE Transactions on, 25(3), 360-364.

Lin, S., & Costello, D. J. (1983). Error Control Coding—Fundamentals and Applications,

Vol. 1 of Computer Applications in Electrical Engineering Series: Prentice–Hall,

Englewood Cliffs, New Jersey.

Ling, G., & Gagliardi, R. M. (1986). Slot synchronization in optical PPM communications.

Communications, IEEE Transactions on, 34(12), 1202-1208.

Liu, A. (2002). The Mathematical Theory of Communication Retrieved 2 Feb, 2014, from

http://oldsite.english.ucsb.edu/faculty/ayliu/unlocked/shannon/mathematical-

theory.html

Lu, Y., Willi, M., & Serge, V. (2005). The conditional correlation attack: A practical attack

on bluetooth encryption. Paper presented at the Advances in Cryptology–CRYPTO 2005.

Maini, A. K. (2007). Digital electronics: principles, devices and applications: John Wiley &

Sons, Inc.

McDaniel, T. W., & Victora, R. (1995). Handbook of Magneto-Optical Data Recording:

Materials, Subsystems, Techniques: Elsevier Science.

McEliece, R. (1979). Coding for the photon channel. Paper presented at the NTC'79;

National Telecommunications Conference, Volume 2.

McEliece, R. J. (1981). Practical codes for photon communication. Information Theory,

IEEE Transactions on, 27(4), 393-398.

http://www.pcbheaven.com/wikipages/Pulse_Position_Modulation/
http://oldsite.english.ucsb.edu/faculty/ayliu/unlocked/shannon/mathematical-theory.html
http://oldsite.english.ucsb.edu/faculty/ayliu/unlocked/shannon/mathematical-theory.html

340

Mecherle, G. S. (1985). Impact of laser diode performance on data rate capability of PPM

optical communication. Paper presented at the Military Communications Conference,

1985. MILCOM 1985. IEEE.

Mecherle, G. S. (1986). Detection alternatives for pulse position modulation (PPM)

optical communication. Paper presented at the OE/LASE'86 Symp (January 1986, Los

Angeles).

Mori, R., & Tanaka, T. (2010). Non-binary polar codes using Reed-Solomon codes and

algebraic geometry codes. Paper presented at the Information Theory Workshop (ITW),

2010 IEEE.

Nam, H. (2006). Joint diversity combining technique and adaptive modulation in wireless

communications: ProQuest.

Nguyen, T. T., & Lampe, L. (2009). Coded pulse-position modulation for free-space

optical communications. Paper presented at the Communications, 2009. ICC'09. IEEE

International Conference on.

Nguyen, T. T., & Lampe, L. (2010). Coded multipulse pulse-position modulation for free-

space optical communications. Communications, IEEE Transactions on, 58(4), 1036-

1041.

Nikolaidis, K. (2008). An Investigation of an Optical Multiple Pulse Position Modulation

Link over a Dispersive Optical Channel. Dissertation/Thesis. Retrieved from

http://eprints.hud.ac.uk/6980/

Osterberg, U. (2003). Signal processing in optical fibers. Mathematical Sciences

Research Institute Publications, 301.

Pavert, L. (2011). REED-SOLOMON ENCODING AND DECODING Retrieved 15 Feb, 2014,

from http://vandepavert.fi/uploads/media/Reed-

Solomon_Encoding_and_Decoding_01.pdf

Picone, A. (2013). New lower bounds for the minimum distance of generalized algebraic

geometry codes. Journal of Pure and Applied Algebra, 217(6), 1164-1172.

Pires, J., & Da Rocha, J. (1986). Digital pulse position modulation over optical fibres with

avalanche photodiode receivers. Paper presented at the Optoelectronics, IEE Proceedings

J.

http://eprints.hud.ac.uk/6980/
http://vandepavert.fi/uploads/media/Reed-Solomon_Encoding_and_Decoding_01.pdf
http://vandepavert.fi/uploads/media/Reed-Solomon_Encoding_and_Decoding_01.pdf

341

Prösch, R. (2009). Technical Handbook for Radio Monitoring HF: Edition 2009: BoD–

Books on Demand.

Prösch, R., & Daskalaki-Prösch, A. (2011). Technical Handbook for Radio Monitoring

VHF/UHF: Edition 2011: BoD–Books on Demand.

Riley, M., & Richardson, I. (1998). Reed-Solomon Codes Retrieved 1 Augest, 2014, from

http://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html

Sankaran, J. (2000). Reed Solomon decoder: TMS320C64x implementation. Application

Report SPRA686, Texas Instruments.

Sasaoka, H. (2000). Mobile communications: IOS Press.

Schubert, E. F. (2006). Light-Emitting Diodes: Cambridge University Press.

Senior, M. J., & Jamro, Y. (2009). Optical Fiber Communications: Principles and Practice.

India: Pearson Education India.

Shalaby, H. M. (1999). A performance analysis of optical overlapping PPM-CDMA

communication systems. Lightwave Technology, Journal of, 17(3), 426-433.

Shirokov, G. A., & Bukhinnik, A. (1984). Evaluation of the reliability of signal

transmission along digital optical fibre channels with differential pulse position keying.

Telecomm. And Radio Engineering, 39(7).

Sibley, M. J. N. (1987). The design and construction of a Digital pulse position

modulation coder and decoder. PostDectoral, Fellowship Report University of

Huddersfield.

Sibley, M. J. N. (1993). Design implications of high-speed digital PPM. Paper presented

at the SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation.

Sibley, M. J. N. (1995). Optical Communications: Components and Systems (Second

ed.). UK: The Macmillan Press LTD

Sibley, M. J. N. (2003). Dicode pulse-position modulation: A novel coding scheme for

optical-fibre communications. IEE Proceedings: Optoelectronics, 150(2), 125-131. doi:

10.1049/ip-opt:20030386

Sibley, M. J. N. (2004). Suboptimal filtering in a zero-guard, dicode PPM system

operating over dispersive optical channels. IEE Proceedings-Optoelectronics, 151(4),

237-243.

http://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html

342

Sibley, M. J. N. (2005). Performance analysis of a dicode PPM system, operating over

plastic optical fibre, using maximum likelihood sequence detection. IEE Proceedings-

Optoelectronics, 152(6), 337-343.

Sibley, M. J. N. (2012). Comparison of several pulse position modulation schemes when

operating over plastic optical fibre. Paper presented at the Transparent Optical Networks

(ICTON), 2012 14th International Conference on.

Sibley, M. J. N., & Massarella, A. J. (1993). Detection of digital pulse position modulation

over highly/slightly dispersive optical channels. Paper presented at the Berlin-DL

tentative.

Sivalingam, K. M., & Subramaniam, S. (2006). Optical WDM Networks: Principles and

Practice: Springer US.

Sklar, B. (2001a). Digital communications fundamentals and applications (Second ed.):

Prentice Hall Communications Engineering and Emerging Techno.

Sklar, B. (2001b). Reed-Solomon Codes Retrieved 10 Feb, 2014, from

http://ptgmedia.pearsoncmg.com/images/art_sklar7_reedsolomon/elementLinks/art_skl

ar7_reed-solomon.pdf

Svelto, O. (2010). Principles of Lasers: Springer.

Thyagarajan, K., & Ghatak, A. (2010). Lasers: Fundamentals and Applications: Springer

US.

Tocci, R. J., Widmer, N. S., & Moss, G. L. (2011). Digital Systems: Principles and

Applications: Pearson Education, Limited.

Wang, H., Cheng, G., Sun, X., & Zhang, T. (2007). Performance analysis of dicode pulse

position modulation for optical wireless communications. Paper presented at the Wireless

Communications, Networking and Mobile Computing, 2007. WiCom 2007. International

Conference on.

Watts, P., Waegemans, R., Glick, M., Bayvel, P., & Killey, R. (2006). An FPGA-based

optical transmitter using real-time DSP for implementation of advanced signal formats

and signal predisortion. The European Conference on Optical Communications, ECOC

Retrieved 20 Feb, 2014, from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.4224&rep=rep1&type=p

df

http://ptgmedia.pearsoncmg.com/images/art_sklar7_reedsolomon/elementLinks/art_sklar7_reed-solomon.pdf
http://ptgmedia.pearsoncmg.com/images/art_sklar7_reedsolomon/elementLinks/art_sklar7_reed-solomon.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.4224&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.4224&rep=rep1&type=pdf

343

Wicker, S. B., & Bhargava, V. K. (1999). Reed-Solomon codes and their applications:

John Wiley & Sons.

Wilson, B., & Ghassemlooy, Z. (1993). Pulse time modulation techniques for optical

communications: a review. IEE Proceedings J (Optoelectronics), 140(6), 346-358.

Xu, F., Khalighi, M., & Bourennane, S. (2009). Pulse position modulation for FSO

systems: capacity and channel coding. Paper presented at the Telecommunications,

2009. ConTEL 2009. 10th International Conference on.

Zhu, X., & Kahn, J. M. (2003). Markov chain model in maximum-likelihood sequence

detection for free-space optical communication through atmospheric turbulence

channels. Communications, IEEE Transactions on, 51(3), 509-516.

Zwillinger, D. (1988). Differential PPM has a higher throughput than PPM for the band-

limited and average-power-limited optical channel. Information Theory, IEEE

Transactions on, 34(5), 1269-1273.

