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Abstract—The idea that there are important parallels between
safety and sustainability and that software engineers might
be able to take lessons learned from safety and apply them
to sustainability has been voiced and initially explored before.
This paper extends the analysis of similarities, differences, and
potential synergies between the two concepts, according to four
different dimensions of these domains: systemicity, complexity,
certification and social perception.

Index Terms—Sustainability, safety, non-functional require-
ments.

I. INTRODUCTION

Driven by the recent increased interest on sustainability

topics, software engineering researchers have turned to study

the methods and techniques that could facilitate sustainability

engineering in and through software systems. Some authors

have pointed out that safety shares many common aspects with

sustainability, and that system designers might be able to take

lessons learned from safety, and apply them to sustainabil-

ity [1]. But up to date only very preliminary analyses have

been performed, which shedded little light on how to achieve

this goal.

Safety engineering is a very mature discipline. It originated

in the field of process control and spread towards the field

of computer systems back in the 80’s, when digital control

started to be used for critical applications; see e.g. [2]. In last

decades, the safety aspects of software have received even

more attention, because of the ubiquity of computer systems

in almost every aspect of our daily life. Any software-based

systems used in a critical application, such as transportation,

health-care or energy systems, must nowadays adhere to strict

safety regulations and best practices; otherwise, these products

cannot be certified. Many companies share and openly promote

this concern for safety, as part of their corporate image. Thus,

one could say that safety, and specifically software safety, has

already reached some of the goals that sustainability design

is still defining, and can be a source of inspiration for this

domain.

Yet, today there is no clear understanding of how exactly

the safety and sustainability domains can be related. Disparate

views can be found in the literature: whereas some authors

report that “safety must be traded for increased sustainability”

(in the context of vehicle design [3]), others claim that “safety

can bring more sustainability” (in the context of intelligent

transportation systems [4]). Others advocate the integration of

safety with systems thinking, by introducing sociotechnical

aspects [5] that can help to handle the complexity of some of

the current safety-critical systems.

The goal of this paper is to critically review the similarities,

differences, and potential synergies between these two do-

mains, with special emphasis on the early analysis and design

phases. This work is the result of an open on-going dialogue

between researchers on sustainability design and software

safety design, which was sparked by the elaboration of the

Karlskrona Manifesto for Sustainability Design [6]. Some

questions we wish to answer are: what sustainability can learn

from safety? Which aspects of safety are similar and useful

for sustainability design? Which, if any, of the techniques

for safety design can be applicable for sustainability? In

which respects does the domain of sustainability differ from

safety? What extensions/additions/changes does handling such

differentiation require for sustainability design?

Even if the answers to these questions are interesting to

software engineers in general, they can be particularly useful

to the requirements engineers. Requirements engineering helps

to identify the relevant stakeholders and to shape the scope and

purpose of the system. If these are made without consideration

for sustainability, the rest of the software development activ-

ities, including verification, are unlikely to produce systems

that will support this important concern.

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic purposes.



Finally, although the relevant literature has been reviewed

(in Section 3 below), our intention is not to provide a system-

atic literature survey of the intersection between these two

areas, but instead to provide a new understanding of their

relationship. This paper is organized as follows: it introduces

the basic concepts of safety and sustainability in Section 2,

followed by a summary of existing works comparing both

concepts, in Section 3. Section 4 discusses the parallels

between safety and sustainability, while Section 5 summaries

the paper and presents our conclusions.

II. BACKGROUND

Before comparing safety and sustainability and their rela-

tionships with software engineering, we will briefly review the

fundamental notions of these two domains.

A. Safety

Safety is typically defined as freedom from accidents or

losses [7]. Thus, safety aims at a methodology avoiding

present and potential losses which can be caused by unex-

pected events (called accidents) or poor (unreliable) service

of the system.

Traditionally, an accident is seen as an undesired and

unplanned (but not necessarily unexpected) chain of events

that results in loss. Sometimes this chain of events does not

cause a loss at a given time and under specific conditions,

but that loss could potentially be incurred under different

conditions; such events are called “near miss” or “incident”.

To manage the avoidance of accidents, safety engineering

looks for their possible causes (called hazards) and assesses

the probability of an accident along with the seriousness of

resultant losses (called risk). A hazard is a state or set of

conditions of a system (or an object) that, together with other

conditions in the environment of the system (or object), will

lead inevitably to an accident (loss event). Thereby, a hazard

is defined with respect to the environment of the system or

component, and what constitutes a hazard depends upon where

the boundaries of the system are drawn.

Risk is the severity of a hazard combined with (1) the like-

lihood of the hazard leading to an accident (sometimes called

danger) and (2) hazard exposure or duration (sometimes called

latency) [7]. A common way to assign risk is through Safety

Integrity Level (SIL), but other measures exist, depending of

the adopted safety standard [8].

Reliability is the probability that a piece of equipment or

component performs its intended function for a prescribed

time and under stipulated environmental conditions. While

dependability is concerned with the incidence of failures

and aims at increasing reliability; safety is concerned with

the occurrence of accidents or mishaps [9]. Where system

failures are defined in terms of system services, safety is

defined in terms of external consequences. If the required

system services are specified incorrectly, then a system may be

unsafe, though perfectly reliable. Conversely, it is feasible for

a system to be safe, but unreliable. Enhancing the reliability of

software components, though desirable and perhaps necessary,

is not sufficient to ensure that they will not contribute to a

mishap [7].

Hazard analysis is the process of identifying the different

types of hazards a system may experience and their causes.

Hazard analysis is performed at several different stages in

the design lifecycle (e.g., preliminary, subsystem, system,

and operational hazard analysis), and there are a number of

supporting methodologies (e.g., hazard and operability studies,

or HAZOPS, fault tree analysis, or FTA, and failure modes and

effects analysis, or FMEA [7], [5].

The basic idea in safety is to focus on the consequences

that must be avoided rather than on the requirements of the

system itself (since those might be the very source of undesired

consequences). Next, because the occurrence or nonoccurrence

of a mishap may depend on circumstances beyond the control

of the system under consideration, attention is focused on

preventing hazards, which are conditions (i.e., states of the

controlled system) that can lead to a mishap, rather than

preventing mishaps directly.

Different techniques and strategies can be applied in order

to eliminate or mitigate system hazards. Regarding the design

of system safety measures, a set of five principles has been

defined in [10], which can be considered general and thus

applicable to software.

1) The fail-safe principle. This principle requires that the

failure of a component results in an operational state that

cannot contribute to the chain of events potentially caus-

ing an accident. This principle is not always realizable,

but should be considered for every component.

2) The safety margins principle states that the “safe” op-

erational state must be defined with certain distance (or

tolerance) from the hazard threshold, so as to accomo-

date uncertainties.

3) The un-graduated response principle recommends to not

apply countermeasures progressively, but to try the most

aggressive approach first, in order to block the chain

of events potentially leading to a hazard. This can be

seen as a reinterpretation of the rules of intrinsically

safe design.

4) The defense-in-depth principle is a central principle for

safety design, which recommends to define a multiplicity

of safety measures, of diverse nature, and acting on

different system levels.

5) The observability-in-depth principle requires the system

design to provide means to monitor the faulty/non-faulty

state of the component, so the user cannot have a false

sense of safety due to lack of information.

These principles are related to the notions of hazard and

the existence of a chain of event leading to it. Some work

has criticized the rigidity of this approach, advocating the use

of feedback-loop control in order to identify and act upon

hazardous states [11].

Complementary to the recommendations for the design

of safety measures, some researchers have focused on the

provision of adequate safety assurance. Assurance cases are



documented bodies of evidence that provide valid and con-

vincing arguments that a system is adequately dependable in

a given application and environment [12], [13]. Assurance

cases are widely required by regulation for safety-critical

systems in the EU. There have been several graphical notation

systems proposed for assurance cases. GSN (Goal Structuring

Notation) and CAE (Claim, Argument, Evidence) are such

two notation systems, and a standardization effort for these

notation systems have been attempted in OMG (Object Man-

agement Group). Attempts to give formal semantics to this

notation have been published recently [14].

When elaborating an assurance case for any safety-related

system containing software, five principles must be fol-

lowed [12]. The first four principles can be considered in

isolation, while the fifth principle (called Principle 4+1 by

the authors) is transversal to the others.

1) Software safety requirements shall be defined to address

the software contribution to system hazards. [Require-

ment validity]

2) The intent of the software safety requirements shall

be maintained throughout requirements decomposition.

[Requirement decomposition]

3) Software safety requirements shall be satisfied. [Re-

quirements satisfaction]

4) Hazardous behaviour of the software shall be identified

and mitigated. [Hazardous software behaviour]

5) The confidence established in addressing the software

safety principles shall be commensurate to the contri-

bution of the software to system risk. It is necessary to

provide evidence that the previous four principles have

been followed. [Confidence]

Note that the first three principles concern traditional and

important aspects of requirements engineering, such as elic-

itation, decomposition and verification of requirements. The

fifth principle is also related to RE through the notions of

traceability and accountability, which are needed in order to

collect evidence supporting the safety case.

B. Sustainability

Sustainability has emerged as an area of significant concern

regarding the potential consequences for humanity as a result

of the rapid depletion of the planet Earth’s finite natural

resources, coupled with exponential economic and population

growth [15]. The concept of sustainability has also emerged

as an area of research within the field of computing as a result

of the pervasiveness and dependency of software systems in

society [16]. For example, the development of sustainable

software has been identified as one of the key challenges in

the field of computational science and engineering [17]. While

the importance of sustainability is increasingly recognized,

many software systems are unsustainable, and the broader

impacts of most software systems on sustainability are un-

known. However, the concept of sustainability is a term that

remains ambiguous and widely abused sixteen years after the

Brundtland Commission [15].

Derived from the Latin sustinere, sustainability can be

defined as ‘capable of being endured’ and ‘capable of being

‘maintained’ [18]. This simplicity of this definition fails to

capture the complexity of the the concept that can be viewed

from a range of different dimensions [19]:

• Economic: relates to financial aspects and business value.

It includes capital growth and liquidity, questions of

investment, and financial operations..

• Environmental: relates to the use of and care for natural

resources. It includes questions ranging from immediate

waste production and energy consumption to the balance

of local ecosystems and concerns of climate change.

• Individual: relates to individual freedom and agency (the

ability to act in an environment), human dignity and

fulfillment. It includes the ability of individuals to thrive,

exercise their rights and develop freely.

• Social: concerns relationships between individuals and

groups. For example, this aspect covers the structures of

mutual trust and communication in a social system and

the balance between conflicting interests.

• Technical: relates to the ability to maintain and evolve

artificial systems (such as software) over time. This refers

to maintenance and evolution, resilience, and the ease of

system transitions.

While there is currently no agreed definition of the concept

of sustainability within the field of computing there is growing

consensus that sustainability should be considered as a first-

class, non-functional requirement [20] [1]. While this position

has been suggested by a number of commentators [21] [22], it

has been made without explicit reference to the characteristics

or qualities that sustainability would be composed of. In

contrast, Venters et. al., [23] defined software sustainability as

a composite, non-functional requirement which is a measure

of a systems:

• Extensibility: the software’s ability to be extended and

the level of effort required to implement the extension;

• Interoperability: the effort required to couple software

systems together.

• Maintainability: the effort required to locate and fix an

error in operational software;

• Portability: the effort required to port software from one

hardware platform or software environment to another;

• Reusability: the extent to which software can be reused

in other applications;

• Scalability: the extent to which software can accommo-

date horizontal or vertical growth.

• Usability: the extent to which a product can be used by

specified users to achieve specified goals with effective-

ness, efficiency, and satisfaction in a specified context of

use.

However, one of the principal challenges in defining sustain-

ability as a non-functional requirement is how to demonstrate

that the quality factors have been addressed in a quantifiable

way.



The discussion of how to define sustainability is not limited

to the field of computing [24]. It is suggested that to under-

stand sustainability, we need to ask which system to sustain,

for whom, over which time frame, and at what cost [25]. The

point of departure for defining sustainability is the second law

of thermodynamics, which states that the state of entropy of

the entire universe, as an isolated system, will always increase

over time [26]. Sverdrup and Svensson [27] argue that in

developing rules and criteria for sustainability, it is important

to shape these as a set of principles which are free of value

judgments and cultural biases. Becker et. al., [6] argue the

software profession lacks a common ground that articulates its

role in sustainability design. To address this they proposed a

set of sustainability principles to contribute to the conversation

on the role of the software systems in undermining and in

enabling a sustainable future for our planet.

III. RELATED WORK

While there is a substantial body of work focusing on either

safety or sustainability domain, up to now only a few pieces

of research have considered the parallels between safety and

sustainability disciplines. These are discussed below.

One of the first studies to report such parallels is Mahaux

et al. [28], which was an exploratory study on how well

some RE techniques work for representing sustainability. The

study showed that misuse case sheets (a well known hazard

analysis technique) can be used for revealing sustainability

requirements. Similarly, Hessami et al. [29] proposes an

integrated perspective on sustainability through a systems

framework. In that framework, the authors consider that a

system is sustainable in a low-level sense if it can ensure

“system security and safety to resist or tolerate deteriorating or

disruptive internal or external threat conditions”, among other

characteristics. So, in both works, safety is perceived as one

of the aspects of sustainability.

Van Gorp [3] looks at the safety and sustainability ethical

issues that engineers deal with during the design process.

According to the author, both issues are related to utility and

general rights and that engineers should learn about “what

the affected actors value relative to the product that is being

designed” and try “to take care of these valued things”.

Other works, such as Frakes and Kang [30] and Banerjee

et al. [31] mention safety and sustainability as important

characteristics of systems, but make no comparison between

these concepts. Additionally, they refer to sustainability as a

means to maintain a technical system on a long-term basis,

which is an indicator that they restrict their understanding of

sustainability to its technical dimension. Banerjee et al. go a bit

further, stating that long term maintenance should be achieved

while using green sources of energy.

Finally, the closest related work is Penzenstadler et al. [1],

which compares the history and concepts of sustainability

with those of security and safety. They argue that while

sustainability is not a completely emergent property, as safety,

it has to deal with emergent aspects manifested as second-and

third-order effects. Both also require an in-depth exploration

of the problem space and application domain to find solutions.

In addition, they share a few myths, such as translating into

quality goals that compete with other system goals or that

they can be treated in isolation from other qualities. Finally,

the authors argue that sustainability requires quality assurance

techniques comparable to those for safety, and that it should

be included in software engineering standards, as is safety.

The present paper discusses the relationship between safety

and sustainability in greater depth than the available literature

and explores how a wider range of methods and tools for safety

can be used or adapted to sustainability.

IV. PARALLELS BETWEEN SAFETY AND SUSTAINABILITY

As discussed above, safety and sustainability are complex,

multifaceted domains. In order to explore the parallels between

them, we structure our discussion according to four different

dimensions: systemicity, complexity, certification and social

vs. business perception. The similarities, differences and syn-

ergies observed are summarized in Table I.

A. Systemic Property

A system is often defined as set of interacting or interde-

pendent components forming an integrated whole and relation-

ships with a common purpose [32]. As per this definition, a

system is:

• made up of components: parts that make up a system i.e.

subsystems;

• components are interrelated: one part of the system

depends on its’ one or more other parts;

• has a boundary, which clearly defines the internal and

external limits of the system;

• has a purpose, which is the overall function of the system;

operates in an environment, which is external to the

system and is influenced by or influences the system;

• has interfaces, these are point of contact where a system

meets its environment or where subsystems meet each

other;

• operates under constraints, these are the limits to what a

system can accomplish within its environment.

A substantial amount of research has been completed in

software systems engineering on software modularity and

interaction, which essentially aims to realise complex systems

through simpler interacting parts in such a way that the

interdependencies between the parts are minimised (so called

low coupling principle) and the closely related functions and

properties are collected into one part (so called high cohesion

principle). Yet, SE is also well familiar with the set of

properties which do not fit into any single part of a system,

but relate to the system as a whole. Such properties are said

to be systemic: for a system to provide for this property, each

of its sub-parts must do so. Examples of such properties are

response time, security, and, as discussed below, safety, and

sustainability.



Similarities Differences Synergies

Systemic
property

Both are emergent properties. They have different orders of effect, which
manifest in different timescales.

Sociotechnical approaches to safety.

Full satisfaction of both properties
is unfeasible.

Definition of the system scope and the iden-
tification of stakeholders is more complex
for sustainability.

System complex-
ity

High interactive complexity
causes lack of understanding
of event chains leading to
failure/unsustainability.

Safety is more susceptible to single fault
problems.

Development of techniques for decompo-
sition of safety/sustainability (inspired by
safety assurance principles).

Difficult decomposition of both
safety and sustainability goals into
software requirements.

Leverage points are better understood in
safety thanks to the notion of severity in
risk analysis.

Joint research on GSN and other goal-based
formalisms for sustainability.

Certifications &
standards

Increasing importance of regula-
tions in both fields

Safety standards are more mature and
widespread.

Generalization of the safety assurance prin-
ciples, if applicable to sustainability assur-
ance.

Lack of widely accepted quantifiable indi-
cators of sustainability.

Adoption/adaptation of existing reliability
indicators.

Sustainability standards lack support for
stakeholders identification in IT systems.

Social& business
perception vs.
Costs

Responsibility is moving towards
organizations, not the individual.

Safety is better understood and promoted,
and the extra cost of safety is tolerated.

There is a need to exemplify sustainability
in IT systems and their effects: examples
and cases studies proved crucial in the pro-
motion of safety.

Some aspects of sustainability can never be
directly observable.

Table I: Summary of the analysis

1) Safety: In safety-related domains, safety is treated not

as a property of a single component or of a certain part of

a given system, but one that the system has to fulfill as a

whole. For instance, hazards are identified and defined over

end-to-end functions, and only afterwards are decomposed

into software safety goals. Although safety is considered an

emergent property, in reality what can be observed externally

is the lack of safety, which manifests as a violation of the

stated safety objectives.

Since a system cannot be inherently safe, the goal of safety

is to guarantee that the probability of an accident is as low

as reasonably practical [7]. Through proper analysis, design

and development, one can ensure only that all known risks

have been removed with a certain budget and up to a certain

acceptable level. To ensure that the development process and

design are “proper”, each application domain (e.g., aerospace,

medical, or chemical product production) that considers safety

a pertinent property, provides a detailed process and product

regulation/legislation [13].

In order to analyze safety issues, each safety engineering

process will work within clearly defined system boundaries.

These boundaries are defined during requirements engineering

by an analysis of the surrounding system context and its

resource flows and functions. Studies on safety are normally

concerned with the immediate effects of the system (due to

its direct functions/properties, also called 1st order effects),

and those effects that are enabled due to the system (also

called indirect or 2nd order effects) [33]. The cumulative safety

effects that could occur due to prolonged and mass use of the

system are rarely considered, barring cases where dangerous

materials are involved, or alike.

Safety engineering does consider the environment/context

within which a given system has to operate. Indeed, it is not

possible to reason fully about safety or the lack of it without

knowing certain operational details such as: who is going to

use the system (user profile), how the system is going to be

used (potential operation), for how long it is going to be used

(mission time), what type of training the user has, etc. All

this information is elicited and captured during requirements

engineering.

2) Sustainability: Sustainability too, is systemic, in that

for a system to be sustainable all of its sub-parts need to

address sustainability as well. Yet, the scope of the system

that concerns sustainability is much harder to define; this

is because ultimately every socio-technical system consumes

certain natural resources, engages societies, and, inevitably,

produces waste. Since one of the sustainability dimension is

concerned with the environment, all resource consumption and

waste generation is pertinent to the sustainability of the planet

as a whole. While the consideration of a planetary scope is

clearly not feasible for each software systems engineering

project, ignoring it could also lead to a false sense of achieve-

ment. For instance, exploring electronic waste, or moving data

centers to another country does not improve the sustainability

of the phone companies, though their effects may not be felt

directly by the communities using them in their services. Thus,

to help set the scope of sustainability, one must determine what

must be sustained, for whom, for how long, and at what cost?

[25]. Yet, while these questions are helpful for knowing what

to address, providing meaningful answers to them is still a

challenge.

Similar to safety, sustainability cannot be assured without

setting the context. Questions normally asked during require-

ments engineering, like who will be using the system, in which

environment, and what are the cultural/organisational norms

within that environment?, are very important for the analysis



of social sustainability perspectives; whether or not renewable

resources are used and/or non-renewables wasted/polluted, etc.

As noted in Section 2, the concept of sustainability com-

prises 5 dimensions of the system. Interestingly, though these

viewpoints are inherently linked, a system can be sustainable

in one (or more) of them, and at the same time be unsus-

tainable in others. The best example for this is the economic

dimension: a socio-technical system (such as petroleum extrac-

tion companies) can be extremely profitable for its owners and

shareholders delivering exceptional economic sustainability

yet might cause dreadful environmental effects. Similarly,

exceptional technical sustainability of software assets can be

achieved at the expense of the economic dimension.

Similar to safety, a system cannot be proven to be sus-

tainable. This is because the changing context of the system

will inevitably affect the sustainability of the system itself.

For instance, changing technology (like new programming

languages or environments) or changing user requirements

will degrade the technical sustainability of software assets,

as well as (eventually) their economic sustainability (if their

maintenance costs too much). Thus, sustainability can only

be assessed for the given time and state of the system. Such

assessments must be repeated periodically throughout system

use, expecting that eventually (in time) the un-sustainability

will be observed [34]. In other words, changes in requirements

must also be assessed with respect to sustainability.

B. System complexity

Giving a general definition of complexity has proven to

be difficult [35]. In the context of system design, complexity

is typically defined in terms of the number of elements that

constitute the system and the interaction among them and with

the environment. According to [36], a complex system is a

system that fulfills several of these conditions:

• A high number of components;

• strong interaction among the component;

• long operation time;

• diversity and variability of the components;

• demanding environment;

• multiplicity of activities/objectives.

Because of these features, it is common for complex systems

to exhibit emergent behaviors, i.e. behaviors that can be

observed only once all the components are interconnected

and the system is operated in a certain context. This is a

consequence of the difficulty of reasoning about the cause-

effect chains within systems of these characteristics.

1) Safety: According to Leveson, there are many factors

that are increasing the complexity of current safety-critical

systems. Many of them are caused by the widespread use of

software [11].

• The fast pace of technological change is increasing the

diversity and variability of the system components, while

reducing the time for training and realizing both the

potential and the risks of these new technologies.

• Changing nature of accidents. Safety originated in the

field of process engineering, where system hazards are

typically derived from well-understood and observable

physical laws. In contrast, digital systems introduce

new failure modes which are much more unpredictable

in nature. Overconfidence in redundancy and misun-

derstanding of failure models of software-implemented

components have been related to recent aerospace acci-

dents [11].

• New types of hazards have appeared, for instance related

to loss or corruption of information, which go beyond

the traditional conception of hazard as uncontrolled or

undesired release of energy.

• Decreasing tolerance for single accidents. As technology

becomes more predominant in our daily life, it also

becomes possible to potentially harm increasing numbers

of people and impact future generations. Nuclear and

chemical plants are good examples of very demanding

safety-critical systems.

• Increasing interactive complexity and high coupling. The

potential interactions among the components of a com-

puter system very often cannot be thoroughly understood

or anticipated. Sometimes complicated systems need to

be built, which actually exceed the human intellectual

ability to reason. Sometimes it is the information about

the system that is incomplete, for instance due to the use

of legacy code or because of partial knowledge of the

operational environment. The tight coupling of software

components allows disruptions or dysfunctional interac-

tions in one part of the system to impact distant parts of

the system, making hazard analysis more complicated.

• The new, and more sophisticated, relationships between

humans and automation make it more difficult to reason

about potential interaction problems, creating new human

errors and a new distribution of human errors. Humans

are still in charge of most of the decision-making pro-

cesses, while computers are responsible for the automated

implementation of those decisions. Adequate communi-

cation and HMI are required in order to ensure system

observability and prevent accidents due to a false sense

of safety.

Most techniques for safety analysis and safety design help

in handling complexity. Hazard analysis and risk analysis

are techniques that are used during requirements engineering

for identifying the critical system functions, thus allowing

the system designer to disregard those functions that are not

relevant from a safety perspective. Fault-tree analysis and

Failure Mode and Effects Analysis help in identifying the

elements of the system that are relevant for a certain hazard,

which helps in reducing the design and the verification efforts.

The purpose of modeling techniques such as GSN is to provide

a way to visualize and analyze the complex relationships

between arguments of a safety assurance case.

However, it has been argued that as complexity increases,

techniques based on event chains, like the ones mentioned

above, may be too simple. A new accident model based on

systems thinking (STAMP) has been defined by Leveson [5].



This new model relies on control theory notions and integrates

sociotechnical aspects.

2) Sustainability: As a systemic property, sustainability

is inherently complex. Its complexity comes from the need

to consider the system and its context from at least five

perspectives, as well as its three orders of effect on these

perspectives [33].

As in safety, sustainability requires the cooperation of all

elements involved. That means not only hardware and software

components, but also the people interacting with that software

system and the processes surrounding it.

A parallel can also be drawn with respect to the decomposi-

tion of the concern. In requirements engineering, sustainability

goals may be defined at different levels of abstraction [37].

High-level concerns (e.g., contribute to a healthy environment)

may be decomposed into lower level goals (e.g., optimize en-

ergy consumption) and realized by different design strategies

(e.g., by using Energy Star qualified hardware [38], by defining

a process that reduces physical waste, or by writing efficient

algorithms).

Furthermore, making sure that all elements fulfill their

sustainability goals also requires a clear assignment of re-

sponsibilities: from the roles responsible for the software

development to the users of that system. Eventually, verifying

the achievement of these goals requires traceability of both

their decomposition and responsibility assignment.

Finally, as with any complex issue, a number of strategies

will have to be combined to achieve both safety and sustain-

ability. Small, isolated efforts towards sustainability can be

jeopardized by greater sustainability risks or by safety hazards,

when these are not taken into account during the elaboration

of the system requirements. For example, writing efficient

algorithms might be irrelevant when the system encourages

mass consumption of unnecessary good. Yet, there are subtle

differences. While, in safety, a small loophole, such as a

floating point conversion, can expose the system to great

unsafety, in sustainability this is less likely to happen. In other

words, failing to provide sustainability will, in general, not

manifest as an accident or mishap; especially not immediately.

Punctual efforts, such as the recycling of obsolete hardware,

contribute to sustainability, but have little leverage when com-

pared to challenging the purpose of the system, for example.

Requirements engineers are in a great position to point at

potential impact and ask questions that might encourage the

stakeholders to consider sustainability.

C. Certifications & standards

The goal of certification is, in general, to confirm that the

characteristics of some object, person or organization conform

to a certain definition, or standard. Certification is typically

performed externally, by governmental certification agencies.

Software, standards usually define the desirable properties of

a software product or, alternatively, of a software development

process. Adherence to these standards is mandatory in certain

fields, such as transportation, energy or healthcare, because of

their high social impact.

1) Safety: Safety is a strongly regulated field, with multiple

national and international safety standards applied at differ-

ent levels. So-called functional safety standards concern the

elimination of hazards caused by Electrical, Electronic and

Programmable Systems. Some authors have discussed and

compared existing functional safety standards at length [8],

[39].

This large amount of standards and regulations shows that

responsibility for safety is shifting from the individual to

government. Individuals no longer have the ability (or knowl-

edge) to control the risks around them and are demanding that

government assume greater responsibility for controlling tech-

nology. The application of these standards generates tension

with industrial goals, like short time to market or reduced cost.

Each functional safety standard typically defines its own

process for system certification, but according to [13], they

can all assimilated to the five safety assurance principles

discussed in Section 2: requirements validity, requirements

decomposition, requirements satisfaction, hazardous software

behaviour and confidence.

2) Sustainability: Standards and certifications on sustain-

ability play a similar role to standards in safety: adherence to

them may be needed to convince customers, authorities and

the society of commitment to sustainability.

A number of reasons may drive organizations to seek com-

pliance with sustainability standards. On particular, companies

might value a sustainable corporate image, in response to a

growing demand by the society for organizations with social

and environmental corporate practices [40].

There are a number of standards related to sustainability.

Rodrigues and Penzenstadler (2013) observe that their focus

vary from sustainability development [41], [42], to sustain-

ability reporting [43], [44], to sustainable design [45], [46],

among others. However, most of them are specific to particular

industry sectors [47] and sustainability dimensions, such as

the ISO 14000 for Environmental Management [41] or the

ISO 26000 for Social Responsibility [42]. The authors also

observe that software systems and their supporting infrastruc-

tures are often not explicitly accounted for in the life-cycle

analysis (LCA) of sustainable projects. Instead, LCA normally

uses tangible items in their analysis.

One difference worth pointing out is that safety standards

can be powerful requirements engineering tools, as they typ-

ically help with stakeholder identification and selection of

metrics for the development of safety-critical IT systems, e.g.

mean time between failures. However, in sustainability, stan-

dards are either: (1) concerned with a business organization

and its operations [41], [42], or (2) or devoted to reducing

the use of hazardous material, ensuring energy efficiency, and

reducing waste in electronic products [48], [38], [49]. We

are missing standards that support the analysis and design

of sustainable IT systems, beyond of the selection of green

hardware.



D. Social & Business Perception vs. Costs

Both safe and sustainable systems share, in a broad sense,

a common objective: not to harm the environment. The social

perception of risk plays an important role when it comes to

decide what can be spent in order to fulfill this goal.
1) Perceptions and Costs of Safety: From a technological

perspective, safety design adds on costs, since additional

work is required, not only for design and verification of

the safety goals elicited during requirements engineering, but

also importantly for safety assurance. As stated in the fifth

principle (4+1) of Section 2, providing confidence about the

definition and verification of safety requirements is needed

for safety assurance. The ability to collect this information is

a significant difference with respect to other software industry.

Businesses would reduce this cost when possible, but since the

adherence to standards provides access to markets, it can as

well be considered an investment.

Socially, it is acceptable to pay for a safer product; for

example, an automobile with additional safety features is

normally more expensive than one without them, so consumers

are prepared to take on the extra cost that business will pass

on to them. In terms of marketing, the reputational (social)

damage of unsafe goods is very large, so safety costs are also

investment into avoiding these losses.

In the SE community, the professional recognition of safety

is very high, and it is intimately related to the notion of

software bug. Examples of incidents and accidents caused by

software bugs are described in lectures and notebooks, and

students become familiar with them. Classical examples from

many different domains, like the Path Finder and Ariane 5

from aerospace, the Patriot missile from military, Therac-25

from medicine, or the Toyota throttle problem from automotive

are part of graduate education and successfully convey the

importance of generating high-quality code for critical appli-

cations.

In companies developing safety-critical products, safety

awareness is very high, it permeates the whole development

process and affects all the people involved. This includes

customer service, management, organization and engineering

activities and is shared by software providers as well.
2) Perceptions and Costs of Sustainability : Similar to the

safety domain, high profile sustainability failure cases have

driven regulation and business costs. For instance, practices

that caused visible water and soil pollution have been tightly

regulated in most countries. In such cases, where the impact

of unsustainability is apparent, business has had to accept cost

of sustainability maintenance.

However, due to the indirectness and longer time scale taken

for manifestation of enabling and systemics effects, much of

the cost of unsustainable business conduct remains hidden and

so, is unaccounted for. For instance, the cost of deforestation

in the Amazon forest, where locals clear the forest to make

space for crop fields, is distributed across time and space,

arguably resulting in accelerated climate change, but is not

immediately observed by the logging communities. Similarly,

inequality in access to education or health-care leads to

loss of potential contribution from talented but disadvantaged

individuals, reducing the prosperity of a nation, but this is not

directly observed by each member of that nation and does not

disturb those who gain from this inequality.

Nevertheless, in recent years, the true costs of sustainabil-

ity effects have increasingly been gaining recognition. As a

results, consumers have become more willing to accept higher

costs and express preferences for sustainable products and

services (such as organic food, recycled paper, renewable

energy, etc.). The political and government bodies have started

to impose longer-term sustainability targets and regulations on

waste management and use of natural resources.

Sustainability now features as a prominent topic in the

recent research funding calls (e.g. Horizon 2020 Work Pro-

gramme (2014 – 2015), European Commission FP7 Work Pro-

gramme (2013) for ICT). Sustainability in the software context

is also a fast growing research area. A recent systematic

mapping study has shown an increase on the number of pub-

lications on sustainability and software engineering: from 82

papers published in the last 25 years, 70 belong to the period of

2010 to 2013 [1]. One of the main challenges to be addressed

for Software Engineering, is to establish a clear cause-effect

traceability between software engineering activities/processes

and the sustainability effect of the produced software. Such

relationship is well exemplified in safety, where connection

between safety engineering and accident prevention is clearly

demonstrated. Requirements engineering has a prominent role

in this challenge, as it shapes the scope and the purpose of

the system, and therefore, can have the greatest leverage in

supporting sustainability.

V. CONCLUSIONS

This paper provided an explorative analysis of similarities,

differences, and potential synergies between safety and sus-

tainability. That way, software engineers, and in particular

requirements engineers, can start taking lessons from safety

engineering and apply them to sustainability design for soft-

ware systems.

We reviewed the most important concepts of functional

safety, hazard analysis and safety engineering, and the princi-

ples of safety assurance. Then, we discussed parallels between

safety and sustainability, namely the characteristic as systemic

property, their respective complexity, the issue of certification

and standards, and the social and business perception versus

costs.

The results of our comparisons are summarized in Table I.

Although still far from being exhaustive, this analysis repre-

sents a step forward in order to improve the tools and meth-

ods available for software engineers addressing sustainability

issues.

As future work, we envision to apply safety engineering

techniques to example systems and evaluate their applicability

in a sustainability context. We also wish to investigate how

the concepts of safety assurance can be exploited and adapted

to sustainability, considering even the convenience of having

sustainability cases, inspired by the notion of safety case. A



comparison between GSN and other goal oriented techniques

for RE will also be carried out. Finally, through this study we

have learned about Resilience Engineering as an extension of

safety towards systems thinking [50]. This innovative approach

to safety (and beyond) shows promising synergistic potential

with sustainability and will be explored further.
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