
University of Huddersfield Repository

Betz, Stefanie, Becker, Christoph, Chitchyan, Ruzanna, Duboc, Leticia, Easterbrook, Steve, 

Penzenstadler, Birgit, Seyff, Norbert and Venters, Colin

Sustainability Debt: A Metaphor to Support Sustainability Design Decisions

Original Citation

Betz, Stefanie, Becker, Christoph, Chitchyan, Ruzanna, Duboc, Leticia, Easterbrook, Steve, 

Penzenstadler, Birgit, Seyff, Norbert and Venters, Colin (2015) Sustainability Debt: A Metaphor to 

Support Sustainability Design Decisions. In: Fourth International Workshop on Requirements 

Engineering for Sustainable Systems (RE4SuSy), 24th August 2015, Ottawa, Canada. 

This version is available at http://eprints.hud.ac.uk/25288/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/30733035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Sustainability Debt: A Metaphor to Support

Sustainability Design Decisions

Stefanie Betz⇤, Christoph Becker† ‡‡, Ruzanna Chitchyan‡, Leticia Duboc§,

Steve M. Easterbrook†, Birgit Penzenstadlerk, Norbert Seyff⇤⇤
x

, Colin C. Venters††

⇤Karlsruhe Institute of Technology, Karlsruhe, Germany, stefanie.betz@kit.edu
†University of Toronto, Toronto, Canada, {christoph.becker@utoronto.ca; sme@cs.toronto.edu}

‡Department of Computer Science, University of Leicester, UK, rc256@le.ac.uk
§State University of Rio de Janeiro, Brazil, leticia@ime.uerj.br

kCalifornia State University Long Beach, USA, birgit.penzenstadler@csulb.edu
⇤⇤University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland, norbert.seyff@fhnw.ch

††University of Huddersfield, Huddersfield, UK, c.venters@hud.ac.uk
‡‡Vienna University of Technology, Austria

x
University of Zurich, Switzerland

Abstract—Sustainability, the capacity to endure, is funda-
mental for the societies on our planet. Despite its increasing
recognition in software engineering, it remains difficult to assess
the delayed systemic effects of decisions taken in requirements
engineering and systems design. To support this difficult task, this
paper introduces the concept of sustainability debt. The metaphor
helps in the discovery, documentation, and communication of
sustainability issues in requirements engineering. We build on the
existing metaphor of technical debt and extend it to four other
dimensions of sustainability to help think about sustainability-
aware software systems engineering. We highlight the meaning
of debt in each dimension and the relationships between those
dimensions. Finally, we discuss the use of the metaphor and
explore how it can help us to design sustainability-aware software
intensive systems.

Index Terms—metaphor; sustainability; debt; design decisions;
requirements

I. INTRODUCTION

Software Engineers are beginning to understand the impor-

tance of designing sustainability-aware software systems [1],

[2], and initial attempts have been made to explore the role of

sustainability in software system design (e.g. [3], [4], [5]).

Sustainability matters for all software systems, even if the

application domain of the system is not related to sustain-

ability, because any new software creates dependencies and

obligations as it becomes part of our technical infrastructure,

and its on-going use may entail new burdens on social and

ecological systems.

Sustainability design is a systemic concept, as it addresses

effects that play out in a number of different dimensions, at

different levels of a system, over multiple time scales [6].

Because of this, the design process involves trade-offs, in

which decisions that improve the perceived success of the

software on some level may reduce its overall sustainability

in other ways - for example, meeting a release deadline

might have an unacceptable impact on the well-being of the

development team, or the decision to use a cheaper technology

platform might greatly decrease the energy efficiency of a

software service. While sustainability is not necessarily in

competition with other attributes [3], if these trade-offs are

not considered explicitly during the design process, the overall

sustainability of the system may suffer. Although software

developers are increasingly aware of sustainability as an issue

to be addressed, it is currently still challenging to identify and

communicate the rationale for sustainability design, especially

because of the inherent systemic effects of design decisions.

This paper offers a step forward to support software en-

gineers in sustainability design thinking by introducing a

new metaphor: sustainability debt. We start from the idea of

technical debt, which has proved to be a powerful metaphor

for discussing technical and economic trade-offs in software

engineering [7]. However, discussion of technical debt has

been limited to the trade-offs between current design effort

and future software maintainability, which means it focuses

primarily on a potential burden for the software development

team itself, in the future. By re-framing the metaphor around

our broader obligations to society and to future generations,

we develop a way of thinking that encourages explicit consid-

eration of these obligations during the design process.

We explore what the idea of sustainability debt means, what

it entails, and how this metaphor can be used to identify and

communicate about effects of software design decisions on

sustainability. Based on that, we identify key questions around

how we incur and manage sustainability debt. Finally, we

discuss the limitations accompanying the use of a metaphor.

II. BACKGROUND

A. Sustainability Design

Sustainable development is defined by the UN World Com-

mission on Environment and Development [1987] as ”devel-

opment that meets the needs of the present without compro-

mising the ability of future generations to meet their own

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic purposes.



needs”. In identifying what those needs are, we can examine

sustainability with respect to five interdependent dimensions:

economic, social, environmental, technical, and human, with

the insight that there are both short- and long-term concerns in

each dimension [3]. Environmental sustainability is concerned

with safeguarding the ecological systems and natural resources

that enable life to flourish on planet earth. Social sustainability

is concerned with building trust and equity within society.

Economic sustainability is concerned with ensuring ongoing

prosperity. Individual sustainability is concerned with the

freedom, wellbeing and fulfillment of individuals, and finally,

technical sustainability is the long-term maintenance and of

our technical infrastructures, including software-intensive sys-

tems [4].

For software, sustainability includes, for example, the car-

bon footprint of a software-intensive system during develop-

ment and use (environmental dimension), how the software

changes the ease with which we communicate with one

another (social dimension), the level of stress a newly imposed

software system imposes on the stakeholders (individual di-

mension), the maintainability of the software itself (technical

dimension), and the health of the business relationship of

the vendor and buyer of the software system (economical

dimension).

Because of the central role that software-intensive systems

now play in society, software engineering carries a crucial

responsibility. Consequently, in addition to values like cost,

time, safety, reliability, and so on, we must add sustainability

as a goal when designing software. Sustainability has been

described as “ethics smeared out in space and time” [8].

For software engineers, sustainability design means taking

seriously our broader ethical responsibilities, not just to avoid

direct harm that might arise from our software, but also to

avoid creating systems that may harm future generations,

or degrade the environment in which they live. Thus, when

practicing sustainability design in software engineering, one

must address sustainability explicitly. To do so, we need to

raise awareness and help to understand sustainability and its

importance in and for software engineering as well as to

discuss the sustainability effects and their inter-dependencies

on multiple time-scales.

B. Systemic Effects in Software Systems Design

In the context of sustainability, it is very important to

explain and understand the different levels of effects software

systems can have on sustainability. These can be classified as:

direct effects, enabling effects, and structural effects [9], [10]:

• Direct (or ‘first order’) effects are concerned with the

immediate impacts resulting from the production, use and

disposal of software systems. This can be measured using

metrics based on performance requirements or network

bandwidth for example. The direct environmental impact

is quite often measured using the Life Cycle Assessment

(LCA) [11].

• Enabling (or ‘second order’) effects are concerned with

the benefits and impacts of ongoing use of the software

system. This might be for example how a web search

engine reduces the cost of access to information.

• Structural (or ‘third order‘) effects are concerned with

changes resulting from the use of software systems by

a very large number of people over medium to long

term, leading to substantial changes in societal structures

such as new laws, politics, or social norms, or economic

structures such as the networked economy.

Any system will exhibit such effects over multiple timescales

in each of the dimensions [3]. Thus, when designing a system

we need to take sustainability dimensions and effects into

account. These different dimensions and effects over multiple

timescales are interdependent. Changes in one dimension

frequently lead to effects over multiple timescales in the

different dimensions. Some of these effects are hidden and

may show themselves only on the long run. For example, we

might think were doing fine in one dimension - economic,

say, as we launch a software company with a sound business

plan that can make a steady profit - but often we do so only

by incurring a debt in other dimensions, perhaps harming the

environment by contributing to the mountains of e-waste, or

harming social sustainability by replacing skilled jobs with

subsistence labour. Thus, it is important to make sustainability

effects visible, and to be able to decide what is the most

effective way to make a system sustainable. For example, we

need to compare alternative actions and consider opportunity

costs in sustainability design.

However, when taking decisions in the process of require-

ments analysis and systems design, it is often very difficult to

understand the effects of these decisions. The systemic effects

are often remote and dispersed and manifest only over time.

The lack of visibility of such effects makes it very difficult to

identify the hidden impact of system design decisions in the

requirements process and in systems design. Yet, these effects

are very real, and identifying them starts with understanding

the requirements for the system: For example, the inclusion of

a particular stakeholder in the elicitation process may have far-

reaching consequences about the goals and objectives that are

identified, the types of scenarios that will be explored, and the

success criteria that will be specified. The systemic nature of

sustainability makes it challenging to identify possible risks,

trade-offs and effects, and hinders effective communication

across diverse stakeholders. This makes it difficult to discover,

document, and communicate issues of sustainability as part of

RE and throughout systems design.

C. The Metaphor Technical Debt

Debt is usually thought of as a financial tool to facilitate

economic transactions over time: For example, it enables

prospective home owners to buy property without possessing

the full funds, at a certain cost (the interest).

A more detailed definition is given by Ampatzoglu et al. [7],

who provide a glossary of terms for technical debt grounded in

financial terminology. In this more formal view, debt is “used

to describe the amount of money owed by one party (debtor or

borrower) to another party (creditor or lender). The certain



amount of money derives from a loan, which denotes that the

money has been lent by the creditor to the debtor for a specific

period of time. The obligation of the debtor is to repay a

larger sum of money to the creditor at the end of that period

[28]. The original amount of money borrowed is called the

principal, while the additional amount paid back constitutes

the interest.“ [12] Hence, financial debt implies at least the

recognized existence of a debtor, a creditor, and a contractual

obligation of the debtor to the creditor that is more or less

quantified, and (usually) an identified period of time.

This set of financial models and relationships grounds the

metaphorical use of debt in clearly defined terms and points

to a range of typical activities and transactions that arise

when handling debt. We can attempt to apply financial and

economic models such as using interest rates to quantify the

future value of a current action and furthermore, to identify,

measure, prioritize, repay, and monitor debt [13]. Finally,

we can distinguish between intentional actions of taking on

debt for strategic reasons and unintentional consequences of

careless or reckless decisions [14].

To help think about the technical sustainability of software

systems and consider opportunity costs, the metaphor of

technical debt has been introduced [15]. Originally coined in

an experience report, it is based on the idea that software

engineers sometimes intentionally or unintentionally generate

“debt” in one area (e.g. software quality) to meet the needs

of another area (e.g. a deadline) and underestimate the long-

term consequences of their decisions. Metaphors are about

“understanding and experiencing one kind of thing in terms

of another.“ [16]. They structure something that is less clearly

understood (such as time) in terms of another kind of thing

of which we have a clearer grasp (such as money). Contrary

to common thought, metaphors are fundamental cognitive

tools that we use to form the conceptual models we use for

understanding the world [16]. The technical debt metaphor

helps software engineers to understand these trade-offs and

communicate about them. Furthermore, it helps us to identify

temporal effects of designing and developing a system the

cheap and easy way, without thinking about consequences, by

thinking about a technical “loan” we take on and the “interest”

we will pay depending on the amount of that loan and the

conditions we will find ourselves in. Being able to quantify

these costs enables us, in theory, to take more conscious, well-

informed decisions based on a cost-benefit trade-off.

Technical debt has been applied and elaborated over two

decades, and a considerable amount of theory and empirical

evidence has been accumulated that stands testimony to its

usefulness as a metaphor: see, for example, the IEEE Software

Special Issue on Technical Debt [7] and the ongoing workshop

series on Managing Technical Debt (MTD) starting from

2010 [17]. Nevertheless, there is still a lack of theoretical mod-

els, methods and practical tools to identify, measure, manage,

and reason about technical debt in software engineering [7].

III. SUSTAINABILITY DEBT

A. Introducing Sustainability Debt

We propose the concept of sustainability debt as a general-

ization of technical debt, and as a metaphor for thinking about

negative effects of software systems in the five sustainability

dimensions. This metaphor re-casts what to many people is

a very difficult and abstract concept (sustainability and the

delayed effects of our design decisions) in terms of a concept

we have a clearer conceptual structure for (debt). This enables

us to bring multiple strands of thoughts together, and explore

the implications for concrete requirements activities conducted

as part of software and systems engineering.

To extend Ward Cunningham’s concept of “technical debt”

we offer the following working definition, inspired by

Kruchten [7] and Hilty [18]:

“Sustainability debt is the hidden effect of past deci-

sions about software-intensive systems that negatively affect

economic, technical, environmental, social, and individual

sustainability of the system under design. Effects in these

dimensions can manifest themselves on three different levels:

(1) the direct effects of the software system production and

use; (2) enabling effects that arise from the ongoing use of

the software system, and (3) systemic changes caused by the

use of the software system on a larger scale over time.“

B. The Five Sustainability Debts

Considering the multi-faceted nature of sustainability, we

need to take into account inter-dependencies between the

different sustainability dimensions. A change in one dimension

might have a negative hidden impact in other dimensions. At

the same time, we need to be careful not to think that we can

exchange and transfer value between dimensions at will; many

of these issues are not commensurate and cannot be compared

directly.

We therefore argue it is important to assess sustainability

debt separately in each of the five dimensions:

• Economic Sustainability Debt is the hidden effect of

decisions about a software system that negatively affect

time and cost. It is closely based on the well-known

concept of financial debt.

• Technical Sustainability Debt is the hidden effect of

decisions about software that negatively affect the soft-

ware system itself, such as the understandability and

maintainability of the code.

• Environmental Sustainability Debt is the hidden ecolog-

ical burden that arises from the lifecycle of a software

system from its creation to its disposal. This includes the

demand for resources and energy and the generation of

pollution and wastes that arise from the systemic effects

of its ongoing use.

• Social Sustainability Debt is the hidden effect of deci-

sions about software that negatively affect social justice,

equity, and fairness, or which lead to an erosion of trust

in society.



• Individual Sustainability Debt is the hidden effect of past

decisions about software that negatively affects individual

freedom and fulfillment by imposing constraints and

restrictions on individual stakeholders.

The relationships between these dimensions and how they

affect the overall sustainability debt is complex - influences

might be reinforcing or canceling each other out. Also,

incurring a debt in one dimension can have an effect on

any of the other dimensions. We know that we cannot list

and explain them in full detail, even more so as we cannot

know all of them. Nevertheless, it is important to mention

that sustainability debt is more than just the sum of the five

dimensions debts because of the inter-dependencies between

them.

We are neither claiming that is possible to measure one

overall sustainability debt nor that it is possible to express the

debt in each dimension in monetary terms. Many of the factors

in the dimensions other than financial represent externalities

in the economic system, and they are treated as externalities

because its remarkably hard to agree on how to price them:

How do you put a value on a human life? On a walk in the

forest? On freedom?

Thus, we seek appropriate measurable indicators of the level

of debt within each dimension, but we do not attempt to seek a

direct translation of the measures between dimensions. Instead,

we suggest to assess the trade-offs qualitatively, through a

participatory approach including stakeholders.

We next describe each of these debts in detail.

1) Economic Sustainability Debt: Economic debt is directly

based on financial debt - the hidden effect of past decisions

about software that negatively affects time, costs and other

economic issues. As such, it primarily focuses on assessing

financial aspects such as software development costs, and

many of these are already at the focus of decisions in software

engineering [19].

However, we consider economic debt to go beyond basic

financial aspects and to also look at broader economic aspects

and values.

Key concepts in this area include Net Present Value (NPV),

an attempt to measure the economic value of a software

product, and the Total Cost of Ownership (TCO) of a software

system. Other models help to measure trade-offs and make de-

cisions about future developments: This includes Real Options

Analysis, opportunity costs and other financial mechanisms.

Finally, Value-Based Software Engineering [20] is an attempt

to broaden the economic perspective of values in SE.

Virtually all decisions taken during software development

have an impact on the economic dimension of sustainability in

that they require effort and resources. The following example

highlights specific situations that we can conceive of as

intentionally taking on economic debt:

• In order to follow the idea of sustainability design, the

designers of a supply chain system may want to involve

a larger group of stakeholders within requirements elic-

itation, including community members, service delivery

companies and suppliers. They may also want to apply

a wider range of techniques that help to identify goals

and risks in all dimensions of sustainability, such as a

reference sustainability goal model [4]. This will increase

the immediate costs of requirements analysis for the

intended benefit of a system that is perceived as more

valuable. Other decisions will have less visible economic

effects. Identifying and uncovering these can facilitate

a more explicit documentation and conversation in the

systems design process.

2) Technical Sustainability Debt: Cunningham [15] [21] is

attributed with coining the term technical debt as a metaphor

for explaining the value of refactoring to non-technical stake-

holders: “Shipping first time code is like going into debt.

A little debt speeds development as long as it is paid back

promptly with a rewrite...The danger occurs when the debt is

not repaid. Every minute spent on not-quite-right code counts

as interest on that debt. Entire engineering organizations can

be brought to a stand-still under the debt load of an un-

consolidated implementation, object-oriented otherwise.“ [15].

Tate [22] defines technical debt as an accumulation of poor

design decisions over time which result in an inability to

develop new features due to the defect burden incurred. Mc-

Connell [23] extends this definition by proposing a technical

debt taxonomy, which distinguishes between unintentional

(Type I) and intentional (Type II) debt where the former is

the result of poor engineering practice, and the latter is a

conscious, strategic decision to optimize for the present rather

than for the future. He also distinguishes between short-term

(Type II A) and long-term (Type II B) debt where the former

is taken on tactically and reactively but is expected to be

paid off frequently, and the latter is taken on strategically

and proactively and paid off sometime in the indeterminate

future. He suggests that when technical debt is incurred for

strategic reasons, the fundamental reason is always financial

pressures. Lavalle and Robillard [24] highlight other issues

that can lead to debt. They investigated how organizational

factors such as structure and culture have an impact on the

working conditions of developers. Their observations revealed

that many decisions made under the pressure of certain orga-

nizational factors and identified ten issues that had a negative

impact on software quality including documenting complexity,

internal dependencies, external dependencies, human resource

planning, organizational politics, undue pressure from man-

agers, scope protection, budget protection, organically grown

processes, and lack of vulnerability testing. They conclude that

while none of these issues are new, any software development

project should present few of these issues and ideally none of

them.

McConnell [23] also introduces the concept of non-debt

where examples may include a features backlog, deferred fea-

tures, cut features, etc. suggesting that not all incomplete work

is debt in itself as a result of it not accruing interest payments.

This is a position supported by Fowler [14] who suggests that

it is not useful to distinguish between debt or non-debt, but

between prudent versus reckless debt, and deliberate versus



inadvertent debt i.e. technical debt quadrant. Kruchten, Nord

and Ozkaya [7] extend this stating that technical debt should

be confined to describing the invisible result of past decisions

about software that negatively affect its future.

Fowler [25] argues that the principal problem with technical

debt is the lack of quantification. To address this Kazman

et. al., [26] argue that architectural debt, hotspots within

that architecture, are the principal causes of technical debt;

architectural roots, a type of technical debt that incurs high

maintenance penalties. Based on a case study they identified

and quantified the architecture debts in a large-scale industrial

software project, and justified the refactoring of architecture

problems with an economic analysis which suggested that in

financial terms, the project could expect a 295 % return on

investment in the first year alone. This is a position supported

by Ozkaya [27] who suggest that an architecture-focused

analysis approach helps manage technical debt by enabling

software engineers to decide the best time to pay down the

technical debt.

Examples of technical debt are:

• When engineers choose to use technical workarounds, to

skip validation, or to rush testing to deliver the product

in time, they are causing architecture instability.

• Another example is a system where the energy efficiency

of algorithms is improved, but this might be making the

code more difficult to understand and modify.

3) Environmental Sustainability Debt: Guzman, Piattini

and Prez-Castillo [28] proposed the concept of ecological

debt as “the cost (in terms of resource usage) of delivering

a software system with a greenability degree under the level

of the nonfunctional requirements established by stakeholders,

plus the incurring cost required to refactor the system in the

future“. This debt can be quantified as follows:

EcologicalDebt =
P

Cost(Resourcei) +P
Refactor(EcologicalF lawj)
It is important to note that, ecological debt is defined in

terms of the greenability of the system, which the authors

refer to as “a software quality characteristic for measuring

the degree to which a software product has appropriate power

consumption“. Furthermore, although referring to the same

dimension, ecological debt still differs from the concept of

environmental debt, proposed in this paper. The latter refers

to a wider range of environemental impact that goes beyond

resource and energy use, such as pollution and imbalance

of the ecosystem caused by the software-intensive system

overtime.

We define environmental sustainability debt as the impact of

past decisions about software that negatively affects the natural

environment. According to Schwarz et al. [29], some of these

negative impacts are energy-intensity, expressed as a measure

of the net energy consumed to provide the power requirements

for the system, and material intensity expressed as of material

wasted [29]. The 5 metrics they propose are material intensity,

energy intensity, water consumption, toxic emissions, and

pollutant emissions. Energy-intensity can be used to track

performance of processes for which net energy consumed is

negative. The ability to measure progress over time is critical.

Schwarz et al.s’ argument for providing few measures is

that measurements that combine too many components are

less versatile and less useful for making comparisons across

products and industries. However, the reduction to energy-

intensity and material intensity only accounts for direct effects

and neglects indirect effects. We argue to also include the

(sometimes invisible) aspects of natural resources consumed

indirectly, namely greenhouse gas emissions, pollution, and

waste production of any kind caused directly or indirectly.

The direct effects of energy and resource consumption are

pretty straightforward. As soon as we switch on a piece of

hardware than runs software, energy is consumed. For indirect

effects, this might be less obvious, but here are examples

where software systems can cause environmental harm:

• An agricultural system (or oil production system) might

have a software system that manages the collection of

data from sensors over time. If that data is stored properly,

it can be analyzed later on to understand systemic effects

on soil; if not, it will have an indirect negative effect on

the environment as the effects on the soil caused by that

system will not be documented.

• A supply chain management system is part of a pro-

duction or manufacturing system. There can be a design

choice to show the environmental aspects of the produc-

tion parts or processes to choose from with respective

metrics of material and energy intensity they require, such

that the manager can make more informed choices.

• A similar sort of systems is used in oil production in

order to collect data from different depth levels of the

sea to analyse the impact of drilling and extracting oil.

Data for the system is gathered using a trawler net

that collects specimen of the fauna to analyse them

potentially causing harm to their catch but hopefully for

keeping the overall population safe.

These three examples show that environmental debt can

occur by direct and indirect effects of software systems and

should be made more visible, accessible, and traceable.
4) Social Sustainability Debt: One of the first times “social

debt“ has been mentioned was in the sociological science in

the 60s by Muir and Weinstein [30]. They claimed that humans

(especially from the western world) tend to transfer the norms

of economic behavior using creditor and debtor roles into

the social dimension and that financial debt is accompanied

with strained social relationships between creditor and debtor.

Thus, they defined social debt as strained social relationships

imposed on stakeholders that emerge as a consequence of

inequality [debtor-creditor] circumstances [30]. In software

engineering the term social debt has first been coined in by

Tamburri et al. in 2013 [31]. They did not provide an exact

definition regarding it but rather explained it as unforeseen

project costs connected to strained social relationships caused

by for example uninformed socio-technical decisions. Addi-

tionally, they stated that social debt is connected to technical

debt and that it is intertwined with technical debt.

Nevertheless, for us this understanding is too narrow. It



only covers one part of social debt in the context of software

engineering respectively sustainability design: It focus only

on development communities. In the context of sustainability

debt, we extend the focus on the social communities affected

by and related to the system under design. This can be as

wide as society as a whole. Thus, social debt is sustainability

debt in the dimension of social justice, equity, fairness for

society. Moreover, we argue to not only include the direct

effects of social debt but also indirect effects of social debt.

In the following we describe the concept of social debt using

examples:

• Consider a supply chain system that changes the control

structure from human-based control and direct commu-

nication to a mediated form, where the algorithms are in

charge and direct communication channels are discarded

in the sake of efficiency and traceability. This would

undermine social relations with suppliers.

• A globally distributed development project covering dif-

ferent time zones may for example cause a communi-

cation delay between stakeholders of the development

community leading to a development delay (direct effect)

but also to a lack of trust between stakeholders of the

development community caused by the distance between

them (indirect effects).

5) Individual Sustainability Debt: Individual sustainability

is concerned with the overall well-being of an individual.

From a social perspective, maintaining an environment that

supports individual sustainability requires investment in health,

education, skills, knowledge, participation and leadership, and

access to services for the individuals within a given commu-

nity.

Individual sustainability debt not only results in diminished

contributions that an individual would provide to the society

and economy of ones placement, but it is also an important

source of accumulating social debt. Historically, the notion

of “investment into human capital” has been justified by the

human “return on the investment” through increased produc-

tivity, commitment, and creativity. We prefer to frame the

notion of individual sustainability debt as the effects of design

decisions that reduce the individuals’ abilities to freely develop

to their fullest potential. This includes impingement of an

individuals freedom or privacy, reduced assess to resources

and services, and negative effects on one’s own sense of value

and fulfillment. For example, intrusions into the private sphere

of software users reduces their level of privacy and thus incur

a debt on the individual dimension. Unfortunately, this debt

is often externalized so that the users carry the effects, and

remains invisible for the most part.

As all other kinds of sustainability debt, this one too, is

often driven by financial gain, or resistance to change:

• The more customizable a software is, the more develop-

ment and testing it requires, so it is cheaper and faster to

develop a one solution that fits all users. A typical way of

reasoning would be: This software is not for the visually

impaired, so we do not need to consider text to voice.

• If we do not allow users to opt out of our information

collection plan for the sake of their privacy, we can

sell this data to others and generate more advertisement

revenues.

• If we allow flexible working arrangements, we need to

set up a system to monitor, support, and evaluate these

arrangements. It is easier to have all work from the office

from 9.00 till 17.00.

IV. DISCUSSION

Sustainability debt considers effects not only on software

systems, its development community, and its evolution pro-

cess, but includes all stakeholders involved and affected.

We do not seek to monetize sustainability debt providing

one financial figure. Rather, we introduce sustainability debt

as an extension of the technical debt metaphor to provide

a basis for discussion and assessment [32] of hidden effects

of decisions about software-intensive systems that negatively

affects economic, technical, environmental, social, and indi-

vidual sustainability.

Requirements Engineering plays an important role in that,

it is there that we frame our decisions that have far-reaching

effects. For example, considering only time and budget as

the projects success criteria leads to environmental and social

damage (environmental debt). On the other hand, we can incur

economic debt in investing efforts to use a wider, participatory

set of techniques to identify economic goals and the effects of

the system in the environmental dimension.

In Requirements Engineering, we identify elements of sus-

tainability debt and highlight possible effects and debts. The

metaphor supports us in identifying and documenting these

effects and facilitates communication across a broader set of

stakeholders:

• Identify: Five dimensions make the abstract concept of

sustainability more tangible and facilitate asking the

question ”Who is the creditor?”

• Communicate: Debt is well understood, adding the five

dimensions makes it tangible across a wide range of

stakeholders.

• Document: Ways of documenting and visualization can

be developed to facilitate understanding.

The metaphor of sustainability debt encourages require-

ments engineers to assess the effects on the sustainability of

the system under design, and it raises questions such as:

• What can requirements engineers do to identify causes

of sustainability debt? The causes of sustainability debt

are not necessarily different from the causes of technical

debt such as schedule and budget constraints, lack of

vision, plan strategy, unclear requirements, bad assump-

tions etc. [33]. However, these are very high-level causes.

Can we provide more specific causes and understand

the underlying perceptions and assumptions behind the

decisions that cause debt? How is reckless sustainability

debt different from other situations?

• Debt implies something quantifiable. Can sustainability

debt be quantified in requirements engineering? We argue



it is not reducible to a single indicator. But, we argue that

should be possible to develop meaningful indicators for

the different dimensions, and that we need to develop

mechanisms to qualitatively assess trade-offs.

• This leads directly to the discussion to intentionally take

a debt as strategic decision, for example to shorten

time to market. Can sustainability debt be used in a

similar intentional way? For example, in the dimension

of individual debt, this can simply refer to imposing

additional stress on developers to speed up development

time. But does this also work for the overall sustainability

debt? Do we want that?

These questions are pointing to the limitations of a metaphor

highlighting some effects and masking others: A debt usually

implies a quantifiable contract between debtor and creditor.

In sustainability debt, this is not necessarily the case: We are

only able to quantify the debt to some extent (if at all), and the

creditor is quite often quite generic and removed in space and

time – in the extrem case, future society as a whole – or only

represented by surrogate stakeholders. Hence, no mechanism

of repaying debt may be known when incurring the debt.

This raises the question whether sustainability debt is the right

metaphor to use at all. Consider that some debt can never be

paid back, such as irreversible environmental degradation, or

that the consequences of debt in one dimension can result in

irreversible debt in a different dimension, e.g. environmental

debt can lead to individual losses in health.

Despite these limitations, it is important to highlight that

it is only based on this metaphorical thinking that we are

enabled to raise these particular questions. By emphasizing the

notion of incurring debt, these invisible effects of decisions are

made visible and the notions of interest and repayment surface.

Further consequences of the concept have yet to be explored.

V. RELATED WORK

We were not the first to use the metaphor of debt to

discuss how past decisions about software-intensive systems

may have a negative effect on sustainability. However, we are

the first ones defining and discussing sustainability debt for the

different dimensions, including the different levels of effects

and their interrelations.

Ojameruaye and Bahsoon also use in their white papers

[34], [35] the concept of sustainability debt to describe

another form of technical debt, which provides a metric and

quantifies the gap between the level of sustainability that

will be achieved with a specific architecture and an ideal

environment where the sustainability requirements are com-

pletely achieved. To deal with this debt, the authors propose

an economic-driven architectural evaluation method that helps

identifying decisions that minimize costs and risks, while

maximizing value on the five sustainability dimensions. In

their method, the impact of alternative architectural strate-

gies on sustainability is determined using a set of value

indicators along four perspectives [36]: financial, customer,

internal process, innovation and learning. These perspectives

are mapped to the sustainability dimensions using indicators.

The indicators include maintainability, total development and

implementation costs, and perceived value, among others.

Some of the indicators are taken from [36], while others have

been added, such as environmental impact due to energy usage

and CO2 emissions. However, it remains unclear whether

additional indicators are needed to measure sustainability in

each of the different dimensions.

Their approach is quantitative: they assign integer values

from 1 to 5 to represent the impact of architecture parameters

(e.g., location finding technology, connectivity technology and

database) on the selected value indicators. The same value

scale is applied to quantify the risk of each impact, based on

criticality and likelihood. These values are subsequently used

to rank the candidate architectures, through CBAM [37] and

portfolio theory [38]. Finally, the debt is calculated as the gap

between the ideal architecture where all goals are achieved and

what can be achieved within the given context for the different

ranked architectures.

While using the same metaphor, Bendra and Bahsoons

aim and understanding of sustainability debt are different

and narrower than ours. Their aim is to develop a decision-

support framework for choosing the best software architecture

with respect to sustainability. The concept they introduce as

sustainability debt is an extension of the technical debt with

different dimensions. They do not attempt to provide a clear

definition for the different types of debts. They also argue

that this debt is quantifiable as the gap between the ideal

architecture and what actually can be achieved given the

available resources. Finally, they do not consider the different

levels of effects into the sustainability dimensions as part of

the debt.

Our work, in contrast, defines the concept of debt for

each sustainability dimension, taking into account the different

orders of effect. Technical debt is therefore related to one of

the dimensions of the sustainability debt. Most importantly,

our aim is a more philosophical one: to define and discuss how

the metaphor can be used in each dimension of sustainability

and, by doing so, to provide a mental framework for software

engineers to think about sustainability during the software

development activities. Additionally, we do not claim that

sustainability debt can be quantified. Moreover, we think it

is arguable to express the debt in each dimension in financial

terms or to calculate one overall sustainability debt. Instead we

provide a theoretical framework to uncover, represent, commu-

nicate, and enable sustainability within software engineering.

VI. CONCLUSION

We presented the metaphor of sustainability debt as a mental

tool to uncover, represent and communicate issues related

to sustainability within software engineering. Sustainability

debt is the hidden impact of past decisions about software-

intensive systems that negatively affects economic, technical,

environmental, social and individual sustainability on the sys-

tems under design. We foresee that using the sustainability

debt metaphor in sustainability design decisions can support

practitioners in making the abstract concept of sustainability



more tangible. This can help them to better envision the

systemic effects of their design decisions. We have started to

discuss the relationships between the presented sustainability

debt dimensions here as a first step towards elaborating and

measuring sustainability debt.

We envision a taxonomy of sustainability debt as an im-

portant step in elaborating on the definition and the structure

of the metaphor. Another course of action in the area of

measurement and prioritization is to identify and develop

appropriate indicators to measure the debt of each dimension

such as the Composite Sustainable Development Index [39] or

the Schwartz’s metrics [29] for environmental debt. Following

this, a mechanism needs to be developed and established

to enable a joint assessment of trade-offs including relevant

stakeholders. Additionally, we propose to investigate the usage

of simulation models such as system dynamics to support the

understanding of systemic effects. Currently we are working

on visualization and communication of the systemic effects of

design decisions.

ACKNOWLEDGMENTS

This work is supported by the DFG EnviroSiSE project un-

der grant number PE2044/1-1, by FAPERJ (APQ1), by CNPQ

(No 14/2014), by NSERC (RGPIN-2014-06638) by WWTF

through project BenchmarkDP (ICT2012-46), by the European

Social Fund, and by the Ministry of Science, Research and the

Arts Baden-Wuerttemberg.

REFERENCES

[1] B. Penzenstadler, V. Bauer, C. Calero, and X. Franch, “Sustainability
in software engineering: a systematic literature review,” 16th

International Conference on Evaluation & Assessment in Software

Engineering (EASE 2012), pp. 32–41, 2012. [Online]. Available: http:
//digital-library.theiet.org/content/conferences/10.1049/ic.2012.0004

[2] J. Mankoff, R. Kravets, and E. Blevis, “Some computer science issues
in creating a sustainable world,” Computer, vol. 41, no. 8, pp. 102–105,
Aug 2008.

[3] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, M. Mahaux,
B. Penzenstadler, G. Rodrı́guez-Navas, C. Salinesi, N. Seyff, C. C.
Venters, C. Calero, S. A. Koçak, and S. Betz, “The Karlskrona
manifesto for sustainability design,” CoRR, vol. abs/1410.6968, 2014.
[Online]. Available: http://arxiv.org/abs/1410.6968

[4] B. Penzenstadler and H. Femmer, “A generic model for sustainability
with process-and product-specific instances,” in Proceedings of the 2013

workshop on Green in/by software engineering. ACM, 2013, pp. 3–8.
[5] S. M. Easterbrook, “From computational thinking to systems thinking:

A conceptual toolkit for sustainability computing,” in ICT for

Sustainability 2014 (ICT4S-14), Stockholm, Sweden, August 25, 2014.,
2014. [Online]. Available: http://dx.doi.org/10.2991/ict4s-14.2014.28

[6] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler,
N. Seyff, and C. C. Venters, “Sustainability Design and Software:
The Karlskrona Manifesto,” in Proc. of the Int. Conf. on Software

Engineering, 2015.
[7] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor

to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18–21,
November 2012.

[8] J. Garvey, The ethics of climate change: right and wrong in a warming

world. Continuum International Publishing, 2008. [Online]. Available:
http://books.google.ca/books?id=Ng5Nn3Kn3xwC

[9] F. Berkhout and J. Hertin, “Impacts of information and communi-
cation technologies on environmental sustainability: Speculations and
evidence,” Report to the OECD, Brighton, vol. 21, 2001.

[10] L. M. Hilty and B. Aebischer, “Ict for sustainability: An emerging
research field,” in ICT Innovations for Sustainability. Springer, 2015,
pp. 3–36.

[11] U. E. P. Agency, “Defining Life cycle Assessment,” 2010. [Online].
Available: http://www.gdrc.org/uem/lca/lca-define.html

[12] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“The financial aspect of managing technical debt: A systematic literature
review,” Information and Software Technology, vol. 64, pp. 52–73, 2015.

[13] Z. Li, P. Liang, and P. Avgeriou, “Architectural debt management in
value-oriented architecting,” Economics-Driven Software Architecture,

Elsevier, pp. 183–204, 2014.

[14] M. Fowler, “Technical debt quadrant,” http://martinfowler.com/bliki/
TechnicalDebtQuadrant.html. [Online]. Available: http://martinfowler.
com/bliki/TechnicalDebtQuadrant.html

[15] W. Cunningham, “The wycash portfolio management system,” in OOP-

SLA’92: Proceedings of Seventh Annual Conferenceon Object-Oriented

Programming Systems, Languages, and Applications, 1992.

[16] G. Lakoff and J. M., “Metaphors we live by,” Chicago/London, 1980.

[17] S. CMU, “Technical debt workshop series,” http://www.sei.cmu.edu/
community/td2012/previous/?location=secondary-nav&source=655951.
[Online]. Available: http://www.sei.cmu.edu/community/td2012/
previous/?location=secondary-nav&source=655951

[18] L. M. Hilty and B. Aebischer, “Ict for sustainability: An emerging
research field,” in ICT Innovations for Sustainability, L. M. Hilty and
B. Aebischer, Eds. springer., 2015.

[19] B. Boehm, Software Engineering Economics. Prentice-Hall, 1981.

[20] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher, Value-

based software engineering. Springer Science & Business Media, 2006.

[21] W. Cunningham, “Debt metaphor,” https://www.youtube.com/watch?v=
pqeJFYwnkjE. [Online]. Available: https://www.youtube.com/watch?v=
pqeJFYwnkjE

[22] K. Tate, Sustainable Software Development: An Agile Perspective.
Addison Wesley, 2006.

[23] S. McConnell, “Technical debt,” http://www.construx.com/10x
Software Development/Technical Debt/. [Online]. Available: http:
//www.construx.com/10x Software Development/Technical Debt/

[24] M. Lavallee and P. N. Robillard, “Why good developers write bad code:
An observational case study of the impacts of organizational factors
on software quality,” in ICSE’15: Proceedings of the International

Conference on Software Engineering, 2015.

[25] M. Fowler, “Technical debt,” http://martinfowler.com/bliki/
TechnicalDebt.html. [Online]. Available: http://martinfowler.com/bliki/
TechnicalDebt.html

[26] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka, “A case study in locating the architectural roots of
technical debt,” in Proceedings of 37th IEEE International Conference

on Software Engineering (ICSE15), 2015.

[27] I. Ozkaya, “Developing an architecture-focused measurement framework
for managing technical debt,” 2015-06-15.

[28] I.-R. de Guzmn, M. Piattini, and R. Prez-Castillo, “Green software
maintenance,” in Green in Software Engineering, C. Calero and
M. Piattini, Eds. Springer International Publishing, 2015, pp. 205–229.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-08581-4 9

[29] J. Schwarz, B. Beloff, and E. Beaver, “Use sustainability metrics to
guide decision-making,” Chemical Engineering Progress, vol. 98, no. 7,
pp. 58–63, 2002.

[30] D. E. Muir and E. A. Weinstein, “The social debt: An investigation
of lower-class and middle-class norms of social obligation,” American

Sociological Review, pp. 532–539, 1962.

[31] D. Tamburri, P. Kruchten, P. Lago, H. Van Vliet et al., “What is social
debt in software engineering?” in Cooperative and Human Aspects of

Software Engineering (CHASE), 2013 6th International Workshop on.
IEEE, 2013, pp. 93–96.

[32] I. Ozkaya, P. Kruchten, R. L. Nord, and N. Brown, “Managing
technical debt in software development: Report on the 2nd international
workshop on managing technical debt, held at icse 2011,” SIGSOFT

Softw. Eng. Notes, vol. 36, no. 5, pp. 33–35, Sep. 2011. [Online].
Available: http://doi.acm.org/10.1145/2020976.2020979

[33] E. Lim, N. Taksande, and C. Seaman, “A balancing act: What software
practitioners have to say about technical debt,” Software, IEEE, vol. 29,
no. 6, pp. 22–27, Nov 2012.

[34] B. Ojameruaye and R. Bahsoon, “A portfolio-based approach for evaluat-
ing sustainability requirements and their debts in architectures,” School
of Computer Science, University of Birmingham, UK, Tech. Rep. 2,
2015.

[35] B. Ojameruaye and R. Bahsoon, “Sustainability debt: An economics
driven approach for using technical debt analysis in decision making

http://digital-library.theiet.org/content/conferences/10.1049/ic.2012.0004
http://digital-library.theiet.org/content/conferences/10.1049/ic.2012.0004
http://arxiv.org/abs/1410.6968
http://dx.doi.org/10.2991/ict4s-14.2014.28
http://books.google.ca/books?id=Ng5Nn3Kn3xwC
http://www.gdrc.org/uem/lca/lca-define.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://www.sei.cmu.edu/community/td2012/previous/?location=secondary-nav&source=655951
http://www.sei.cmu.edu/community/td2012/previous/?location=secondary-nav&source=655951
http://www.sei.cmu.edu/community/td2012/previous/?location=secondary-nav&source=655951
http://www.sei.cmu.edu/community/td2012/previous/?location=secondary-nav&source=655951
https://www.youtube.com/watch?v=pqeJFYwnkjE
https://www.youtube.com/watch?v=pqeJFYwnkjE
https://www.youtube.com/watch?v=pqeJFYwnkjE
https://www.youtube.com/watch?v=pqeJFYwnkjE
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://dx.doi.org/10.1007/978-3-319-08581-4_9
http://doi.acm.org/10.1145/2020976.2020979


for sustainable requirements,” School of Computer Science, University
of Birmingham, UK, Tech. Rep. 3, 2015.

[36] M. Khurum, T. Gorschek, and M. Wilson, “The software value
map - an exhaustive collection of value aspects for the development
of software intensive products,” Journal of Software: Evolution and

Process, vol. 25, no. 7, pp. 711–741, 2013. [Online]. Available:
http://dx.doi.org/10.1002/smr.1560

[37] R. Kazman, J. Asundi, and M. Klein, “Quantifying the costs and benefits
of architectural decisions,” in Software Engineering, 2001. ICSE 2001.

Proceedings of the 23rd International Conference on, May 2001, pp.
297–306.

[38] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7,
no. 1, pp. 77–91, 1952. [Online]. Available: http://www.jstor.org/stable/
2975974

[39] D. Krajnc and P. Glavi, “How to compare companies on relevant
dimensions of sustainability,” Ecological Economics, vol. 55, no. 4, pp.
551 – 563, 2005. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0921800904004513

http://dx.doi.org/10.1002/smr.1560
http://www.jstor.org/stable/2975974
http://www.jstor.org/stable/2975974
http://www.sciencedirect.com/science/article/pii/S0921800904004513
http://www.sciencedirect.com/science/article/pii/S0921800904004513

	Introduction
	Background
	Sustainability Design
	Systemic Effects in Software Systems Design
	The Metaphor Technical Debt

	Sustainability debt
	Introducing Sustainability Debt
	The Five Sustainability Debts
	Economic Sustainability Debt
	Technical Sustainability Debt
	Environmental Sustainability Debt
	Social Sustainability Debt
	Individual Sustainability Debt


	Discussion
	Related Work
	Conclusion
	References

