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ABSTRACT

Bernoulli's transformation and the related sefpameof variables methodr modal analysis as
classically applied to the partial differentialuegjon of motion of arelastic continuum will
always conclude an undamped response. How#vsrgonclusion lacks reliability, since the
underlying analysis assumes eithintegralwise differentialiy (i.e. differentiation and
integration signs are interchangeable) or termwise differentiability (i.e. the derivative of an
infinite series of terms equals the sum thé derivatives of th@éerms) for Bernoulli's
transformation, which not only abitrary but also is respoilde for the undamped response.
This paper using Bernoulli's transformation examines an elastic uniform column ruled by
the generalized Hooke’s law and subjected tialasurface tractions at its free end or a free
axial vibration, and shows th#élie above differentiabilittassumptions underlying classical
analysis are equivalent and actually cdog#i a limitation to theclass of the response
functions. Only on this limitation, damping appetarde inconsistent ith the elastic column
response. Removing the limitan through nontermwise diffenéability of Bernoulli's
transformation results in a damped responsehef elastic column, which indicates that
damping actually complies with the generalitéabke’s law as applied to elastic continua.
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1. INTRODUCTION

The paper is an advance on a jmdilon of 1996 criticizing @ssical continuum dynamics as
applied to a uniform elastic column subjected t@sial surface traction at its free end [1]. To
specify, in the classicaliew, the elastic stresses do mutlude damping components, which
by virtue of the boundary stress conditiongrilees the surface trdon of any damping
components, thereby leading to an undampsgamse of the elastic column. In contrast, by
means of Bernoulli's &msformation [2 p.502-522fhat is, using separation of variables
method or modal analysis, this paper offermathematical proof that the elastic column
response is damped, thereby verifying thateflastic stresses include damping components.

2. PARTIAL DIFFERENTIAL EQUATION OF MOTION OF A UNIFORM
ELASTIC COLUMN

The continuum model of a uniform elastic golu used in the above publication of 1996 [1]
has been sketched in the following Fig. 1

Z A

z=L ¥ *

0 z=()
Yz

Figure 1. Uniform continuum model of an elastic column

The symbols used in Fig. 1 and also ie &msuing analysis are specified as below:
z stands for the level variable that refers toittigal state of static equilibrium of the elastic
column. By definition,z =0 corresponds to the fixed end ané L corresponds to the free
end of the column, witlL standing for the initial (atest) length othe column.
¢ stands for the time variable.
p(¢) stands for an axial suda traction externally imposemh the column at its free end.

o(zt) stands for the axial internal stress developed at thed@f¢he column.

The partial differential equatioof motion of the uniform eldi€ column subjected to the
surface tractiorp(r) at its free endt = L has the form

Ve -u"(z,t)—ii(z,t)zo, (2.1)
where u(z,t) and ¢ stand for the displacement pesise of the cross-section levelof the

elastic column at time, and a constant, respectively. The constantpresents the velocity
of propagation of longitudinal wavesal the column and is equal to [3 p.408]

c=+E/p, (2.2)

with £ and p standing for the modulus of elastic(Young’'s modulus) and the mass density
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of the uniform elastic column, respectiyelDots and primes over functions, eigz,z) and
u"(z,t), stand for differentiatiowith reference to the time and to the levet, respectively.

The partial differential equation (2.1) haselm derived from Newton's second axiom as
applied to the dynamics of an infinitesinkength of the elasticolumn at levetk, viz.

00 (z.t)/0z = p-ii(z.t), (2.3)

and the generalized Hooke's law adinear relation between stresse$z,r) and strains
u'(z,t) at the same level [4 p.8], [5 p.58], that is,

o(zt)=E-u'(z1). (2.4)

It is assumed that the elastic column continuum was at rest before subjected to the axial
surface tractiorp(¢), and hence, its initial conditiongz,0) andu(z,0) must be zero,

u(z,O)zL't(z,O):O. (2.5)

The influence of the axial surface tractigif) on the dynamics of éhelastic column is
accounted for through the inhomogeneous boundary stress condition

p(t)=o(Lt)=E-u'(Lt), (2.6a)
while the fixed end at =0 is represented by the homogeneous boundary condition

u(0,6)=0. (2.6b)

3. TRANSFORMATION OF AN IN HOMOGENEOUS BOUNDARY VALUE
INTO A HOMOGENEOUS ONE

The classical approach to the partial differdrgiguation of motion of the elastic column of

Fig. 1 requires homogeneous (i.e. zero) boundary conditions. Thus, a transformation of the
response function in the partial differential etipra (2.1) is sought so that the inhomogeneous
boundary condition (2.6a) will be transformed into a homogeneous one [6 p.435-436]. Such a
transformation of te response function(z,¢) into a new one, say(z.7), is given as below

i (2. =u(z.0) p](;) 2. (3.1)

On account of the above transformation, theigladifferential equation (2.1), the initial
conditions (2.5) and the boundary conditions (2v& conclude that the following partial
differential equation ini(z,¢) must hold true

2" 2,, .
2 Gz Sa(zn) B (3.2)
0z° or’ E
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with the homogeneous boundary conditions

i(0,t)=0i(L,t)/ez=0, (3.3)
and the initial conditions
0 oulz,0 H (0
ﬁ(z,0)=—p( )-z and i(z ):—p( )-z. (3.4)
E ot E

4. UNCOUPLING THE PARTIAL DIFFERE NTIAL EQUATION OF MOTION
INTO UNDAMPED VIBRATIONS

The responsei(z,7) of the column can be expressedaaBourier series with respect to the
system of orthogonal functions of modgg(z) = sin [(n + 1/2)7zz/L] as follows [7 p.489]

0

i(20) = a0 (1) 00 (2) = iq (t)-sin[ (n+ 1/2)x2/L], (4.1a)

n=0

g, (1) = [f [0, (2)] dzJ Ju(z1)-0,(2)-dz :%j i(z,)-sin[(n+1/2)xz/L]-dz, (4.1b)

0

with ¢, () standing for a Fourier coefficient. The modggs(z)=sin[(n+1/2)7z/L] are

derived from the eigenvalue equatigf)(z)+(w,/c)’ -, (z)=0, with o, /c =constant, and
the homogeneous boundary conditiong0)=¢, (L)=0 corresponding to the homogeneous

boundary conditions (3.3). The Fourier seriéd) is but Bernoulli'sransformation of the
response functiod(z,7) [2 p.502-522], and by this latter name will be called in this paper.

By means of Bernoulli's traformation (4.1), classical alysis uncouples the partial
differential equation of motion (3.2) into ondiry differential equations each one of which
represents an undamped vibrationeérms of a generalized displacemep(z) .

Indeed, multiplying the partiatlifferential equation (3.2) bysin[(n+1/2)7zz/L] and
integrating fromz =0 to z=L gives

c? -J.a Zz(zzt) -sin[(n+1/2)7tz/L]-a’z—J-6 f;fzzt) ~sin[(n+1/2)7z:z/L]-dz=
:%-Iz-sin[(n+I/Z)ﬂZ/L]-dZ. (4.2)

0

The first integral of the left-hnand member afperforming an integratroby parts, and taking
into account the homogeneous boundary conditions (3.3), becomes

%.J‘ﬁ(z,t).sin[(n + 1/2)7FZ/L]-dz . (4.3)

0

J'a L;(Zz;t) .Sinl:(n+]/2)7rZ/L:|.dZ —_
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which, after substitutingy, (¢)-L/2 for its right-hand member integral, in accordance with
Bernoulli’s transform (4Lb), may be rewritten as

Ia ;’(ZZI) sin[(n+1/2)7z/L] - dz :—[(n+]/2)7r/L]2 ,%.qn (7). (4.4)

The integral in the right-hand member of equat{4.2), in view of the following equality [8
p.164 eq. 216]

Lz-sin n Tz -az = (—1)” 4.5
£ [(n+1/2)7z/L] d [(n+]/2)7r/L]2’ (4.5)
becomes equal to
M‘Lz-sin n+1/2)xz/L .dz=p(t)- (_1)” . (4.6)
E £ I )3/t ] E [(n+1y2)x/LT

Now, it is classically assumed that differentigtithe integral in Bewoulli’s transform (4.1b)
to the second order with respect to timequals differentiating ittntegrand to the second
order with respect to time (namely assumption of integralwise differentiability), viz.

2ka% (z,t)
-[ o’

-Sin[(n+1/2)7rz/L}-dx, 4.7)

for which, however, a sufficient condition is the continuity of the derivaaiigz,¢)/ar for

all values ofz and ¢ [7 p.286, Leibnitz’s rule], [9 p.348 And then, combining with
equations (4.2), (4.4) and (4.@he classical analis can obtain the dinary differential
equations [10 p.212]

G, (t)+a),f -q, (t):_ﬁét) (nzfl(/;;z ~ for n=0123,..., (4.8)

where o, represents a natural angular frequency of the elastic column equal to
w, =(n+1/2)zc/L. (4.9)
Operating similarly, but without using any asgtion, on the initial anditions (3.4) yields

p(0) 2L(=1)
E (n+1/2) °

q,(0)=-

It is emphasized that each ooé the ordinary differentlaequations (4.8) describes a

E12



forced vibration of a single-degree-of-fdeen system in a geraized displacemeny, (1),

and by virtue of the initial conditions (4.10),dasy to be solved for a known surface traction
p(t). Moreover, the lack of a damping teim the left-hand member of each ordinary

differential equation (4.8) suffices for thedamped nature of the forced vibratiorjn(z).

Since the ordinary differentisdquations (4.8) are equivaletd the partial differential
equation of motion (3.2) on the assumption iatiegralwise differentiability (4.7), their
undamped character indicates threlamped character of the palrdifferential equation (3.2)
on the assumption of integralwise differentiip (4.7). Only on this assumption, the
classical view that the responsfean elastic continuum is undamped seems to be reasonable.

5. A CRITIQUE OF THE UNCOUPLING INTO UNDAMPED VIBRATIONS

There are three major points of dispute otrex uncoupling into the undamped vibrations
(4.8) underlying the classical view thaethlastic column response is undamped:

1. The undamped vibrations (4.8), and hertbe, undamped character of the responses
i(z,t) and u(zt), have been derived from uncouplitite partial differential equation of

motion (3.2)exclusively on the assumption otegralwise differatiability (4.7).
2. The integralwise differentiity (4.7) can only beassured if the second-order

derivative 6%i(z,r)/a° is continuous for all values of and ¢, which, however, constitutes
an arbitrary limitation to the response functiai{s,s) andu(z,¢), beyond the requirement of

existence of the second-order derivatigdi(z,r)/a’ dictated by the partial differential

equation (3.2). Thus, the assumption of integisdvdifferentiability (4.7) is but an arbitrary
limitation to the elastic column continuum dynasj)iwhich deprives the undamped vibrations
(4.8) of any reliability as equivalent tbe partial differetial equation (3.2).

3. The assumption of integralwise differentiaiil(4.7) proves to be equivalent to the
assumption of termwise differentiability of the infinite series (i.e¢he derivative of the infinite
series equals the sum of the derivatives ofsirées’ terms) in Bernoulli's transform (4.1a).
And hence, the really general solution to éfestic column continuum dynamics requires that
the termwise differentiation rules be replaced by nontermwise differentiation rules.

The ensuing analysis elucidates these pointsfismally concludes that the really general
solution to the elastic column continuum dgmes must represent a damped vibration.

6. EQUIVALENCE OF THE ASSUMPTIONS ABOUT INTEGRALWISE AND
TERMWISE DIFFERENTIABILITY

As shown in par. 4, the ordinadifferential equations (4.8) are equivalent to the partial
differential equation (3.2) on thesasnption of integralwise differentiability (4.7). With the

aim to use this postulate, we can multiply equation (4.8)ikjyn +1/2)zz/L] and get

Gy, (¢)- sin [(n + I/2)7zz/L:| + @, -q, (1) sin [(n +1/2) 7Z'Z/L:| =

p(t) 2L(-1) .
- o +]/2)2 = ~szn[(n +1/2)7rz/L}, (6.1)

which, taking into account that éhsecond-order derivative ofin[(n+1/2)7zz/L] and
equation (4.9) allow the substitution
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2

jz—zsin [(n +1/2) 7Z'Z/L] =—(w, /c)2 : Sin[(n + ]/2)72'2/L:| , (6.2)

becomes

Ve “q, (t) -jz—zzsin[(n + ]/2)7Z'Z/L:| -q, (Z)-sin[(n + ]/Z)ﬁZ/L] =

Cp(e) 2L(-1)"
= (n+1/2)2 > -sm[(n+]/2)7zz/L]. (6.3)

Summing up all equations (6.3) fa=0, 7,2,3,... entails

2 .an (7) .jz—zsin[(n + ]/2)7rz/L} - i::)q‘n (t)-sin[(n + ]/2)7;Z/L] =

— p ._.i(_;)nz-sin[(n+1/2)ﬂz/l,]. (6-4)

E 70 S (n+1/2)
On account of Bernoulli’'s transformati (4.1) and equatiof.5) it follows

2L i (-1)"

5 -sin[(n+1/2)7rz/L], (6.5)

which inserting in equation (6.4) results in

0

¢ -an (t)-jZ—Zsin[(n + ]/Z)HZ/L] —iqn (t).sin[(n + ]/Z)ﬂZ/L] = 40, z. (6.6)

n=0 E

Equation (6.6) as a superposition of the wady differential equations (4.8) must be
equivalent to the partial differential edwm of motion (3.2), on the assumption of
integralwise differentiability (4.7) This equivalence entails the@mwise differentiability of
Bernoulli’'s transform (4.1a), viz.

0 L;fj’) =G, (1)-sin(n+ 1/2)z/L]. (6.7a)
0 L;Z(ZZ’I) ziqn (t).i_isinl:(n+l/2)7zz/L:|. (6.7b)

Indeed, applying Bernoulli’s traformation (4.1) to the function®i(z,¢)/a* , with this
function replacing the functior(z,7) in the transformation, gives

o’ (z,t)
o’

Zign (Z)-sin[(n+l/2)7rz/L}, (6.8a)
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8&n (t):%Ja z;t(zz’t)-sin[(n+I/2)7rz/L:|-dz, (6.8b)

with g, (¢) standing for a new Bernoulli’s coefficient replacigg(s). Further, on account of
the assumption of integralwiskfferentiability (4.7), Bernouils transform (6.8b) yields

g, (1)=4,(1), (6.9)

and substituting in Beoulli’s transform (6.8a) gives thertawise differentiation rule (6.7a),
which combined with equation (6.6) and tpartial differential equation of motion (3.2)
results in the termwise differentiation rule ®)..7 And inversely, thassumption of termwise
differentiability (6.7a) via Bernoulli’'s transforrtian (6.8) assures equality (6.9), and proves
to be equal to the assumption aeigralwise differentiability (4.7).

On this base therefore, Benlli’'s transformation (4.1) and ¢rassumption of integralwise
differentiability (4.7) entail the termwise diffargability (6.7). And inversely, Bernoulli’s
transformation (4.1) and the assumption ofmisise differentiability (6.7) entail the
integralwise differentiability (4.7), which implies that theassumptions of integralwise
differentiability (4.7) and termwise differentidiby (6.7) are equivalent. Thus, recalling that
the assumption of integralwise differentiability (4.7) is the prerequisite for the undamped
character of the partial differential equation J3i2 follows that the undamped character of
the partial differential equatiorB.2) requires the termwise differt@ability (6.7). That is,
without the assumption of termwise differebilday (6.7), the partial differential equation
(3.2) cannot describe any undamped motion, notwithstanding conventional wisdom.

7. UNCOUPLING THE PARTIAL DIFFERE NTIAL EQUATION OF MOTION
BY TERMWISE DIFFERENTIABILITY

The equivalence of the assumptions of integralwise differential{#ity) and termwise
differentiability (6.7) can be verified by shavg that the latter assumption in combination
with the partial differential guation of motion (3.2and Bernoulli’s trasformation (4.1) can
result in the classical ordinadifferential equations (4.8ke the former assumption.

Indeed, inserting the termwiskfferentiation rules (6.7) in thpartial differential equation

of motion (3.2), multiplyingthe resulting equation byin[(v+1/2)7zz/L] for v=1,2,3,...,

integrating all over the column length, and after having made use of the differentiation
property (6.2) of the trigonometric functicimn [(n + I/Z)ﬂz/L] and itsorthogonality property

L 0 for n#v
;[Sln[(}’l-i-]/Z)EZ/L]’SZH[(V-F]/Z)EZ/L]’dZZ % for nev (7.1)

we can derive the classical ordinary differ@hequations (4.8) directly from the partial
differential equation of motion (3.2) on thesamption of termwise differentiability (6.7).

8. INTEGRALWISE AND TERMWISE DI FFERENTIABILITY ASSUMPTIONS
AS LIMITATIONS TO THE RESPONSE

The analysis in par. 4 madeiguclear that the undamped ardry differential equations (4.8)
and their equivalence with the partial diffeiehequation of motion (3.2), which suffices for
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the undamped character of the motion, is dueh® arbitrary assumption of integralwise
differentiability (4.7). Actually, Bernoulli’'sransform (4.1b) ensures this assumption only on

the condition of a continuous derivativiii(z¢)/a° for all values ofz and ¢ [7 p.286,
Leibnitz’s rule], [9 p.348], which, however, liyond the requirement of the existence of the
derivative azﬁ(z,t)/ﬁtz for the formation of the partial ffierential equation of motion (3.2).

On the other hand, the derivativdii(z,7)/a:?, as the acceleration of the column, is always

discontinuous athe initial time r=0, where its at-rest zero vawoexists with its nonzero
value for leaving the state of rest. Besides,ttieoretical possibility of abruptly applying an
infinitesimal additional velocity distoution at a finite number of instantsin time, which,
however, does not affect the forceitbration of the elastic cotun as a linear stable system,
requires that the distribution of the accelerat'&?vi(z,t)/at2 along z vary discontinuously
with time at the finite number of instants In short, the continuity of the acceleration
0%i(z,1)/or* sufficing for the integralwise differentiability (4.7), and hence, for the validity
of Bernoulli’'s undamped ordinary differential egjoas (4.8), cannot be taken for consistent.
Thus, the assumption of integralwise differentidypiféd.7) is arbitrary and in fact constitutes a
limitation to the class of the response functioi,?), thereby depriving the ordinary

differential equations of the undamped vibrati¢hs) of any reliabilityas the real ordinary
differential equations in the generalized displacemegt(s) that can be derived from the
partial differential equation ahotion (3.2). Exactly for thiseason, the classical view that
damping is inconsistent with the responseths# elastic column, which is founded on the
assumption of integralwise differentiabilif.7), is depriveaf any reliability.

As its equivalence to the assumption of inédgrse differentiability(4.7) indicates, the
assumption of termwise differentiability (6.Also is arbitrary [9 p.24-29] and in fact
constitutes a limitation to thelass of the response function$z,z). Actually, only the
uniform convergence Of the infinite series in equatio8.7) can suffice for the validity of the
termwise differentiability of Bernoulli's &msform (4.1a) [7 p.407-417], [9 p.24-30]. And of
course, assuming this unifornorovergence is but an arbitrary limitation to the class of the
response functiong(z,7) sought.

9. THE DAMPING EFFECT OF NONTERMWISE DIFFERENTIABILITY

Either of the equivalent assutigns about integralwise diffentiability (4.7) and termwise
differentiability (6.7) actually constitutes amiitation to the class of the response functions
i(z,t). So, in seeking the really general solutiorthe partial differential equation of motion
(3.2), we can remove this limitation by replagithe termwise differeration rules (6.7) with
the nontermwise general differentiation rules

D g, )-sifns y2)mef1 ] Ry (o), ©.12)
t n=0
24 0
0 I;(j,f) _ an (1) j—zzsin [(n + ]/2)7ZZ/L:| +R_(z.1), (9.1b)
z n=0 z

where R, (z,¢) andR, (z,¢) stand forremainder terms that cannot be separated into the modal
forms included in the series under the summation sign
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Inserting equations (9.1) the partial differential equatn of motion (3.2) will give

¢? -an (¢) -jz—zzsin[(n - ]/Z)IZ'Z/L:| - iﬂijn (t)-sin[(n + ]/2)7Z'Z/L:| +

+c? ‘R, (z,t) - R, (z,t):”—-—-i(;)z-sin[(n + ]/Z)HZ/L], (9.2)

E 7° 15 (n+1)2)

which after using equation (6.2hd rearranging terms becomes

(i, (1) + 02 -, (0)) - sin[(n+ 12) 22/ L]+ R, (2.0) - - R. (1) =

_ ) 2n & (=)
__T.?.nzom-szn[(n+1/2)ﬂz/l,]. (9.3)

On account of equation (9.3), we can always express the B@aY)-c’ R, (z,¢) by
means of Bernoulli’s trangfmation (4.1) as follows

R (z,t)-c” R, (z,t)= ia),f -y, (2) - sin [(n + I/Z)IZ'Z/L] , (9.4a8)

a)j Y, (t) = J.{R, (z,t) ~c ‘R, (z,t)} - sin [(n + ]/2)72’2/L:| -dz , (9.4b)

N~

where «; -y, (t) stands for a generalized acceleration, and hepgg) denotes a new
generalized displacement in addition to the generalized displacegnent Notwithstanding
that the generalized acceleratiop - v,(t) appears as a productaittually represents a single

Bernoulli's coefficient only, sayg; - v, (t)=w, ().
Inserting Bernoulli's transforr{®.4a) in equation (9.3) yields

[ee]

(g, () + @y -[a, () + 3, (1)} - sin[(n+ 1/2) w2/ L] =

=0

3

Z_M.2_L. N (;)nz.sin[(n+l/2)7rz/L:|. (9.5)

E 7' iZ(n+1)2)

Multiplying equation (9.5) by sin[(v+1/2)7zz/L] with v=123,..., integrating the

resulting equation hbver the lengthZ of the column, interchanging the order of integration
and summation, and taking into account dréhogonality property (7.1), we can finally
conclude that equation.g) is equivalent to

én(t)—i—a)j-[qn(t)—kyn(t)]:_ﬁét)(niL](/;;gﬁz for n=01,23,... (9.6)
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In view of equation (4.8) and the analysispar. 4, the generalized displacemept:) can
only be zero on the assumption of the integralwise differentiafdl.7), that is,

v, (1)=0 < assumption of integralwise differentiability (4.7). (9.7)

Equations (9.6) are thetaal ordinary differential equations the generalized displacements
g, (¢t) that can in general be derived from thertial differential equ#gon of motion (3.2).

Since the ordinary differential agtions (9.6) are equivalent éguation (9.5), which actually
represents the partial differential equation oftiom (3.2), they must be equivalent to the
partial differential equation ahotion (3.2). And hence, the undamped or damped character
of the ordinary differential gquations (9.6) indicates the undaaa or damped, respectively,
character of the partial differential equationrobtion (3.2). Let us examine whether the
actual ordinary differential equations (9répresent undamped or damped vibrations.
Evidently, each ordinary diffential equation (9.6) describedaced vibration of a single-
degree-of-freedom system in a generalized displacegén}, with the system internal force
o, -[4,(t)+,(¢)] having magnitude dependent not only on the displacemgfny of its
application point, which implies that itsork does not depend only on the displacement
g, (t). This latter assures that the internal forge| g, (¢)+ y,(¢)] must be nonconservative

[11 p.90], [12 p.3-4], which verifies that the @aat ordinary differentibequation (9.6) must
represent a damped vibration oé thingle-degree-of-freedom system.

On this base therefore, the partial differential equation (3.2) must in general represent a
damped vibration. Only assuming the integiaé differentiability (4.7) of Bernoulli's

transform (4.1b), which implies;, (t)=0, the internal forcew; - q,(¢)+y,(t)] becomes

equal tow; - ¢, (¢), and hence, conservative, thereby mag the actual ordinary differential

equation (9.6) to the classical ordinary diéfietial equation (4.8), which represents an
undamped vibration.

10. THE REALLY GENERAL SOLUTION OF THE PARTIAL DIFFERENTIAL
EQUATION OF MOTION

The velocity magnitude, - y, () can be related to the generalized velogjtyr) as below

@, -, (£)=28, ()4, (2), (10.1)

where ¢, (1) denotes a scalar coefficient varying with time so that it ensures equation (10.1).
Actually, &, (¢) is a function of both the generalized magnitudgs) and g, (7).
Applying substitution (10.1) to the actuablorary differential equation (9.6) yields
2L(-1)"

c'jn(t)+2§n(t)-a)n.qn(t)—i—a),f.qn(t)z_pl(;)(n+1/2)2”2 for n=0123..., (10.2)

which discloses that the scalar coefficiet(s) is but thedamping ratio of the »” mode.

Thus, the partial differential egtian (3.2) is actually uncougtl into the nonlinear ordinary
differential equations (10.2), which represeningad vibrations, and not into the classical
ordinary differential equans (4.8), which represit undamped vibrations.
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Inserting the damped generaligmn of the atual nonlinear ordinargifferential equation
(10.2) in Bernoulli's transfornteon (4.1) and combining withgeiation (3.1) gives the really
general solution othe initial-boundary valk problem of the uniform elastic column, which
must alsdoe damped in view of the equivalence of the differential equations (10.2) and (3.2).

In the case of an almost constant damping rgfior a mean damping rati§,, the actual

differential equation (10.2) mdye simplified to [13 p.12-15, p.48]

p) 2e(-1)

5 for n=0,1,23..., (10.3)
E (n+1)2) 7’

éjn (t)+2§n "t Wy 'q'n (t)—i_a)rf “qn (t):_

whose general solution, for thederdamped case0 <&, <1, equals [3 p.234 eq.(5.22)]

q, (t)zefg”'w"'t {qn (0)-cos [«/1—5,12 -a)nt}k I (03/%%@? ) -sin[«/[—gnz -a)nt}}-l—

! L-0" 1 onli-r) |
v ;[ e erenlis sm[a)n (t—r)]-dr. (10.4)

Ji- 2w, (n+1/2

On account of the classicahitial conditions (4.10), which are independent of the
assumption of integralwise or termwise diffieiability, the general solution (10.4) becomes

dn (Z)Mi-{eé’*'%'t [ cos[ﬁ o, l}

(n+ 1/2)2  E

+p(0)+§"'w”‘p(0)-sm 1- of a)l
1_‘/:5 2n
_,_;.J.l'j(f)-e_é’“'w”'(t_r)-sin[a)n (t—T)]-dT , (10.5)
I_é:j Wy,

and substituting in Bernoulli’s transfar(4.1a) and using equation (4.9) gives
2 © (_] n
_i.zu{e‘fﬂw . p(O)'COS|: []_55 .a)nt:|+
L-E o
(0 cw. -p(0 r
+p( )+ e, o )-sin JI1-& -a)ntﬂJr

1—§,f~a) -

—rt Jjj(r) L5l i [a)n (1— r)] cdrb-sinZ 2, (10.6)

c

which is the really general solutiontbie partial differential equation (3.2).
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Combining equations (10.6), (3.1%.9) and (6.5), we conclude the really general solution
of the partial differentiaéquation of motion (2.1) fof, (t)=¢, =constant, as below

N )
+ p(O) + & -260‘” 'p(()) 'Sin[m.wﬂ:ﬂ-’-

B -Iﬁ(r)-e_é".w".(t_r)'sm I:wn (t—z'):| cdrb-sinn 2 : (10.7)
T c

which represents a superposition of dampedefdnabrations of theelastic column, thereby
representing a damped pesise of the elastic column.

11. THE CASE OF FREE AXIAL VIBRATION

A free axial vibration of the elastic cofun corresponds to zero surface traction, p.&.) =
and hence, te (¢)= p(¢)=0, which implies thati(z,t)=u(z¢), and is excited by the general

initial conditionsu(z,0) andu(z,0). In this case, the partial differential equation of motion

remains the same as equation (2.1), while 8dlti's transformation (4.1) and the continuity
of u(z¢) and u(z¢), which is assured by the existenof the second-order derivatives

8%i(zt)/or andé?i(z,1)/a2% , lead to the following initial conditions fay, (1)
2 L
4, (0)=7 [u(z.0)-sin[(n+1/2)22/L]-dz, (11.1a)
0
2 L
q, (0 :ziu (z.0)- sm[ (n+1/2) 7Z'Z/L:| dz . (11.1b)

All preceding equations also hold true for aefraxial vibration of the elastic column by
inserting the above general camehs. For example, the gaaé solution (10.4) after putting
p(t)=0 and substitutingg, (0) and ¢, (0) in accordance with the initial conditions (11.1)

becomes the general solutiongp(z) of the free axial vibrationThis latter solution inserting
in Bernoulli’s transform(4.1a) and after replacing(z.z) by u(z.t) gives the really general
solution of the partial differential equation (2.1) #r(r)=¢&, = constant, viz

L
Ze fnwt Sll’l—Z {[J‘u Sln_Z dZJ COS[@'a)nt}—‘r
0

L
— ;2 -[I[d(z,0)+§n ‘w, -u(z,())]-sin%z-dz}-sin[\/l—5,12 wt}} (11.2)
<20 3
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which represents a superposition of damex axial vibrations of the elastic column,
thereby representing a damped response of the elastic column.

12. REMARK

It is worth emphasizing that theally general solutions (10.@nd (11.2) have been derived
on the assumption of constant damping ratipswhich limits the actual ordinary differential

equations (10.2) to linear equations only. r Bee general case of varying damping ratios
&, (1), equations (10.2) become nonlinear, thgreepresenting nonlinear damped vibrations

in the generalized displacements(¢), and hence, the really general solution of the partial

differential equation (2.1) becomes a supeitposof these nonlinear damped vibrations.

Only on the arbitrary assumption of integralwidgferentiability (4.7) or its equivalent
assumption of termwise differentiability (6, Bquations (9.7) and (10.1) make the damping
ratio &, be zero, thereby reducing each of the regéiyeral solutions (10) and (11.2) to a

superposition of undamped vibratiomg)ich represents the classical case.

13.  CONCLUSIONS

On the base of the above analysis, our criticism of the sufficiency aldssical application
of Bernoulli’s transformation to the dynamicsai elastic continuum seems to be justified.
Actually, by Bernoulli’'s transformation itself weonclude that the rdglgeneral solution of
the partial differential equatioof motion of an elastic columsubjected to a surface traction
at its free end or an initial excitation repretsesm superposition of damped vibrations, thereby
representing a damped response. The undamgsponse of classical agsis results from
arbitrary assumptions about the differentiabibfyBernoulli’s transformation that reduce the
really general solution to a supesition of undamped vibrations.

The damped response indicates thatstresses developed i tblastic column must include
damping components, therelmdicating that damping actualgpmplies with the generalized
Hooke’s law as applied to elastic continua.
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