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Abstract 

 
The stresses in an elastic continuum (i.e. a continuum with zero strains after unloading) 

are classically deemed to be conservative (i.e. their total work all over the continuum is 

a single-valued function of only the displacement distribution in the continuum).  So, in-

ternal damping in an elastic continuum appears to be a contradiction in itself. 

Actually, the total work of the internal stresses all over a continuum does not coincide 

with the strain energy of the continuum, but also includes the work of the internal body 

forces formed by the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,      , which only con-

tributes to the kinetic energy of the continuum.  Owing to this inclusion, the total work 

of the internal stresses cannot be a single-valued function of only the displacement dis-

tribution in the continuum, and hence, the internal stresses must be nonconservative, 

which indicates internal damping inherent in any continuum whether elastic or not.  On-

ly statically deforming continua may possess conservative internal stresses. 
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Nomenclature 

 

xy xz yzγ ,γ ,γ  shearing strains 

Δ  prefix standing for „additional‟ 

Δ Δ ΔX, Y, Z  additional external body forces 

Δ Δ Δx y zT , T , T  additional surface tractions 

 Δ xxı x   additional stress derivative
 

xx yy zzε ,ε ,ε  normal strains 

 x, y,z; tε  column matrix of strains xx yy zz xy yz xzε ,ε ,ε ,γ ,γ ,γ  

F  column matrix of the internal forces of a system of mass points, column 

matrix of the forces resulting from the internal stresses acting on the 

sides of an infinitesimal parallelepiped 

iF  resultant internal force in vector form at the i  mass point 

 t  internal energy of a continuum 

κ  square matrix of elastic constants 

 Q t  heat supplied to a continuum 

ρ  mass density 

xx yy zzı ,ı ,ı  normal internal stresses 

 x, y,z; tσ  stress tensor at the point  x,y,z  of a continuum as the column matrix of 

the balanced stress components xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  acting on the sides 

of an infinitesimal parallelepiped enclosing the point  x,y,z  

t  time 

x y zT ,T ,T  surface tractions 
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 x, y,z; tT  column matrix of surface tractions at point  x,y,z  

ˆĲ , Ĳ  integrand variable for time t  

xy xz yzĲ ,Ĳ ,Ĳ  shearing internal stresses 

U  displacement matrix of a system, column matrix of the displacements of 

the sides of an infinitesimal parallelepiped due to only the deformation of 

the parallelepiped 

Û  integrand variable for the displacement matrix U  

x y zu ,u ,u  displacements at a point of a continuum 

iu  displacement vector of the i  mass point from its equilibrium position 

iû  integrand variable for the displacement vector iu  

W  total work of the internal forces of a system of interacting mass points 

iW  work of the internal force iF  

X,Y, Z  external body forces per unit of volume 

 x, y,z; tX  column matrix of external body forces X,Y, Z  at point  x,y,z  
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1. Consistency of elasticity with damping 

 
The demarcation of science from metaphysics can be crystallized as follows [1 p.1]: 

“Every scientific theory starts from a set of hypotheses, which are suggested by our ob-

servations, but represent an idealization of them.  The theory is then tested by checking 

the predictions deduced from these hypotheses against experiment.  When persistent 

discrepancies are found, we try to modify the hypotheses to restore the agreement with 

observation.  If many such tests are made and no serious disagreement emerges, then the 

hypotheses gradually acquire the status of „laws of nature‟.  When results that apparent-

ly contradict well-established laws appear, as they often do, we tend to look for other 

possible explanations-for simplifying approximations we have made that may be wrong, 

or neglected effects that may be significant.” 

On this base therefore, the discrepancy between the classical hypothesis that “elastic 

means an absence of damping forces” [2] and the observation of damping and hysteresis 

loops in elastic bodies [3 p.120] calls for a reasonable explanation.  That is, we need to 

carefully investigate and re-examine whether or not the real nature of the stresses devel-

oped in the continuum model of the elastic bodies is conservative. 

 

As is well known, elasticity consists in a force-deformation or stress-strain relation, 

which allows a structure to recover its initial unstrained configuration, thereby exclud-

ing any residual strains, after removing the applied loads [3 p.92], [4 p.1].  In Sokolni-

koff‟s words:  “A body is called elastic if it possesses the property of recovering its 

original shape when the forces causing deformations are removed.  The elastic prop-

erty is characterized mathematically by certain functional relationships connecting forc-

es and deformations.” [4 p.1].  A body is therefore inelastic if it exhibits residual de-



 7 

formation (residual strains) after loading removal. 

Bodies are modelled as continuous or discrete systems.  In both models, elasticity, by its 

very definition, does not impose any absence of damping forces, notwithstanding the 

classical hypothesis that “elastic means an absence of damping forces” [2].  After all, if 

elastic meant absence of damping forces, then abruptly removing all loads would lead 

an elastic system to an everlasting free undamped vibration, which cannot comply with 

the classical definition of elasticity mentioned above (i.e. no strains after unloading).  

Besides, a lot of engineering structures (e.g. buildings or bridges subject to earthquakes 

or winds, aircrafts subject to air flow) can undergo damped vibrations with no residual 

strains after unloading.  Such a structural behaviour rather indicates that damping com-

plies with elasticity and „elastic‟ may be „damped‟ as well as „inelastic‟ is. 

On the other hand, the hypothesis that „elastic‟ means „undamped‟ [2] not only is arbi-

trary but also requires that no damping surface tractions be applied to an elastic body.  

Indeed, owing to the classical boundary stress conditions [5 pp.28-29,236], the internal 

elastic stresses at a point of the boundary surface of an elastic continuum must equal the 

surface tractions applied at this point.  So, if „elastic‟ meant „undamped‟, then the inter-

nal elastic stresses could not include damping components, and hence, the surface trac-

tions could not include damping components either.  That is, in the classical view, elas-

ticity cannot comply with nonconservative surface tractions, which implies that these 

two entities cannot coexist in nature.  However, in nature, we can realize nonconserva-

tive surface tractions (e.g. velocity-dependent wind surface tractions) applied to elastic 

bodies (i.e. bodies recovering its original shape after unloading), which indicates that 

nonconservative stresses, and hence, damping, can comply with elasticity despite the 

classical hypothesis that „elastic‟ means „undamped‟. 
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2. Classical model of internal stresses 

 
We shall first review the classical model of internal stresses in a continuum and specify 

what the internal stresses and their spatial derivatives, the total work of the internal 

stresses, the strain energy and the kinetic energy are and how they are interrelated. 

Let us consider a deformable body as a continuum subjected to dynamical deformation 

by externally applied loads.  Owing to the deformation of the whole body, an infinites-

imal element of the body deforms and also moves as if it were a rigid particle.  Thus, 

the energy supplied by the deformation of the whole body to the infinitesimal element 

consists of two parts:  the strain energy due to the deformation of the element itself and 

the kinetic energy due to the motion of the element as a rigid particle [6 p.261]. 

We now focus on the infinitesimal element, which is sketched in Fig. 1 as an orthogonal 

parallelepiped for an interior element, or an orthogonal triangular pyramid with base on 

the boundary surface of the body for a boundary element, with dimensions d d dx, y, z [7 

pp.20-21].  Its interactions with the adjacent infinitesimal elements as well as the sur-

face loading externally applied to it in the case of a boundary element may be represent-

ed as stresses acting on the boundary surface of the element, which are herein called in-

ternal stresses.  The internal stresses act in addition to possible body forces externally 

applied to the volume of the element.  The total work performed by the internal stresses 

acting on the infinitesimal element during the transition from the unstrained configura-

tion (i.e. the natural configuration with no deformation) of the body to its strained (de-

formed) configuration consists of two parts:  The work of the balanced components of 

the internal stresses and the work of the unbalanced components of the internal stresses. 

The balanced components of the internal stresses of the infinitesimal element, that is, 

the classical stresses xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  acting at the element‟s three pairs of oppo 
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Fig. 1: (a) The total stresses on the boundary surface of an infinitesimal element. 

 (b) The total stresses of an infinitesimal element on the boundary surface 

of a continuous structure. 
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site sides with a zero resultant force, are exclusively responsible for the deformation of 

the infinitesimal element, and their work equals the strain energy of the element. 

The unbalanced components of the internal stresses of the infinitesimal element, that is, 

the internal-stress differences      d d dxx yx zxı x x, Ĳ y y, Ĳ z z,      , result in the ac-

tion of the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       as internal body forces, which 

together with the externally applied body forces are exclusively responsible for the mo-

tion of the element as described by the classical differential equations [3 p.85 eq.(15)] 

 

2
yxxx zx x

2

2
xy yy zy y

2

2
yzxz zz z

2

Ĳı Ĳ u
X ρ

x y z t

Ĳ ı Ĳ u
Y ρ

x y z t

ĲĲ ı u
Z ρ

x y z t

                                   

 (1) 

 

where xx yx zxı x , Ĳ y , Ĳ z ,       are internal body forces per unit of volume result-

ing from the unbalanced stress scomponents      d d dxx yx zxı x x, Ĳ y y, Ĳ z z,      .  

These latter compared with the balanced stress components xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  are 

negligible with no effect on strains, although they produce finite motion. 

 X,Y, Z  stand for the components of the external body forces per unit of volume 

of the infinitesimal element along the x, y, z coordinate axes, respectively. 

  x y zu ,u ,u  stand for the displacements of the infinitesimal element along the 

x, y, z coordinate axes, respectively. 

 ρ  stands for the mass density of the infinitesimal element. 



 11 

From the above differential equations it follows [3 p.94] that the sum of the work done 

by the internal body forces xx yx zxı x , Ĳ y , Ĳ z ,       and the work done by the ex-

ternal body forces X,Y, Z  equals the kinetic energy of the infinitesimal element.  As a 

consequence, the work done by the internal body forces (i.e. the stress derivatives 

xx yx zxı x , Ĳ y , Ĳ z ,      ) acting on an infinitesimal element exclusively contributes 

to the formation of kinetic energy for the infinitesimal element. 

Within this frame, for either an infinitesimal element of a body or the entire body, the 

total work of the internal stresses, the strain energy and the work done by the stress de-

rivatives xx yx zxı x , Ĳ y , Ĳ z ,       are interrelated as follows 

 

Total work of int ernal stresses strain energy work of stressderivatives= + . (2) 

 

It is emphasized that in many vibration problems only surface loads act on the struc-

tures.  In this case, equations (1) imply that the work done by the stress derivatives 

xx yx zxı x , Ĳ y , Ĳ z ,       coincides with the kinetic energy of the body. 

 

 

3. The notion of conservative forces and stresses 

 
Actually, a stress is but a surface force per unit area [3 p.74], [4 p.36], [8 p.47], [9 pp.4-

8].  So, a stress at a point (i.e. at a side of an infinitesimal parallelepiped) is conservative 

as long as the surface force that results from the stress is conservative.  In the classical 

theory [10 pp.3-4], [11 pp.390-391,418], [12 pp.347,360-361], [13 pp.90-91], [14 

p.247], an individual force is classified as conservative, if its work done along any path 
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of its application point is a single-valued function of only the positions of the end points 

of the path, thereby being independent of the path and zero along any closed path. 

Let us now consider a system of interacting mass points whose configuration deforms 

under a loading.  The deformation of the configuration consists in different displace-

ments of the mass points around their equilibrium positions (i.e. the positions defining 

the unstrained configuration), and can completely be described by the displacement vec-

tors of the mass points relative to their equilibrium positions [13 pp.162-163], [15 

p.11,29].  As an effect of the deformation, internal forces develop within the system.  In 

line with the mentioned classical definition of a conservative force, the resultant iF  of 

the internal forces acting on the i  mass point of the system is classified as conservative, 

if its work iW  done when the i  mass point moves from its equilibrium position with ze-

ro displacement vector up to a position with displacement vector iu  is a single-valued 

function of only the displacement vector iu , say  i iW u .  This classical definition is 

mathematically expressed as [1 pp.14-15 eq.(2-5)], [8 p.3], [13 p.91 eq.(8-8)] 

 

 
0

di i i i iˆ W , for a conservative int ernal force  F u u F
ui

, (3) 

 

where iû  is the integrand variable for the displacement vector iu  of the i  mass point. 

 

Similarly, the total of the internal forces iF  of the system, and hence, their column ma-

trix F , can be classified as conservative, if the sum W  of the works of all internal forc-

es iF  done along the displacement matrix U  of the system (i.e. the displacements of the 

mass points of the system) is a single valued function of only the displacement matrix 
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U  [10 p.10], [13 pp.92-93,162].  This classical definition is mathematically expressed 

as follows 

 

 
0

dT ˆ W , for a conservative column matrix of int ernal forces  F U U F
U

, (4) 

 

where F  is the column matrix of the internal forces acting on the mass points, 

 U  is the column matrix of the displacements 1 2 N, , ,u u u  of the mass points, 

 Û  is the integrand variable for the displacement vector U , 

  W U  represents the sum of the works of the internal forces iF  as a single-

valued function of only the displacement matrix U , 

 T  as an upper index denotes the transpose of the matrix indexed. 

 

Within the frame of classical theory, by analogy with the conservative total of the inter-

nal forces [13 p.93], the total of the internal stresses in a continuum can be classified as 

conservative, if and only if their total work is a single-valued function of only the dis-

placement distribution in the continuum.  This latter condition means that the balanced 

stress components xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  at  x,y,z , which define the stress tensor 

 x, y,z; tσ , and the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,      , which result from 

the unbalanced stress components      d d dxx yx zxı x x, Ĳ y y, Ĳ z z,       and define 

the internal body forces at  x,y,z , perform works whose sum all over the continuum is 

a single-valued function of only the displacement distribution in the continuum. 
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4. Equality of the total work of internal stresses with the work of surface tractions 

 
By Newton‟s third axiom of action and reaction, the internal stresses of two adjacent in-

finitesimal elements acting on their common boundary are equal with opposite direc-

tions, thereby performing zero total work.  And hence, the total work of the internal 

stresses all over the body equals the total work of the internal stresses acting on the 

body‟s boundary surface, which is not common boundary of adjacent elements [6 

pp.261-262].  Thus, by virtue of the classical boundary stress conditions, i.e. equality of 

the internal stresses on a body‟s boundary surface with the surface tractions (that is to 

say, the external stresses) [5 pp.28-29,236], the total work of the internal stresses all 

over a body must equal the work of the surface tractions. 

On this base therefore, the internal stresses developed all over a continuum can be clas-

sified as conservative if and only if the work of the surface tractions is a single-valued 

function of only the displacement distribution in the continuum. 

 

 

5. Mathematical proof of the nonconservative nature of the internal stresses 

 
As exposed in par. 3, for conservative internal stresses in a continuum, the sum of the 

works performed by the balanced stress components xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  and the 

stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       all over the continuum should be a sin-

gle valued function of only the displacement distribution in the continuum. 

However, the above single-valuedness cannot actually be satisfied, which proves that 

the internal stresses are nonconservative, thereby including damping components. 

Indeed, according to the classical model of internal stresses exposed in par. 2, the dis-
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placement at each point of a continuum depends only on the history of the external body 

forces X,Y, Z  and the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       acting at the point 

and governing the motion of the point via equations (1), and not on the balanced stress 

components xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  at the point.  After all, the balanced stresses acting on 

the boundary of the infinitesimal element surrounding the point build up a zero resultant 

force, which cannot influence the motion (and hence, the displacement) of the point. 

Let us now consider a continuum subjected to a given history of surface tractions 

x y zT ,T ,T  and external body forces X,Y, Z , which, owing to the linearity of the differen-

tial equations of motion (1) and the boundary stress conditions, implies a unique history 

of internal stresses xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  [7 pp.128-130], and hence, a unique history of 

stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,      , all over the continuum.  The histories of 

the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       and the external body forces X,Y, Z  

by virtue of equations (1) imply a unique history of accelerations x y zu ,u ,u , thereby im-

plying a unique history of displacements x y zu ,u ,u , all over the continuum. 

If we also applied to the continuum a parallel history of arbitrary additional surface trac-

tions Δ Δ Δx y zT , T , T  in combination with a parallel history of such additional external 

body forces Δ Δ ΔX, Y, Z  that by means of equations (1) counterbalance any developing 

additional stress derivatives      Δ Δ Δxx yx zxı x , Ĳ y , Ĳ z ,      , viz. 

 

     
     
     

Δ Δ Δ Δ 0

Δ Δ Δ Δ 0

Δ Δ Δ Δ 0

xx yx zx

xy yy zy

xz yz zz

ı x Ĳ y Ĳ z X

Ĳ x ı y Ĳ z Y

Ĳ x Ĳ y ı z Z

                              

 (5) 
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then, we could retain the same history of accelerations, thereby retaining the same histo-

ry of displacements, as without the parallel history of additional surface tractions and 

additional external body forces.  This possibility proves that the same history of dis-

placements in a continuum can be related to different histories of surface tractions, and 

hence, to different works of surface tractions.  Thus, the work of the surface tractions of 

the continuum, and hence, the total work of the internal stresses all over the continuum, 

is not a single-valued function of only the displacement distribution in the continuum. 

On this base therefore, the internal stresses all over a continuum, whether elastic or not, 

must be nonconservative. 

 

 

Scholium A:  The uniqueness of the solution to a given external loading 

 
To show that a given history of surface tractions x y zT ,T ,T  and external body forces 

X,Y, Z  implies a unique history of internal stresses xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  and dis-

placements x y zu ,u ,u , we can proceed as follows [7 pp.128-130] 

Let us assume that the action of a given history of surface tractions x y zT ,T ,T  and exter-

nal body forces X,Y, Z  may correspond with two different histories of internal stresses, 

i.e. I I I I I I
xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  and II II II II II II

xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ .  Either of these stress histories 

must satisfy the differential equations of motion (1) and the boundary stress conditions 

 

     
     
     

x xx yx zx

y xy yy zy

z xz yz zz

T ı cos nx Ĳ cos ny Ĳ cos nz

T Ĳ cos nx ı cos ny Ĳ cos nz

T Ĳ cos nx Ĳ cos ny ı cos nz

                  
 (A1) 
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where n  denotes the line of the unit normal vector at a point of the boundary surface. 

 

By subtracting each of equations (1) formed by II II II II II II
xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  from the corre-

sponding one formed by I I I I I I
xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ , we obtain the following system of 

equations 

 

     
     
     

I II I II I II 2 I 2 II
xx xx yx yx zx zx x x

2 2

I II I II I II 2 I 2 II
xy xy yy yy zy zy y y

2 2

I II I II I II 2 I 2 IIxz xz yz yz zz zz z z
2

ı ı Ĳ Ĳ Ĳ Ĳ u u
ρ

x y z t t

Ĳ Ĳ ı ı Ĳ Ĳ u u
ρ

x y z t t

Ĳ Ĳ Ĳ Ĳ ı ı u u
ρ

x y z t

                   
                   
                2t

        

 (A2) 

 

Similarly, from equations (A1) it follows 

 

           
           
           

0

0

0

I II I II I II
xx xx yx yx zx zx

I II I II I II
xy xy yy yy zy zy

I II I II I II
xz xz yz yz zz zz

ı ı cos nx Ĳ Ĳ cos ny Ĳ Ĳ cos nz

Ĳ Ĳ cos nx ı ı cos ny Ĳ Ĳ cos nz

Ĳ Ĳ cos nx Ĳ Ĳ cos ny ı ı cos nz

                           

 (A3) 

 

Using the principle of superposition, which holds true owing to the linearity of the dif-

ferential equations of motion (1) and the boundary stress conditions (A1), we can take 

the history of the stress differences in equations (A2) and (A3) as a new history of in-

ternal stresses corresponding with zero surface tractions and zero external body forces.  
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Actually, there can only exist a history of zero internal stresses in the absence of surface 

tractions and external body forces on the base of the hypothesis of the natural state of 

the continuum [7 p. 130].  Therefore, the history I I I I I I
xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  and the history 

II II II II II II
xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  must coincide with a unique history xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ .  This, 

by equations (A2), directly implies that the histories of accelerations I I I
x y zu ,u ,u  and 

II II II
x y zu ,u ,u  must coincide with a unique history of accelerations x y zu ,u ,u , which, in 

turns, implies a unique history of displacements x y zu ,u ,u . 

 

 

Scholium B:  Displacements uniquely defined by accelerations 

 
To support the view underlying the above analysis that the history of accelerations 

uniquely defines the history of displacements in a continuum, for given initial condi-

tions, it is worth noting that 

 

B.1. The displacement  u x, y,z; t  is the integral of the velocity  u x, y,z; t , viz. 

 

     
0

d + 0  tu x, y,z; t u x, y,z;Ĳ Ĳ u x, y,z;t , (B1) 

 

since the velocity  u x, y,z; t  is the derivative of the displacement  u x, y,z; t , and 

integration and differentiation are inverse mathematical processes. 

The existence of the acceleration  u x, y,z; t  as the derivative of the velocity  u t  
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assures the continuity of the velocity  u x, y,z; t , which makes the velocity 

 u x, y,z; t  be integrable [16 p.97]. 

 

B.2. Similarly, the velocity  u x, y,z; t  is the integral of the acceleration  u x, y,z; t ,  

 

     
0

d + 0  tu x, y,z; t u x, y,z;Ĳ Ĳ u x, y,z;t , (B2) 

 

since the acceleration  u x, y,z; t  is the derivative of the velocity  u x, y,z; t . 

Assuming the continuity of the acceleration  u x, y,z; t , or more generally that the 

acceleration  u x, y,z; t  is bounded and presents only a finite number of disconti-

nuities within the time domain  0, t , assures its integrability [16 p.98]. 

 

B.3. Combining equations (B1) and (B2) yields 

 

       
0 0

d d + 0 0
           t Ĳ

ˆ ˆu x, y,z; t u x, y,z;Ĳ Ĳ Ĳ t u x, y,z;t u x, y,z;t , (B3) 

 

where Ĳ , Ĳ̂  stand for integrand variables of the time t , and 

  0u x, y,z; t ,  0u x, y,z; t  stand for the initial conditions. 

 

Equation (B3) means that for given initial conditions  0u x, y,z; t  and  0u x, y,z; t , 

the deformation displacement  u x, y,z; t  of a point of a deformable body on any coor-
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dinate axis is a single-valued function of the history of the corresponding acceleration 

 u x, y,z; t  of the point from the initiation of the deformation up to time t .  In other 

words, two cases of acceleration  u x, y,z; t  of the point with the same history from the 

initiation of the deformation up to time t  imply that the corresponding cases of dis-

placement  u x, y,z; t  have the same history.  This latter conclusion is what actually jus-

tifies the postulate after equations (5) that “then, we could retain the same history of ac-

celerations, thereby retaining the same history of displacements, as without the parallel 

history of additional surface tractions and additional external body forces”. 

 

 

6. Deformation motion as source of damping 

 
Let us now consider a continuum exclusively subjected to surface tractions, which im-

plies that the external body forces X,Y, Z  in equations (1) are zero.  Then, as exposed 

in par. 2, the differential equations of motion (1) necessitate that the total work of the 

stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       along the displacements x y zu ,u ,u  equal 

the work of the accelerating forces   x y zu , u , u    along the same displacements, 

which in turn equals the kinetic energy of the continuum.  As a consequence, for a given 

final configuration of the continuum, the total work of the stress derivatives 

xx yx zxı x , Ĳ y , Ĳ z ,       done along the transition path from the initial at-rest natu-

ral configuration to the final configuration of the continuum must equal the kinetic en-

ergy of the final configuration.  It is quite reasonable that two different transition paths 

can lead to the given final configuration but under different final velocities. 

Indeed, by keeping the same initial and final surface tractions for the two transition 
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paths and applying different intermediate surface tractions, which results in different in-

termediate stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,      , and hence, different inter-

mediate accelerations x y zu ,u ,u , it is possible to have the same initial and final configu-

rations of the continuum and different final velocities for the two transition paths. 

On this base therefore, for given final displacements, the total work of the stress deriva-

tives xx yx zxı x , Ĳ y , Ĳ z ,       along the displacements x y zu ,u ,u  all over a continu-

um can take on different values depending on the final velocities applied.  This proves 

that the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       of a continuum must act as non-

conservative internal body forces.  And since the total work of the stress derivatives 

xx yx zxı x , Ĳ y , Ĳ z ,       by definition coincides with the total work of the unbal-

anced stress components      d d dxx yx zxı x x, Ĳ y y, Ĳ z z,      , it is deduced that 

the unbalanced stress components, and hence, the internal stresses, of a continuum must 

be classified as nonconservative stresses.  Only for a motionless deformation, the total 

work of the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       becomes zero, which allows 

the internal stresses to be conservative.  This finding assures that the deformation mo-

tion of a continuum, whether elastic or not, is a source of damping. 

 

 

7. Static deformation as a prerequisite of conservative internal stresses 

 
Actually, there is a unique case where the requirement of displacements defined by ac-

celerations, as used in par. 6 for concluding the nonconservative nature of the internal 

stresses, cannot be fulfilled, which allows of conservative internal stresses.  This case 

consists in restricting the differential equations of motion (1) to 
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0

0

0

yxxx zx

xy yy zy

yzxz zz

Ĳı Ĳ
X

x y z

Ĳ ı Ĳ
Y

x y z

ĲĲ ı
Z

x y z

                            

 (6) 

 

which describe the static (i.e. motionless) deformation of a nonmassles (i.e. with 0ρ  ) 

continuum.  In this case, the accelerations by definition become zero, and hence, the 

stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       are counter-balanced by the external 

body forces X,Y, Z  at every point of the continuum.  This balance implies that the total 

work of the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       must equal the total work of 

the external body forces X,Y, Z  with opposite sign.  Consequently, the classification of 

the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       as conservative or nonconservative 

must be the same as the classification of the external body forces X,Y, Z , which means 

that a necessary condition for conservative internal stresses is static deformation. 

 

For a continuum exclusively subjected to surface tractions, that is, for zero external 

body forces 0X Y Z   , equations (2.6) are reduced to 

 

0

0

0

yxxx zx

xy yy zy

yzxz zz

Ĳı Ĳ
x y z

Ĳ ı Ĳ
x y z

ĲĲ ı
x y z

                         

 (7) 
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Equations (7) imply that the work of the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       

all over the continuum is zero, which, by virtue of equation (2), results in 

 

0Total work of conservative int ernal stresses strain energy, for X Y Z  = . (8) 

 

It is noticed that equations (7) and (8) are always valid for the massless springs that 

connect the rigid lumped masses of a discrete system, since these springs constitute con-

tinua with zero mass density 0ρ   and zero external body forces 0X Y Z   . 

 

 

8. Critical points on the classical view of elastic stresses 

 
For an elastic continuum obeying the generalized Hooke‟s law, the internal stresses at a 

point are linear functions of only the strains at the point [3 pp.97-100 eq.(11)], [7 pp.78-

79 eqs.(3.23),(3.27)], which can be expressed in the matrix formulation [15 p.16] 

 

     x, y,z; t x, y,z x, y,z; t σ κ ε , (9) 

 

where  x, y,z; tσ ,  x, y,z; tε  and  x, y,zκ  stand for the stress tensor as the column 

matrix of the balanced stress components xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ , the strain tensor as the 

column matrix of the strains xx yy zz xy yz xzε ,ε ,ε ,γ ,γ ,γ , and the square matrix of constant 

elastic coefficients, respectively, at the point  x,y,z  of the elastic continuum. 

 

The strains xx yy zz xy yz xzε ,ε ,ε ,γ ,γ ,γ  at a point are defined as the space derivatives of the 
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displacement distribution at the point, thereby being single-valued functions of the dis-

placement distribution in the continuum.  By the generalized Hooke‟s law (9), the same 

must hold true for the balanced stress components xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ .  And besides, 

owing to the linearity of the law, the work done by all balanced stress components 

xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  of a point along its strains xx yy zz xy yz xzε ,ε ,ε ,γ ,γ ,γ  proves to be a 

single valued function of the strains [5 pp.244-246 eq.(132)], and hence, of the dis-

placement distribution.  Consequently, the total work of the balanced stress components 

xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  for all points of an elastic continuum, i.e. the strain energy of the 

continuum, must be a single-valued function of the strains [5 p.247 eq.(135)], and 

hence, of the displacement distribution in the continuum.  Accordingly, in view of the 

notion of conservative internal stresses discussed in par. 3, the elastic balanced stress 

components xx yy zz xy yz xzı ,ı ,ı ,Ĳ ,Ĳ ,Ĳ  must be conservative.  This latter, on account of the 

nonconservative nature of the internal stresses shown in par. 5, leads to the conclusion 

obtained in par. 6 that the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       of an elastic 

continuum obeying the generalized Hooke’s law (9) must be nonconservative. 

Indeed, each of the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       at a point does work 

along any displacement component of the point that cannot be expressed in terms of on-

ly the stress derivative or the displacement component, because these two latter magni-

tudes at a point are not single-valued functions of each other.  Thus, the total work of 

the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       all over an elastic continuum cannot 

be a single-valued function of the displacement distribution in the continuum, which 

verifies that the stress derivatives xx yx zxı x , Ĳ y , Ĳ z ,       are nonconservative. 

It is worth noting that the necessary condition (8) for conservative internal stresses in a 
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continuum exclusively subjected to surface tractions and the classical definition of con-

servative stresses [cf par. 3] require that the strain energy become a single-valued func-

tion of only the displacement distribution in the continuum.  This requirement, as shown 

above, is satisfied by the generalized Hooke‟s law (9), which justifies why the law leads 

to conservative internal stresses on the assumption of zero work of the stress derivatives 

xx yx zxı x , Ĳ y , Ĳ z ,      , as expressed by either of equations (7) and (8).  Only on 

this restricted assumption can stand the validity of the classical view that the general-

ized Hooke‟s law (9) leads to conservative internal stresses. 

 

 

9. Principle of virtual work, energy losses and the first thermodynamic axiom 

 
There is a widely-spread illusion that on account of the principle of virtual work (i.e. the 

work of external body forces and surface tractions equals the sum of the corresponding 

strain energy and kinetic energy) the deformation of a continuum is inconsistent with 

energy losses, and hence, with damping, which seems to contradict our analysis. 

Actually, the forces and stresses in any continuum undergoing dynamic deformation, 

whether elastic or not, are ruled by Newton‟s second axiom irrespective of their con-

servative or nonconservative character.  And the energy equivalent of Newton‟s second 

axiom is the principle of virtual work expressed as below [15 pp. 264-267 eq.(10.3)] 

 

          dT
in

V
W t U t x, y,z x, y,z; t x, y,z; t V        u u , (10) 

 

where  x, y,z  stands for the mass density at the point  x, y,z  of the system. 
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 V  stands for the total volume of the system. 

 T  as an upper index stands for the operator of transposing a matrix. 

   stands for the operator of virtual variations. 

  W t ,  inU t  and       dT

V
x,y,z x,y,z; t x,y,z; t V    u u  stand for the vir-

tual work of the external body forces and surface tractions, the virtual strain energy and 

the virtual kinetic energy, respectively, all over the continuum. 

By definition, the virtual strain energy  inU t  equals [15 p.267 eq.(10.4)] 

 

      dT
in

V
U t x, y,z; t x, y,z; t V     ε σ , (11) 

 

and the virtual work  W t  equals [15 p.267 eq.(10.5)] 

 

         d dT T

V S
W t x, y,z; t x, y,z; t V x, y,z; t x, y,z; t S         u X u T , (12) 

 

with  x, y,z; tX  and  x, y,z; tT  denoting the column matrix of external body forces 

X,Y, Z  at a point of the continuum and the column matrix of surface tractions (i.e. ex-

ternal stresses) at a point of the boundary surface S  of the continuum, respectively, and 

  x, y,z; tu ,  x, y,z; tε ,  x, y,z; tσ  exclusively resulting from these loads. 

 

The principle of virtual work (10) applies to any continuum ruled by Newton‟s second 

axiom and small deformations, and exclusively refers to the action of external body 

forces and surface tractions [3 pp.93-95 eq.(6)].  It can serve as the complete energy 
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balance underlying the dynamic behaviour of any continuum subjected to external body 

forces and surface tractions, on the assumption that no energy form other than that of 

the work of external body forces and surface tractions can enter or escape from the con-

tinuum.  Thus, the principle of virtual work (10) allows the study of the dynamic behav-

iour of the continuum without any recourse to heat losses of the continuum. 

Surprisingly, the energy balance expressed by the principle of virtual work (10) is con-

ventionally deemed to be inconsistent with energy losses, and hence, with damping.  

This is due to the incorrect view of energy losses as a difference between the left-hand 

and the right-hand members of the principle of virtual work (10), despite that the equali-

ty of the two members results from Newton‟s second axiom, which holds true even for 

nonconservative forces and stresses.  In fact, the energy losses of a continuum represent 

but the differences between the values of the work done by the internal stresses, which, 

recalling par. 4, equal the differences between the values of the work done by the sur-

face tractions, along loading and unloading the continuum.  And this equality of differ-

ences assures that the losses of the work of internal stresses escape from the continuum 

in the form of work of surface tractions.  In short, the energy losses are due to the hyste-

resis loops caused by the multi-valuedness of the work of internal stresses, and hence, 

recalling par. 4, of the work of surface tractions, for given strains or displacements. 

On this base therefore, the principle of virtual work (10) must be faced as a particular 

form of the first thermodynamic axiom whose both members can include energy losses 

or gains in the form of work of stresses only, thereby being consistent with damping. 

 

The first thermodynamic axiom introduces two additional classical magnitudes: 

i) The heat  Q t  externally supplied to the natural state of the continuum until time t . 
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ii) The internal energy  t  of the continuum, which is defined as the total energy of 

the continuum [17 p.4], that is, the sum of the supplied work of all external body forces 

and surface tractions plus the supplied heat.  The latter is transformed into work of 

thermal internal stresses resulting from the temperature differences added to the natural-

state temperature of the continuum by the supplied heat and into change of the internal 

energy content of the natural state of the continuum. 

Then, the first thermodynamic axiom can be expressed by the formula [17 pp.4-5] 

 

     t Q t W t     , (13) 

 

which by virtue of the principle of virtual work (10) implies the equality 

 

            du u          T
in

V
t Q t U t x, y,z x, y,z; t x, y,z; t V  . (14) 

 

Two interesting corollaries can be deduced from equations (10) and (14): 

1.  When   0Q t  , then           dT
in

V
t U t x, y,z x, y,z; t x, y,z; t V        u u  , 

and the first thermodynamic axiom (13) reduces to the principle of virtual work (10). 

2.  When   0Q t  , then           dT
in

V
t U t x, y,z x, y,z; t x, y,z; t V        u u  , 

which means that the internal energy  t  includes an equal to  Q t  total of strain 

and kinetic energy done by thermal internal stresses plus a change of the internal energy 

content of the natural state of the continuum, in addition to the mechanical energy 

        dT
in

V
U t x,y,z x,y,z; t x,y,z; t V     u u .  Hence, any heat exchanges be-
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tween the continuum and its external environment will have equal thermal effects on the 

internal energy  t  of the continuum, thereby resulting in thermal differences from 

the mechanical energy determined exclusively within the frame of the principle of virtu-

al work (10).  In studying these thermal effects and the resulting stress and strain differ-

ences of the continuum consists the role of the first thermodynamic axiom (13). 

 

All in all, the first thermodynamic axiom (13) and the principle of virtual work (10) can 

both account for energy losses, with the difference that the former allows heat to be 

added to the work of external body forces and surface tractions and to the energy losses 

in the form of work of stresses that characterize the latter. 

 

 

10. Conclusions 

 
The total work of the internal stresses developed in a continuum subjected to dynamic 

loading, whether elastic or not, proves to be not a single-valued function of only the 

displacement distribution all over the continuum, which means that the internal stresses 

are nonconservative, thereby including damping components.  This indicates damping 

as an inherent effect in the continuum model of dynamics, whether elastic or not. 

Actually, the total work of the internal stresses of a continuum does not coincide with 

the strain energy of the continuum, but, instead, equals the sum of the strain energy of 

the continuum plus the work of the internal body forces formed by the stress derivatives 

xx yx zxı x , Ĳ y , Ĳ z ,      , with this latter work exclusively contributing to the for-

mation of the kinetic energy of the continuum.  And what implies the nonconservative 

nature of the internal stresses of an elastic continuum undergoing a dynamical defor-
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mation is that, in spite of the strain energy, the total work of the stress derivatives 

xx yx zxı x , Ĳ y , Ĳ z ,       cannot be a single-valued function of only the displace-

ment distribution all over the continuum. 

Conservative internal stresses can only develop for static (i.e. motionless) deformation 

of a nonmassles continuum.  The static deformation for the case of a continuum exclu-

sively subjected to surface tractions implies zero work of stress derivatives. 
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