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Abstract 

 

The present opinion article discusses how polysaccharide structures can be used in 

both food and pharmaceutical formulations. We distinguish two regions depending on 

moisture content where polysaccharides form structures with distinct functional 

properties. Some trends in key areas of active research are assessed and in particular 

edible films, encapsulation, polycrystalline polysaccharides, protein-polysaccharide 

coacervation and fluid gels. We unveil that the physicochemical principles that are shared 

across the food and pharmaceutical disciplines provide a great opportunity for cross-

disciplinary collaboration. We finally argue that such co-operation will help tackling 

polysaccharide functionality issues that are encountered in both areas. 
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1. Introduction 

Polysaccharides are carbohydrate polymers that are extracted from various natural 

sources including plants, algae, bacteria, fungi and arthropods. The structural complexity 

and variability of their fine structure provides a toolbox with a wide spectrum of chemical 

and physical functionalities to address technological issues in both food and 

pharmaceutical industries for a range of applications. Established applications include 

viscosity enhancement of fluid formulations or stabilization of dispersions such as 

emulsions or suspensions of colloidal solid particles (Figure 1). The ability of 

polysaccharides to undergo sol-gel transition and structure aqueous solutions is also 

exploited in both fields. This process results in soft solids that are in a jammed metastable 

state [1]**. The food industry utilizes gelation events to replace, for instance, fat in low-

fat formulations or generate new structures with distinct textural properties. The 

pharmaceutical industry also employs gelation to fabricate, for example, sustained release 

drug delivery systems [2] or wound dressings to assist healing [3]. Furthermore, various 

concepts from material science (e.g., glassy state, phase diagrams, non-equilibrium 

dynamics, etc.) are frequently employed in both disciplines to analyze and interpret the 

behavior of polysaccharides when they occur as condensed matter. Apart from 

established applications that are used in both fields, encapsulation and delivery of 

compounds is another area, which has advanced at fast pace in the last ten years or so. 

This technology usually involves engineering the interface of a dispersed system to make 

it responsive or resistant to the operating environment. For instance, encapsulation of 

edible oils can be achieved to protect them from environmental parameters (e.g., oxygen) 

[4]. Similarly, it is feasible by intelligent manipulation of polysaccharides to prepare 
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systems that are responsive to environmental parameters (e.g., pH). Such systems can be 

used for drug delivery at locations where pH discrepancies may occur (e.g., along the 

gastrointestinal tract) [5]. Controlling the particle size of the delivery system is one of the 

most important and challenging factors that need to be addressed when designing such 

systems. [6]  

Figure 1 illustrates the various theoretical concepts and their implementations that 

are encountered in both food and pharmaceutical disciplines of science. Interaction 

occurs at multiple levels as the underlying physics or chemistry share common 

characteristics. For instance, emulsification or encapsulation of either a hydrophobic drug 

or a flavor compound is governed by exactly the same physical principles, as 

hydrophobicity is the fundamental quality that determines behaviour. Furthermore, the 

environment that these systems are required to be functional is remarkably intricate. For 

example, a drug may be required to withstand the chemically aggressive environment of 

stomach.  Similarly, a flavor compound should resist the processing conditions and 

chemical environment of the usually complex food matrices.  

Present work identifies some common current trends in polysaccharide research in 

food and pharmaceutical areas and argues that the two seemingly distant scientific areas 

have common grounds for utilization of these intricate biopolymers. 

 

2. Low moisture polysaccharide systems  

The level of solids to promote polysaccharide gelation rarely exceeds 2%. In the 

solid polysaccharide state water is usually below ~10% thus failing to sufficiently hydrate 

the chains resulting in restricted molecular mobility and conformational rearrangements. 
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Such a state of affairs precipitates in a material with distinct structural and 

physicochemical properties than its high-moisture counterparts. The formed amorphous 

solid-state structure has the characteristics of glass and it usually forms on cooling or 

rapid water removal. The solid state of polysaccharides is mostly amorphous although 

crystalline state may also be observed within the same system (e.g., amylose or cellulose 

crystals). 

2.1 Edible films and coatings 

Edible films consist of a thin layer of polysaccharide in the glassy state that 

provides barrier to moisture, oxygen and aroma diffusion in foods. The main advantage 

over the synthetic polymer films is their sustainability, as they minimize the need for 

synthetic packaging. Edible films and coatings can be fabricated using a diverse range of 

biopolymers including proteins, polysaccharides, waxes or mixtures thereof resulting in 

composite materials.  Antimicrobial agents [7], flavours [8]* or drugs [9] can be also 

added in the film depending on the application. In the last few years, nanotechnology is 

exploited to enhance the functionality of the films and create composite materials using 

nanoparticles from various sources, as for instance, inorganic fillers, [10, 11] chitosan 

nanoparticles, [12] cellulose nanocrystals, [13] nanoemulsions [14] or drug nanoparticles 

[15]. 

2.2 Encapsulation 

Polysaccharides can be also used to encapsulate active ingredients such as flavours, 

pigments, nutrients or drugs. This technology protects the encapsulated compound from 

oxidation, light, loses due to volatility or interactions with other ingredients in food or 

pharmaceutical formulations. In the operating environment (e.g., mouth, stomach or 
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packaging) the active component will be released in a controlled manner from the matrix 

or be protected from environmental perturbations for the duration of the shelf life. 

Encapsulation usually proceeds with immobilization of the desirable component into a 

glassy polysaccharide matrix. This is most commonly achieved with spray drying [6, 16] 

or electrospinning [17, 18] where fine particles or fibers are generated with the active 

compound entrapped a glassy matrix.  

2.3 Polycrystalline materials 

Polycrystalline materials are those that are composed of aggregated small crystals 

of different size and orientation. In polysaccharides and some synthetic polymer systems 

these materials also include amorphous regions in their structure. In cellulose and chitin 

for instance, acid hydrolysis of the amorphous regions results in fabrication of a new 

materials that consist of aggregates of cellulose or chitin crystals at various length scales. 

Typical polysaccharides that acquire a polycrystalline character during their biosynthesis 

are starch [19], cellulose [20, 21] and chitin [22] that find applications in food and 

pharmaceutical industries as fat substitutes, texture modifiers, tablet binders or additives 

to reinforce biopolymer composites.  

3. High moisture polysaccharide systems  

On the other side of the spectrum when water molecules are abundant, hydration of 

the chains is facilitated and promotes interactions that result in distinct structures 

compared with their low moisture counterparts. Gelled structures and protein-

polysaccharide coacervates are the most notable examples of such molecular embrace.  

3.1 Polysaccharide - protein complexes  
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Active agents often need to be incorporated into aqueous-based products to be 

protected during storage prior to controlled release of, for example, lipophilic drugs, 

antimicrobials or flavours [23]**. Biopolymer complexes, such as those formed by 

protein and polysaccharide interactions, form micro- or nano- capsules, particles and 

hydro-gels and are used in both the pharmaceutical and food industries in the 

encapsulation of active ingredients [24]. Therefore, a fundamental understanding of the 

factors underpinning the formation of these materials is essential to optimise their 

functionality. When polysaccharides are mixed with proteins (Figure 2) there are three 

possible results:  

(i) a homogeneous solution  

(ii) a two-phase system where both macromolecules are essentially separated from 

one another (simple coacervation) 

(iii) a two-phase system where both macromolecules are concentrated in the same 

phase (complex coacervation). This is more common if the biopolymers are 

oppositely charged thus forming two phases. One phase is the so-called 

"coacervate phase" composed of electrostatically or non-specifically stabilised 

polymer complexes and the other is a dilute phase containing large amounts of 

solvent [25]. 

Complexes can be soluble or insoluble in aqueous solvent depending on biopolymer 

concentration(s), ionic strength, pH and temperature [23**, 26-30] as well as the 

physicochemical properties of biomacromolecules such as the charge on the 

polysaccharide chains and distribution of surface charge in proteins [31]. Therefore, these 

complexes have great potential as a bioresponsive material for controlled release [23**, 
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24, 27, 32] or in the reduction of salt, sugars or fats in foods, as the sensory perception of 

taste and flavour can be altered by tuning the microstructures [33-35]. Protein-

polysaccharide complexes have also been shown to exhibit “better” functional properties 

than proteins and polysaccharides alone, for example, hydration and interfacial properties 

[25]. There are two alternative procedures for emulsion formation using polysaccharide–

protein complexes in emulsion stabilisation [36]*. The first consists of preparing a 

solution of both biopolymers, and using the resulting protein–polysaccharide complex for 

the emulsification. The second method, that is named layer-by-layer (LBL) electrostatic 

deposition technique [36]*, consists in forming a primary protein-stabilized emulsion 

followed by addition of the polysaccharide. This leads to the formation of a secondary 

interfacial layer that frequently results in surface-charge reversal. Polyelectrolyte 

complexes of β-lactoglobulin and alginate formed using this approach have been shown 

to suppress lipid digestion in model systems [37]. 

Ternary systems containing a third biopolymer in the complex may result in a wider 

range of functionalities and greater resistance to changes in, for example, ionic strength 

or pH [38]. At least in synthetic systems ternary complexes maintain similar 

characteristics to binary coacervates; however the choice of the third polymer has an 

influence on both the material properties and (bio)responsiveness [38]. Finally, many 

polysaccharides are mucoadhesive (interaction with mucous or mucin) but the effect of 

complexation with proteins on mucoadhesion has not been fully explored yet.  

3.2 Fluid Gels 

Subjecting a gel forming biopolymer to a shear field during gelation can result in 

the formation of particulate micro gels that can be prepared to behave in bulk, as 
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viscoelastic liquids. Microgels exhibit fluid-like behavior while having a cross-linked gel 

microstructure. These microgels, often referred to as fluid gels (or sheared gels), were 

first described in the 90’s and were produced using polysaccharides, proteins or even 

synthetically produced polymers [39, 40]. The mechanism by which these gel particles 

form, was originally described as nucleation and growth process with the molecular 

ordering limited to within individual gel by the shear imposed on the system. The shear 

forces that are applied physically are thought to enable the gel nucleation sites to remain 

distinct from one another resulting in the formation of microgel particles [41]. These fluid 

gels have received renewed interest recently within food and pharmaceutical systems as a 

relatively simple method to structure liquid formulations and impart additional 

functionality. Furthermore, the wide variety of gelling biopolymers to choose from and 

their different material properties opens up several potential applications with 

physiologically responsive biopolymers of particular interest. The microstructure of fluid 

gels can be easily controlled by adjusting processing parameters [42]*. Indeed, changes 

in the concentration of the polymer, rate of cooling in thermally gelling biopolymers, 

and/or shear rate during fluid gel formation, controls their particle size and shape (Figure 

3) [43-45*]. Moreover, the ability to change the particle size and shape allows the bulk 

rheology to be tuned and facilitate the application (pouring, spreading spraying etc.). 

Fluid gels tend to have a significant yield stress and once this stress is exceeded 

pseudoplastic flow occurs. The bulk viscosity also increases with an increase in the gel 

strength of the particles due to its greater capacity to resist deformation and subsequent 

flow [46].  
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Fluid gels produced from acid insoluble polysaccharides such as alginate [44, 47] 

and gellan gum have been of most recent interest with gellan gum fluid gels in particular 

finding applications in both food [48] and pharmaceutical formulations [45]*. In 

pharmaceutical applications low acyl gellan gum has been investigated as a modified 

release oral liquid and demonstrated to have the potential to be formulated with a similar 

viscosity profile to that of a marketed pediatric oral liquid. In addition, it was shown that 

due to the acid insolubility of gellan gum, it was possible to modify the release of a 

model drug entrapped in the fluid gel. The drug release, however, was dependent on the 

acidity and exposure time in simulated gastric fluids [45]*. The acid gel behaviour of low 

acyl gellan gum and of blends of high and low acyl fluid gels have been explored in food 

systems as a method to increase satiety [48, 49]. Currently, in our laboratories are under 

investigation blends of high acyl and low acyl gellan gum fluid gels as a mucoadhesive 

nasal spray formulations. Incorporating high acyl gellan appears to improve 

mucoadhesion compared with using low acyl gellan fluid gels alone. Additionally, a 

further advantage of forming a fluid gel is that the bulk viscosity is sufficiently reduced 

to enable spraying from a mechanical nasal spray device which was not possible with the 

non-crosslinked quiescently produced high acyl/low acyl blend. 

Fluid gels have also been investigated as a potential fat replacement in low calorie 

foods as the microgels can be produced to mimic the some of the physical properties of 

fat droplets [50]. Furthermore, fluid gels have been investigated to deliver enhanced 

sensory attributes to foods improving mouth feel and textural properties. These properties 

have been modeled using thin film rheology (tribology) [51] and were influenced by the 

physical properties of particles such as size and elasticity [46, 52]. Controlling the 
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particle properties, therefore, not only impacts on bulk rheological behaviour but also 

allows lubrication properties to be manipulated, which may also have potential 

advantages in topical pharmaceutical formulations.   

 

 

 

4. Conclusions 

In the present review some current theoretical and applied aspects of 

polysaccharide research have been discussed. We have identified that polysaccharide 

structures can be divided into two distinct classes depending on the moisture content of 

the matrix. Structures that are formed in the high or low moisture regimes of the systems 

present an opportunity for cross-disciplinary investigation. This holds true, as similar 

theoretical and technical approaches are shared between food and pharmaceutical 

disciplines to tackle functionality issues. Understanding and exploiting the underlying 

molecular mechanisms that govern polysaccharide functionality will result in further 

integration of these two outwardly distant areas of science. 
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Figure Captions 

 

Figure 1: Established and current concepts from engineering, physics and chemistry 

interact at various levels to interpret the behavior of polysaccharide-based systems across 

food and pharmaceutical scientific disciplines. 

 

Figure 2: Phase diagram for mixtures of gum arabic (GA) and bovine serum albumin 

(BSA) as a function of pH and mixing ratio (GA: BSA). Adapted from reference [25] and 

reproduced with permissions. 

 

Figure 3: Light microscopy images of 0.75% w/v gellan gum loaded with 20 mg/ml 

ibuprofen prepared at a shear rate of 500 s
-1

 using different cooling rates (a-c). (a) 

0.5 °C/min, (b) 2 °C/min, (c) 10 °C/min and different shear rates cooling at 2 °C/min (d-

f), (d) 100 s
-1

, (e) 500 s
-1

 and (f) 1000 s
-1

. Reproduced from [45] with permissions. 
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