-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by University of Huddersfield Repository

M

University of
HUDDERSFIELD

University of Huddersfield Repository

Ghareb, Mazen and Allen, Gary

Improving the Design and Implementation of Software Systems uses Aspect Oriented Programming
Original Citation

Ghareb, Mazen and Allen, Gary (2015) Improving the Design and Implementation of Software
Systems uses Aspect Oriented Programming. In: Second Scientific Conference University of
Human Development, 1st-2nd April/2015, University of Human Development, Sulaymaniyah,
Kurdistan Region of Iraq.. (Unpublished)

This version is available at http://eprints.hud.ac.uk/24048/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and
* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox @hud.ac.uk.

http://eprints.hud.ac.uk/

https://core.ac.uk/display/30731981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

| MPROVING THE DESIGN AND IMPLEMENTATION OF
SOFTWARE SYSTEMSUSES ASPECT ORIENTED
PROGRAMMING

Mazenlsmeaeel Ghareb

Department of Computer Science
University of Human Development
Sulimanyalraq
mazin.ismaeé@uhd.edu.iq
mazen.ghareb@hud.ac.uk

Abstract Aspect Oriented Programming (AOP) is a technique
used to enhance the separation of concern in software design and
implementation. To implement AOP developers most commonly
use Aspect], an extension of the Java language. In order to
represent the separation of concerns a new design technique is
needed for modeling of aspects. Aspect Oriented Design language
(ASDL) is a design notation could build on the existing design
language UML. It is capable of supporting many aspects-oriented
languages. This research aims to investigate where developers
can use aspect-oriented programming in the software
development process. Thisincludes how to identify Aspectsin the
design stage, then how they can be applied in the implementation
process in software development .This will lead to improve
modularity and reusability of the software. The paper will be a
position paper abut Aspect Oriented Software Design, also will
investigate several case studies of the design and implementation
of a software application that shows how we can identify the
Aspect in the process.

Keywords—Aspect Oriented Programming ASDL (Aspect
Oriented Design language

INTRODUCTION.

In the software development process, Aspact difficult
to identify because they aresually tangled and scattered
acrossthe entire systemSomeaspectsare obvious can be
identify but othersare more subtl@ifficult to identify. This
makesit complexto locak all points of the systemvhere
aspect should be applied.To address these asps inthe
softwaredevelopmentifecycle, developers need more support
to find andanalyzeaspects in requirements documentation.

AODL (Aspect Oriented design languags a notation
used to show the interaction between traditional UML
models of base (Qéct Oriented code and Aspect
extensionssuch as point cuts, joipoints and advice. The

Dr Gary Allen
Department of Informatics
School of Computing and Engineering
University of Huddersfield
Huddersfield, England
g.allen@hud.ac.uk

challenge of this study is to find the relationship between
design pattermand aspect oriented programming to meet a
modular solution for specific issue in the sddte
engineering fieldMany studiehave been donen Aspect
programming techniques during recent ge®ne of the
aspect definitions according tfl] defines Aspect, as
“aspects tend not to be the system's functional
decomposition, but rather to be properties that affect the
performance or the semantics of the components in a
systematic way” Kiczales tried to differentiate between the
aspects and components [1]. Another definition of Aspect
Oriented Programming is to overcome the issalsing
from crosscutting concern. It helps developers to change
the Object Oriented model dynamically, so the
crosscutting enhances code reuse rate and maintainability
[2]. Aspect Oriented programming helplevelopers d
overcome the issgeassociated wittcode scattering and
tangling over multiple system units bgeducing the
duplication the code. Aspect Oriented Programming
suppors severalcrosscuttingconcernssuch as joirpoints,

point cuts, andadvice. AJoin point is one of the several
points of the system where concern crosscut a method or
constructor, whilea point cut is a qugr about selecting
required join points. Consequently, the advice is the
construction thattakes an action where the jopoint
matched: bfore, after and around in the specific system
[3]. This reseach will investigate to use AODlaspect
Oriented Desigrianguagenotation to represent software

in the design phase. These notations are a new language
proposed by Gary Allen and Sagilgbal [11] . This
language represents the aspects and usual shjsictg
UML notations and model Adding to that if could we
identifying the Aspects in early design it is possibie
applying it on Dsign patterns.There were several works
investigate this issue using the case study of the Car Crash
management systefd1]. According to[5] studes have

mailto:mazin.ismaeel@uhd.edu.iq
mailto:mazen.ghareb@hud.ac.uk
mailto:g.allen@hud.ac.uk

shown implemshowons of six GOF design pattesn
(Observer, Mediator, Prototype, Strategy, State and

Abstract Factory) with aspect implementasothe resuli ASPECTORIENTED ARCHITECTURE MODEL
that shows most aspect oriented programmingproves (aam)
the design of basebjectorientedcode. —] Model
The remainderof this paper willbe structurel as follows. Ampecthadel 1| | At Mnild Composition _I
In Section 2 wedescribethe stateof the artabout AOP Bindings Bindings Componcd
technology. In Sectio3, we introduceUML Language AOP AAM
Notation In Section 4, we describ®OP andits relationship 1]
with design patternsSection 5 weshow the result of our I B [
survey In Section 6we described the methodology approach TR Pt Model
to identify aspectsin Section 7 we present thexperimental T Anaiysis
results, followed by our conclusion and future work. Fig 1 (component of AOM approach)
Il. STATE OFART Figl shows a primary modslch as aJML diagram to
describe a basic architecture class diagram and interactive
A. History of AOP diagram. The aspect model describes a logical architectural

solution. An Aspect Oriertl Architecture Model is a logical

. iew of software architectureAnother definition of Aspect
dlscovered_ several years ago, before_ Demeter team. In 19%ﬁented Programming is simplifying of the development
Aspect oriented programmingvas officially revealed by

) . . . rocess by allowing separation of developmental tasks. In
Gregor Kiczales, with his colleagues in conference namgddition, Aspect OrientedModelling improves an object

ECOOP97 [6]. AOP Aspect Oriented programming griented application by makirig more modular. AOPsolves
developed methodologies called Subject ~ Orientednhe code scattering problem in OOBcattering meanshe
Programming. ~According t¢6] AOP is a development problem ofsharel the functionality ofan applicationspread
methodeducethat improves software development by among many classes, whictends to slow down the
captuing the donain related processin the systemto better application andnake itdifficult to maintin. Therefore, AOP
fit real domain problemsinto code therefore it reduce solves this problem by bringing togethbe scattered coda
debugging time and increaseadability. the aspectAn aspect is a cross cutting structure. It implements
. the functionality such as security, logging and persistence.

Aspect Oriented programming (AOP)was

B. Aspect Oriented Modelling AOM C. Development of Aspect-Oriented

Developers shoultdbe awareof, andunderstandhe
software modelling or architeture before staring Aspect used to implemenAOP, which is a simple aspect
implementing AOP. AOMAspect Oriented Modellings an oriented programming extensioor the Java languagé is an
approach to produca logical aspect oriented architectural open source programming extension of Eclipse. Moreover, it
model. Early usage of AOM in development stage will reducavill support modular implementation of a range of
the software development risk of conflicts and undesirablerosscutting concerri8]. An AspectJ program consssif two
behavior emergingduring implementation. The cross cutting major pars, thefirst part isthe base code such as dasand
element is common in AOP and AOM, but the difference isnterfaces to carry out a basic functionality of the program,
between the artifices versus source code, it could risend the second part the aspectcode, whichincludes the
difference technigque in representing it. For instance, the codespecs for capturing crosscutting concerns in the progfam
can represent in gjte functionality, while a model can Aspectsupports the main AOP constructsjofn points, point
represent the system with different diagram views. Anothecuts and aspextA join pointsis a dynamic execution point in
difference between AOP and AOM in code is aspect weavinthe program. Point cuts consist afcolection of join points.
is primarily concerned with inséng functionality at program An Advice is a somewhat special method attached to the point
execution. AOM module consists of majamomponents: cuts. Finally,an aspect is a modular unit of AOFig. 1
primary model, aspect model and composition médagiL[7] shows the process of aspect development mdittid

below shows this model
Asprect Refiecroping

Aspect design & implementation

WMy S aspect plg-in

Woven code

Class design & implementation
conipiling

Executable

adding or charging aspects

Fig. 2 (process of aspect-oriented development)

Recent research shows that there is antdol to support an
aspectprogramming notatin such as UML (Unified

message that pass between two imsa. As it seems that the

join points indicate the special kinds of stereotypes such as

Modelling Language) . One of the approaches to design ar<execute>>, <<initialize>>, <<set>> and <<get>>.

aspect notation is to extend the UML notatittn support
aspectoriented uni called aspect oriented design model
AODM. Therefore, this approach will help to show the aspec
programming weaving mechanism and represented in UML
which will help developers to develop aspect programming
notation languagg¢l11l]. AODM might showan aspect as a
modular unit of crosscutting implementation, ehiacts as a
container of the igen members in the piece of source code
[12].

According to Stein “Aspect] is an implementation
for aspectoriented programming in Java language”, adding
that cross cutting is a part of the aspect that specifies avher
the crosscutting code has been woven into base classes. J
Points in AspectJ are standard points iecerable dynamic
programs. Joirpoints presentmany actions such as calio
constructors and method execution. In addition, they ca
classes and oéft initialization. In AspectJ Point cuts consist
of joint points. It specifies at which of the join points
particular crosscuttingehaviorshould execute. ltermsof a
designator poincuts are 'if', 'this', 'target'utges or flow'.
Developers willselect Joimpoints depending on the dynamic
context during execution of the base dadé.

The designe should specify at what time on the
execution the advice t® execute for instanceefore, afterpr
around specific source code. Another important unit in Aspect
J is introducing an additional member type of classes such i
methods, constructor and dher field for the class.

In addition, it may change the super class type of supe
interface by inserting new initialization and generalization
relationship to the class structure.

I1l. UML LANGUAGE AOP NOTATION:

UML language is objeetriented programminghotation
language. UML provideshe basic building blockgo model
software system such as abstraction, relationshi@and
diagrans. Addingto UML will give extended UML notation
such as tagged valsiesed to attach arbitrary information to a
model element. Besides that, the extension totally suppor
new building blocks that drive from existing endhis new
building called stereotyping have the same structure

(attributes, association and operations) as the base systgﬁ’l

block thatthrive on it.

In AODM, point cutsare represented as special stereotype
operatiors named as <<Pointcuts>>. As it is showrFig. 5.
(Stein, D., Hanenberg, and S. And Unland R., 2002).

«aspecty
SubjectObserverProtocol

{instantiation = perTVM}

{base = undefined}

{privileged = false}

Ansibutes
Operations

«pointcut)
pointeut stateChanges| Subject s)

wadvicen advice_id01
after(Subject s) {base = stateChanges(s)}

Ec(cmtai.usWeavjnglnstrucnms»
~-=="BaseType

;7 antoductions v
‘.. Subject ./

RCIOSACD) «nterfacen»

Subject

E«cmtai.ns\‘u"e:nmglusmnms»

.-=="""BaseType
;" @ntroduction» N
.. Observer _/

«crosscuty

canterfacen
Observer

Fig. 3 (Aspect Oriented Design Model)

While in UML notation point cuts havean operational

definition that has an arbitrary number of (outputy)
parameters and their declaration and implementations as it

shows inFig. 4.

(output-only) parameters

—_————
polntcut staeChanges (Subject s) :
signature target(s) && call (void Button.click());

pointeut declaration ("implementation™)

Fig. 4(Similarities between points cut in Aspect and OperatiddML)

Similar to Point cuts, dvice can be represented as an
operation, but one semantic difference is that Advice does not
have a unique identifier. Therefore, this might be a big
conflict in Aspect. Therefore, AODM has solved this issue by
defining by pseudo identifier that cannat dverdriven As it
appears irFig. 5 .

"pseudo” identifier

— o o PR
advice id01l after (Subject =): stateChanges(s) {...}

parameters implementation

signature pointcut declaration

4 (Similarities between Advice and Operafion

In [4] the authorgroposea new notation of AODL

Therefore a UML extension is able to represemt Aspect] Aspect Oriented Design Language, this language helps to

basic abstractiosuch asa Joinpoint, Point cut and pieces of
Advice. Fig.3 illustrates aUML representation for Join Points
only, and shows the communication links to create or destroy
an instance. Therefore, UML carinassign or represent the
Join Point. AODM suggest solving this problem by
representing the communicationagseudo operation thaan

model the Asped with their attributes and characteristics
along with a traditional UML object diagram. Both aspect
and objed can beusal within adesign for single framework.
This reduces designer operating cost to work with two
different platforms. Therefore, developers chose UML to
extend to contain aspector many reasns. One important

only write and read for a specific field. This makes sure neeason is that UML isnost used tooldr modelling Secondly,
execution might happen without calling a constructor or thét is easier for developers to use one tool rather two tools

initialization. Fig4 shows that UML could represent a

together. Finally, it iasy touse UML extensibility to design

Aspecs becauset is easy to define a new notation and use
them withthe core notation. In AODLluses an spectnotation

.. A . Asperct Name
similar to class notation in UMto modelother components
such as Aspestand point cuts. However, there is an Spsrasiana
interaction between these componentSor instance, point () betare
cuts contain the joinpoint which advice directly depends on. e
As a resllt, each part haiss own characteristicstherefore[4] “—~——-_ T
claim that AODL should represent each atmn as unique)
notation, as shown below in Fig.5: ___,-—--”
Etements | Motations | lain aints ——____

o | o Fig. 7 (Aspect Representation in AODL)

Aspecs can be identifiedin the early stags of
development usinguse case diagrams&s shown by Ivor
Jacobsoifil0]. However,lvor argued thatspecs could notbe
implemented using use casdiagram becausetangling
problemsof the component in the use caséagram While
Igbal suggestghat to redundant the calling other component
of use case and develop use case component separately. In this

Aspect

e N way, it is easy to find a crosscutting concern in use a case
Fio 5 (AODL hotati study [14]. He has shown an example of ATM system the
'9.5(component notations) withdraw cash use caseeedsto add logging gsect tothe

In the AODL despn notation, join points are ATM use casas appears iRig.9.

representechs a hook. They connetite other pa# of the

program with the point cuts. Point cuise explaied as a @
rectangle box witta collectionof related joinpoints The box / ——
symbolis used for Aspectbecauseof them having similar @ fr,@“"“‘z::\)
characteristicgo classes in theibehavior as it shows above. A g
Aspect notation looks like class notation alschis same S =ETTE
similarities of class and the cross circle shows the cros ——

cutting concern of the aspect. Code weavingagsociated
which connectsthe aspect with classes where aspect code i§g. 8 (ATM Use Case)
woven in. Moreover, there are two models to design weavin

process, aspect static diagram and aspect dynamic diagraydhen Draw this use case diagram of with cash draw with
Aspect Rogramming has to show the joipoints in the Seduence diagram it show the interaction with all parts of

programming. Sequence diagram in UML will show the joinaspects joint point , point cuts and aspdtizould identify the

point in early design phas&his diagram called a joipoint ~ 2SPects land f’;\Iso can .show aspect characteristics such as
identfication diagram. Tie behavioof join pointsis modeled ~ c@lling joint point and pointut (before, after and arour{dy]

using an activitydiagram, which shosvthe place of joipoint .The aspect identification and showing properties of it in

and the system activit{tig. 6 shows them below. Fig 9.

[|--|QF) | [=] [=] [=] e
e -] L] " .
o= -G —I=1—1—] I 1= U N (A B

e \% = 1|r:z:"-"""";*ﬁ‘ér"'hm..
‘ 'C‘I,'l —r L =
a. sequence diagram b. Activity Diagram l?_ ::_ __________ |
Fig. 6 (Joint point identification and behavior diagram) ” ’:,
i A N S | o

The main AODL notation ighe Aspect notation, whichs [=<, || [F

representedas a big rectangle with many attribsitand T T

operations. It has the aspect name at the top and circle cros: [[T -

to show the cross concetrehavior Fig.7 shows a typical]"‘ -4

representation ain Aspect in AODL.
Fig. 9 (Sequence diagram showing aspect)

IV. AOP vs DESIGNPATTERN because some classes to be concrete cannot be reused in the
system.Pattern overlapping: This has happened whrere

[15] stated that Aspect oriented programming complementd!@n One patterinstance, haone concrete classand this

the Object oriented programming by giving powerful'ead; to Cl_Jt in pat'tern traceabllllty and claseusability.
constructs to handle compositiand modularity. This will Encapsulationviolation: composite and observer patemn
help develop the best modularif design pattemiof these forpe to the developer to expose |r_1ternal objects to another
concerns. The patterns consist of two parts, part one identifigPi€ct to handle requested computations.

the aspects, classes, relationstapd operatiosirelated to the
solution. Second part is concerned hwithe number of
signifying behaviors and structural relations betwee

The study tries to show the different resuithen applying
AOP, two implementation ways used to carry out the case
components. For instance, in theapter design pattern there Study:A Lazy implementation (L): This implantation used to
are two classewhich cannot use the same interface that shar@'0Ve all inteftype declaration to Aspects such methods
componentswhile an Aspect orientedmodel will allowthat ~@nd fields for all patterns then-igect them into original

by extending the interface of the Adoptee ashiswnFig. 10. places at load time. This will help to better modulatize

scattereccode.A Unplug implementation of AOPthe logical
< <Aspect s> e elntorfaroo s Design pattern code encapsulation into aspettseusable
: I“d"""”_ .| Target AOP implementation: improving the aspects where two large
+Dedlare Parents Adaptes Impiements Target prv— aspect use large dynamic properties of AOP to get greater
hdantes.Request) (UN) plug ability and reusability.
Zl, Finally, to prove that AOP in Design patisiis improving the
’ implementation [16] used metrics to check the AOP
implementation. Thenetricparameters are
: Adaptee Requesti) Depth of inheritance (DIT).
Adeptee {SpeckioeRequet} Coupling method calleCMC)
+3pecificRequest () Weighted Operation in Module (WOM).
Fig. 10 (Adapter Pattern in aspect class diagram) Coupling between Modules (CBM).

Lack of Cohesion in Operations (LCO).
Another example is Olsver pattern, which defines Response for Module (RFM)
one to many dependent objects. If one of the objexct
changingall the depended objectshould benotified and The study confirms thaimplementationthe design pattes
updated automatically. While in the Aspect class diagrariising AOP improve the quality and modularity of the
some part is common to all potential initiation of the patternsoftware. Italso helpgo avoid cross cutting concexrcause by
and other specific to each initiation as it showBign 11[15]. implementing the Design pattern with object oriented code
ibpaial 1 scattering.The AOP solution of @upling and cohesion are

critical issuesbecause ofthe interception mechanism at run
eradt time [16].

V. PRELIMINARY ANALYSIS

Aspect Oriented Programming is roatrrently widely
known among developers andsearchers.The previous
sectionsillustrates, therarevarious attemggto useAOP for
software developeA survey has been carried out to
investigate the awareness between developers and other
researcher about AOP. 40 responses have been call€bted
result shows that 80% dhe participant did not hear about
AOP, as it appearsilFig.12

Fig. 11 (Observer aspect class diagram)

Another important case study was (AGS) Antenna 2. Have you previously heard of aspect oriented programming (AOP)?
Group Server This systemis used to drive the antenna Yes T 18%
systems. It consists of 37 classes implemented in the4C/C+ o No 32 80%
language. It had discovered some design pettan
implementingthe system such as Observer, command, state
singleton and chain of respobiity. [16] Show that the
drawback of implementing AGS usingbjects oriented
programming with deégn pattern are these points:
Inheritance relationships: The Inheritance relationshipsig. 12 (Using AOP)
between classes are static when apply the design pattern

Thereforeijt is clearthat there is a gap for using AOP
in many stageof thedevelopment pragss. Another importa
guestionwas do you work with AOP and homany yeas do
you work with it, 45% daot work with it or have less than 1
year of experienceAs it is shownn Fig 13.

3. How many years of practical experience in AOP do you have?
Noneor< 1year 18 45%
1-2 2
24 0
>4 0

5%
0%
0%

Neneor < 1 [18]

Fig 13 (AOP Experience)

Moreover, manydevelopersdo not have enogh
knowledge about the differences betwe&@®@P andAOP. In
Fig 14 shows that participashot sure, whether AOP is better
than OOP on softwardevelopmentpr have neutral opinion
about it.

5-AOP is not an improvement over object oriented programming.

Strongly agree

Agree
Meither agree or disagree
Disagree

S o @ W -

Strongly disagree

Fig 14 (AOP vs OOP)

VI. SOLUTION APPROACH

This research tries to investigate and find the best

approach to identifying Aspexin the early stageof software
design. The idea i® make a global rule or regulation to make
it systematic acrossll aspect orientedcomponentsand
software design. For instan¢cén requirement stage either from
the stockholder or businessalysis. These requirements are
functional requiremestsuch ashe activities of the business
needs. Howevetthere areother norFunctional requirements
such as logging, security, performance and transaction
managementwhich should be take into account during the
development stagAOP can implementhese noffunctional
requirements separatelyand can span across the entire
business modelThis makes iteasier to charegor maintain
this part later in the systelifiecycle [17]. Another approach to
identifying aspedis todefine stakeholdezoncernsrefinethe
stakeholder related concerns, defia@ss cuttingconcern,
separate cross cutting concern and finally we&esed cross
cutting concern across the systglfl]. Thereare alsoseveral
other approaches that we have memin state of art
section, theyalso show that it is possible to identify cross
cutting in UML design diagrams the design stage. However

there is nota unique approach to identifywhere Aspects
should be or whetheyshould be triggered.

VIl. CONCLUSIONAND FUTURE WORK
In this paper, we presented initial
investigations into identifying Aspect in software

design stage. The research shows that there are many
approachesto identifying AOP in software designbut

not all approachesare applied in all cases or have
specific rules orstandard that can easily found cross
cutting concern in any system easily. Adding more we
have shown that in Kurdistsam region most software
engineering and academic staff do not have enough
knowledge about this new approach. Therefore, we
thought it was important to start working on how to find

a standard approach to identifying a coogtng
concern and Aspect ithe early stage of the system on
requirement stage.

In future work we will try to find rules in
software requirement and design that automatically will
specify cross cutting of aspect in early stage. We will
develop a new stage ofthe Aspect Specification
appoach in all systesr and extract the possible aspect
of the system. Wewill do that by applying itto different
case studies thereal world.

VIII. ACKNOWLEDGMENT

We thanks University of Human Development Staff for
answering my survey also all postgraduate students of
Huddersfield University. Thanks to Dr. Gary for his usual
support

IX. REFERENCES

[1] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.
Griswold, “Getting started with AspectJ,” Communications of the ACM,
vol. 44, no. 10, pp. 585, 001.

[2] H.Li, M. Zhou, G. Xu, and L. Si, “Aspedriented Programming
for MVC Framework,” in Biomedical Engineering and Computer
Science (ICBECS), 2010 International Conference2610, pp. 4.

[3] J. D. Gradecki and N. Lesiecki, Mastering Aspecipeatoriented
programming in Javalohn Wiley\& Sons, 2003.

[4] S. Igbal and G. Allen, “Designing Aspects with AODL,”
International Journal of Software Engineering, vol. 4, n@p2 3-18,

2011.

[5] C. Sant’Anna, A. Garcia, U. Kulesza, C. Lucena, Andfon Staa,
“Design patterns as aspects: A quantitative assessment,” Joutinal of
Brazilian Computer Society, vol. 10, no. 2, pp-382, 2004.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
M. Loingtier, and J. Irwin, Aspedairientedprogramming. Springer,

1997.

[7] R. France, I. Ray, G. Georg, and S. Ghosh, “Aspdented
approach to early design modelling,” IEE ProceediBigikware, vol.
151, no. 4, pp. 17385, 2004.

[8] R. Pawlak, L. Seinturier,-P. Retaillé, and H. Younss
Foundations of AOP for J2EE Development. Springer, 2005.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of AspectJ,” in ECOOP 208Dbject
Oriented Programming, Springer, 2001, pp.-X54.

[10] I. Jacobson, “Use cases and aspaetsking seamlessly together,”
Journal of Object Technology, vol. 2, no. 4, pg2d, 2003.

[11]S. Igbal, “Aspects and Objects: A Unified Software Design
Framework,” 2013.

[12]D. Stein, S. Hanenberg, and R. Unland, “A UMased aspect

oriented design notation for AspectJ,” in Proceedings of the 1st
international conference on Aspextented software development,
2002, pp. 106112,

[13] S. A. Khan and A. Nadeem, “UML extensions for modeling of
aspect oriented softwaresarvey,” in Proceedings of the 2010 National
Software Engineering Conference, 2010, p. 5.

[14] S. Igbal and G. Allen, “On Identifying and Representirgpécts.,”
in Software Engineering Research and Practice, 2009, pg5@97

[15] M. Berkane, M. Boufala, and L. Seinturier, “Reasoning about
design patterns with an Aspe@tiented approach,” in Information
Technology and-8ervices (ICITeS), 2012 International Conference on,
2012, pp. &7.

[16] M. L. Bernardi and G. A. Di Lucca, “Improving Design Patte
Modularity Using Aspect Orientation,” STEP 2005, p. 209, 2005.
[17]K. Sirbi and P. J. Kulkarni, “Stronger enforcement of ségwsing
aop and spring aop,” arXiv preprint arXiv:1006.4550,201

[18]A. Rashid, “Aspecbriented requirements engineeridg
introduction,” in International Requirements Enginegyip008. RE’'08.
16th IEEE, 2008, pp. 36809.

	Improving the Design and Implementation of Software Systems uses Aspect Oriented Programming
	I. Introduction:
	II. State of Art
	A. History of AOP
	B. Aspect Oriented Modelling AOM
	C. Development of Aspect-Oriented

	III. UML Language AOP Notation:
	IV. AOP vs Design Pattern
	V. Preliminary analysis
	VI. Solution Approach
	VII. Conclusion and future work
	VIII. Acknowledgment
	IX. References

