
University of Huddersfield Repository

Abdulshahed, Ali, Longstaff, Andrew P. and Fletcher, Simon

A particle swarm optimisation-based Grey prediction model for thermal error compensation on 

CNC machine tools

Original Citation

Abdulshahed, Ali, Longstaff, Andrew P. and Fletcher, Simon (2015) A particle swarm optimisation-

based Grey prediction model for thermal error compensation on CNC machine tools. In: Laser 

Metrology and Machine Performance XI, LAMDAMAP 2015. Euspen, Huddersfield, UK, pp. 369-

378. ISBN 978-0-9566790-5-5 

This version is available at http://eprints.hud.ac.uk/23828/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/30731785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

Laser Metrology and Machine Performance XI 

 

 
 
 
 
A particle swarm optimisation-based Grey 
prediction model for thermal error 
compensation on CNC machine tools 
 
Ali M Abdulshahed, Andrew P Longstaff, Simon Fletcher 
Centre for Precision Technologies, University of Huddersfield, 
HD1 3DH, UK. Email: Ali.Abdulshahed@hud.ac.uk 
 
 
Abstract  
 
Thermal errors can have a significant effect on CNC machine tool accuracy. 
The thermal error compensation system has become a cost-effective method of 
improving machine tool accuracy in recent years. In the presented paper, the 
Grey relational analysis (GRA) was employed to obtain the similarity degrees 
between fixed temperature sensors and the thermal response of the CNC 
machine tool structure. Subsequently, a new Grey model with convolution 
integral GMC(1, N) is used to design a thermal prediction model. To improve 
the accuracy of the proposed model, the generation coefficients of GMC(1, N) 
are calibrated using an adaptive Particle Swarm Optimisation (PSO) algorithm. 
The results demonstrate good agreement between the experimental and 
predicted thermal error. Finally, the capabilities and the limitations of the 
model for thermal error compensation have been discussed. 
 
1 Introduction 

  
Serious attention has been paid to the influence of temperature changes on the 
accuracy of the CNC machine tools [1-3]. Temperature gradient can be caused 
by variation of ambient temperature, self-generated heat in machine ball-crews, 
spindle motors, etc. Thermal errors are yet more complex since they represent a 
response to the interaction between environmental changes and internally 
generated heat. There are three primary approaches to mitigate these thermal 
errors which can be categorised as [4]: elimination or avoidance, reduction of 
generated heat, and compensation strategies. Elimination or avoidance 
strategies try to eliminate any change in dimensions due to temperature 
changes. These strategies are best or, rather, can only be implemented during 
the design stage of the machine tool. Some examples of these strategies are use 
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of symmetry in machine design, choice of materials and use of direct feedback 
[4]. Reduction of generating heat strategies tend to directly cool the heat 
sources, for instance, through on-machine cooling systems. However, the end-
user must also be responsible for improved environmental temperature control 
[2], or good operating practices such as spindle warm up. Compensation 
approaches tend to compensate for any change in the size and the shape of the 
machine structure due to temperature gradients. They can be implemented 
during any stage of the machine tool design. Many compensation techniques 
have been explored to reduce thermal errors in a direct or indirect way [5].  
     Numerical techniques such as a finite-element method and finite-difference 
method [1] are powerful tools in modelling the thermal characteristics. 
However, building a numerical model can be a great challenge due to problems 
of establishing the boundary conditions and accurately obtaining the 
characteristic of heat transfer [6]. Therefore, testing of the machine tool is still 
required to calibrate the model for successful application of these techniques. 
     The data driven models are behavioural models that are based on historical 
data to predict the thermal error of machine tool. Contrary to the numerical 
models, they are not based on explicit physical equation definitions but on 
experimental database which is capable of reflecting the relationship between 
inputs and outputs. Data driven techniques for thermal error modelling can be 
divided into two categories: statistical techniques such as regression methods, 
linear polynomial models, etc., and Artificial Intelligence (AI) techniques such 
as artificial neural networks (ANNs), fuzzy systems, etc. 
     Abdulshahed et al. [7] employed an adaptive neuro fuzzy inference system 
(ANFIS) to forecast thermal error compensation on CNC machine tools. Two 
types of ANFIS model were built in this paper: using grid-partitioning and 
using fuzzy c-means clustering. According to the results, the ANFIS with fuzzy 
c-means clustering produced better results, achieving up to 94 % improvement 
in error with a maximum residual error of ± 4 μm. In another work [8] they 
built a thermal model by integrating ANN and GMC(1, N) models. The thermal 
model can predict the Environmental Temperature Variation Error (ETVE) of a 
machine tool with reduction in error from over 20 μm to better than ± 3 μm. 
     Nevertheless, robust solution for both principle-based and some of data 
driven models require the measurement of temperature and related thermal 
error components that have to be obtained by time-consuming experiments. 
This is difficult to achieve in a working machine shop, because of the 
prohibitively costly downtime required to conduct the experiments. 
     Appropriate selection of input variables is an important task in modelling. In 
fact, not all input variables are equally important; some may have no significant 
effect on the system being modelled. There are many approaches which have 
been proposed to reduce the number of sensors. Abdulshahed et al. [9] 
proposed a thermal model merging Grey model GM(0, N) and ANFIS model. 
A thermal imaging camera was also used to record temperature distributions a 
across the spindle-carrier structure of the machine tool. Each pixel can be 
considered as a possible temperature measurement point. The Grey model and 
fuzzy c-means clustering were applied to minimise the number of temperature 
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points and select the most suitable sensor locations for modelling. Grey 
relational analysis (GRA) provides an alternative approach to identifying the 
similarity degree among factors, or to determining the optimal temperature 
sensors for modelling with less experimental data. 
     In this paper, the GRA model is used to determine the major sensors 
influencing thermal errors of a small vertical milling machine (VMC), which is 
capable of simplifying the system prediction model. A PSO-based Grey 
prediction model for thermal error compensation is developed by adopting PSO 
to calibrate GMC(1, N) model. It is then used to predict thermal error on a 
small VMC on the basis of the selected sensors. 
 
2 Material and methods 
 
2.1 Modelling the thermal error using a Grey model 
 
The Grey systems theory, established by Deng in [10], is a methodology that 
focuses on solving problems involving incomplete information or small 
samples. The technique can be applied to uncertain systems with partially 
known information by generating, mining, and extracting useful information 
from available data so that system behaviours and their hidden laws of 
evolution can be accurately described. It uses a Black-Grey-White colour to 
describe complex systems [11]. GM(1, N) is the most widely used 
implementation in literature [11], which can establish a first-order differential 
equation featured by comprehensive and dynamic analysis of the relationship 
between system parameters. The accumulated generating operation (AGO) is 
the most important characteristic of the Grey system theory, and its benefit is to 
increase the linear characters and reduce the randomness of the samples. Based 
on the existing GM(1, N) model, Tien [11] proposed a GMC(1, N) model, 
which is an improved Grey prediction model. The modelling values by 
GM(1, N) are corrected by including a convolution integral. Traditionally, 
these models have been calibrated by the least square method. However, due to 
the nonlinearity of the problem, the least square solution may not provide a 
satisfactory solution. 
 
2.2 The particle swarm optimization (PSO) 
 
The particle swarm optimization (PSO) algorithm was introduced by Eberhart 
et al. [12] as an alternative to other evolutionary techniques. The PSO 
algorithm is inspired by the behaviours of natural swarms, such as the 
formation of flocks of birds and schools of fish. The advantages of the PSO 
algorithm is that it does not require the objective function to be differentiable as 
in the gradient decent method, which makes few assumptions about the 
problem to be solved. Furthermore, it has a simple structure and its 
optimisation method illustrates a clear physical meaning. PSO consists of a 
population formed by individuals called particles, where each one represents a 
possible solution of the problem. Each particle tries to search the best position 
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with time in D-dimensional space (solution space). During flight or swim, each 
particle adjusts its ”flying” or “swimming” in light of its own experience and 
its companions’ experience, including the current position, velocity and the best 
previous position experienced by itself and its companions. Therefore, instead 
of using the standard algorithms, a PSO algorithm is employed to optimise the 
Grey model parameters. 
 
2.3 GMC (1, N) and its learning algorithm 
 
In this section, we illustrate the main steps of GMC(1, N) and discuss its 
learning algorithm using PSO. The model can reveal the long-term trend of 
data and, by driving the model by the AGO, rather than raw data, can minimise 
the effect of some of the random occurrences. Therefore, the first step for 
building GMC(1, N) is to carry out 1-AGO (first-order Accumulated 
Generating Operation) to the data, so as to increase the linear characteristics 
and reduce the randomness from the measuring samples. PSO algorithm, with 
capability to optimise complex numerical functions, is adopted to calibrate the 
GMC(1, N) model. Finally, an IAGO (inverse Accumulated Generating 
Operation) is performed to predict the thermal error and generate the final 
compensation values. The modelling detail is described as follows:  
     Step 1: Consider the original data series as: �1(0)

= ��1(0)
(1 + �),  �1(0)

(2 + �), … , �1(0)
(� + �)�, and ��(0)

= ���(0)
(1), ��(0)

(2), … , ��(0)
(�), … , ��(0)

(� + �)�, where � = 2,3, … ,�,     

r is the period of delay, n gives the length of original data series and m denotes 
the number of entries to be predicted.  
     Step 2: The above sequences of each variable are processed using 1-AGO to 
obtain the 1st-order AGO sequences as follows: �1(1)

= ��1(1)
(1 + �), �1(1)

(2 + �), … , �1(1)
(� + �)�, and ��(1)

= ���(1)
(1), ��(1)

(2), … , ��(1)
(�), … , ��(1)

(� + �)�, 
where �(1) = ∑ �(0)(�),��=1   � = 1,2, … ,� + �.  
     Since the details of GMC(1, N) can be found in [11], this paper only briefly 
mentions the core equations of this method.  ��1(1)

(�+�)�� + �1�1(1)
(� + �) = �2�2(1)

(�) + �3�3(1)
(�) + ⋯+ ����(1)

(�) + �,  (1) 

where � = 1,2, … ,� + �, �1 is the development coefficient, �� , (� = 2,3, … ,�) 
the driving coefficient, and � is the Grey control parameter. Therefore, time 
response sequences can be obtained. ��1(1)

(� + �) = �1(0)
(1 + �)�−�1(�−1) +

12 × �−�1(�−1) × �(1) + ∑ ��−�1(�−�) ×�−1�=2�(�)�+
12 × �(�),   where �(�) = ∑ ����(1)

(�) + ���=2 .                                      (2) 

     To calculate the coefficients �1, �� and �, the PSO can be used to calibrate 
the equation (2). Then, the Grey model is optimised until the performance is 
satisfactory. Finally, the optimal corresponding coefficients are used as the 
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Grey model coefficients to predict the thermal error. The calibrating process of 
GMC(1, N) can be summarised as follows:   
     In PSO algorithm, a particle refers to a coefficient in the model that changes 
its position from one move to another based on velocity updates. The 
mathematical description of the PSO algorithm is as follows: suppose that the 
search space is D-dimensional, and then the current position and velocity of the 
ith particle can be represented by �� = [��1, ��2, … ,���]� and �� =
[��1, ��2 , … , ���]� respectively, where � = 1, 2, … ,� and � is the number of 
particles in the swarm.  
     Particle i can remember the best position so far, which is known as the local 
best position ������ = [�����1, �����2, … , �������]�. It can also obtain the 
best position that the whole swarm establish, known as the global best position 
G����� = [g����1, g����2, … , g������]�. The first position and velocity of 
Particle i are randomly initialised by the uniformly distributed variables. 
Afterwards, particle i adjusts its velocity of iteration k+1 according to the local 
and global best positions, as well as the velocity and position of iteration k, as 
follows: 
 ��(� + 1) = ���(�)+ �1��������(�) − ��(�)�+ �2��G�����(�) − ��(�)�(3) 
where � is the inertia factor which is used to manipulate the impact of the 
previous velocities on the current velocity, c1 and c2 are the self-confidence 
factor and the swarm-confidence factor, respectively. R is a uniformly 
distributed random real number that can take any values between 0 and 1. With 
the updated velocity, the position of particle i in the iteration k+1 can be 
obtained as follows: ��(� + 1) = ��(�) + ��(� + 1)                                                                       (4) 
     The fitness of particle is measured using a fitness function that quantifies the 
distance between the particle and its optimal solution as follows: �(��) = ����(0)(�) − �(0)(�)�,2�

�=1  

where f is the fitness value, ��(0)(�) is the target output; and, �(0)(�) is the 
predicted output based on model parameters (particles) updating. 
     Step 3: Update the velocity and position of each particle based on equations 
(3) and (4). Adjusting the model parameters in equation (2): 
     Step 4: If the value of the error meets the requirement of the model, or a pre-
determined number of epochs are passed, then the model calibration will end if 
not, then return to Step 3. 
     Step 5: Export the optimal solution ��. 
     Step 6: 1- IAGO can be applied to obtain the predicted values. The 
mathematical expression is as the following: 
 ��1(0)

(� + �) = ��1(1)
(� + �) − ��1(1)

(� − 1 + �), and ��1(0)
(1 + �)=��1(1)

(1 + �). 
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2.4 Grey relational analysis method 
 
Grey relational analysis (GRA) is a method to capture the correlations between 
the reference factor and other compared factors of a system with a relatively 
small amount of data [11]. On the basis of Deng’s initial models of grey 
incidences, Liu et al. [13] proposed a new type of GRA model to investigate 
the closeness of connection between sequences using the geometric shapes of 
the sequences. The GRA model can be summarised as follows: 
     Step 1: Assume sequences: �� = ���(1), ��(2), ��(3), . . . ��(�)�, is a sequence of data representing a 
system’s characteristics, and, �� = ���(1), ��(2), ��(3), . . . ��(�)�, is a sequence of relevant factor. 

    Step 2: The initial point zeroing images are:  ��0 = ���0(1), ��0(2), ��0(3), . . . ��0(�)�,    ��0 = ���0(1), ��0(2), ��0(3), . . . ��0(�)�,    

     where, ��0(�) = ��(�) − ��(1),  ��0(�) = ��(�) − ��(1), � = 1,2, … ,�.  
     Step 3: The grey similitude degree is calculated as follows: ��� =

1

1 + ��� − ��� , where  �� − �� = � ���0 − ��0����
1 . 

     The similitude degree of the GRA model is used to measure the geometrical 
shape similarity between sequence �i and ��. The ��� is called the similitude 
degree of �� with respect to ��. According to the above equations, the 
similitude degree ��� between thermal error of CNC machine tool and the 
various temperature sensors can be calculated. The bigger ��� the greater impact 
on thermal error and on the contrary the smaller ��� . 
 
3 Experimental work 
 
To verify the applicability of the proposed model, an example simulating the 
machining of six parts is investigated. The experiments were performed on a 
small vertical milling centre (VMC) and utilised a Renishaw OMP40-2 spindle-
mounted probe to monitor distortion. It has a stated unidirectional repeatability 
of 1.0 μm at 480 mm/min with a 50 mm stylus. The test consists of simulating 
the machining of six parts which are machined individually at a datum point on 
the table. When a part is finished the table moves to the next datum point to 
start machining the next part. Each part excites the X, Y and Z axes simulate 
milling operations. This allows heat to be generated from spindle, motors and 
axes movement. A probing routine is run before the first machining operation 
to create a datum baseline for the test on four corners of granite square (see 
Figure 1). Probing routines are run after the third part and sixth part to measure 
the drift of the tool in the X, Y and Z axes. The thermal data were measured 
using twenty eight temperature sensors placed in strips at the carrier, spindle 
boss, axes motors, axes ballscrews nut, and ambient temperature sensors were 
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placed around the machine to pick up the ambient temperature. A general 
overview of the experimental setup is shown in Figure 1. 
 

 
Figure 1. A general overview of the experimental setup. 

 
The machine was examined by running the spindle at a speed of 9 000 rpm 
(except for the periods of probing), and a feedrate of 5 000 mm/min for 
200 minutes to excite the thermal behaviour. The high rotational speed brings a 
larger thermal displacement for the spindle carrier. Moreover, the higher 
feedrate generates larger frictional heat at the interface points, and the motor 
temperature also increases with the higher feedrate. Temperature of measured 
points grows gradually until the equilibrium state is reached. The temperature 
sensors were measured simultaneously every 10 seconds. The maximum drift 
of the X-axis is 20 μm, the Y-axis is 18 μm, and the Z-axis is 58 μm. In this 
paper, the thermal drift of the Z-axis was investigated as an example for the 
modelling, and potential error compensation. 
     The representative temperature sensors for modelling were selected from 
each group (Surface sensors and ambient sensors) according to their influence 
coefficient value using GRA model, more details about similar Grey model is 
given in our work [7, 9]. The representative thermal sensors T10, T20, T2, T19, 
T4, T18, T17, T7, and T6, which are located on the spindle boss, spindle motor 
axes motors, carrier, and ambient, are selected as the thermal key sensors for 
modelling. The similitude degree of these temperature sensors are: ε1T10 =

0.98, ε1T20 = 0.93, ε1T2 = 0.85, ε1T19 = 0.84, ε1T4 = 0.82, ε1T18 = 0.82, ε1T17 = 0.82, ε1T7 = 0.81, ε1T7 = 0.55, and ε1T6 = 0.5, respectively.  
 
4 Results and discussion  
 
In order to optimise the GMC(1, N) parameters, the experimental data set was 
divided into two sets, one is being used for calibrating the model 
(approximately 10 %), and the rest for testing performance (approximately 
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90 %). Nine temperature sensors are used as inputs, and Z-axis displacement as 
output. In the PSO algorithm, the number of the particles is set to be 90 whilst 
the self-confidence factor and the swarm-confidence factor are c1=2 and c2=2, 
respectively. The inertia weight ω was taken as an adaptive decreasing function 
in iteration index k from 0.9 to 0.4. After 100 epochs, the total error was at an 
acceptable level (3 μm for testing dataset). The Grey model obtained using 
PSO algorithm is: 

dX1
(1)

(t)

dt
+5.31X1

(1)
(t)=72.12X2

(1)
(t)+61.04X3

(1)
(t)-26.07X4

(1)
(t)+66.34X5

(1)
(t) 

-23.33X6
(1)

(t)-31.99X7
(1)

(t)+25.73X8
(1)

(t)-23.50X9
(1)

(t)+7.597X10
(1)

(t)-54.74.  
     The final GMC(1, 10) model being optimised and validated in this work has 
been tested next by a new testing dataset, not used during training stage. The 
individual variables are shown in Figure 2. Simulation results show that the 
thermal error in the Z direction can be significantly reduced from 58 μm to less 
than 4 μm using testing dataset (see Figure 3). Furthermore, this result shows 
that the PSO algorithm can act as an alternative training algorithm for Grey 
model that can be used for thermal error compensation.  
     Consequently, this paper develops a simple, less computationally intensive 
and low-cost approach based on Grey model and PSO algorithm to predict the 
thermal error compensation on CNC machine tools. In this work, this model 
has been used for prediction of the thermal error of a relatively simple structure 
with only a few calibrating samples. However, further work is required to 
validate the proposed model using disparate cycles on multiple machines. 
 

 
Figure 2: Measured temperature variation (model inputs). 
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Figure 3:  GMC(1, N) model output vs the actual thermal drift. 

 

5 Conclusions 
 
In this paper, a PSO-based Grey prediction model for thermal error 
compensation of a small vertical milling centre (VMC) is presented. Two main 
findings have been addressed in this paper. First of all, the optimal temperature 
sensors were determined through the GRA model. After calculating the 
similarity degrees between the thermal error and the temperature sensors, one 
sensor from each group is selected according to its similarity degree with the 
thermal distortion. The number of required temperature sensors was thus 
reduced from twenty eight to nine, which significantly minimised the 
computational time, cost and effect of sensor uncertainty. Secondly, the 
comparison between experimental results and predicted values of the Grey 
model show that there is an excellent agreement between the predicted thermal 
error and the experimental results with residual error of 4 μm. The results of 
this paper show that the PSO technique can act as an alternative calibration 
algorithm for Grey models that can be used for thermal error compensation. 
Further work is required to validate the model using disparate cycles on 
multiple machines. 
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