-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by University of Huddersfield Repository

M

University of
HUDDERSFIELD

University of Huddersfield Repository
Abdulshahed, Ali, Longstaff, Andrew P. and Fletcher, Simon

A particle swarm optimisation-based Grey prediction model for thermal error compensation on
CNC machine tools

Original Citation

Abdulshahed, Ali, Longstaff, Andrew P. and Fletcher, Simon (2015) A particle swarm optimisation-
based Grey prediction model for thermal error compensation on CNC machine tools. In: Laser
Metrology and Machine Performance XI, LAMDAMAP 2015. Euspen, Huddersfield, UK, pp. 369-
378. ISBN 978-0-9566790-5-5

This version is available at http://eprints.hud.ac.uk/23828/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and
* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox @hud.ac.uk.

http://eprints.hud.ac.uk/


https://core.ac.uk/display/30731785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Laser Metrology and Machine Performance XI

A particle swarm optimisation-based Grey
prediction model for thermal error
compensation on CNC machinetools

Ali M Abdulshahed, Andrew P Longstaff, Simon Fletcher
Centre for Precison Technologies, University of Huddersfield,
HD1 3DH, UK. Email: Ali.Abdulshahed@hud.ac.uk

Abstract

Thermal errors can have a significant effect on CNC machine toofaagcu
The thermal error compensation system has become -aftasive method of
improving machine tool accuracy in recent years. In the presented gaper, t
Grey relational analysis (GRA) was employed to obtain the similarityedsg
betweenfixed temperature sensors and the thermedponseof the CNC
machinetool structure. Subsequently, a new Grey model with convolution
integral GMC(1N) is used to design a thermal prediction model.improve

the accuracy of the proposed model, the generation coefficients of GMC(1
are calibrated using an adaptive Particle Swarm Optimisation (PSO) algorithm
The results demonstrate good agreement between the experimental and
predicted thermal erro Finally, the capabilities and the limitations of the
model for thermal error compensation have been discussed.

1 Introduction

Serious attention has been paid to the influence of temperature changes on the
accuracy of the CNC machine to¢ls3]. Temperaturegradientcan be caused

by variation of ambient temperature, sgénerated heat in machine bedéws
spindle motors, etc. Thermal errors are yet more complex since thegeapa
response to the interaction between environmental changes and linterna
gererated heat. There are three primary approachestigate these thermal
errors which can be categorised[4f elimination @ avoidance, reduction of
generated heat, and compensation egias. Elnination or avoidance
strategies tryto eliminate any change in dimensions due to temperature
changesThese strategies are best or, rather, can only be implemented during
the desigrstage of the machine to@ome examples of these strategies are use
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of symmetry in machine design, choice of materials and use of direct feedback
[4]. Reduction of generating heat strategies tend to directly cool the heat
sources, for instance, through-machinecooling systemsHowever, the end
user must also be responsible iimproved environmental temperature control
[2], or good operating practices such as spindle warm up. Compensation
approaches tend to compensate for any change in the size and the shape of the
machine structure due to temperature gradients. They can be implemented
during any stage of the machine tool design. Many compensatibnidaes
have been explored to reduce thermal errors in a direct or indire¢bjvay
Numerical techniques such as a firdlement methoénd finitedifference
method [1] are powerful tools in modelling the thermal characteristics.
However, building a numerical model can be a great challenge due to problems
of establishing the boundary conditions and accurately obggintre
characteristic of heat transfg]. Therefore, testing of the machine tool is still
required to calibrate the model for successful apiidinaof thesetechniqus.
The data dven modet are behavioural modsithat are based on historical
data to predict the thermal error of machine tool. Contrary to the ruaheri
models, they are not based on explicit physical equation definitions but on
experimental database which is capable of reflecting the relationship between
inputs and outputs. Data drivéechniquedor thermal error modelling can be
divided into two categories: statistical techniques such as regressioods)eth
linear polynomial models, etcand Atrtificial Intelligence (Al) techniques such
as artificial neural networks (ANNS), fuzzy systems, etc.
Abdulshahedtt al. [7] employedan adaptive neuro fuzzy inference system
(ANFIS) to forecast thermal error compensation on CNC machine {oofs.
types of ANFIS model were built in this paper: using grédtitioning and
using fuzzy emeans clusteringdccording to the results, the ANFi&th fuzzy
c-means clustering produced better results, achieving up % @dprovement
in error with a maximmm residual error of 4 um. In anotherwork [8] they
built a thermal model by integrating ANN a@MC(1,N) modek. The thermal
model carpredict theEnvironmental Temperature Variation Er(&TVE) of a
machine tool witlreduction in errorrbm over 2Qum to better than 8 pm.
Neverthelessyobust solution for both principleased ad some ofdata
driven models require the measurement of temperature and related thermal
error components that have to be obtained by-tiovesumingexperiments.
This is difficult to achieve ina working machine shop because ofthe
prohibitivey costlydowntime required to conduct the experiments.
Appropriate selection of input variablesaisimportant task in modelling. In
fact, not all input variables are equally important; some may havigmificant
effect on the system being modelled. There are many approaches which hav
been proposed to reduce the number of sensors. Abdulsteahald [9]
proposed a thermal model mgarg Grey model GM(ON) and ANFIS model
A thermal imaging camera wadsoused to record temperature distributions a
across the spindiearrier structure of the machine tool. Each pixel can be
considerechs a possible temperature measurement point. The Grey model and
fuzzy cmeans clustering were applied to minimise the number of temperature
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points and select the most suitable sensor locations for modellirey. Gr
relational analysis (BA) provides an alterative approach to identifying the
similarity degree among factors, or to determining the optimal eesmtyre
sensors for modelling with less experimental data.

In this paper, the GRA model is used to determine the major sensors
influencing thermal eors of a small vertical milling machine (VMC), which is
capable of simplifying the system prediction modal. PSCbased Grey
prediction model for thermal error compensation is developed by adopting PSO
to calibrate GMC(1N) model. It is then used to predict thermal erroraon
small VMCon the basis of the selected sensors.

2 Material and methods

2.1 M odelling the thermal error using a Grey model

The Grey systems theory, establisheddmngin [10], is a methodology that
focuses on solving problems involving incomplete information or small
samples. The technique can be applied to uncertain systems with partially
known information by generating, mining, and extracting useful irdition

from available data so that system behaviours and their hidden laws of
evolution can be accurately described. It uses a BlaekWhite cobur to
describe complex system$ll]. GM(1,N) is the most widg used
implementation in literaturgl1], which can establish a firstder differential
equation featured by comprehensive and dynamic analysis oélt#t@mship
between system parameters. The acdated generating operation (AGO) is

the most important characteristic of the Grey system theory, anchiitbs to
increase the linear characters and reduce the randomness of the samples. Based
on the existing GM(IN) model, Tien [11] proposed a GMC(IN) model,

which is an improved Grey prediction modélhe modelling values by
GM(1,N) are corrected by including a convolution integrataditionally,

these models have been calibrated by the least square method. However, due to
the nonlinearity of the problem, the least square solutiay notprovide a
satisfactory solution

2.2 The particle swarm optimization (PSO)

The particle swarm optimization (PSO) algorithm was introduzg Eberhart

et al. [12] as an alternative to other evolutionary techniques. The PSO
algorithm is inspired by the behaviours of natural swarnogh sas the
formation of flocks of birds and scheobf fish. The advantages ttie PSO
algorithm is that it does not require the objective function to be diffeldaties

in the gradient decent method, which makes few assumptions about the
problem to be solved. Furthermore, it has simple structureand its
optimisation method illustrates a clear physical meaning. PSO consiats o
population formed by individuals called particles, where each one refgesen
possible solution of the problem. Each particle tries to search the bigirpos



Laser Metrology and Machine Performance XI

with time in D-dimensional space (solution spadeuringflight or swim each
particle adjusts its "flying” or “swimming” in light of its own experienaad

its companions’ experience, including the current position, velocitytentest
previous position experierd by itself and its companions. Therefore, instead
of using the standard algorithms, a PSO algorithm is employed to optimise the
Grey model parameters.

2.3 GMC (1, N) and itslearning algorithm

In this section, we illustrate the main steps of GM®(,and discuss its
learning algorithm using PSO. The model can reveal the-termg trend of
data and, by driving the model by the AGO, rather than raw data, can sainimi
the effect of some of the random occurrences. Thereforefirgtestep for
building GMC(1,N) is to carry out 4AGO (firstorder Accumulated
Generating Operation) to the data, so as to increase the linear characteristics
and reduce the randomness from the measuring sar®@8€&xalgorithm, with
capability to optimise complex numerical functiorssadopted to calibrate the
GMC(1,N) model. Finally, an IAGO (inverse Accumulated Generating
Operation) is performed to predict the thermal error and generate the final
compensation values. The modelling detail is described as follows:

Stepl: Consider the original data series as:

Xl(o) = {xl(o)(l +7), xl(o) 2+71), ...,xl(o) (n+ r)}, and

X0 =W, %0 @, . xO0), O+ m)), where i=23,.,N,

r is the period of delay) gives the length of original data series amdenotes
the number oéntiesto be predicted

Step2: The above sequences of each variable are processed «5®Q to
obtain the T-order AGOsequenceas follows:

X0 = {xP+1),xP@ +7),...x (@ +1)}, and
xO = {xOW,xP@), ... xP @), . xP (n +m)),
wherex® = ¥t_ x©(), t =1,2,..,n+m.

Since the details of GMC(N) can be found ifi11], this paper only briefly
mentionsthe core equations of this method.

@
D by X P+ 1) = b X0 () + b XV () + -+ byX P (©) + (1)
wheret = 1,2, ...,n + m, b, is the development coefficiertt;, (i = 2,3, ..., N)
the driving coefficient, and: is the Grey control parameter. Therefore, time

response sequences can be obtained.
)?fl)(t +7r) = xio)(l +r)e bt 4 % X e D1t=D x £(1) + Tiz[e 21D x
f@]+3x £, wheref (1) = X1, bXV(1) +u. )
To calculate the coefficients, b; andu, the PSO can be used to calibrate

the equatior(2). Then, the Grey model isptimiseduntil the performance is
satisfactory. Finally, the optimal corresponding coefficients are usetieas t



Laser Metrology and Machine Performance XI

Grey model coefficients to preditie thermal errofThe calibrating process of
GMC(1,N) can be summarised as foMls:

In PSO algorithm, a particle refers te@efficientin the model that changes
its position from one move to another based on velocity updates. The
mathematical description dfie PSO algorithm is as followsupposeahat the
search space is-Bimensionaland therthe current position and velocity of the
ith particle can be represented bJ; = [b;1,b;,...,b;p]"T and V; =
[vi1, Vi, ..., vip]T respectively, wheré = 1,2,..,M and M is the number of
particles in the swarm.

Particlei can remember the best position so far, which is known as the local
best positiorPbest; = [pbest,, pbest,, ..., pbest;p]T. It can also obtain the
best position that the whole swarm establish, known as the global biisinpos
Gbest; = [ghest,, ghest,, ..., gbest;,]T. The first position and velocity of
Particle i are randomly initialised by the uniformly distributed variables.
Afterwards, particleé adjusts its velocity of iteratiok+ 1 according to the local
and global bespositions, as well as the velocity and position of iterakioss
follows:

Vitk +1) = Vi (k)+ ClR(Pbestl- (k) — Bl-(k))+ CZR(Gbesti(k) — B; (k))(S)
where w is the inertia factor which is used to manipulate the impact of the
previous velocities on the current velogity and c, are the seftonfidence
factor and the swarmoonfidence factor, respectivelyR is a uniformly
distributed random re@umberthat can take any valaéetween 0 and With
the updated velocity, the position of partidlen the iterationk+1 can be
obtained as follows:
Bi(k +1) = B;(k) + V;(k + 1) 4)

Thefitness of particle is measured using a fitness function that giearttie
distance between the particle and its optimal solution as follows:

N

FB) = Y[R - O @0)]
k=1

wheref is the fitness valuez® (k) is the target output; and;(” (k) is the
predictedoutput based omodel parameterarticles) updating.

Step3: Update the velocity and position of each particle based on equations
(3) and @). Adjusting the model parametersdguation(2):

Step4: If the value of the error meets the requirement of the model, or a pre
determined number of epochee passed, then the model calitomrawill end if
not, then return to Step 3.

Step5: Export the optimal solutioA,;.

Step 6: 1- IAGO can be applied to obtain the predicted valuEbe
mathematical expressiasas the following

20 +r) =2+ -2t —1+7), and2{” (1 + )= (1 + 7).
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24 Grey relational analysis method

Grey relational analysis (GRA) is a methoccapture the correlations between
the reference factor and other compared factors of a sysina relatively
small amount of dat@ll]. On the basis of Deng’s initial models of grey
incidences, Liuet al. [13] proposed a new type of GRA model to investigate
the closeness of connection between sequences using the geometric §hapes o
the seqancesThe GRA model can be summarised as follows:

Step 1: Assume sequences:
X; = (0 (1), x(2),x,(3),...x;(n)), is a sequence of data representing a
system’s characteristics, and
X; = (xj(l),xj(z),xj(3), . ..xj(n)), is a sequence of relevant factor.

Step 2: The initial point zeroing images are:

X0 = (x0(1,20(2), %0 (3),... X0 (W),

X0 = (20 (1), %)), 5’ 3),.... xP (),

where,x? (k) = x;(k) = x;(1), x?(k) = x;(k) — x;(1), k =1,2,...,n.
Step 3: The grey similitude degreecalculated as follows:
- where s; — s; =fn(X~°—X9)dt

1+ [si—s| ETET VT AR
The similitude degree of the GRA model is used to measure the geometrical
shape similarity between sequengeand X;. Theg;; is called the similitude
degree ofX; with respect td;. According to the above equations, the
similitude degreee;; between thermal error of CNC machine tool and the
various temperature sensors can be calculated. The kiggee greater impact
on thermal error and on the caanty the smalleg;;.

8,:]'

3 Experimental work

To verify the applicability of the proposed model, an exansjeulatingthe
machining ofsix parts is investigated. The experiments were performed on a
small vertical milling centre (VMCand utilised a ReniskaOMP4G2 spindle
mounted probe to monitor distortiolh has astated unidirectionakepeatability

of 1.0um at 480mm/minwith a 50mm stylus The test consists afimulating

the machining of six partshich are machined individually at a datum point on
the table. When a part is finished the table moves to the next datumigoint
start machining the next paEach part excites the X, Y and Z axes simulate
milling operations. This allows heat to be generated from spinai¢orsand
axes movement. Arrobing routine is run before the first machining operation
to create a datum baseline for the test on four cornegsaoite square(see
Figure 1. Probing routines are run after the third part and sixth part to measure
the drift of the tool in the X, Y and Z axeBhe thermal data were measured
usingtwenty eighttemperature sensors placed in strips at the caspéndle
boss axes motors, axesalscrevs rut, andambient temperature sensors were
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placed around the machine to pick up the ambient temperature. A general
overview of the experimental setup is showirigure 1

Z axis motor
Spindle motol 2 o Surface sensors
Spindlecarriel\ 5 o Ambientsensors

Probing syster 5.0 Selectedsensorsr,, T,

i : T, T, T, T, T ,T ,andT

6 7 10 17 18 19 20

|_-Column
|_Y axis motol
+ Four corner

Figurel. A general overview of the experimental setup.

The machine was examined by running the spindle at a spee@08&frSm
(except for the periods of probingand afeedrateof 5000mm/min for
200minutes to excite the thermal behavioline high rotational speed brings a
larger thermal displacement for the spindle carridioreover, the higher
feedrate generates larger frictional heat at the interface pamdsthe moto
temperaturealso increases witthe higherfeedrate Temperature of measured
points growsgradually until the equilibrium stais reachedThe temperature
sensors were measureiultaneouslyevery 10seconds. The maximum drift
of the X-axis is20 pm, the Y-axis is18 um, and the Z-axis iS58 um. In this
paper,the thermal drift of th&Z-axis was investigatedas an example for the
modelling, andbotentialerror compensation.

The representative temperature sensors for modelling were selected from
each group (Suste sensors and ambient sensors) accotditigeir influence
coefficient value usingsRA mode] more details abouwdimilar Grey model is
given in our worl7, 9]. The representative thermal sensot§, 20, T2, T19,

T4, T18,T17, T7,and T6, which are located on thgindle boss, spindle raot
axes motorscarrier, andambient are selected as the thermal key sensors for
modelling. The similitude degree of these temperature sensorssafg; =
0.98, €720 = 0.93, g1, = 0.85, £;710 = 0.84, g1, = 0.82, g,115 = 0.82,
€117 = 0.82, g7, = 0.81,¢,7, = 0.55, ande, ¢ = 0.5, respectively.

4 Results and discussion

In order to optimise the GMC(N) parameters, the experimental dataveas$
divided into two sets, one is being used faalibrating the model
(approximately10%), and the rest for testing performan@pgroximately
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90 %). Nine temperaturesensors are used as inputs, Zrakis displacement as
output.In the PSO algorithm, the number of the particles is set to be 90 whilst
the selfconfidence factor and the swawgunfidence factoarec;=2 andc,=2,
respectivelyThe inertia veightw was taken asraadaptivedecreasing function
in iteration indexk from 0.9 to 0.4 After 100epochs, the total error wasaat
acceptable leve(3um for testing datasgt The Grey model obtained using
PSO algoithm is:
dX® W W W W )

p +5.31X77 (1) =72.12¢57 (1) +61.04X 5~ (1)-26.07X ;7 (1) +66.34X (1)
-23.3XP(1)-31.9K P 1)+25. 7% P (©)-23.5 Y (1) +7.597X Y (1)-54.74

The final GMC(1,10) model being optimised and validated in this work has
been testedext by a new testingdataset not used during trainingtage The
individual variables are shown iRigure 2 Simulation results show that the
thermal error in the Z direction can be significantly reduceh 58 um to less
than4 um using testing dataset (see Figure 3). Furthermore, this result shows
that the PSO algorithm can act as an alternativeinigaialgorithm for Grey
model that can be used for thermal error compensation.

Consequently, thisgper develops a simple, less computationaitgnsive
and lowcost approachased on Grey model and PSO algorithm to predict the
thermal error compensation on CNC machine tololghis work, this model
has beemsed for predictiof the thermal erroof a relatively simple structure
with only a few calibrating samplesHowever, further work is required to
validatethe proposed modalsing disparate cycles on multiple machines

7

° —o— Spindle boss

—&— Spindle Motor
—6—Z axis motor "bolt1"

Temperature change ‘c
w
T
]

—=— Carrier sensor "12"
- o —¥—Z axis motor "bolt2"

i 7 Carrier sensor "11"
—+—Carrier sensor "10"
—+— Ambient column top
—— Ambient column bottom

M

100 150 200 250 300
Time/min

Figure2: Measured temperature variation (mod@luts).
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Figure3: GMC(1, N) model output vs the actual thermal drift.
5 Conclusions

In this paper,a PSGbased Grey prediction model for thermal error
compensatiof a small vertical milling centre (VMC) is present&avo main
findings have been addressed in this paper. First of all, the opgimpétature
sensors were determined through the GRA model. After calculatieg th
similarity degrees between the thermal error and the temperature sensors, 0
sensor from each group is selected according to its similarity degree with th
thermal distortion.The number of requiredtemperature sensonwas thus
reduced fromtwenty eight to ning which significantly minimised the
computational time, cost and effect of sensmrcertainty. Secondly, e
comparison between experimentaisultsand predicted values of the Grey
modelshowthat there is an excellent agreement between the predicted thermal
error and the experimental results withsidualerror of 4 pm. The results of

this paper show that the PSO technique can act as an alternative calibration
algorithm for Grey models that can be used for thermal error compensation
Further work is required twalidate the model using disparate cycles on
multiple machines.
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