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DYNAMICS OF MISTUNED RADIAL TURBINE WHEELS 
 

X Sheng, DC Clay and J Allport 

Holset Engineering Co Ltd, St Andrew’s Road, Huddersfield, HD1 6RA, England 

 

This paper presents investigations carried out at Holset into the dynamics of mistuned 

radial turbine wheels, including a literature review, a lumped parameter model, 

identification of the most responsive blade, distribution of the peak maximum order 

response and a method of mistuning identification. 

 

INTRODUCTION AND A LITERATURE REVIEW 

 

Mistuning in bladed wheels is the phenomenon of random and unavoidable blade-to-

blade variations in geometry and material due to the casting process of the wheels. A 

mistuned wheel may exhibit vibration localisation and amplification, in which few 

blades have responses much greater than those of other blades and the tuned response. 

These mistuning effects not only significantly reduce the high cycle fatigue (HCF) life 

of the wheel, but also make it difficult to predict and measure the representative 

response. 

Mistuning has been studied for over 30 years. Mistuning may be investigated from a 

statistical point of view due to its random nature. In stochastic structural dynamics, 

efforts have been made to use the perturbation method to establish analytical 

relationships between probability density functions of random parameters in a structural 

dynamic system and those of the required outputs (e.g. natural frequencies and forced 

responses) [1, 2]. Perturbation method requires no natural frequency of the unperturbed 

(tuned) system is repeated. This is not the case for a tuned bladed wheel. An alternative 

to this approach is to derive a much reduced (compared to a conventional finite element) 

model of high computational efficiency with part of the model parameters being random 

variables. The distributions of the random parameters are estimated from measurement 

and statistical results are produced from the reduced model by performing a large 

number of calculations. Different techniques have been developed to produce a reduced 

model. Refs [3, 4 and 5] represent a mistuned system using a lumped parameter model 

consisting of masses and springs. Such a model has a high computational efficiency but 

is difficult to capture vibration of high modes. Refs [6, 7 and 8] model a mistuned 

system using the component mode synthesis technique in which the first few modes, 

which are produced using FEM, of each component (substructure) of the system are 

employed to approximate vibration of the whole system. In addition to the sub-

structural modes of a mistuned system, modes of the corresponding tuned system have 

also been used to synthesise the vibration of the mistuned system [9]. Other efficient 

modelling approaches are also attempted [10, 11]. 

Though statistics may be performed using a reduced model, mistuning identification 

for individual mistuned wheels is still desirable. Mistuning is identified normally from 

some, often inadequate, measured data, leaving the problem indeterminate. To obtain a 

set of unique parameters, extra conditions must be assumed. Two mistuning 

identification methods are suggested in Refs [12] and [13] in which blades are 

represented by multi-mass-spring systems coupled with each other and the hub (disk) is 

rigid and fixed. The first, termed the random modal stiffness approach (RMS), assumes 

mistuning exists in the stiffness matrices of the blades only and the mistuned modal 

shapes are not significantly different from the tuned ones. Under such conditions, the 

mistuned stiffness matrix of a blade can be determined straightforwardly by measuring 



all the mistuned blade frequencies (not the bladed disk system frequencies). The second 

is termed the maximum likelihood approach (ML). In this approach, both the mass and 

stiffness matrices of a blade are allowed to be mistuned. By assuming a joint probability 

density function for the stiffness and mass matrices, the mistuned mass and stiffness 

matrices are estimated under the condition that they give the measured blade 

frequencies while at the same time make the probability density function maximum. It 

is illustrated that the ML approach works better than the RMS approach in terms of the 

mean and standard deviation of the maximum forced vibration of the blades subject to 

order excitations. The difficulty in using the ML approach is how to choose correctly 

the type of the joint PDF and its parameters. It is also the fact that this method is based 

on the blade alone frequencies which may not be measurable for turbocharger turbine 

wheels since the blades cannot be removed from the hub. 

Another mistuning identification method, presented in Refs [14] and [15], is based 

on the fundamental mistuning model developed in Ref [11]. There are four assumptions 

in the fundamental mistuning model: a) only a single, isolated family of modes will be 

excited; b) the strain energy of that family’s modes is primarily in the blades; c) the 

family’s natural frequencies are closely spaced; and finally d) mistuning is small. There 

is another assumption in the model which has not been stated explicitly: modes in this 

family can be approximated by a weighted sum of a number of tuned modes. To 

identify mistuning, the mistuned frequencies and modal shapes of that family must be 

measured. Once the mistuning is determined, the model can be used to predict responses 

to order excitations which mainly excite that family of modes. In other words, the 

excitation frequency must be close to the average of the frequencies of that family of 

modes. The challenge of using this method lies in accurate measurement of the 

mistuned modal shapes. This is true because the natural frequencies are closely spaced.   

Mistuning effects such as vibration localisation and amplification are demonstrated 

in some of the aforementioned Refs [e.g. 8] using the developed model. It is found that 

mistuning effects are particularly prominent near the so-called veering of the 

corresponding tuned system. Though the veering phenomenon is to be explained, the 

vibration localisation phenomenon is interpreted in a review paper [16] using the 

stability theory. It is numerically demonstrated in Ref [17] that intentional mistuning 

may be used to depress some of the negative effects of the random mistuning. Though 

effort is made in [17] to explore the mechanism of intentional mistuning, a satisfactory 

explanation has not yet been achieved. A possible route to this may be the use of 

singular value decomposition, as shown in Ref [18].  

It should be realised that previous research is mainly concerned with aero engine 

turbofans and only a little is on small radial flow turbines such as those in Holset 

turbochargers. Small radial flow turbines exhibit different dynamic behaviour from 

large aero turbofans and the effect of mistuning on the former is expected to be also 

different. It is also the fact that previous research has not considered the effect of 

centrifugal and Goliolis forces generated from the wheel rotation. 

 

A SIMPLE MODEL FOR RADIAL TURBINE WHEELS 

 

FE modal analysis 

 

For a cyclically symmetric structure consisting of N identical sectors, vibration modes 

can be grouped by the nodal-diameter (ND) number n, where 2/,2 ,1 ,0 Nn L=  if N is 

even or 2/)1(,2 ,1 ,0 −= Nn L if N is odd. In terms of a cylindrical coordinate system, 

the mode shapes, r
u and 1+r

u , of the rth and )1( +r th sectors are related by 



rNinr
e uu

/21 π=+  for the n-ND modes [19], where 1−=i . This shows a travelling wave 

pattern which extends to all the sectors. A natural frequency associating with a nodal-

diameter number different from zero and 2/N (where N is even) repeats itself. 

Mistuning in general invalidates these modal properties. 

To assist the development of a simple, lumped parameter model so that some 

investigations can be performed, natural frequencies and modal shapes are calculated 

using Ansys Workbench for a 12-blade turbine wheel (Fig 1). In the calculation the 

shaft is cut off from the weld boss and the weld boss is constrained in the axial 

direction. The calculated natural frequencies at 21°C are listed in Table 1 excluding the 

three zero-frequencies of rigid modes. The first two modes are 1-ND modes in which 

the hub rocks about a weld boss diameter. The frequencies of these two modes are 

denoted by πω 2/11 TTf = . Frequencies of the third to eleventh modes correspond to 

nodal-diameter numbers from 2 to 6. They are close to each other (within 10 Hz, as the 

FE mesh gets finer, the discrepancies between these frequencies becomes smaller). 

These frequencies associate with modes in which the blades vibrate almost 

independently of each other and the hub stays motionless. This suggests that in these 

modes couplings between blades are weak and negligible. The average of these 

frequencies may be taken to be the first (cantilevered) blade frequency, denoted 

by πω 2/BBf = . The twelfth mode, its frequency denoted by πω 2/RRf = , is the first 0-

ND mode in which the hub rotates like a rigid body and the blades vibrate in-phase and 

at the same amplitude. The next two modes are still 1-ND modes and the frequencies 

are denoted by πω 2/22 TTf = . Further higher modes (e.g. the 15
th

 and 16
th

 modes in the 

table) have much higher frequencies and are not interested in this study. 

 

Table 1 Natural frequencies of a 12-blade turbine wheel 

Modes Frequency (Hz) Modes Frequency (Hz) 

1 (1-ND) 5725 9 6430 

2 (1-ND) 5725 10 6430 

3 6423 11 6433 

4 6423 12 (0-ND) 6748 

5 6425 13 (1-ND) 6940 

6 6425 14 (1-ND) 6940 

7 6427 15 11510 

8 6427 16 11510 

     

  
 

Figure 1 A turbine wheel and its lumped parameter model 
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A lumped parameter model 

 

The FE calculation suggests that, for excitation at frequencies around or less than the 

blade frequency the wheel may be modelled as a rigid disk connecting a number of 

point masses through springs, as shown in Figure 1. The jth blade is represented by 

mass, jm , connected to the disk by a spring of stiffness jk , where Nj L 2, ,1= . The 

position connecting the spring at the disk is described by the radius R and 

angle jα measured from the x-axis. The disk is described by mass M and inertial 

moment J. The disk is subject to stiffness, xk and yk , which model the rocking stiffness 

of the hub, and torsional stiffness, θk , from the shaft. Blade masses are restrained to 

vibrate in directions tangential to the disk periphery, so that the model has N + 3 degrees 

of freedom. The displacement of jm  relative to the disk is denoted by jx . Displacement 

relative to the hub is used since it is proportional to the strain/stress in the blade. The 

displacements of the mass centre of the disk in the x- and y-directions are denoted by x 

and y and the vibrational rotation angle of the disk byθ . Without considering the 

spinning of the wheel, the differential equation of the model can be written as  

QKqqM =+&&           (1) 

where, 
T

Nxxxyx ),,,,,,( 21 Lθ=q         (2)  

Q denotes the generalised force vector, 3,2,1,)( +== Njiijm LM and 3,2,1,)( +== Njiijk LK  are 

mass and stiffness matrices with none-zero elements given by, 
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where 3,,5,4 += Nj L . 

For the nth order excitation at frequencyω and of unit amplitude, the jth blade mass 

is subject to a force defined by tiin
ee j ωα

. Thus in equation (1), tie ωQQ
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Determination of model parameters for a tuned wheel 

 

For the model shown in Fig 1 to be equivalent to a real bladed disk, the model 

parameters must be determined correctly. The blades may to assumed to be uniformly 

spaced, therefore jα is given by  

N
jj

πα 2)1( −=   ),2,1( Nj L=        (5) 

The torsional stiffness of the shaft, θk , may be estimated from the shaft dimensions and 

material properties. For a tuned wheel in which the blades are identical to each other, 



there are only six parameters to be determined, which are M, J, R, yx kk = , 

jkk =1 and jmm =1 )3,2( Nj L= .  

To determine them, natural frequencies of the 0-ND and 1-ND modes of the lumped 

parameter model and the blade frequency are derived. They must be equal to the 

counterparts from the FE model and this gives four conditions for parameter 

determination. Now at each blade mass, a unit harmonic force at frequencyω  is applied 

in the tangential direction. The displacement amplitude of the blade mass, observed 

from the ground, can be derived. A forced vibration FE analysis is performed under the 

same loading condition, i.e. a unit harmonic force at frequencyω  is applied at each 

blade tip in the direction normal to the blade surface. From the analysis the normal 

displacement amplitude, 1A , of the blade tip can be worked out. The displacement 

amplitudes from the two models are equalised to provide the fifth condition. Finally a 

torque of unit amplitude and frequencyω  is applied at the disk and the displacement 

amplitude of the blade mass observed from the ground is derived. This amplitude must 

be equal to the blade tip normal displacement amplitude, 2A  of the FE model under the 

same excitation, so that the sixth condition is produced. From these six conditions it can 

be shown 
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BR
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i.e. the 0-ND modal frequency is higher than the blade frequency. 

 

DETERMINATION OF THE MOST RESPONSIVE BLADE 

 

The displacement of a blade relative to the hub due to an order excitation is termed the 

order response which is proportional to the strain/stress in the blade. For a tuned wheel, 

the blades produce the same order response. This is not true for a mistuned wheel. There 

must be a blade experiencing the maximum order response of all the blades. As 

excitation frequency changes the maximum order response changes as well and may 

occur at a different blade. The maximum of the order responses of all the blades over all 

the excitation frequencies is termed the peak maximum order response (PMOR). It is 

important to determine which blade has the PMOR. If parameters of a mistuned wheel 

are completely known, a simple calculation can give the answer. Thus mistuning 

identification is practically important and will be dealt with below. An alternative is to 

use statistics. If a blade with a particular feature has a high probability (e.g. more than 

90%) of having the PMOR and this feature can be easily identified, then the most 

responsive blade can be practically labelled. To do so, blades in a wheel must be 

numbered according to the blade feature. Blades from different wheels have the same 

number if the blades possess the same feature.  



To number the blades of a mistuned wheel, measurement is performed for the tip-to-

tip frequency response function matrix, denoted by )(
~ ωH , where, ω  is the radian 

frequency. This is a NN × matrix and is constructed from the normal displacements of 

the blade tips observed from the ground due to a unit normal point force at the same or 

another blade tip. Responses of the blades, denoted by )(ωe
q  and calculated from 

TinininTe

N

eee Neeeqqq ),,)((
~

))(~),(~),(~()(~ 21

21

αααωωωωω LL Hq ==    (10) 

are termed the experimental order responses of the blades subject to the nth order 

excitation. Due to the vibration of the hub, an experimental order response is in general 

different from the corresponding order response which is observed from the hub. The 

maximum of the experimental order response of a blade over a frequency range is then 

determined and compared to those of other blades. Blades are then numbered based on 

their maximum experimental order responses: the higher the maximum experimental 

order response is, the lower is the blade number.  

Based on this blade numbering method and the lumped parameter model, 

calculations are carried out for a large number (3000) of mistuned wheels to produce the 

occurrences for a blade to have the PMOR. The corresponding tuned wheel is the one 

shown in Fig 1 and Table 1. A loss factor of 0.005 is estimated for material damping. 

Mistuning is described by random blade frequencies which follow a normal distribution 

with the mean being 6427 Hz and the standard deviation 170 Hz. The probability of a 

blade to have the PMOR is shown in Fig 2 for five (the 4
th

, 5
th

, 6
th

, 7
th

 and 8
th

) excitation 

orders. It can be seen that the No. 1 blade has more than 95% probability to have the 

PMOR. In other words, the blade having the peak maximum experimental order 

response almost certainly has the PMOR. It must be addressed that, the blade having the 

PMOR usually changes as the excitation order changes.  
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Figure 2 Probability of a blade to have the peak maximum order response 

 

DISTRIBUTION OF THE PEAK MAXIMUM ORDER RESPONSE 

 

Fig. 3 shows the PMOR of the 3000 wheel samples. To determine which distribution 

best fits the PMOR realisations, probability plots are produced using Minitab for a 

number of distributions. It is assumed that for any mistuned wheel, the frequency at 



which the PMOR occurs will be excited at a 100% chance. This indicates that statistics 

should be performed for the PMOR against mistuned wheel samples. It is found two 

distributions fit the data well: the 3-parameter lognormal distribution (Fig. 4 for the 4
th

 

order excitation and a factor of 1×10
-6 

has been dropped) and the 3-parameter Gamma 

distribution (not shown here). The 3-parameter Weibull distribution is not a good fit, 

though it has been suggested for aero engine turbofan in some publications [e.g. 8].  
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Figure 3 Peak maximum order responses of the wheel samples 
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Figure 4 Probability plots for the peak maximum 4
th

 order responses of the wheel samples: 

3-parameter lognormal 
 

MISTUNING IDENTIFICATION 

 

The FE equation of motion of a mistuned bladed wheel may be written as   
ti

e
ω

QqKKqMM
~

)()( =∆++∆+ &&        (11) 



where, matrices M and K represent the tuned mass and stiffness matrices while 

M∆ and K∆ denote mistuning in mass and stiffness. The order of the equation is 

reduced by expressing mistuned vibration in terms of a number of N tuned modes, i.e.  
titi

N ee
ωω Φββφφφq == ][ 21 L        (12) 

where, ][ 21 NφφφΦ L= is a matrix formed by the tuned modes and β is the weight 

vector. An assumption has been made here that the mistuned vibration is still within the 

sub-space spanned by these tuned modes. Substituting Eq. (12) into (11) and pre-

multiplying HΦ , yields 

QΦβKΦΦKβMΦΦM
~

)()( **2 HHH =∆++∆+−ω     (13) 

where *
M  and *

K are diagonal matrices formed by the modal mass and stiffness of the 

tuned system. If mass and stiffness matrices mistuning (i.e. MΦΦ ∆H and KΦΦ ∆H ) is 

known, then forced vibration can be determined by solving this equation.  

To identify mistuning, use is made of the tip-to-tip frequency response 

matrix, )(
~ ωH , defined above. Define the force vector of an order excitation: 

titiT

N eeFFFt ωω FF
~

)
~

,
~

,
~

()( 21 == L        (14) 

in which the forces are applied at the blade tips and normal to the blade surfaces. The 

global force vector, Q
~

, in Eq. (13) can be generated accordingly. The normal 

displacement amplitudes of the tips due to this order excitation can be calculated using 

FHq
~~~ =e           (15) 

where, Te

N

eee
qqq )~,~,~(~

21 K=q is the vector of the normal tip displacement amplitudes.  

According to Eq. (12), the tip displacement vector, T

sss wvu ),,( of the sth  blade, is 

given by 
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where, )(

2
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1 , s

m

s

m ϕϕ  and )(

3

s

mϕ  are the x-, y- and z-components of the tip displacement of the 

s
th

 blade in the mth tuned mode. If the directional cosines vector of the tip normal is 

denoted by sa~ , then from Eq. (16) 
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In Eq. (17), the term on the left hand side is e

sq~ . Denoting  
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then Eq. (17) becomes 

e

s

N

m

msm qa ~

1

=∑= β , or e
qAβ ~=         (19) 

from which β  can be virtually expressed as  

FHAqAβ ~~~ 11 −− == e          (20) 

Using Eq. (20), β  can be calculated for different excitation frequencies and orders. 

Two excitation frequencies, 1ω  and 2ω , are chosen so that )(
~

1ωH  and )(
~

2ωH  are 

regular matrices. Let 
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where, Nj L2, ,1=  and jr  is a number which may or may not be an integer. The 

orders, jr , should be chosen in such a way that the matrix ]
~

,
~

,
~

[ 21 NFFF L  is regular. The 

corresponding global force vector is denoted by )(
~

1ωjQ  for the first excitation 

frequency and )(
~

2ωjQ  for the second. Two NN ×  matrices thus can be formed 
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They are regular matrices. Inserting Eq. (22) into (13) yields equations from which 

MΦΦ ∆H and KΦΦ ∆H  can be determined { }1
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Now Eq. (13) can be used to predict order responses of the blades in a mistuned 

wheel. Example calculations (not presented here due to page limit) show that the 

mistuning identification method is able to produce accurate order response predictions 

for frequencies around and below the blade frequencies. 

 

CONCLUSION 

 

This paper presents research performed at Holset into the dynamics of mistuned radial 

turbine wheels. Based on FE analysis, a simple lumped parameter model is developed 

for mistuned turbine wheels. Using this model, it is shown that the blade having the 

peak maximum experimental order response will at a probability of more than 95% 

have the peak maximum order response, thus the most responsive blade in a given 

wheel can be practically identified for stain gauging. Peak maximum order responses of 

mistuned turbine wheels are found to follow the 3-parameter lognormal distribution or 

3-parameter Gamma distribution, rather than the Weibull distribution. A mistuning 

identification method is also proposed based on the tip-to-tip frequency response 

function matrix and this method is shown to produce accurate order response 

predictions.  

It should be pointed out that the effect of wheel rotation and temperature has not yet 

been considered. This must be one of the topics of further work since turbocharger 

rotors run at very high speeds and the turbine wheels are driven by high temperature 

gases. Further work will also be directed to other aspects: for example, the mechanism 

making a tuned wheel so sensitive to small mistuning, designs of intentional mistuning 

and explanation of the veer phenomenon, etc. 
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