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Abstract 

 

Molybdo-flavoenzymes (MFEs), aldehyde oxidase (AOX) and xanthine 

oxidoreductase (XOR) are involved in the oxidation of N-heterocyclic compounds 

and aldehydes, many of which are environmental pollutants, drugs and vitamins. 

This biotransformation generally generates more polar compounds that are more 

easily excreted, thus MFEs have been classed as detoxication enzymes. 

To date there has been scant study of the properties, substrate and inhibitor 

specificities of MFEs in non-mammalian vertebrate organisms. This investigation 

focuses on MFEs in rainbow trout (Oncorhynchus mykiss) as it belongs to a class of 

fish that host a single AOX (AOX ) and one XOR. 

In this study the substrate specificity of rainbow trout liver AOX and XOR was 

investigated using HPLC and spectrophotometric assays. AOX in hepatic cytosol 

was found to be able to catalyse the oxidation of azanaphthalenes belonging to a 

group of compounds that are environmental pollutants such as phenanthridine, 

phthalazine and cinchonine. In addition, xenobiotic aromatic aldehydes (vanillin 

and dimethylaminocinnamaldehyde) and drugs such as allopurinol and 

pyrazinamide were substrates. Several endogenous vitamins including pyridoxal 

(vitamin B6), all-trans retinal (vitamin A) and N1-methylnicotinamide were also 

biotransformed by the rainbow trout AOX. In contrast to liver no AOX activity was 

detectable in kidney and gill tissue. XOR activity in rainbow trout liver was 

measurable with the endogenous purine xanthine, purine drug metabolites (1-

methylxanthine and 6-thioxanthine) and N-heterocyclic drugs (allopurinol and 

pyrazinamide). Unlike mammalian XOR that can utilise both NAD+ and O2 as 
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electron acceptors, trout XOR was exclusively NAD+-dependent with no activity 

being detected with O2.  

Eadie-Hofstee plots were using to determine the Km and Vmax of rainbow trout 

AOX and XOR with different substrates and it was found the Vmax of the rainbow 

trout enzymes were generally lower and Km generally higher than mammalian 

AOX and XOR. 

Inhibitors of mammalian AOX were tested to determine if they could interact with 

the piscine AOX. Environmental pollutants (17α-ethinyl estradiol and 

phenanthridine), an endogenous steroid (estradiol) and drugs (chlorpromazine and 

menadione) were found to be effective inhibitors and were classed as competitive, 

non-competitive and uncompetitive respectively using Lineweaver-Burk plots. The 

drug metabolite, oxipurinol, was a non-competitive inhibitor of rainbow trout XOR. 

In order to further characterise trout AOX protein purification was carried out. In 

contrast to mammalian AOX, the piscine enzyme was not thermotolerant at 55°C 

nor was it inhibited by benzamidine, thus heat treatment and affinity 

chromatography could not be used as a purification steps. Trout AOX was purified 

210-fold using ammonium sulphate fractionation, together with ion exchange and 

gel filtration chromatography. The native molecular mass of the piscine AOX was 

295 kDa, which is similar to mammalian AOXs. 

In conclusion this study yields new insight into groups of anthropogenic 

environmental pollutants, drugs and vitamins that are substrates and inhibitors of an 

ancestral vertebrate AOX. The toxicological relevance of these findings is 

discussed.  
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1. Introduction.  

The term used to describe the chemical substances which are foreign to animal life 

is xenobiotics. These chemical substances include drugs,cosmetics,food additives, 

environmental pollutants, pesticides, flavouring fragrances and industrial 

chemicals(Idle and Gonzalez. 2007).Many of these chemical substances access our 

bodies by the diet, atmosphere, drinking water and drug administration. These 

substances go through a broad varieties of processes of detoxication of which 

generally generate compounds that are much less toxic, much more polar, and also 

quickly excretable (Timbrell. 2009). Of these processes oxidation has an important 

purpose in the metabolism of such xenobiotics. The microsomal cytochrome P-450 

mono-oxygenase plays an important role in this biotransformation process; 

however the cytosolic enzymes are also involved in this biotransformation process. 

This thesis is concerned with two cytosolic molybdo-flavoenzymes (MFEs), 

namely aldehyde oxidase (AOX; EC 1. 2. 3. 1) and xanthine oxidoreductase (XOR; 

EC 1. 2. 3. 2). In mammals the second of these enzymes, XOR, exists as two forms 

xanthine dehydrogenase (XDH; EC 1. 17. 1. 4) and xanthine oxidase (XO; EC 1. 

17. 3. 2) that are derived from a single gene and both have identical primary amino 

acid sequence. The native dehydrogenase form that uses NAD+ as an electron 

acceptor can be converted to the XO form that uses O2 as an electron acceptor by 

cysteine oxidation or limited proteolysis (Nishino and Nishino. 1997, Nishino et al., 

2008). The change from the XDH to the XO form is associated with a 

conformational change in protein structure that prevents the bulky NAD+ from 

entering the electron acceptor binding site while the smaller oxygen can enter this 

site (Nishino and Nishino. 1997, Nishino et al., 2008). The conversion of XDH to 

XO has only been demonstrated in mammalian species that have specific cysteines 
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(e.g in rats XDH has cysteine 535 and cysteine 992) and lysines (e.g in rats XDH 

has lysine 754 and lysine 771) that are the site of proteolytic cleavage. The 

conversion of XDH to XO in vivo that result in the enzyme using molecular oxygen 

as electron acceptor results in oxygen free radicals being generated which have 

been shown to be responsible for protein damage, DNA mutation and cell 

membrane disintegration linked with many diseases such as cancer, liver damage 

and cardiovascular disease  (Nishinaka et al., 2001). These enzymes are present in 

almost all organisms from bacteria to human (Beedham. 2001, Garattini et al., 

2008, Garattini et al., 2009, Pryde et al., 2010, Garattini and Terao. 2011, Garattini 

and Terao. 2012, Hartmann et al., 2012, Kurzawski et al., 2012, Garattini and 

Terao. 2013). 

1.1. Molybdo-flavoenzyme structure 

Both MFEs enzymes, AOX and XOR, are composed of molybdenum cofactor 

(MoCo), one flavin adenine dinucleotide (FAD) and a pair of non-identical metal 

sulfur centers [2Fe-2S] (Palmer et al., 1969, Nishino. 1994, Borges et al., 2002, 

Nishino et al., 2002, Garattini et al., 2008, Pryde et al., 2010, Garattini and Terao. 

2011, Garattini and Terao. 2012, Garattini and Terao. 2013). Molybdo-

flavoenzymes are homodimers as active forms and are composed from a pair of 

identical subunits of approximately 150 kDa (Figure 1). Their structure is split into 

three distinct domains as follows: an 85 kDa C-terminal domain that include Moco 

along with the substrate binding site, and an N-terminus that includes a 20 kDa 

domains with a couple of [2Fe-2S] clusters, and a 45 kDa flavin adenine 

dinucleotide (FAD) joining domain (Kisker. 1997, Hille. 2005, Mendel and Bittner. 

2006a, Wollers. 2008, Garattini and Terao. 2012, Garattini and Terao. 2013, 

Mendel. 2013). 
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Domain
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FAD
Domain

MoCo Domain

 

Figure 1: The domain structure of the AOX and XDH enzyme family. 

 
The N-terminus domain binds the two Fe2S2 clusters, the center domain include the FAD binding 
site and the C-terminus domain is the location of this Mo-pterin cofactor (Mendel and Bittner. 
2006a, Mendel. 2013). 
 
 
 

The crystallization of mammalian molybdo-flavoenzymes has provided much 

information about the domain structure of molybdo-flavoenzymes (Romao et al., 

1995, Enroth et al., 2000, Truglio et al., 2002, Pryde et al., 2010, Mahro et al., 

2011, Coelho et al., 2012, Garattini and Terao. 2012, Kikuchi et al., 2012, Garattini 

and Terao. 2013, Mendel. 2013). Both bovine XO and XDH have been determined 

by X-ray crystallography to be separated into three sub-domains. The first sub-

domain (residues 1-165) at the N-terminus has a pair of iron-sulphur cofactors. It is 

linked to the FAD binding domain (residues 226-531) by a long portion connected 

with amino acids (residues 166-225) to another linker portion (residues 532-861) 

this then links to a specific sub-domain containing on the molybdenum cofactor 

(residues 590-1,332), which is located close to the interfaces of the FAD binding 

domain and the iron sulphur(Enroth et al., 2000, Kikuchi et al., 2012). 
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1.2. Molybdenum cofactor and the catalytic mechanism of 
molybdo-flavoenzymes 
 

Molybdenum itself is biologically inactive unless bound to a tricyclic pterin 

compound where it then forms molybdenum cofactor (Moco) (Figure 2). Moco is 

situated at the active site of AOX and XOR(Mendel and Bittner. 2006b). The pterin 

structure coordinates to the molybdenum metal by an enedithiolate side chain 

(Hille. 2005). The molybdo-flavo enzymes, AOX and XOR, contain an active site 

that is believed to be in a five-coordinate complex with two enedithiolate ligands of 

the molybdopterin cofactor, one oxo group, one sulfide group, and one hydroxyl or 

water molecule. This coordination results in a square pyramidal geometric structure 

and is the site for substrate binding and enzyme inhibition (Brondino et al., 2005 ). 

Mo

H

H

H

HH2N
-

OH

 

Figure 2: Molybdenum Cofactor structure in molybdenum enzymes. 

The active site structure is attached with the pyranopterin compound through two enedithiolate side 

chains (green colour) to produce the molybdenum cofactor. Based on Mendel, 2013. 
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The molybdenum cofactor’s purpose is to transfer electrons out of the molybdenum 

center following the oxidation reaction has taken place. This results in the reduction 

of molybdenum from Mo (VI) to Mo (IV) (Hille. 2005, Okamoto et al., 2013). The 

movement of electron flow in MFEs is shown in (Figure 3), in which the Fe/S I and 

Fe/S II are a pair of iron-sulfur center.  

Mo-pterin Fe/SIIFe/SI FAD

Electron movement  

Figure 3: The movement of electron flow out from the molybdenum center of molybdo-
flavoenzymes. According to Okamoto et al., 2013. 

 

 

The molybdo-flavoenzymes AOX and XOR exhibit two types of reactions at the 

same time involving the molybdenum cofactor, oxidative and reductive half 

reactions. The oxidative half reaction at the molybdenum site, and the reduction 

half reaction at the FAD site are shown in (Figure 4) (Calzei et al., 1995, Hille and 

Nishino. 1995, Nishino and Okamoto. 2000, Okamoto et al., 2004, Hille. 2005, 

Brondino et al., 2006, Kitamura et al., 2006, Pryde et al., 2010, Okamoto et al., 

2013). Electron donors such as vanillin act at molybdenum site, reducing it from 

Mo (VI) to the Mo (IV) state. The reducing equivalents transfer directly to the FAD 

site or via the iron-sulfur center as shown in (Figure 5)(Calzei et al., 1995, Hille 

and Nishino. 1995, Beedham. 1998, Kitamura et al., 2006, Beedham. 2010).  

The reduction half reaction takes place at the FAD site, and the enzyme is 

reoxidized by interaction with oxygen in case of AOX and XO or with NAD+ in 

case of XDH, and FADH2 is reduced into FAD. The reduction of oxygen leads to 

formation of superoxide anion and hydrogen peroxide, and these two products 
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damage the cell, but the cell itself has an enzyme to protect from this attack; for 

superoxide anion the enzyme superoxide dismutase and for hydrogen peroxide the 

enzyme hydrogen peroxidase (Kelley et al., 2010). XDH displays partial oxidase 

activity under conditions in which NAD+ levels are diminished, such as the 

ischemic/hypoxic microenvironment encountered in vascular inflammation (Harris 

and Massey. 1997). This same inflammatory milieu leads to enhanced XO levels 

and thus increased XO-derived ROS formation, resulting in activation of 

redoxdependent cell signaling reactions and alterations in vascular function, and 

reduction of NAD+ leads to formation of NADH and H+. In the presence of an 

alternative electron donor, MFEs can mediate the reduction of various compounds 

such as in my example, it reduced the fenthion sulfoxide to its reduced form 

fenthion as shown in (Figure 4) (Kitamura et al., 2003, Okamoto et al., 2004, Hille. 

2005, Kitamura et al., 2006, Beedham. 2010, Pryde et al., 2010). These enzymes 

can be alternately reduced by the substrate after which re-oxidised by their 

individual electron acceptors at the FAD site. In vitro, potassium ferricyanide and 

2, 6-dichloroindophenol (DCIP) have proven to be effective unnatural electron 

acceptors for these enzymes that it can be reduced at FAD site (Figure 4) 

(Krenitsky et al., 1972, Beedham. 1985, Slef and Stadtman. 2000, Kitamura et al., 

2006).   

 

 

 



7 

 

O2
.--

Vanillin
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Figure 4: Oxidative and reduction half reaction and electron flow out from the 
molybdenum center of molybdo-flavoenzymes. 

According to (Hille and Nishino. 1995, Nishino and Okamoto. 2000, Okamoto et al., 2004, 
Beedham. 2010, Okamoto et al., 2013). 
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The mechanism of AOX and XOR inhibitors was proposed by Fridovich and 

Handler. (1962),  Rajagopalan and Handler ( 1962, 1964 and 1968)  and Beedham 

C (1987) that suggest 4 electrons carriers in molybdenum center of rabbit hepatic 

AOX and XOR are responsible for the mechanism and reaction with artificial 

electron acceptors. These studies demonstrated that ferricyanide, methylene blue, 

phenazine methosulphate react at the iron sulphur cluster and 2, 6 dichlorophenol-

indophenol (DCPIP) at near to the molybdenum cofactor and that dyes nitroblue 

tetrazolium (NBT), trinitrobenzensulfonic acid and dimethylthiazol-

diphenyltetrazolium bromide (MTT) react at the FAD site. Cytochrome c and with 

oxygen in addition to NAD+ also react at the FAD center as in seen (Figure 5) 

(Fridovich and Handler. 1962, Rajagopalan et al., 1962, Rajagopalan and Handler. 

1964a, Rajagopalan et al., 1968, Beedham. 1987).  

 

 

Figure 5: Postulated linear electron transfer sequence and site of electron egress to 
acceptors. Red colour indicates artificial electron acceptor and blue colour indicates natural 

acceptors. 
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In molybdo-flavoenzymes reactions the oxygen atom used in the hydroxylation 

reaction of the carbon center of substrates containing N-heterocycle or aldehyde 

functional groups is derived from water molecule rather than that from oxygen (O2) 

itself as shown in (Figure 6) (Hille. 2005). 

AOX

XOR
R-    H   +   2H+  +   2e-R- H   +   H2

Substrate Water 

Molecule

Oxidized

Substrate

Protons Reducing 

Equivalents
 

Figure 6: Oxidation reaction by molybdo-flavoenzymes AOX and XOR. 

Oxidation reaction catalyzed by molybdo-flavoenzymes AOX and XOR generating an oxidized 
substrate and also two reducing equivalents (Hille and Sprecher. 1987, Xia et al., 1999, Beedham. 
2001, Hille. 2005, Brondino et al., 2006, Okamoto et al., 2013). 

 

 

An example of an aldehyde substrate (vanillin) and its corresponding metabolite a 

carboxylic acid (vanillic acid) is shown in Figure 7, while another example for an 

N-heterocycle (1-methylxanthine) and its corresponding metabolite a uric acid (1-

methyluric acid) is shown in Figure 8. 

Vanillic acidVanillin

H

H

H

H

CH3 CH3

O
AOX

H2 2H+ 2e-

Water
 Molecule

Protons Reducing
Equivalents

 

Figure 7: Oxygen atom transfer reaction molybdo-flavoenzyme involving an aldehyde. 

 
The oxygen incorporated into the vanillic acid is from a water molecule. According to (Obach. 
2004, Arnaud. 2011). 
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CH3
CH3

H
H

H

1-methylxanthine

O

H
H

  

XO

1-methyluric acid

H2 2H+ 2e-

 

Figure 8: Oxygen atom transfer reaction molybdo-flavoenzyme involving an N-
heterocycle 

The oxygen incorporated into the 1-methyluric acid is from a water molecule. According to (Obach. 
2004, Arnaud. 2011). 

 

1.3. Substrate specificity of aldehyde oxidase and xanthine 

oxidoreductase 

Many different aliphatic compounds such as aromatic aldehydes and also N-

heterocyclic compounds are substrates for AOX and XOR that are biotransformed 

to their carboxylic acid or hydroxylated N-heterocyclic metabolites (Beedham. 

2001, Garattini et al., 2003, Garattini et al., 2008, Garattini and Terao. 2011, 

Garattini and Terao. 2012, Garattini and Terao. 2013). Although the class of 

substrates of MFEs are similar in their structure, AOX and XOR differ in inhibitor 

response as well as substrate specificity (Krenitsky et al., 1986, Beedham. 2001, 

Kitamura et al., 2006, Mendel and Bittner. 2006a, Kundu et al., 2007, Beedham. 

2010, Pryde et al., 2010, Garattini and Terao. 2012, Garattini and Terao. 2013). A 

list of AOX and XOR substrates that illustrate the substrate specificity of the two 

enzymes are given in Table 1, many of which were utilised in the study detailed in 

this thesis. 
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Table 1: Examples of mammalian molybdo-flavoenzyme substrates 

Substrates AOX XOR References 

Allopurinol 
(hyperuricemia drug) 

++ +++++ 

(Krenitsky et al., 1972, Krenitsky et al., 
1986, Reiter et al., 1990, Yamamoto et al., 
1991, Beedham. 2001, Garattini and Terao. 
2011, Garattini and Terao. 2012, Garattini 

and Terao. 2013) 
Azaarenes  

(phenanthridine, 
phthalazine** , acridine, 

quinoline, isoquinoline, 1-
hydroxyisoquinoline, 3-
hydroxyisoquinoline, 

quinoxaline, quinazoline and 
cinnoline) 

 Environmental pollutants 

+++++ 
- 

++** 

(Sorouraddin et al., 2009, Garattini and 
Terao. 2011, Garattini and Terao. 2012, 
Rashidi et al., 2013), (Beedham et al., 1990, 
Obach. 2004, Panoutsopoulos and Beedham. 
2004, Kitamura et al., 2006, Barr and Jones. 
2011, Garattini and Terao. 2011, Garattini 
and Terao. 2012, Garattini and Terao. 2013) 

Cinchona alkaloid 
(cinchonine, cinchonidine, 

quinine and quinidine) 
Drugs and environmental 

pollutants 

+++++ - 
(Palmer et al., 1969, Beedham et al., 1992, 
Itoh et al., 2006, Al -Tayib. 2009, Liu et al., 

2009) 

Hypoxanthine 
( endogenous purine) 

- +++++ 
(Krenitsky et al., 1972, Kitamura et al., 

2006, Chen et al., 2012, Pasalic et al., 2012, 
Okamoto et al., 2013) 

6-Mercaptopurine 
(anti-cancer drug) 

++ +++++ 
(Kitamura et al., 2006, Rashidi et al., 2007, 
Garattini and Terao. 2011, Sorouraddin et 

al., 2011, Garattini and Terao. 2012) 

Methotrexate 
(anti-cancer drug) 

+++++ - 

(Johns. 1967, Beedham. 1985, Chladek et 
al., 1997, Jordan et al., 1999, Kitamura et 
al., 1999, Beedham. 2001, Kitamura et al., 

2006, Liu et al., 2009) 
1-Methylxanthine 

(caffeine metabolite) 
- +++++ 

(Krenitsky et al., 1972, Reinke et al., 1987, 
Arnaud. 2011) 

N1-Methylnicotinamide 
(endogenous vitamin 

metabolite) 
+++++ + 

(Murashige et al., 1966, Krenitsky et al., 
1972, Ohkubo and Fujimura. 1978, 

Kitamura et al., 2006, Tayama et al., 2007, 
Kitamura et al., 2008, Peretz et al., 2012) 

Pyrazinamide 
(tuberculosis drug) 

++ +++++ 
(Yamamoto et al., 1987, Yamamoto et al., 

1991, Shibutani et al., 1999, Kitamura et al., 
2006) 

Pyridoxal 
(vitamin B6) 

+++++ - 

(Stanulovic and Chaykin. 1971, Krenitsky et 
al., 1972, Kitamura et al., 2006, Garattini 

and Terao. 2011, Garattini and Terao. 2012, 
Peretz et al., 2012, Garattini and Terao. 

2013) 

All-trans retinal 
(vitamin A aldehyde) 

+++++ - 

(Kitamura et al., 2006, Garattini et al., 2008, 
Terao et al., 2009, Garattini and Terao. 

2011, Garattini and Terao. 2012, Chen and 
Reese. 2013, Garattini and Terao. 2013) 

Vanillin 
(present in food stuffs) 

+++++ - 

(Beedham. 2001, Obach. 2004, 
Panoutsopoulos et al., 2005, Garattini and 
Terao. 2011, Garattini and Terao. 2012, 

Garattini and Terao. 2013) 

Xanthine 

(endogenous purine) 
- +++++ 

(Krenitsky et al., 1972, Yamamoto et al., 
2007, Chen et al., 2012, Pasalic et al., 2012, 
Okamoto et al., 2013) 

(+++++ = high activity ++   = intermediate activity + = low activity - = no activity). ** Of the 
azaarenes listed only phthalazine is a substrate for XOR. 
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With regards endogenous roles of MFEs the best known role of XOR is in 

endogenous purine degradation in which it is involved in the biotransformation of 

hypoxanthine into xanthine and into the more polar metabolite uric acid (Figure 9) 

(Krenitsky et al., 1972, Nishino and Okamoto. 2000, Kitamura et al., 2006, 

Garattini et al., 2008, Okamoto et al., 2013).  
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Figure 9: Role of xanthine oxidoreductase in endogenous purine catabolism in mammals. 

ADP: adenosine diphosphate, AMP: adenosine monophosphate, ATP: adenosine triphosphate, 
GMP: guanosine monophosphate, IMP: inosine monophosphate, XDH: xanthine dehydrogenase, 
XO: xanthine oxidase(Pacher et al., 2006, Chen et al., 2012, Pasalic et al., 2012, Okamoto et al., 
2013). 

 

 



14 

 

Due to structural similarity to the endogenous substrates, many exogenous 

methylated xanthines are also substrates for XOR. XOR is involved in the oxidative 

metabolism of the exogenous food constituent and pharmacological agent caffeine 

(1, 3, 7 trimethylxanthine). This is shown in Figure 10, where cytochrome P450 

1A2 is involved in the initial demethylation steps and XOR is involved in the final 

oxidation to generate the polar 1-methyluric acid that is excreted(Krenitsky et al., 

1972, Hamelin et al., 1994, Streetman et al., 2000, Arnaud. 2011). 

2

2
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Figure 10: The role of xanthine oxidoreductase in caffeine metabolism. 
 
CYP: cytochrome P-450. XOR: xanthine oxidoreductase (Relling et al., 1992, Hamelin et al., 1994, 
Baselt and Cravey. 1996, Arnaud. 2011). 
 

 

With regards AOX there are three well documented endogenous substrates. All-

trans retinaldehyde is an endogenous substrate for AOX (Figure 11), that plays an 

important role in the visual process. It has been suggested that AOX may play an 

important role in this visual process by biotransformation of all-trans retinaldehyde 
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to its corresponding carboxylic acid metabolite which is retinoic acid, which known 

as the active form of vitamin A(Beedham. 2001, Kitamura et al., 2006, Garattini et 

al., 2008, Garattini and Terao. 2011, Garattini and Terao. 2012, Garattini and 

Terao. 2013). The biotransformations of all-trans retinaldehyde by AOX to its 

corresponding carboxylic acid metabolite all-trans retinoic acid (RA) was first 

observed in rabbit liver cytosol, who discovered that the biotransformation activity 

did not need addition of NAD+ for its biotransformation process (Tomita et al., 

1993, Tsujita et al., 1994, Garattini et al., 2008, Chen and Reese. 2013, Garattini 

and Terao. 2013). 

AOX

Retinal (Vitamin A aldehyde)

CH3CH3

CH3

CH3
H3C

H

Retinoic acid

CH3

CH3

CH3 CH3

H3C

H

 

Figure 11: Biotransformation of all-trans retinal to retinoic acid by aldehyde oxidase. 
Based on. Chen and Reese, 2013. 
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Another endogenous aldehyde that is an AOX substrate is pyridoxal (vitamin B6). 

Pyridoxal its biotransformed to its corresponding carboxylic acid metabolite (4-

pyridoxic acid) by AOX (Figure 12) (Beedham. 2001, Garattini et al., 2003, 

Kitamura et al., 2006, Garattini et al., 2008, Garattini and Terao. 2011, Garattini 

and Terao. 2012, Peretz et al., 2012, Garattini and Terao. 2013). Interestingly in 

mice pyridoxal can be biotransformed by purified mouse aldehyde oxidase AOX1 

as well as AOH1 but it is not a substrate for AOH2 (Garattini et al., 2008).   

3 3

AOX

CH

H

H

H

Pyridoxal 4-Pyridoxic acid

CH

H

H

 

Figure 12: Oxidation of pyridoxal to 4-pyridoxic acid by aldehyde oxidase. According to. 
Peretz et al., 2012. 
 
 
 

As well as the oxidation of non-charged N-heterocyclic AOX is also involved in the 

oxidation of charged N-heterocyclic which have a CH=N+ group. An example for  

such a compounds as corresponding metabolite of vitamin B3 (N1-

methylnicotinamide) that metabolised by AOX and XO (Figure 13) (Murashige et 

al., 1966, Ohkubo and Fujimura. 1978, Beedham. 1987, Shibata et al., 1988, 

Beedham. 2001, Sugihara et al., 2006, Kundu et al., 2007, Pryde et al., 2010). 
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Figure 13: Biotransformation of vitamin B3 in mammals. 

The oxidation of N1-methylnicotinamide by AO to N1-methyl-2-pyridone-5-carboxamide (2-PY) 
and N1-methyl-4-pyridone-5-carboxamide (4-PY).Started with methylation of nicotinamide by 
nicotinamide methyltransferase according to Pryde et al., 2010. 

 

 

As well as aldehydes, AOX can also catalyse the oxidation of nitrogen containing 

polycyclic aromatic hydrocarbons (NPAHs) which have a CH=N- group (Table 1) 

that are environmental pollutant, an example for these compounds is phthalazine 

(Figure 14), which its biotransformed to its corresponding metabolite 1-

phthalazinone by mammalian AOX(Stubley et al., 1979, Beedham et al., 1990, 

Obach. 2004, Panoutsopoulos and Beedham. 2004, Barr and Jones. 2011). 
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HAldehyde oxidase

Phthalazine 1-Phthalazinone
 

Figure 14: Oxidation of phthalazine by aldehyde oxidase to 1-phthalazinone (Obach. 2004, 

Barr and Jones. 2011). 

 

Another example for an nitrogen containing polycyclic aromatic hydrocarbons 

(NPAHs) AOX substrate is phenanthridine that is biotransformed to more polar 

metabolite phenanthridinone by AOX (Figure 15) aiding its excretion (Blumer et 

al., 1977, Beedham. β001, Kitamura et al., β006, Sorouraddin et al., β009). 

Phenanthridine is an azaarene pollutant found in terrestrial and aquatic 

environments from industrial activities associated with fossil fuels (Blumer et al., 

1977, Balch et al., 1995, Osborne et al., 1997, de Voogt and Laane. 2009). 

H

Aldehyde oxidase

Phenanthridine Phenanthridinone

 

Figure 15: Biotransformation of phenanthridine to its metabolite phenanthridinone by 
AOX. Based on .Sorouraddin et al., 2009. 
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One important drug substrate for AOX is the pteridine compound methotrexate (4-

amino-N10-methylpteroyl-L-glutamic acid). This anti-leukemia drug is 

biotransformed by AOX to7-hydroxymethotrexate (Figure 16) (Kitamura et al., 

2006, Garattini et al., 2008, Liu et al., 2009, Pryde et al., 2010, Garattini and Terao. 

2011, Garattini and Terao. 2012, Garattini and Terao. 2013). 

C
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Figure 16: Metabolism of methotrexate to its corresponding metabolite 7-
hydroxymethotrexate by AOX. According to (Liu et al., 2009, Pryde et al., 2010, Garattini and 
Terao. 2013). 
 
 
 
Another example of a substrate for AOX as well as XOR is 6-mercaptopurine. This 

purine drug is biotransformed by XO to 6-mercaptopurine-2-one (6-thioxanthine) 

and 8-hydroxy-6-mercaptopurine and further biotransformation to its final 

metabolite 6-thiouric acid by both AOX and XOR. 6-methylmercaptopurine which 

is another metabolite of 6-mercaptopurineis produced by methyltransferase which 

is also further biotransformation to final metabolite 8-oxo-6-methylmercaptopurine 

by both  XO and AOX (Figure 17) (Beedham. 2001, Kitamura et al., 2006, Rashidi 

et al., 2007, Sorouraddin et al., 2011, Garattini and Terao. 2013). 



20 

 

 

SH

SH SH

SH

SCHSCH
3 3

8-Oxo-6-methylmercaptopurine6-methylmercaptopurine

H

XOR

XOR

XOR

AOX

AOX

6-mercaptopurine-2-one
(6-thioxanthine)

6-thiouric acid

methyltransferase
8-hydroxy-6-mercaptopurine

O
H H

H

H

O

H

H

H

H

6-mercaptopurine

H

H

 

 

Figure 17: Biotransformation of 6-mercaptopurineby AOX and XOR. 

According to (Beedham. 2001, Rashidi et al., 2007, Sorouraddin et al., 2011, Garattini and Terao. 
2013)
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Both AOX and XOR are also involved in reductive activity with many substrates in 

the presence of an electron donor in anaerobic condition. (Beedham. 2001, Obach. 

2004, Kitamura et al., 2006, Beedham. 2010). The reductive activity of AOX is 

generally found to be greater than that of XOR with many substrates according to 

(Beedham. 2001). Tables 2 and 3 summarise the reductive activities of AOX and 

XOR with different compounds.  

Table 2: Aldehyde oxidase catalyzed reduction of different compounds in mammals. 

AOX substrates AOX generated metabolites References 
Acetophenone oxime, 

salicylaldoxime and 

benzamidoxime 

Corresponding oxo compounds 

and a ketimine 

(Tatsumi and 

Ishigai. 1987) 

Aromatic and heterocyclic 

hydroxamic acids (e.g 

salicylhydroxamic acid, 

nicotinohydroxamic acid and 

anthranilhydroxamic acid 

Amides (salicylamide, 

nicotinamide and anthranilamide) 

(Sugihara and 

Tatsumi. 1986, 

Katsura et al., 1993) 

Fenthion sulfoxide Fenthion (Leoni et al., 2008) 

Methyl red and orange 

Cleavage of the azo linkage, 

Dimethyl-p-phenylenediamine 

and O-amino benzoic acid 

 

(Kitamura and 

Tatsumi. 1983, 

Stoddart and Levine. 

1992, Miyajima et al., 

2000) 

Nicotinamide-N-oxide, 

imipramine-N-oxide, 

cyclobenzaprine-N-oxide and 

s-(-)-nicotine-1-N-oxide 

Their parent amines 

(nicotinamide,  imipramine, 

cyclobenzaprine and nicotine) 

(Kitamura and 

Tatsumi. 1984, 

Sugihara et al., 1996, 

Kitamura et al., 2001) 

Nitrated polycyclic hydrocarbons Hydroxylamines (Tatsumi et al., 1986) 

Nitrosoamines (N-

nitrosodiphenylamine) 

Hydrazines (1,1-

diphenylhydrazine) 
(Tatsumi et al., 1983) 

Sulindac sulfoxide Sulindac sulfide 

(Pay et al., 1980, 

Duggan. 1981, 

Kitamura et al., 2001) 

Zonisamide 2-sulfamoylacetylphenol (Kitamura et al., 2001) 
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Table 3: Xanthine oxidoreductase catalyzed reduction of different compounds in mammals. 

XOR substrates XOR generated metabolites References 
6-bromomethyl-(9H)-purine 6-methylpurine (Porter. 1990) 

Doxorubicin Its semiquinone metabolites 
(Yee and Pritsos. 1997, 

Barnabe et al., 2002) 

Mitomycin C 2,7-diaminomitosene 
(Pan et al., 1984, Gustafson 

and Pritsos. 1992) 

Nitrated polycyclichydrocarbons Hydroxylamines (Tatsumi et al., 1986) 

S-(-)-nicotine-1-N-oxide Nicotine (Sugihara et al., 1996) 

 

1.4. Molybdo-flavoenzymes inhibitors. 

For many years, inhibitors of AOX and XOR have been described with varying 

degrees of detail(Rajagopalan et al., 1962). The inhibitors have been used in many in 

vitro systems such as partially purified enzyme, recombinant expressed enzyme, liver 

cytosol and liver slices and across several species most notably rabbit, guinea pig and 

human. Inhibitors are proposed to affect different domains and prosthetic groups in 

AOX and XOR (Johns. 1967, Yoshihara and Tatsumi. 1985, Yoshihara and Tatsumi. 

1997, Sugihara et al., 1999, Beedham. 2001, Kitamura et al., 2003, Vila et al., 2004, 

Pacher et al., 2006, Diamond et al., 2010, Pryde et al., 2010, Barr and Jones. 2011).  

 

1.4.1. Aldehyde oxidase inhibitors 

Examples of AOX inhibitors are menadione, estradiol, chlorpromazine and 

phenanthridine which are of widely differing chemical structure (Figure 18). 

Menadione (vitamin K3) is a quinone that was discovered as a specific non-

competitive AOX inhibitor by Rajagopalan et al., (1962) in rabbit liver with N1-

methylnicotinamide as a substrate. Since then many other researchers have confirmed 

this in a multitude of species summarised in Table 4 and 5 with a variety of AOX 
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substrates. Estradiol was found to be a non-competitive AOX inhibitor by Johns 

(1967) in human liver with variety of AOX substrates as summarised in Table 4. 

Raloxifene

Cl

Phenanthridine

CH3

HO

CH3

HO

Menadione

CH3

OH

Chlorpromazine

HO

Estradiol
17α-ethinyl estradiol

 

 

 

 

Figure 18: Structures of the aldehyde oxidase inhibitors. According to Merck Index (2014) 
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Species/tissue Substrate Inhibitor Substrate 
Concentration 

Inhibitor 
Concentration Ki or inhibition % Mode of inhibition References 

Human/liver 
Phthalazine and 

DMAC 
Raloxifene 5-100µM 1-10µM 0.8nM Uncompetitive  (Choughule et al., 2013) 

Human/ liver  
Phthalazine and 

vanillin 

Menadione, estradiol 
and 17α-ethinyl 

estradiol 
2µM 50µM 

0.29µM and 0.57µM 
respectively 

Mixed mode of inhibition, 
almost uncompetitive 

(Obach. 2004) 

Human /liver  Phthalazine Menadione 2µM 50µM 0.20µM Non-competitive (Obach et al., 2004) 
Human /liver  Phthalazine Chlorpromazine 2µM 50µM 0.57µM competitive (Obach et al., 2004) 

Human /liver  Phthalazine 
estradiol,  17α-ethinyl 

estradiol  
2µM 50µM 0.29µM and 0.57µM Uncompetitive  (Obach et al., 2004) 

Human /liver  Phthalazine  Raloxifene 2µM 50µM 0.0029µM Uncompetitive  (Obach et al., 2004) 

Human /liver  
Benzaldehyde, 

phenazine methosulfate 
(PMS) 

Menadione 56 µM 
15 µM, 0.08 µM 

and 
5 µM 

55% Non-competitive  (Johns. 1967) 

Human /liver  
Benzaldehyde, 

phenazine methosulfate 
(PMS) 

-estradiol 56 µM 
15 µM, 0.08 µM 

and 
5 µM 

50% Non-competitive  (Johns. 1967) 

Human /liver  
Benzaldehyde, 

phenazine methosulfate 
(PMS) 

 Chlorpromazine 56 µM 
15 µM, 0.08 µM 

and 
5 µM 

51% Competitive (Johns. 1967) 

Human /liver  
2-Hydroxypyrimidine, 

benzaldehyde 
Chlorpromazine 0.5µM 

1 mM and 0.4 
mM 

45% Competitive (Johns. 1967) 

Human/ liver  
2-hydroxy-5-

fluropyrimidine 
Menadione 0.54µM 25 µM 46% Non-competitive (Johns. 1967) 

Human/ liver  
Phthalazine and 

DMAC 

Raloxifene, estradiol, 
ethinyl estradiol, 
menadione and 
chlorpromazine 

5-100µM 0.1µm to 5µM 
0.29µM, 0.57µM, 

0.2µM and 0.57µM 
Uncompetitive, non-

competitive 
(Barr and Jones. 2011, 
Barr and Jones. 2013) 

Human/liver  Phthalazine 
Chlorpromazine and 

estradiol 
0.03-25µM 

(3µM) 
50µM 

0.27 µM and 0.62 
µM respectively 

Non-competitive and 
uncompetitive 

(Nirogi et al., 2013) 

Table 4:  Summary of the effects of prototypical inhibitors on human aldehyde oxidase. 
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Species/tissue Substrate Inhibitor Substrate 
Concentration 

Inhibitor 
Concentration 

Ki or inhibition 
% 

Mode of 
inhibition References 

Bovine/ liver  N1-methylnicotinamide Phenanthridine 12 mM 0.2 mM - Competitive (Yielding and Tomkins. 1961) 
Guinea pig/liver DMAC Raloxifene 5-100µM 1-10µM 3.2µM Uncompetitive (Choughule et al., 2013) 
Guinea pig /liver Phthalazine Raloxifene 5-100µM 1-10µM 42nM Uncompetitive (Choughule et al., 2013) 

 Rhesus monkey /liver 
All-trans retinal (vitamin 

A) 
Menadione 

0.01mM, 0.1mM 
and 1mM 

0.02mM, 0.2mM 
and 2mM 

60%, 28% and 
15% 

Non-competitive (Lakshmanan et al., 1964) 

Rhesus monkey/liver DMAC Raloxifene 5-100µM 1-10µM 22µM  competitive (Choughule et al., 2013) 
Rhesus monkey/liver  Phthalazine Raloxifene 5-100µM 1-10µM 230 nM  competitive (Choughule et al., 2013) 

Rabbit /liver  Phthalazine Benzamidine 2µM 5mM - - (Stell et al., 1989) 

Rabbit / liver  
Benzaldehyde, 

phenazine methosulfate 
(PMS) 

Chlorpromazine 56 µM and 0.5µM 5 µM 50% and 48% Competitive (Johns. 1967) 

Rabbit/ liver  
Benzaldehyde, 2-

hydroxpyrimidine and 
N1-methylnicotinamide 

Menadione, 
chlorpromazine 

and KCN 
2mM 

200µM and 
500µM, 500µM 

and 1000µM 
respectively 

78%, 48%, 48% 
and 18% 

Non-competitive 
(Dick et al., 2005, Dick et al., 

2007) 

Rabbit /liver  N1-methylnicotinamide Menadione 1.5 mM 0.1 µM 85% Non-competitive (Rajagopalan et al., 1962) 
Rabbit /liver  N1-methylnicotinamide Estradiol 5 mM 0.2 µM 62% Non-competitive (Rajagopalan et al., 1962) 

Rabbit /liver 
Phenazine 

methosulphate, nitro 
blue tetrazolium (NBT) 

Menadione 5 mM 1.6 µM  - Non-competitive 
(Rajagopalan and Handler. 

1964a) 

Rabbit /liver  
Phenazine 

methosulphate, nitro 
blue tetrazolium (NBT) 

Estradiol 5 mM 
 

16 µM 
- Non-competitive 

(Rajagopalan and Handler. 
1964a) 

Sea bream /liver  
2-hydroxypyrimidine, 

N1-methylnicotinamide 
or butyraldehyde 

Menadione and 
-estradiol 

12 mM 0.1 mM 75% and 60% Non-competitive (Kitamura et al., 2003) 

Sea bream /liver  
2-hydroxypyrimidine, 

N1-methylnicotinamide 
or butyraldehyde 

Chlorpromazine  12 mM 0.1 mM 78% Non-competitive (Kitamura et al., 2003) 

 

Table 5:  Summary of the effect of aldehyde oxidase inhibitors with non-human species. 
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Since then many other researchers have confirmed this in human, rabbit and sea bream 

liver as summarised in Table 4 and 5 with a variety of AOX substrates. The discovery 

of the related xenoestrogen oral contraceptive drug 17α-ethinyl estradiol as an 

uncompetitive AOX inhibitor was made by in Obach 2004 in human liver with 

phthalazine and vanillin as a substrates.  Another non-competitive inhibitor of AOX is 

the drug chlorpromazine Johns (1967) in a different species with benzaldehyde and 

phenazine methosulphate as a substrate as summarised in Table 5. Since then many 

other researchers have confirmed this in a human, rabbit and sea bream liver as 

summarised in Table 4 and 5 with a variety of AOX substrates. Interestingly the 

osteoporosis drug raloxifene has been found to have competitive and non-competitive 

properties as an AOX inhibitor by many researchers such as Barr and Jones 2011, 

2013 and Choughule et al. (2013) in human, guinea pig and rhesus monkey liver with 

phthalazine and DMAC as a substrate (Table 4). The environmental NPAHs, 

phenanthridine is a competitive inhibitor in bovine liver with N1-methylnicotinamide 

as a substrate (Yielding and Tomkins. 1961). Finally the first researchers to find 

benzamidine as a specific AOX inhibitor was Stell et al. (1989) in rabbit liver with 

phthalazine as a substrate as summarised in Table 5.  

1.4.2. Oxipurinol as a specific xanthine oxidoreductase inhibitor 

With regards XOR inhibitor oxipurinol is the best documented. The inhibitor 

oxipurinol is generated when the anti-gout substrate drug allopurinol is 

biotransformed by XOR (Figure 19). 
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Figure 19: Generation of the xanthine oxidoreductase inhibitor oxipurinol from allopurinol. 
According to Barr and Jones, 2011, Barr and Jones, 2013. 

 

The first researcher to find allopurinol and oxipurinol as a specific XOR inhibitor was 

by Elion. (1966) in bovine milk, mouse and human liver with xanthine as a substrate. 

Since then many other researchers have confirmed this in a multitude of species 

summarised in (Table 6) with xanthine and pterin as XOR substrates. The mode of 

inhibition with allopurinol and oxipurinol is competitive (Okamoto et al., 2008) and 

Nishino et al., 2008) (Table 6).  
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Species/tissue Substrate Inhibitor Substrate 
Concentration 

Inhibitor 
Concentration Ki or inhibition % References 

Bovine /milk  Xanthine Oxipurinol 0.15mM 100µM 1 µM (Okamoto et al., 2008) 

Bovine/ milk Hypoxanthine and xanthine Oxipurinol 0.15mM 100µM 0.1 µM 
(Nishino et al., 2008, 
Okamoto et al., 2008) 

Bovine/ milk Xanthine Allopurinol 0.15mM 3.3 µM 0.9 nM (Okamoto et al., 2003) 
Bovine/ milk Xanthine Allopurinol 40 µM 14-28 µM 6.3µM (Elion. 1966) 
Mouse/liver Xanthine Allopurinol 40 µM 14-28 µM 1.2 µM   (Elion. 1966) 
Human/liver  Xanthine Allopurinol 40 µM 14-28 µM  1.1 µM  (Elion. 1966) 
Human/ liver  Pterin Allopurinol 0.6-10µM 100µM 86% (Obach. 2004) 
Human/ liver  Xanthine Allopurinol 0.15mM 0.1-2mM 4 µM (Krenitsky et al., 1986) 

Wistar rat/liver Pterin Allopurinol - 100µM - (Derbre et al., 2012) 

 

 

Table 6: Summary of the effects of xanthine oxidoreductase inhibitors allopurinol and oxipurinol with different mammalian species. 
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1.5. Species variation in molybdo-flavoenzyme activity. 

Molluscs, crustaceans, insects, bacteria, fungi and all vertebrate classes have been 

found to contain the two molybdo-flavoenzymes (AOX and XOR)(Krenitsky et al., 

1972, Wurzinger and Hartenstein. 1974, Moura et al., 1976, Woolfolk and Downard. 

1977, Pometto and Crawford. 1983, Turner et al., 1987, Glatigny and Scazzocchio. 

1995, Romao et al., 1995, Xu and Johnson. 1995, Schrader et al., 1999, Beedham. 

2001, Yasuhara et al., 2002, Garattini et al., 2008, Beedham. 2010).Many species 

differences show marked quantitative effects when using cinchonidine as substrate the 

AOX activity was lower in monkey than that in rabbits (Fukiya et al., 2010). When is 

used zebularine as substrate with mouse, monkey and human and it was found that the 

activity of AOX was highest with mouse than that with monkey and human(Klecker et 

al., 2006).Sugihara et al.(1997) found when using benzaldehyde and N1-

methylnicotinamide as substrates with human and monkey that the AOX activity with 

human was lower than that with monkey(Sugihara et al., 1997). In comparison, rabbit 

AOX has lower reductase activity toward zonisamide as a substrate as compared to 

monkey(Kitamura et al., 2001). When Kitamura and Tatsumi.(1984) used 

nicotinamide N-oxide as substrate with rabbits, hogs, guinea pig, hamster, rat and 

mice and it was found that all had similar AOX reductase activity(Kitamura and 

Tatsumi. 1984). On the other hand,Hirao et al.(1994) found  lower AOX reductase 

activity with rat AOX than that with rabbit AOX when  naphthalene 1,2-oxide and 

also benzo [a] pyrene-4,5-oxide were used as substrates(Hirao et al., 1994). 
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1.5.1. Vertebrate molybdo-flavoenzymes 

The number of MFE genes varies between mammals. It was found that the numbers of 

active AOX genes in vertebrates are ranged from 1 to 4 (Dickinson. 1971, Lindsley 

and Zimm. 1992 , Terao et al., 2006, Garattini et al., 2008, Garattini et al., 2009, 

Terao et al., 2009, Garattini and Terao. 2011, Garattini and Terao. 2012, Garattini and 

Terao. 2013, Kurosaki et al., 2013).Some vertebrates such as Glires have four of AOX 

genes and one XOR gene (rat, mice, pika as well as rabbit)(Garattini et al., 2008, 

Terao et al., 2009, Garattini and Terao. 2011, Garattini and Terao. 2013, Kurosaki et 

al., 2013). Mouse AOXs are the best characterised AOX genes and proteins for all 

vertebrates; Table 7 summarizes the tissue distribution and substrate specificity of 

mouse AOX. It is interesting that other mammalian species possess a reduced 

complement of functional MFE genes. Dogs (Canis lupus familiaris) possess two 

AOX genes (AOX4 and AOX3L1) and one XOR, while bovine (Bos taurus) has three 

AOX genes (AOX1, AOX4 and AOX3L1) and one XOR(Terao et al., 2006, Kurosaki 

et al., 2013).Humans have just one functional AOX gene (AOX1) and one XOR gene 

(Garattini et al., 2008, Garattini and Terao. 2012, Garattini and Terao. 2013, Kurosaki 

et al., 2013).The chicken (Gallus gallus) possesses two AOX genes (AOX1 and 

AOX2)and one XOR(Terao et al., 2006, Kurosaki et al., 2013).Cat (Felix catus) has 

just one functional AOX gene (AOX3L1) and one XOR gene(Garattini and Terao. 

2013, Kurosaki et al., 2013), while Cynomolgus monkey(Macaca fascicularis)and 

Rhesus monkey (Macaca mulatta) have two AOX genes (AOX1 and AOX3L1) and 

three AOX genes (AOX1,AOX4 and AOX3L1) respectively and one XOR(Garattini 

and Terao. 2013, Kurosaki et al., 2013).Horse (Equus caballus) has three AOX genes 

(AOX1, AOX4 and AOX3L1) and one XOR gene ((Kurosaki et al., 2013). Baboon 

(Papio Hamadryas)has three AOX genes (AOX1, AOX4 and AOX3L1) and only one 
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XOR gene (Kurosaki et al., 2013). Interestingly dogs and cats do not express an AOX 

enzyme in hepatic tissue unlike other mammalian species studied (Terao et al., 2006, 

Garattini and Terao. 2013, Kurosaki et al., 2013).A listing of the current knowledge of 

MFEs AOX and XOR in several non-glire species is given on (Table 8 and 9). 
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Table 7: Summary of molybdo-flavoenzymes in mice 

 
The substrate specificity along with tissue distribution of molybdo-flavoenzymes in mice. Based on 
(Kurosaki et al., 2013). 
 
Old enzyme 

nomenclature 
of AOX/XOR 

New enzyme 
nomenclature 
of AOX/XOR 

Tissue distribution Known substrates References 

AOX1 Aox1 

Liver, lung, heart, 
kidney, testis, brain, 
eye, spinal cord and 

spleen 

Butyraldehyde, nicotinamide, 
octanal,  phthalazine, all-

trans retinaldehyde,  
pyridoxal, vanillin, 2-

hydroxpyrimidine 

(Moriwaki et al., 1996, 
Kurosaki et al., 1999, Wright 
et al., 1999, Kurosaki et al., 

2004, Vila et al., 2004, 
Garattini et al., 2008, 
Garattini et al., 2009, 

Garattini and Terao. 2011, 
Garattini and Terao. 2012, 
Garattini and Terao. 2013, 

Kurosaki et al., 2013) 

AOH1 Aox3 
Liver, lung and 

testis 

Benzaldehyde,butyraldehyde, 
octanal,phthalazine, 

phenanthridine, all-trans 
retinaldehyde, 

2-hydroxpyrimidine 

(Tomita et al., 1993, 
Moriwaki et al., 1996, 

Kurosaki et al., 1999, Wright 
et al., 1999, Terao et al., 

2001, Kurosaki et al., 2004, 
Vila et al., 2004, Garattini et 

al., 2008, Garattini et al., 
2009, Garattini and Terao. 
2011, Garattini and Terao. 
2012, Garattini and Terao. 

2013, Kurosaki et al., 2013) 

AOH2 Aox4 

Skin, stomach, 
Haderian gland, 
sebaceous gland, 
epidermis,eye, 

pancreas, brain and 
esophagus 

Phenanthridine, all-trans 
retinaldehyde 

(Holmes. 1979, Sasai and De 
Robertis. 1997, Terao et al., 
2001, Kurosaki et al., 2004, 
Vila et al., 2004, Garattini et 

al., 2008, Garattini et al., 
2009, Garattini and Terao. 
2011, Garattini and Terao. 
2012, Garattini and Terao. 

2013, Kurosaki et al., 2013) 

AOH3 Aox3L1 
Skin, Bowmans 

gland and olfactory 
mucosa 

Benzaldehyde, octanal,  
phthalazine, all-trans 

retinaldehyde, 
2-hydroxpyrimidine 

(Kurosaki et al., 2004, Vila et 
al., 2004, Garattini et al., 

2008, Garattini et al., 2009, 
Garattini and Terao. 2011, 
Garattini and Terao. 2012, 
Garattini and Terao. 2013, 

Kurosaki et al., 2013) 

XOR Xdh 

Liver, muscle, 
mammary glands, 

oesophagus, 
stomach, 

duodenum, jejunum, 
lleum, colon, 
rectum, lung, 

kidney, heart, small 
intestine and spleen 

Hypoxanthine, xanthine 

(Yoshimura and Oka. 1989, 
Terao et al., 1992, Falciani et 

al., 1994, Kurosaki et al., 
1995, Kuroisaki et al., 1996, 

McManaman et al., 1999, 
McManaman et al., 2002 , 

Terao et al., 2006, Garattini et 
al., 2008, Kurosaki et al., 

2013) 
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Table 8:  Summary of aldehyde oxidase genes and tissue distribution in different species 

 
Species AOX Tissue distribution References 

Baboon 
(Papio Hamadryas) 

AOX1,AOX4 and 
AOX3L1 

Intestine extract. heart, 
kidney and liver 

(Holmes and Vandeberg. 
1986, Garattini et al., 
2008, Kurosaki et al., 

2013) 

Bovine 
(Bos taurus) 

AOX1,AOX4 and 
AOX3L1 

Lung, eye, kidney, 
testis, liver, spleen and 

ciliary body 

(Shimada et al., 1989, 
Calzei et al., 1995, 

Beedham. 2001, Terao et 
al., 2006, Garattini et al., 

2008, Kurosaki et al., 
2013) 

Cat 
(Felix catus) 

AOX3L1 
Small intestine and 

kidney 

(Krenitsky et al., 1974, 
Beedham. 2001, Terao et 
al., 2006, Garattini et al., 
2008, Garattini and Terao. 

2013, Kurosaki et al., 
2013) 

Chicken 
(Gallus gallus) 

AOX1 and AOX2 

Liver, Kidney brain, 
skin, muscle, thymus, 
trachea, lung, spleen, 
pancreas, stomach, 

adrenal gland and testis 

(Krenitsky et al., 1974, 
Nishino and Nishino. 
1989, Nishino et al., 

1989, Terao et al., 2006, 
Garattini et al., 2008, 
Kurosaki et al., 2013) 

Cynomolgus monkey 
(Macaca fascicularis) 

AOX1 and AOX3L1 Liver and nasal mucosa 

(Kawashima et al., 1999, 
Sugihara et al., 2000, 

Diamond et al., 2010, Van 
Rompay. 2012, Kurosaki 

et al., 2013) 

Dog 
(Canis lupus 
familiaris ) 

AOX4 and AOX3L1 
Testis, Nasal mucosa, 
lacrimal glands, skin 

and oesophagus 

(Krenitsky et al., 1974, 
Vila et al., 2004, Terao et 
al., 2006, Garattini et al., 

2008, Kurosaki et al., 
2013) 

Horse 
(Equus caballus) 

AOX1,AOX4 and 
AOX3L1 

Liver 

(Seeley et al., 1984, 
Prichard et al., 1991, 
Räsänen et al., 1993, 
Garattini et al., 2008, 
Kurosaki et al., 2013) 

Human 
(Homo sapiens) 

AOX1 Lung, liver and brain 

(Krenitsky et al., 1974, 
Minoshima et al., 1995, 

Terao et al., 1998, 
Beedham. 2001, 

Moriwaki et al., 2001, 
Peretz et al., 2007, 

Garattini et al., 2008, 
Garattini and Terao. 2011, 
Garattini and Terao. 2012, 
Garattini and Terao. 2013, 

Kurosaki et al., 2013) 

Rhesus monkey 
(Macaca mulatta) 

AOX1,AOX4 and 
AOX3L1 

Liver and nasal mucosa 

(Krenitsky et al., 1974, 
Sugihara et al., 1997, 
Garattini et al., 2008, 
Fukiya et al., 2010, 

Garattini and Terao. 2011, 
Tawa et al., 2011, 

Garattini and Terao. 2012, 
Garattini and Terao. 2013, 

Kurosaki et al., 2013) 
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Table 9:  Summary of xanthine oxidoreductase tissue distribution in different species 

 
Species Tissue distribution References 

Baboon 
(Papio Hamadryas) 

Intestine and liver 
((Holmes and Vandeberg. 1986, 

Garattini et al., 2008, Kurosaki et 
al., 2013) 

Bovine 
(Bos taurus) 

Heart, liver,  mammary gland and milk 

(Shimada et al., 1989, Calzei et al., 
1995, Beedham. 2001, Terao et al., 

2006, Garattini et al., 2008, 
Kurosaki et al., 2013) 

Cat 
 (Felix catus) 

Liver, small intestine and kidney 

(Krenitsky et al., 1974, Beedham. 
2001, Terao et al., 2006, Garattini 
et al., 2008, Kurosaki et al., 2013) 

Chicken 
(Gallus gallus) 

Skin, lung, brain, liver, muscle, spinal 
cord, thymus, trachea, spleen, pancreas, 

stomach, adrenal gland and testis 

(Nishino and Nishino. 1989, 
Nishino et al., 1989, Terao et al., 

2006, Garattini et al., 2008, 
Kurosaki et al., 2013) 

Cynomolgus monkey 
(Macaca fascicularis) 

Testis, small intestine, brain and liver 

(Kawashima et al., 1999, Sugihara 
et al., 2000, Diamond et al., 2010, 

Van Rompay. 2012, Kurosaki et al., 
2013) 

Dog 
(Canis lupus familiaris) 

Nasal mucosa, skin, spleen, lacrimal 
glands and oesophagus 

(Krenitsky et al., 1974, Vila et al., 
2004, Terao et al., 2006, Garattini 
et al., 2008, Kurosaki et al., 2013) 

Horse 
(Equus caballus) 

Lung, skeletal muscle, liver and small 
intestine 

(Seeley et al., 1984, Prichard et al., 
1991, Räsänen et al., 1993, 

Garattini et al., 2008, Kurosaki et 
al., 2013) 

Human 
(Homo sapiens) 

Spleen, lung, mammary gland, kidney, 
liver, stomach, skeletal muscle and milk 

(Krenitsky et al., 1974, Minoshima 
et al., 1995, Terao et al., 1998, 

Beedham. 2001, Moriwaki et al., 
2001, Peretz et al., 2007, Garattini 
et al., 2008, Garattini and Terao. 
2011, Garattini and Terao. 2012, 

Garattini and Terao. 2013, Kurosaki 
et al., 2013) 

Rhesus monkey 
(Macaca mulatta) 

Testis, small intestine, brain and liver 

(Krenitsky et al., 1974, Sugihara et 
al., 1997, Garattini et al., 2008, 

Fukiya et al., 2010, Garattini and 
Terao. 2011, Tawa et al., 2011, 

Garattini and Terao. 2012, Garattini 
and Terao. 2013, Kurosaki et al., 

2013) 
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1.5.2. Molybdo-flavoenzymes in fish 

            AOX and XOR in fish are responsible for metabolism of various compounds such as 

aromatic aldehydes and N-heterocyclic compounds (Lakshmanan et al., 1964, 

Krenitsky et al., 1974, Wurzinger and Hartenstein. 1974, Cleare et al., 1976, Kamiński 

and Jeżewska. 1985, Tatsumi et al., 1992, Johnson et al., 1993, Schlenk. 1998, 

Bleeker et al., 2001, Ueda et al., 2001, Ueda et al., 2002, Basha and Rani. 2003, 

Kitamura et al., 2003, Pandey et al., 2003, Ziegler. 2003, Isamah and Asagba. 2004, 

Resende et al., 2005, Asagba et al., 2010, Hegazi et al., 2010, Kurosaki et al., 2013). 

These studies either measured the activity directly by monitoring substrate or product 

concentrations or used artificial electron acceptors as shown in (Table 10 and Figure 

3). 

 

1.5.2.1. Aldehyde oxidase activity in fish liver 

As described in previous sections AOX activity is principally found in hepatic tissue 

of mammals(Garattini and Terao. 2013, Kurosaki et al., 2013) and several workers 

have also demonstrated activity in this tissue in bony fish, among the most primitive 

vertebrates to have this activity. The first report of AOX in fish was by Lakshamanan 

et al. (1964) who examined the oxidation of the aldehydes of both vitamin A1 (all-

trans retinal) and vitamin A2 (3,4-dehydro-all-trans retinal) to the corresponding acids 

by aldehyde oxidase enzyme in the liver of several freshwater-fish (Ophiocephalus 

muralius, Labeo calbasu) and (Cyprinus carpio communis) as shown in (Table 10). 

The study also found that the enzyme from freshwater-fish livers was inhibited by the 

AOX inhibitor menadione (Lakshmanan et al., 1964).  
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Table 10.Summary of in vitro studies of hepatic aldehyde oxidase activity in fish species. 

Common name, ( Latin name) Substrate Electron acceptor AOX activity References 
African catfish 

(Clarias gariepinus) 
Benzaldehyde 2,6-DCPIP 143.8 

(Isamah and Asagba. 
2004) 

Electric catfish 
(Malapterurus electricus) 

Benzaldehyde 2,6-DCPIP 130 
(Isamah and Asagba. 

2004) 

African catfish 
(Clarias gariepinus) 

Benzaldehyde 2,6-DCPIP 1316.8
7d , 629.35

21d (Asagba et al., 2010) 

Lesser spangled emperor 
(Lthrinus choerorynchus) 

Benzaldehyde MTT + (Johnson et al., 1993) 

Rankin cod 
(Epinephelus multinotatus) 

Benzaldehyde MTT + (Johnson et al., 1993) 

Red emperor 
(Lutjanus sebae) 

Benzaldehyde MTT + (Johnson et al., 1993) 

Sea bream(Pagrus major) Benzaldehyde O2 4.35 (Kitamura et al., 2003) 

Spangled emperor 
(Lethrinus nebulosus) 

Benzaldehyde MTT + (Johnson et al., 1993) 

Sea bream(Pagrus major) DMAC O2 7.3 (Kitamura et al., 2003) 
Goldfish(Carassius auratus) 2-hydroxypyrimidine Fenthion sulphoxide 0.18 (Kitamura et al., 2003) 

Goldfish(Carassius auratus) 2-hydroxypyrimidine 2-nitrofluorene + (Ueda et al., 2001) 

Goldfish(Carassius auratus) 2-hydroxypyrimidine 
Sodium 

nifurstyrenate 
++ (Tatsumi et al., 1992) 

Sea bream(Pagrus major) 2-hydroxypyrimidine 2-nitrofluorene 0.25 (Ueda et al., 2002) 

Sea bream(Pagrus major) 2-hydroxypyrimidine 
Sodium 

nifurstyrenate 
6.5 (Tatsumi et al., 1992) 

Smooth dogfish(Mustelus canis) 6-methylpurine Ferricyanide 73 (Krenitsky et al., 1974) 

Largemouth bass 
 (Micropterus salmoides) 

6-methylpurine Ferricyanide 10 (Krenitsky et al., 1974) 

Florida pompano 
(Trachinotus carolinus) 

6-methylpurine Ferricyanide 10 (Krenitsky et al., 1974) 

Sea mullet 
(Menticirrhus saxatilis) 

6-methylpurine Ferricyanide 10 (Krenitsky et al., 1974) 

Blue fish(Pomatomus saltatrix) 6-methylpurine Ferricyanide 17 (Krenitsky et al., 1974) 

Spanish mackerel 
(Scomberonorus maculatus) 

6-methylpurine Ferricyanide <26 (Krenitsky et al., 1974) 

Bluegill(Lepomis macrochirus) 6-methylpurine Ferricyanide 35 (Krenitsky et al., 1974) 

Channel catfish  
(Icatalurus punctatus) 

6-methylpurine Ferricyanide 23 (Krenitsky et al., 1974) 

Summer flounder 
(Paralichthyes dentatus) 

6-methylpurine Ferricyanide 47 (Krenitsky et al., 1974) 

Goldfish(Carassius auratus) 6-methylpurine Ferricyanide 27 (Krenitsky et al., 1974) 

Norfolk spot  
(Leiostomus xanthurus) 

6-methylpurine Ferricyanide 30 (Krenitsky et al., 1974) 

Pumpkinseed sunfish 
(Lepomis gibbosus) 

6-methylpurine Ferricyanide 57 (Krenitsky et al., 1974) 

Nile tilapia juveniles 
(Oreochromis niloticus) 

Phthalazine Ferricyanide 275 (Hegazi et al., 2010) 

Northern hog sucker 
(Hypentelium nigricans) 

Vanillin O2 + 
(Wurzinger and 

Hartenstein. 1974) 

White sucker 
 (Catostamus commersoni) 

Vanillin O2 + 
(Wurzinger and 

Hartenstein. 1974) 

Northern pike(Esox lucius) Vanillin O2 + 
(Wurzinger and 

Hartenstein. 1974) 
Pumpkinseed sunfish 

(Lepomis gibbosus) 
Vanillin O2 ++ 

(Wurzinger and 
Hartenstein. 1974) 

Walleye(Stizostedion vitreum) Vanillin O2 ++ 
(Wurzinger and 

Hartenstein. 1974) 
Orange-fin labeo  
(Labeo calbasu) 

Vitamin A1 and A2 O2 67
A1

, 70.2
A2 (Lakshmanan et al., 

1964) 

Great snakehead 
(Ophiocephalus muralius) 

Vitamin A1 and A2 O2 100.1
A1

, 112.3
A2 (Lakshmanan et al., 

1964) 

Common carp 
(Cyprinus carpio communis) 

Vitamin A1 and A2 O2 41.9
A1

, 42.55
A2 (Lakshmanan et al., 

1964) 
Abbreviations: AOX activity nmol/min/mg liver, DMAC - p-dimethylaminocinnamaldehyde, 2, 6 DCPIP -2, 6-dichlorophenol-
indophenol.  MTT - Dimethylthiazol-diphenyltetrazolium bromide, A1, A2- vitamin A1 and A2, 7d and 21d (Acclimatised for 14 
days in large aquaria then kept in bowls of 20 litres for 7 days and 21 days).  
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Ten years later Krenitsky et al., (1974) examined the activity of AOX with 6-

methylpurine as a substrate and potassium ferricyanide as electron acceptor in the 

liver of several fish. The study found that highest activity of AOX with pumpkinseed 

sunfish (Lepomis gibbosus) and lowest activity with blue fish (Pomatomus saltatrix) 

as shown in (Table 10) (Krenitsky et al., 1974). In the same years, Wurzinger and 

Hartenstein, (1974) used vanillin as an AOX substrate with O2 as an electron acceptor 

to measure AOX activity in livers of several fish species such as Northern hog sucker 

(Hypentelium nigricans), Northern pike (Esox lucius), pumpkinseed sunfish (Lepomis 

gibbosus) and walleye (Stizostedion vitreum) (Table 10)(Wurzinger and Hartenstein. 

1974). Following these earlier studies it was not till two decades later that there was 

further research published on fish AOX. Tatsumi et al, (1992) examined the activity 

of aldehyde oxidase in goldfish (Carassius auratus) and sea bream (Pagrus major)  

livers using 2-hydroxypyrimidine as aldehyde oxidase substrate and sodium 

nifurstyrenate as electron acceptor as shown in (Table 10) (Tatsumi et al., 1992). 

Johanson et al. (1993) examined allozymes of aldehyde oxidase (allelic variants of 

this enzyme) in the livers of four different species of fish which are commercially 

farmed in Australia, red emperor (Lutjanus sebae), spangled emperor (Lethrinus 

nebulosus), lesser spangled emperor (Lethrinus choerorynchus) and Rankin cod 

(Epinephelus multinotatus). This study used electrophoresis and stained the allozymes 

in the gels, using benzaldehyde as AOX substrate and hypoxanthine as XOR substrate 

(Table 10) (Johnson et al., 1993). The electron acceptor dimethyl-diphenyltetrazolium 

bromide (MTT) was used to visualize electrophoretic variants of AOX and investigate 

the genetic similarities of these species of fish. The study demonstrated that whilst 

there was statistically significant variation in allelic frequencies in three of the species, 

there were no clear geographical groupings of populations. Supporting previous 
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evidence that populations of these fish are extensively connected, even over large 

geographical distance. Consecutive studies by Ueda et al,  (2001 and 2002) examined 

the activity of aldehyde oxidase in goldfish (Carassius auratus) and sea bream 

(Pagrus major) livers, using benzaldehyde oxidation as direct assay and 2-

hydroxypyrimidineas substrate with 2-nitrofluorene as electron acceptor in an 

anaerobic and indirect assay as shown in (Table 10)(Ueda et al., 2001, Ueda et al., 

2002). Kitamura et al, (2003) also examined the activity of aldehyde oxidase with sea 

bream (Pagrus major) and goldfish (Carassius auratus), while using different 

aldehyde oxidase substrates such as benzaldehyde, dimethylaminocinnamaldehyde 

(DMAC) as direct assays. They also used 2-hydroxypyrimidine, N1-

methylnicotinamide or butyraldehyde as electron donor and the organothiophosphate 

insecticide fenthion as an electron acceptor as shown in (Table 10) (Kitamura et al., 

2003). Isamah and Asagba, (2004) and Asagba et al, (2010) tested the AOX activity 

with benzaldehyde as a substrate with African catfish (Clarias gariepinus) and electric 

catfish (Malapterurus electricus) in liver using 2, 6-dichlorpheno-indophenol (2, 6-

DCPIP) as an artificial electron acceptor as shown in (Table 10)(Isamah and Asagba. 

2004, Asagba et al., 2010). While Hegazi et al, (2010). examined the activity of 

aldehyde oxidase in juvenile Nile tilapia (Oreochromis niloticus) liver using 

phthalazine as substrate and potassium ferricyanide as an electron acceptor, which 

reduced into ferricyanide as shown in (Table 10)(Hegazi et al., 2010).  

Several fish have been reported to have no AOX activity as shown in (Table 11). As 

well as in vitro studies, in vivo studies have suggested AOX activity towards NPAHs 

environmental pollutants exist in fish. Bean et al (1985) demonstrated that quinoline 

was metabolised to hydroxyquinoline in rainbow trout (Oncorhynchus mykiss) (Bean 

et al., 1985). Bleeker et al, (2001) examined the metabolism of the environmental 
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pollutant phenanthridine in carp (Cyprium carpio) liver and bile into its metabolite 

6(5H)-phenanthridinone (phenanthridone) suggesting that fish AOX catalysed this 

biotransformation (Bleeker et al., 2001). 

 
 
Table 11: Summary of fish species that have no detectable hepatic AOX activity. Based on 
Wurzinger and Hartenstein, (1974) 

Common name Latin name Substrate Electron acceptor 
Stoneroller Minnow Campostoma anomalous Vanillin O2 

Carp Cyprium carpio Vanillin O2 

Cutlips Minnow Exoglossum maxilingua Vanillin O2 

Fathead Minnow Pimephales promelas Vanillin O2 

Margined Madtom Noturus insignis Vanillin O2 

Yellow Perch Perca flavescens Vanillin O2 

 

 

1.5.2.2. Extrahepatic aldehyde oxidase activity in fish 

Krenitsky et al., (1974) examined the activity of aldehyde oxidase with 6-

methylpurine and potassium ferricyanide as electron acceptor. Two Cypriniformes and 

one Perciformes were tested for extrahepatic tissue distribution in intestine and 

kidney. All species studied had measurable extrahepatic activity that was found to be 

two and one fold lower respectively compared with liver, the activity in extrahepatic 

tissue less than that in hepatic tissue (Table 12) (Krenitsky et al., 1974). Asagba et al, 

(2010) tested the AOX activity using benzaldehyde as a substrate with a Siluriformes 

(African catfish) in kidney, gills, muscle and brain using 2,6-dichlorpheno-indophenol 

(2,6-DCPIP) as an artificial electron acceptor as shown in (Table 12). Interestingly 

Asagba et al (2010) found that AOX activity decreased in African catfish acclimatised 

for 14 days in large aquaria then kept in bowls of 20 litres for 7 days and 21 days. 

Although the reason for this was not given this could be due to stress as two fish of 

approximately 30 cm were kept in small 20 litre bowl. 
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Table 12: Summary of extrahepatic and hepatic AOX activity in fish species. Based on 
Krenitsky et al, (1974)*, and Asagba et al, (2010) **. 

Order Family Common name Latin name Habitat Organ AOX 
Cypriniformes* Cyprinidae Goldfish Carassius auratus F/P liver  27 
Cypriniformes* Cyprinidae Goldfish Carassius auratus F/P intestine <14 
Cypriniformes* Cyprinidae Goldfish Carassius auratus F/P kidney 19 
Perciformes* Sciaenidae Norfolk spot Leiostomus xanthurus S/P liver  < 30 
Perciformes* Sciaenidae Norfolk spot Leiostomus xanthurus S/P intestine 19 

Siluriformes ** Clariidae African catfish Clarias gariepinus F/P liver 7d 1316.8 
Siluriformes ** Clariidae African catfish Clarias gariepinus F/P liver 21d 629.35 
Siluriformes ** Clariidae African catfish Clarias gariepinus F/P kidney 7d 640.38 
Siluriformes ** Clariidae African catfish Clarias gariepinus F/P kidney 21d 460.48 
Siluriformes ** Clariidae African catfish Clarias gariepinus F/P gill 7d 248.3 
Siluriformes ** Clariidae African catfish Clarias gariepinus F/P gill 21d 349.7 
Siluriformes **  Clariidae African catfish Clarias gariepinus F/P muscle 7d 148.45 
Siluriformes ** Clariidae African catfish Clarias gariepinus F/P muscle 21d 107.5 
Siluriformes ** Clariidae African catfish Clarias gariepinus F/P brain 7d 275.8 
Siluriformes ** Clariidae African catfish Clarias gariepinus F/P brain 21d 125.6 

Activity measured: AOX activity µmol/min/g of tissue. Abbreviations: (S) salt water (marine), and (F) fresh water, 
(D) Demersal (benthic), (P) Pelagic, 7d and 21d (Acclimatised for 14 days in large aquaria then kept in bowls of 20 litres 
for 7 days and 21 days) 

 

1.5.2.3. Aldehyde oxidase as reductase activity in fish 

The reductase activity of AOX has long been established since Krenitsky found it in 

1974(Krenitsky et al., 1974). The first report of AOX as a reductase in fish was by 

Tatsumi et al, (1992). Tatsumi’s group examined the activity of aldehyde oxidase as 

reductase with antibacterial sodium nifurstyrenate as electron acceptor which was 

reduced into cyano-pentenone, as an anaerobic and indirect reaction in goldfish 

(Carassius auratus) and sea bream (Pagrus major) livers, using 2-hydoxypyrimidine 

as an electron donor as shown in (Table 7)(Tatsumi et al., 1992). A decade later Ueda 

et al, (2001 and 2002) examined the reductase activity of aldehyde oxidase using 2-

nitrofluorene which is a nitropolycyclic aromatic hydrocarbon (environmental 

pollutants found in automobile exhaust) as an electron acceptor. They demonstrated 

that this was reduced into 2-aminofluorene in goldfish (Carassius auratus) liver, using 

2hydroxypyrimidine as electron donor (Table 10) and inhibited by menadione as 

shown in (Table 10) (Ueda et al., 2001, Ueda et al., 2002). Kitamura et al, (2003) 
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examined the activity of aldehyde oxidase as reductase using fenthion sulphoxide (an 

insecticide) as electron acceptor which it reduced into fenthion in goldfish (Carassius 

auratus), using 2-hydroxypyrimidine as an electron donor as shown in (Table 10) 

(Kitamura et al., 2003). Collectively these studies on AOX as a reductase in fish liver 

demonstrated that the enzyme has the capacity to reductively metabolise compounds 

that are environmental pollutants demonstrating the importance of the study of this 

important detoxication enzyme in these organisms. In vivo the physiological relevance 

of reductase activity is not known as these xenobiotic electron acceptors will be 

competing with a natural endogenous electron acceptor. 

 

1.5.2.4. Xanthine oxidoreductase activity in fish 

It was not until 10 years after AOX activity was reported in fish that the first report of 

XOR activity in fish appeared Krenitsky et al, (1974). Using xanthine as XOR 

substrate with NAD+ or ferricyanide as an electron acceptor as shown in (Table 

13)Krenitsky et al (1974) found activity in 11 fish species (Krenitsky et al., 1974). 

Wurzinger and Hartenstein, (1974) also examined the activity of XOR using 

hypoxanthine as a XOR substrate, using NAD+ as an electron acceptor in the liver of 

several fish species as shown in (Table 13) (Wurzinger and Hartenstein. 1974). Cleare 

et al, (1976) demonstrated XOR activity with several fish liver species such as brill 

(Scophthalmus rhombus), cod (Gadus morhua), dab (Limanda limanda), lemon sole 

(Microstomus kitt), mackerel (Scomber scombrus), plaice (Pleuronectes platessa), 

perch (Perca fluviatilis) and whiting (Merlangius merlangus) using xanthine as a 

XOR substrate, O2 or 2,6-dichlorophenol-indophenol (2,6-DCPIP) and NAD+ as an 

electron acceptor as shown in (Table 13)(Cleare et al., 1976).  
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Table 13: In vitro studies of hepatic xanthine oxidoreductase activity in fish species measured 
using spectrophotometry. 

Common name, Latin name Substrate Electron acceptor XO XOR % XDH References 

Carp (Cyprinus  carpio) Hypoxanthine NAD+
 0 0 ++ 

(Wurzinger and Hartenstein. 
1974) 

Cutlips minnow ( Exoglossum maxilingua) Hypoxanthine NAD+ 0 0 ++ 
(Wurzinger and Hartenstein. 

1974) 

Margined madtom  (Noturus insignis) Hypoxanthine NAD+ 0 - + 
(Wurzinger and Hartenstein. 

1974) 
Northern hog sucker 

(Hypentelium nigricans) 
Hypoxanthine NAD+ 0 - + 

(Wurzinger and Hartenstein. 
1974) 

Stoneroller minnow 
(Campostoma anomalous) 

Hypoxanthine NAD+ and INT 0 0 ++ 
(Wurzinger and Hartenstein. 

1974) 

White sucker(Catostamus commersoni) Hypoxanthine NAD+ 0 - + 
(Wurzinger and Hartenstein. 

1974) 

Yellow perch ( Perca flavescens) Hypoxanthine NAD+ 0 - ++ 
(Wurzinger and Hartenstein. 

1974) 
Brown trout  ( Salmo trutta) Purine NAD+ + 3-9 + (Resende et al., 2005) 

Zebra fish  (Danio rerio) Pteridine O2 or NAD+ + + + (Ziegler. 2003) 

African catfish  (Clarias gariepinus) Xanthine O2 + 
76

7d, 
6021d 

+ (Asagba et al., 2010) 

African catfish  (Clarias gariepinus) Xanthine O2 + 197 + (Isamah and Asagba. 2004) 

Electric catfish   (Malapterurus electricus) Xanthine O2 + 255.8 + (Isamah and Asagba. 2004) 

Channel catfish ( Icatalurus punctatus) Xanthine Ferricyanide and NAD+ <3 100 97 (Krenitsky et al., 1974) 

Spanish mackerel 
(Scomberonorus maculatus) 

Xanthine NAD+ and Ferricyanide 14 120 88.4 (Krenitsky et al., 1974) 

Pumpkinseed sunfish (Lepomis gibbosus) Xanthine NAD+ and Ferricyanide <2 95 97.9 (Krenitsky et al., 1974) 

Sea mullet  (Menticirrhus saxatilis) Xanthine NAD+ and Ferricyanide - 150 100 (Krenitsky et al., 1974) 

Norfolk Spot ( Leiostomus xanthurus) Xanthine NAD+ and Ferricyanide <6 180 96.7 (Krenitsky et al., 1974) 

Gold fish  (Carassius auratus) Xanthine NAD+ and Ferricyanide 8 120 93.4 (Krenitsky et al., 1974) 

Largemouth bass (Micropterus salmoides) Xanthine NAD+ and Ferricyanide <3 410 99.3 (Krenitsky et al., 1974) 

Florida pompano (Trachinotus carolinus) Xanthine NAD+ - 180 100 (Krenitsky et al., 1974) 

Summer flounder ( Paralichthyes dentatus) Xanthine NAD+ and Ferricyanide 5 210 97.6 (Krenitsky et al., 1974) 

Blue fish ( Pomatomus saltatrix) Xanthine Ferricyanide and NAD+ 2 38 94.7 (Krenitsky et al., 1974) 

Bluegill ( Lepomis macrochirus) Xanthine NAD+ and Ferricyanide <3 180 98.4 (Krenitsky et al., 1974) 

Megrim  (Lepidorhombus whiffagonis) Xanthine O2 or 2,6-DCPIP  5 0 0 (Cleare et al., 1976) 

Pike (Esox lucius) Xanthine O2 or 2,6-DCPIP and 
NAD+ 0 123 100 (Cleare et al., 1976) 

Whiting  (Merlangius merlangus) Xanthine 
O2 or 2,6-DCPIP and 

NAD+ 
0 98 100 (Cleare et al., 1976) 

Cod ( Gadus morhua) Xanthine 
O2 or 2,6-DCPIP and 

NAD+ 0 98 100 (Cleare et al., 1976) 

Dab  (Limanda limanda) Xanthine 
O2 or 2,6-DCPIP and 

NAD+ 0 221 100 (Cleare et al., 1976) 

Brill  ( Scophthalmus rhombus) Xanthine O2 or 2,6-DCPIP 0 197 100 (Cleare et al., 1976) 

Lesser spotted dogfish 
(Scyliorhinus canicula) 

Xanthine O2 or 2,6-DCPIP 0 24 100 (Cleare et al., 1976) 

Ray  (Dipturus canutus) Xanthine O2 or 2,6-DCPIP 0 148 100 (Cleare et al., 1976) 

Herring   (Clupea harengus) Xanthine O2 or 2,6-DCPIP 0 221 100 (Cleare et al., 1976) 

White pollack ( Pollachius virene) Xanthine O2 or 2,6-DCPIP 0 0 100 (Cleare et al., 1976) 

Haddock  (Melanogrammus aeglefinus) Xanthine O2 or 2,6-DCPIP 0 - 100 (Cleare et al., 1976) 

Summer flounder (Paralichthyes dentatus) Xanthine O2 or 2,6-DCPIP 0 - 100 (Cleare et al., 1976) 

Black sole  (Solea solea) Xanthine O2 or 2,6-DCPIP 0 - 100 (Cleare et al., 1976) 

White sole ( Solea solea) Xanthine O2 or 2,6-DCPIP 0 73 100 (Cleare et al., 1976) 

White trout   (Salmo trutta) Xanthine O2 or 2,6-DCPIP 0 116 100 (Cleare et al., 1976) 

Gurnard  ( Chelidonichthys cuculus) Xanthine O2 or 2,6-DCPIP 0 14 100 (Cleare et al., 1976) 

John dory ( Zeus faber) Xanthine O2 or 2,6-DCPIP 0 - 100 (Cleare et al., 1976) 

Lemon sole  (Microstomus kitt) Xanthine O2 or 2,6-DCPIP 0 52 100 (Cleare et al., 1976) 

Mackerel  (Scomber scombrus) Xanthine O2 or 2,6-DCPIP 0 44 100 (Cleare et al., 1976) 

Plaice ( Pleuronectes platessa) Xanthine O2 or 2,6-DCPIP 0 79 100 (Cleare et al., 1976) 

Perch   (Perca fluviatilis) Xanthine 2,6-DCPIP 0 248 100 (Cleare et al., 1976) 

Carp   (Cyprinus  carpio) Xanthine or 
Hypoxanthine 

NAD+ or O2 + - 99.4 
(Kamiński and Jeżewska. 

1985) 
Giant catfish   (Wallago attu) Xanthine NAD+ or O2 + 528 + (Pandey et al., 2003) 

Nile tilapia juveniles  (Oreochromis niloticus) Xanthine NAD+ + 120 - (Hegazi et al., 2010) 

Mozambique tilapia 
(Oreochromis mossambicus) 

Xanthine NAD+ + 167 + (Basha and Rani. 2003) 

Abbreviations: 2, 6-DCPIP – 2, 6-dichlorophenol-indophenol.  MTT - Dimethylthiazol-diphenyltetrazolium bromide, 
PMS-phenazine methosulphate. INT – iodonitro-tetrazolium, 7d and 21d (Acclimatised for 14 days in large aquaria then 
kept in bowls of 20 litres for 7 days and 21 days), XOR = sum of activity with O2 and NAD+ as electron acceptor, XO = 
activity with O2 as electron acceptor. 
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In addition, Kaminski and Jezewska, (1985) examined the activity of XOR in carp 

(Cyprinus carpio) liver using xanthine or hypoxanthine as substrate and NAD+ or O2 

as an electron acceptor as shown in (Table 13) (Kamiński and Jeżewska. 1985). 

While, Johnson et al, (1993) examined the activity of XO with several fish liver 

species such as lesser spangled emperor (Lthrinus choerorynchus), rankin cod 

(Epinephelus multinotatus), red emperor (Lutjanus sebae) and spangled emperor 

(Lethrinus nebulosus) with  hypoxanthine as substrate and dimethylthiazol-

diphenyltetrazolium (MTT)as an electron acceptor as shown in (Table 15) (Johnson et 

al., 1993). Pandey et al, (2003) used xanthine as XO substrate and(PMS) phenazine 

methosulphate as an electron acceptor to examine the activity of  XO in giant catfish 

(Wallago attu) liver as shown in (Table 13)(Pandey et al., 2003). Basha and Rani, 

(2003) examined the activity of XDH with Mozambique tilapia (Oreochromis 

mossambicus) liver, using xanthine as substrate and NAD+ as an electron acceptor as 

shown in (Table 13)(Basha and Rani. 2003). In addition, Ziegler, (2003) examined the 

activity of XOR using pteridine as substrate and O2 or NAD+ as an electron acceptor 

with zebra fish (Danio rerio) liver as shown in (Table 13) (Ziegler. 2003). Isamah and 

Asagba, (2004) using xanthine as substrate and O2 as an electron acceptor to examine 

the activity of XO in several Western Niger-Delta fish liver species such as African 

catfish (Clarias gariepinus) and electric catfish (Malapterurus electricus) as shown in 

(Table 13)(Isamah and Asagba. 2004). Resende et al, (2005) examined the activity of 

XDH in brown trout (Salmo trutta) liver, using purine as substrate and NAD+ as an 

electron acceptor, as shown in (Table 13) (Resende et al., 2005). Xanthine as substrate 

and O2 as an electron acceptor in African catfish (Clarias gariepinus) liver from Delta 

State, Nigeria as shown in (Table 13) (Asagba et al., 2010). In addition, Hegazi et al, 

(2010) examined the activity of XDH in Nile tilapia juveniles (Oreochromis niloticus) 
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liver. Using xanthine as substrate and NAD+ as an electron acceptor, as shown in 

(Table 13)(Hegazi et al., 2010). Several fish have been reported to have no XOR 

activity as shown in (Table 14). 

Table 14: Summary of fish species that had no detectable XOR activity. 

Common name Latin name substrate Electron acceptor Reference 

Smooth dogfish 
Mustelus 

canis 
Xanthine NAD+ and Ferricyanide (Krenitsky et al., 1974) 

Northern pike Esox lucius Hypoxanthine NAD+ 
(Wurzinger and Hartenstein. 

1974) 
Pumpkinseed 

sunfish 
Lepomis 
gibbosus 

Hypoxanthine NAD+ 
(Wurzinger and Hartenstein. 

1974) 

Walleye 
Stizostedion 

vitreum 
Hypoxanthine NAD+ 

(Wurzinger and Hartenstein. 
1974) 
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As well as the spectrophotometric studies above many different researchers also used 

electrophoresis and histochemical dye methods to investigate the hepatic xanthine 

oxidoreductase activity in different fish as seen in (Table 15). 

Table 15: Summary of in vitro studies of hepatic xanthine oxidoreductase activity in fish species 
using electrophoresis and histochemical dye methods 

Common name, Latin name Substrate Electron 
acceptor XOR  XDH References 

lesser spangled emperor 
(Lthrinus choerorynchus) 

Hypoxanthine MTT + + (Johnson et al., 1993) 

Rankin cod 
 (Epinephelus multinotatus) Hypoxanthine MTT + + (Johnson et al., 1993) 

Red emperor ( Lutjanus sebae) Hypoxanthine MTT + + (Johnson et al., 1993) 
Spangled emperor 

(Lethrinus nebulosus) Hypoxanthine MTT + + (Johnson et al., 1993) 

Spotted murrel (Channa punctatus) Xanthine MTT - - (Sastry and Rao. 1984) 
Spotted murrel (Channa punctatus) Xanthine MTT - - (Sastry and Rao. 1982) 

Barbell (Barbus bocagei) Xanthine PMS - - (Peixoto et al., 2013) 
Orangefin labeo (Labeo calbasu) Hypoxanthine MTT + + (Singh et al., 2010) 

White sea bream (Diplodus sargus) Hypoxanthine MTT + - (Lenfant. 2003) 
Juvenile Chinese sturgeon 

 (Acipenser sinensis) Hypoxanthine MTT + - (Feng et al., 2012) 

White crappie  
(Pomoxis annularis) adult Hypoxanthine EBT + + 

(Epifanio and Philipp. 
1993) 

White crappie (Pomoxis annularis) 
embryos or larva 

Hypoxanthine EBT + - 
(Epifanio and Philipp. 
1994) 

Black crappie  
(Pomoxis nigromaculatus) adult Hypoxanthine EBT + + 

(Epifanio and Philipp. 
1993) 

Black crappie 
 (Pomoxis nigromaculatus)  

embryos or larva 
Hypoxanthine EBT + - 

(Epifanio and Philipp. 
1994) 

Atlantic  mackerel  
(Scomber scombrus) Xanthine TTC + + 

(Smith and Jamieson. 
1978) 

Japanese medaka (Oryzias latipes) Xanthine PMS + NBT + + 
(Nakano and Whiteley. 
1965) 

Abbreviations: TTC – Tetrazolium chloride, EBT – Erochrome black T, MTT - Dimethylthiazol-diphenyltetrazolium 
bromide, PMS- phenazine methosulphate, NBT- nitro blue tetrazolium. 
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1.5.2.5. Extrahepatic xanthine oxidoreductase activity in fish 

Krenitsky et al, (1974) used a spectrophotometric assay, xanthine as XOR substrate 

and NAD+ or ferricyanide as electron acceptor to measure extrahepatic XOR activity 

in several fish species. Two Cypriniformes and one Perciformes were tested for 

extrahepatic tissue distribution in intestine and kidney XOR activity. All species 

studied had measurable extrahepatic activity that was found to be 4-fold lower in 

intestine and 1.5-fold more in kidney compared with liver , the highest activity was 

found in the kidney of the goldfish (Carassius auratus) (Table 16) (Krenitsky et al., 

1974). The activity of extrahepatic XOR tested by Resende et al, (2005)was tested in 

one Salmoniformes in which the activity found in kidney of brown trout (Salmo 

trutta) was found to be 2-fold more compared with liver (Table 16)(Resende et al., 

2005). Hegazi et al, (2010) also examined the extrahepatic activity of XOR in one 

Perciformes and found the activity in white muscle of juvenile Nile tilapia 

(Oreochromis niloticus) 1.3-fold lower compared with liver (Table 16) (Hegazi et al., 

2010). Temple et al., (1979) examined the extrahepatic XOR activity in intestine of 

goldfish (Carassius auratus) with 100% XDH (Temple et al., 1979). Sastry and Rao. 

(1982 and 1984) found the activity of XOR in different tissue of spotted murrel 

(Channa punctatus) in kidney, gills, brain, intestine and muscle  (Sastry and Rao. 

1982, Sastry and Rao. 1984). . Hari and Neeraja (2012) examined the extrahepatic 

activity of XOR in one Cypriniformes and found the activity in the kidney of 

Common carp (Cyprinus  carpio) as XO(Hari and Neeraja. 2012). Nakano and 

Whiteley (1965) examined the extrahepatic activity of XOR in one Beloniformes and 

found the activity in intestines of Japanese medaka (Oryzias latipes) (Nakano and 

Whiteley. 1965). 
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Table 16: Extrahepatic XOR activity in fish 

 
Order Family Common name Latin name Habitat Organ XO XOR %  XDH 

Cypriniformes * Cyprinidae Goldfish 
Carassius 
auratus 

F/P liver 8 120 93.4 

Cypriniformes * Cyprinidae Goldfish 
Carassius 
auratus 

F/P Intestine 3 33 91 

Cypriniformes 
**** 

Cyprinidae Goldfish 
Carassius 
auratus 

F/P Intestine - - 100 

Cypriniformes * Cyprinidae Goldfish 
Carassius 
auratus 

F/P Kidney 11 190 94.2 

Cypriniformes ††† Cyprinidae Common carp 
Cyprinus  

carpio 
S/P Kidney 42.6 - - 

Perciformes * Sciaenidae Norfolk spot 
Leiostomus 
xanthurus 

S/P liver <6 180 96.7 

Perciformes * Sciaenidae Norfolk spot 
Leiostomus 
xanthurus 

S/P Intestine <4 90 <95.6 

Perciformes *** Cichlidae 
Nile tilapia 
juveniles 

Oreochromis 
niloticus  

F/P liver + 160 99.4 

Perciformes *** Cichlidae 
Nile tilapia 
juveniles 

Oreochromis 
niloticus  

F/P 
White 
muscle 

- 120 - 

Perciformes † Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P liver 6.2 - - 

Perciformes† Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P kidney 8.6 - - 

Perciformes † Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P gills 2.9 - - 

Perciformes† Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P intestine 2.7 - - 

Perciformes† Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P brain 8.2 - - 

Perciformes † Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P muscles 5.5 - - 

Perciformes †† Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P liver 3.7 - - 

Perciformes †† Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P kidney 5.7 - - 

Perciformes †† Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P gills 4.2 - - 

Perciformes †† Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P intestine 8.0 - - 

Perciformes †† Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P brain 5.0 - - 

Perciformes †† Sciaenidae Spotted murrel 
Channa 

punctatus 
S/P muscles 3.8 - - 

Salmoniformes ** Salmonidae Brown trout Salmo trutta  F/P liver + 3-9 + 
Salmoniformes ** Salmonidae Brown trout Salmo trutta  F/P Kidney + 1.5-5 + 

Beloniformes †††† adrianichthyidae 
Japanese 
medaka 

Oryzias latipes S/P Liver - - + 

Beloniformes †††† adrianichthyidae 
Japanese 
medaka 

Oryzias latipes S/P Gut - - + 

Abbreviations: F-freshwater fish, S- saltwater fish, P- pelagic. Activity measured: XDH and XO 
activity nmol/min/mg of tissue, XO urate formed with O2, XOR urate formed with O2 and NAD+. 
Based on Krenitsky et al, (1974)*, Resende et al, (2005) **, Hegazi et al,(2010) ***, Temple et al, 
(1979) ****, (Sastry and Rao 1984) †,(Sastry and Rao 1982)††, (Hari and Neeraja 2012)†††and 
(Nakano and Whiteley 1965)††††. 
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1.5.3. Molybdo-flavoenzymes as pollution monitoring in fish 

As AOX and XOR biotransform substrates to more polar compounds, several research 

groups have measured the activity of these enzymes in animals exposed to pollutant to 

determine if they are increased or decreased and could be used as pollution 

biomarkers. Basha and Rani, (2003) examined induction of enzymes in fish in 

response to oxidative stress caused by heavy metals (such as cadmium, zinc, mercury 

and copper) which are released into ponds, lakes and rivers in industrial effluents in 

India. They discovered significant elevations of detoxification enzymes including XO 

in the liver and kidney of the freshwater teleost, tilapia (Oreochromis mossabicus), 

using xanthine as substrate and NAD+, iodophenyl-tetrazolium chloride (INT)  as 

electron acceptor. As a result of cadmium toxicity and it was found that the XOR 

increased ~1.8 fold in liver and in kidney(Table 17) (Basha and Rani. 2003). Pandey 

et al. (2003) examined biomarker responses including XO in several tissues of the 

freshwater giant catfish (Wallago attu), obtained from two different sites, which 

varied in levels of pollution, along the river Yamuna in India (see Table 17 and 

18),Water from the site, was more heavily polluted as a result of increased industrial 

activity and chemical use, was found to have higher pH and lower level of dissolved 

oxygen compared to the less polluted site. Using xanthine as substrate and phenazine 

methosulphate (PMS) as electron acceptor, the researchers found that XO activity was 

significantly higher in fish taken from the heavily polluted area and used this evidence 

to propose that such XO be used future monitoring of aquatic ecosystem pollution. 

They found that activity was increased 2.47-fold in liver, 4.49-fold in gill and 2.11-

fold in kidney(Pandey et al., 2003).Interestingly Sastry and Rao (1982 and 1984) 

examined the pollution effect of mercuric chloride with spotted murrel (Channa 

punctatus) liver and found no change on XOR activity by using xanthine as substrate 
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(Table 19). In addition the activity of hepatic XOR tested with heavy metal pollution 

with barbell (Barbus bocagei)found no change on its activity (Peixoto et al., 2013) 

(Table 17). 

 

 

 

Table 17: Hepatic OR activity as a biomarkers for pollution in fish. 

Common 
name 

Latin name Pollutant 
Fold  

increase/ 
decrease 

References 

African catfish Clarias gariepinus Heavy metal 2.51 increase (Isamah and Asagba. 2004) 

African catfish Clarias gariepinus 
Cadmium 

(5 mg/L 7 days) 
No change  (Asagba et al., 2010) 

African catfish Clarias gariepinus 
Cadmium 

(5 mg/L 21 days) 
No change  (Asagba et al., 2010) 

Electric 
catfish 

Malapterurus electricus Heavy metal 2.37 increase (Isamah and Asagba. 2004) 

Giant catfish Wallago attu Heavy metal 2.47 increased (Pandey et al., 2003) 
Mozambique 

tilapia 
Oreochromis mossabicus 

Cadmium  
(5 mg/L 15 days) 

1.86 increase (Basha and Rani. 2003) 

Nile tilapia 
juveniles 

Oreochromis niloticus 
TAN 

 (5 mg/L 70 days) 
2.9  increase (Hegazi et al., 2010) 

Nile tilapia 
juveniles 

Oreochromis niloticus 
TAN 

 (10 mg/L 70 days) 
3.5 increase (Hegazi et al., 2010) 

Spotted 
murrel 

Channa punctatus 
Mercuric chloride  

(3 µg/liter) 
No change (Sastry and Rao. 1984) 

Spotted 
murrel 

Channa punctatus 
Mercuric chloride  

 (3 µg/liter) 
No change (Sastry and Rao. 1982) 

Barbell Barbus bocagei Heavy metal No change (Peixoto et al., 2013) 
Abbreviations: 7d for 7 days exposure, 21d for 21 day exposure, 7d and 21d (acclimatised for 14 days in large aquaria then kept 
in bowls of 20 litres for 7 days and 21 days), TAN – Total ammonia nitrogen. Using xanthine as substrate. 
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Table 18: Extrahepatic XOR activity as biomarkers for pollution in fish. 

Common 
name 

Latin name Pollutant 
Fold  

increase/ 
decrease 

Organ References 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 7 days) 
1.42 decreased Kidney (Asagba et al., 2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 21 days) 
1.99 decreased Kidney (Asagba et al., 2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 7 days) 
2.33 decreased Gill (Asagba et al., 2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 21 days) 
2.28  decreased Gill (Asagba et al., 2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 7 days) 
No change Muscle (Asagba et al., 2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 21 days) 
No change Muscle (Asagba et al., 2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 7 days) 
No change Brain (Asagba et al., 2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 21 days) 
No change Brain (Asagba et al., 2010) 

Giant catfish Wallago attu Heavy metal 2.11 increased  Kidney (Pandey et al., 2003) 
Giant catfish Wallago attu Heavy metal 4.49 increased Gill  (Pandey et al., 2003) 
Mozambique 

tilapia 
Oreochromis 
mossabicus 

Cadmium  
(5 mg/L 15 days) 

1.84 increase Kidney 
(Basha and Rani. 

2003) 
Nile tilapia 
juveniles 

Oreochromis 
niloticus 

TAN 
(5 mg/L 70 days) 

2.25  increase 
White 
muscle 

(Hegazi et al., 2010) 

Nile tilapia 
juveniles 

Oreochromis 
niloticus 

TAN 
(10 mg/L 70 days) 

2.6 increase 
White 
muscle 

(Hegazi et al., 2010) 

Spotted murrel 
Channa 

punctatus 
Mercuric chloride   

(3 µg/litre) 
No change Kidney 

(Sastry and Rao. 
1984) 

Spotted murrel 
Channa 

punctatus 
Mercuric chloride  

 (3 µg/litre) 
2 increase Gills 

(Sastry and Rao. 
1984) 

Spotted murrel 
Channa 

punctatus 
Mercuric chloride  

 (3 µg/litre) 
No change Intestine Sastry and Rao.1984) 

Spotted murrel 
Channa 

punctatus 
Mercuric chloride  

 (3 µg/litre) 
No change Brain 

(Sastry and Rao. 
1984) 

Spotted murrel 
Channa 

punctatus 
Mercuric chloride  

 (3 µg/litre) 
No change Muscle Sastry and Rao.1984) 

Spotted murrel 
Channa 

punctatus 
Mercuric chloride   

(3 µg/litre) 
No change Kidney 

(Sastry and Rao. 
1982) 

Spotted murrel 
Channa 

punctatus 
Mercuric chloride  

 (3 µg/litre) 
No change Kidney 

(Sastry and Rao. 
1982) 

Spotted murrel 
Channa 

punctatus 
Mercuric chloride  

 (3 µg/litre) 
No change Kidney 

(Sastry and Rao. 
1982) 

Spotted murrel 
Channa 

punctatus 
Mercuric chloride   

(3 µg/litre) 
No change Kidney 

(Sastry and Rao. 
1982) 

Spotted murrel 
Channa 

punctatus 
Mercuric chloride  

 (3 µg/litre) 
No change Kidney 

(Sastry and Rao. 
1982) 

Common carp 
Cyprinus  

carpio 
Ammonia 

(5 mg/L 7 days) 
2 decrease Liver 

(Hari and Neeraja. 
2012) 

Abbreviations: 7d for 7 days exposure, 21d for 21 day exposure, 7d and 21d (acclimatised for 14 days in large aquaria then kept in 
bowls of 20 litres for 7 days and 21 days), TAN – Total ammonia nitrogen. All activity was measured using xanthine as substrate. 

 

 

 

 



51 

 

Isamah and Asagba, (2004) examined XO and AOX activity in the liver of electric 

catfish (Malapterurus electricus) and African catfish (Clarias gariepinus), using 

xanthine and benzaldehyde as substrate respectively, taken from two different sites 

along the Warri river in the Western Niger-Delta (see Table 19). Different levels of 

pollution as result of various effluent entries into the river were present at the two 

sample sites. It was found that XO may act as a marker of stress due to pollution by 

potentially increasing with elevated levels of contaminants and it found the activity of 

XO increased 2.37-fold and AOX activity increased 1.46-fold in electric catfish 

(Malapterurus electricus) and in African catfish (Clarias gariepinus)  AOX activity 

increased 2.35-fold and XO activity increased 2.51-fold (Table 17 and 19) (Isamah 

and Asagba. 2004). Asagba et al. (2010) examined induction of antioxidant defences 

in fish in response to oxidative stress caused by heavy metals such as cadmium, which 

are released into ponds, lakes and rivers in industrial effluents. They examined the 

effect of the exposure to cadmium over time on the activities of AOX in the liver, 

kidney and gills and xanthine oxidase in the liver of the catfish (Clarias gariepinus), 

using benzaldehyde and xanthine as substrate respectively(see Table 19). Asagba et 

al. (2010) was found the cadmium inhibited the activity of AOX and xanthine XOR in 

the liver, gill and kidney of catfish. They found the activity of AOX in liver decreased 

35.7-fold, kidney with 7 day exposure  decreased 2.23-fold and 21 day exposure 

decreased 1.62-foldand gills with 7 day exposure decreased 3.28-fold and 21 day 

exposure decreased 1.88-fold, while XO in kidney with 7 day exposure decreased 

1.42-fold and 21 day exposure decreased 1.99-fold decreased and gills with 7 day 

exposure decreased 2.33-fold and 21 day exposure decreased 2.28-fold (Asagba et al., 

2010). Hegazi et al. (2010) examined the induction of AOX and XO in liver with 

phthalazine and xanthine as substrates respectively in liver and white muscle of  



52 

 

Table 19: Hepatic and extrahepatic AOX activity as a biomarkers for pollution in fish. 

Common 
name Latin name Pollutant Substrates 

Fold  
increase/ 
decrease 

Organ References 

African 
catfish 

Clarias 
gariepinus 

Heavy metal Benzaldehyde 2.35 increase liver 
(Isamah and 

Asagba. 2004) 

African 
catfish 

Clarias 
gariepinus 

Cadmium 
(5 mg/L 7 days) 

Benzaldehyde 35.7 decrease  liver 
(Asagba et al., 

2010) 

African 
catfish 

Clarias 
gariepinus 

Cadmium 
(5 mg/L 21 days) 

Benzaldehyde 1.81decrease  liver 
(Asagba et al., 

2010) 

Electric 
catfish 

Malapterurus 
electricus 

Heavy metal Benzaldehyde 1.46 increase liver 
(Isamah and 

Asagba. 2004) 

Nile tilapia 
juveniles 

Oreochromis 
niloticus 

TAN 
(5 mg/L 70 days) 

Phthalazine 2.1 increase liver (Hegazi et al., 2010) 

Nile tilapia 
juveniles 

Oreochromis 
niloticus 

 TAN  
(10 mg/L 70 days) 

Phthalazine 2.5 increase liver (Hegazi et al., 2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 7 days) 
Benzaldehyde 2.23 decrease  kidney 

(Asagba et al., 
2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 21 days) 
Benzaldehyde 1.62 decrease  kidney 

(Asagba et al., 
2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 7 days) 
Benzaldehyde 3.25 decrease  gill 

(Asagba et al., 
2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 21 days) 
Benzaldehyde 1.88 decrease  gill 

(Asagba et al., 
2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 7 days) 
Benzaldehyde 1.15 decrease  muscle 

(Asagba et al., 
2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 21 days) 
Benzaldehyde 0.91  decrease  muscle 

(Asagba et al., 
2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 7 days) 
Benzaldehyde 1.69 increased  brain 

(Asagba et al., 
2010) 

African catfish 
Clarias 

gariepinus 
Cadmium 

(5 mg/L 21 days) 
Benzaldehyde 1.27 decrease  brain 

(Asagba et al., 
2010) 

 
Abbreviations: 7d for 7 days exposure, 21d for 21 day exposure, 7d and 21d (acclimatised for 14 days in large aquaria then kept 
in bowls of 20 litres for 7 days and 21 days). TAN – Total ammonia nitrogen. 
 
 

Nile tilapia juveniles (Oreochromis niloticus) in response to oxidative stress caused by 

chronic ammonia exposure (Table 18 and 19), which reduces growth rate performance 

causes gill hyperplasia, and induces hyperexcitability, coma, convulsions and finally 

death. The activity of hepatic XO was increased 2.9-fold and 3.5-fold following 

exposure to 5mg/L and 10mg/L of ammonia respectively. The activity of XO in white 

muscle increased 2.25-fold and 2.6-fold following exposure to 5mg/L and 10mg/L of 

ammonia respectively. While the activity of hepatic AOX increased 2.1-fold and 2.5-

fold following exposure to 5mg/L and 10mg/L of ammonia respectively which causes 

oxidative damage to the biological systems(Hegazi et al., 2010). Sastry and Rao (1982 

and 1984) it examined the extrahepatic activity of XO with mercuric chloride using 

xanthine as substrate with spotted murrel (Channa punctatus) in kidney, gill, brain and 
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muscle and found no change in to its activity. While Hari and Neeraja (2012) 

examined the activity of XO with ammonia in Common carp (Cyprinus carpio) 

kidney and found 2-fold decrease of its activity. 

 

1.5.4. Genetic and str uctural properties of molybdo-flavoenzymes in 
fish. 

It was initially believed that the developmental model organism, zebra fish (Danio 

rerio) did not have MFE genes as computer searches of whole genomes failed to find 

them initially, while the genome in the fishes Fugu rubripes and also Poecilia 

reticulata had at the least the XOR gene (Garattini et al., 2003).Later it was found the 

MFEs genes were present in all fish genomes examined including zebra fish as seen in 

table 20 with (Kurosaki et al., 2013).Using genome sequencing data, Kurosaki et al., 

(2013) reconstructed the evolution of MFEs by predicting the structures of MFEs 

genes and pseudogenes. Their work demonstrated that bony fish are most primitive 

vertebrate with an AOX gene (AOXα), coming from the duplication of an ancestral 

XDH. They also showed that during fish evolution duplication of AOXα into AOX  

and pseudogenization of the ancestral AOXα occurred (Figure 20, 21)(Kurosaki et al., 

2013). An orthologs of the piscine AOX  was observed to be preserved in amphibians 

and it is likely that this is the precursors of reptilian, avian and mammalianAOX1 

found in the liver of most higher organisms including human where AOX1 it is the 

sole AOX enzyme, as in Table 7, 8, 9 and Figure 22. On the other hand amphibian 

AOX  is a duplication of AOX  and the likely ancestor of avian and reptilian AOX2 

that, in turn, gave rise to mammalian AOX3L1 (Figure 22). Subsequent gene 

duplications generated the two mammalian genes, AOX3 and AOX4 (Figure 22). The 

evolution of vertebrate AOX genes is thus dominated by duplication 

,pseudogenization and deletion events (Kurosaki et al., 2013).Figure 22 shows how 
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AOX and XDH genes evolved in different species of vertebrates. Table 20 

summarises our current knowledge of AOX and XDH genes and pseudogenes in fish, 

amphibians, reptiles, birds and mammals (Kurosaki et al., 2013). 
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Figure 20: Summary of AOX and XDH genes in fish. Based on Kurosaki et al., 2013. The green colour indicates XDH genes, the yellow colour indicates AOX  genes 
and red colour indicates AOXαgenes. The numbers above the genes indicate the exons present and the crosses (X) indicate inactive pseudogenes that have exons missing. 
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Figure 21: Proposed evolution of AOX and XDH genes in fish. Based on Kurosaki et al., 2013.  The green colour indicates XDH genes, the yellow colour indicates 
AOX  genes and red colour indicates AOXα genes. The curved arrows indicate duplication events and the crosses (X) indicate inactive pseudogenes that have exons missing. 
[      ] indicates direction of transcription.    
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Figure 22: Summary of evolution of AOX and XDH genes in fishes, amphibians, reptiles, birds and mammals. Based on Kurosaki et al., 2013.The green colour 
indicates XDH genes, the yellow colour indicates AOX  and AOX1 genes, red colour indicates AOXα genes, blue colour indicates (AOX2) and the purple colour indicates 
(AOXƐ gene).The curved arrows indicate duplication events and the crosses (X) indicate inactive pseudogenes that have exons missing.[        ] Indicates direction of 
transcription.   
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Table 20: AOX and XOR genes in fish, amphibians, reptiles, birds and mammals 

Organism Class Order Family Common name 
 (Species name) 

 
MFE genes present 

Jawless fish 
(Agnatha) 

Hyperoartia Petromyzontiformes Petromyzontidae 
Lamprey 

(Petromyzon marinus) 
XDH 

Cartilaginous 
fish 

(Chondrichthyes) Chondrichthyes 
Rajiformes Rajidae 

Little skate 
(Leucoraja erinacea) 

XDH 

 Chimaeriformes Callorhinchidae 
Australian ghost shark 
(Callorhinchus milii) 

XDH 

 Actinopterygii Cypriniformes Cyprinoidea 
Zebrafish 

(Danio rerio) 
AOXα, AOX ,XDH 

  Semionotiformes Lepisosteidae 
Spotted gar 

(Lepisosteus oculatus) 
AOXα, AOX ,XDH 

Bony Fish  Tetraodontiformes Tetraodontidae 
Fugu 

(Takifugu rubripes) 
AOX ,XDH 

(Osteichthyes)    
Pufferfish(Tetraodon 

nigroviridis) 
AOX ,XDH 

  Gasterosteiformes Gasterosteidae Stickleback(Gasterosteus 
aculeatus) 

AOX ,XDH 

  Cyprinodontiformes Poeciliidae 
Platy 

(Xiphophorus maculatus) 
AOX ,XDH 

  Beloniformes Adrianichthyidae 
Medaka 

(Oryzias latipes) 
AOX ,XDH 

  Perciformes Cichlidae 
Nile tilapia 

(Oreochromis niloticus) 
AOX ,XDH 

  
Salmoniformes Salmonidae 

Atlantic salmon 
(Salmo salar) 

PAOXα, AOX ,XDH 
  

Sarcopterygii Coelacanthiformes Coelacanthidae 
Coelacanth 

(Latimeria chalumnae) 
PAOXα, AOX ,XDH 

Amphibians Amphibia Anura Pipidae 
African frog 

(Xenopus tropicalis) 
AOX ,AOX ,PAOXµ,XDH 

Reptiles 

Sauropsida Testudines Emydidae 
Western painted turtle 

(Chrysemys picta bellii) 
AOX1,AOX2,XDH 

Sauropsida Testudines Trionychidae 
Chinese softshell 

turtle(Pelodiscus sinensis) 
AOX1,AOX2,XDH 

Sauropsida Squamata Iguanidae 
Anole lizard 

(Anolis carolinensis) 
AOX ,AOX ,AOX1,AOXβ,XDH 

Sauropsida Archosauria Crocodylidae 
American alligator 

(Alligator mississippiensis) 
AOX ,AOX ,AOXξ,AOX1,AOXβ 

Sauropsida Archosauria Crocodylidae 
Saltwater 

crocodile(Crocodylus 
porosus) 

AOX ,AOX ,AOXξAOX1,PAOXβ 

Birds 

Aves Galliformes Phasianidae Chicken(Gallus gallus) 
Turkey(Meleagris gallopavo) 

AOX1,AOX2,XDH 

Aves Psittaciformes Psittacidae 
Budgerigar(Melopsittacus 

undulatus) 
AOX1,AOX2,XDH 

Aves Passeriformes Estrildidae Zebra finch 
(Taeniopygia guttata) 

AOX1,XDH 

Aves Anseriformes Anatidae 
Mallard duck 

(Anas platyrhynchos) 
AOX1,XDH 

Mammals 

Mammalia Monotremata Ornithorhynchidae 
Platypus(Ornithorhynchus 

anatinus) 
AOX1,AOX3,AOX3L1,AOX4,XDH1,

PXDH2, PXDH 3, PXDH 4 

Mammalia Didelphimorphia Didelphinae 
Opossum 

(Monodelphis domestica) 
AOX1,AOX3,AOX3L1,AOX4,XDH 

Mammalia Dasyuromorphia Dasyuridae 
Tasmanian 

devil(Sarcophilus harrisii) 
AOX1,AOX3,AOX3L1,AOX4,XDH 

Mammalia Diprotodontia Macropodidae 
Wallaby 

(Macropus eugenii) 
AOX1,AOX3,AOX3L1,AOX4,XDH 

Mammalia Afrosorcida Tenrecidae 
Lesser hedgehog 

tenrec(Echinops telfairi) 
AOX1,AOX3,AOX3L1,XDH 

Mammalia Proboscidea Elephantidae 
African elephant 

(Loxodonta Africana) 
AOX1,AOX3,AOX3L1,AOX4,XDH 

Mammalia Hyracoidea Procaviidae 
Rock hyrax 

(Procavia capensis) 
AOX1,AOX3,AOX3L1,AOX4,XDH 

Mammalia Cingulata Dasypodidae 
Armadillo 

(Dasypus novemcinctus) 
PAOX1,AOX3,AOX3L1,AOX4,XDH 

Mammalia Pilosa Megalonychidae 
Two toed sloth 

(Choloepus hoffmanni) 
PAOX1, AOX3,AOX3L1,AOX4,XDH 

Mammalia 
Chiroptera 

(Megachiroptera) 
Pteropodidae 

Flying fox 
(Pteropus vampyrus) 

PAOX1, PAOX 3, PAOX 
4,AOX3L1,XDH 

Mammalia 
Chiroptera 

(Microchiroptera) Vespertilionidae 
Little brown bat 

(Myotis lucifugus) 
PAOX3,AOX1,AOX3L1,AOX4,XDH 

Mammalia Perissodactyla Equidae Horse(Equus caballus) PAOX3,AOX1,AOX3L1,AOX4,XDH 

Mammalia primates Hominidae Human (Homo sapiens) PAOX3, PAOX3l1, AOX1, XDH 
          Based on (Kurosaki et al., 2013).Abbreviation.P=pseudogene.
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1.6. Purification of aldehyde oxidase and xanthine oxidoreductase 

enzymes. 

MFEs have been purified from many different species with different methodologies as 

summarised in the (Tables 21, 22 and 23). Tables 21 and 22 summarise purification 

protocols for AOX from diverse number of organisms. Reviewing the literature on the 

subject reveals that the initial step of purification of AOX is generally subcellular 

fractionation to generate cytosol where the enzyme resides. A popular subsequent 

purification method used for AOX is heat precipitation. This method can be a useful 

step in the early stages of a purification scheme involving more heat stable proteins. It 

is generally achieved by incubating the protein mixture at known temperature for 10 

minute, then cool in ice for 15 minute, then centrifugation at high centrifuge for 15 

minute. These results in the denaturation of the unwanted less stable proteins in the 

mixture that are removed by precipitation. By this principle there can often by a 2-fold 

purification of a heat stable protein in the supernatant fraction (Bonner. 2007).The 

thermal stability of mammalian and Drosophila AOX has allowed this to be used 

successfully in 15 out of 18 purification protocols. Temperatures used for these 

purification protocols range from 50-68 °C with 50-55°C being the most common 

temperature used (Table 21 and 22). Interestingly heat treatment (50 – 70 °C) is also 

used in the purification of related MFEs, XOR (Table 23).  

The next step commonly used in many AOX purification protocols is ammonium 

sulphate fractionation (Table 21 and 22). In this method the solubility of proteins is 

increased at low salt concentrations and is decreased at high salt concentrations. When 

a salt such as ammonium sulphate is added to a protein solution, the ions in the 

ammonium sulphate have a greater charge density than the proteins, they attract the  
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Species Tissue Enzyme Purification steps Molecular mass Substrates Fold purification a, b Yield % References 

Guinea pig 
(Cavia porcellus) Liver AOX 

Cytosol, 30-50% (NH4)2SO4, 
DEAE- cellulose, 
FMN – sepharose 4B,  
Sephacryl S-300 

Native PAGE 300 kDa 
SDS PAGE   148 kDa 

2-hydroxypyrimidine, 
N1-methylnicotinamide, 

 
120a 26 

(Yoshihara and Tatsumi. 
1985) 

Hamster 
(Hamster) 

Liver AOX 
Cytosol, heat at 50 oC, 30-50% 
(NH4)2SO4, DEAE-cellulose, phenyl-
Toyopearl, TSK-gel G3000SWXL 

Native PAGE 288 kDa 
SDS PAGE 145 kDa 

Benzaldehyde 89a 12 (Sugihara et al., 1999) 

Mouse 
(Mus musculus) Liver AOH1 

Cytosol, heat at 55 oC, 50% (NH4)2SO4,  
Benzamidine sepharose 6B, MonoQ 

 
SDSPAGE 147 kDa 

Zymogram 
MALDI-TOF MS 

Phthalazine 173a 1.7 (Terao et al., 2001) 

Mouse 
(Mus musculus) Liver AOH2 

Cytosol, heat at 55 oC, 50% (NH4)2SO4, 

Benzamidine sepharose 6B, MonoQ 

SDS PAGE 150 kDa 
MALDI-TOF MS 

Zymogram 
All-trans retinaldehyde 346a 5 (Terao et al., 2009) 

Mouse 
(Mus musculus ) 

Nasal 
epithelial 
mucosa 

AOH3 
Cytosol, heat at 55 oC, 50% (NH4)2SO4,  
MonoQ 

SDS PAGE  150 kDa 
MALDI-TOF MS 

Zymogram 
western blot 

Phthalazine, All -trans 
retinaldehyde, 
Benzaldehyde, 

2-hydroxypyrimidine, 
Octanal 

18a 26 (Kurosaki et al., 2004) 

Mouse 
(Mus musculus ) Liver AOX 

Cytosol, 30-50% (NH4)2SO4, 

Benzamidine sepharose 6B, DEAE- 
cellulose 

Native PAGE 265 kDa 
 

SDS PAGE 138 kDa 

Benzaldehyde, DMAC, 
 2-hydroxypyrimidine 140a - 

(Yoshihara and Tatsumi. 
1997) 

Mouse 
(Mus musculus) Liver AOX1 

Cytosol, heat at 55 oC, 50% 
(NH4)2SO4, Benzamidine sepharose 
6B, MonoQ 

 
SDS PAGE 150 kDa 

MALDI-TOF MS 
Zymogram, 
western blot 

Phthalazine 627a 3 (Vila et al., 2004) 

Rat 
(Rattus norvegicus) Liver AOX 

Crude extract, heat at 55 oC, 60% 
(NH4)2SO4, HTP column, Benzamidine 
sepharose 6B, Sephadex G-25 column 

Native PAGE 285 kDa 
SDS PAGE 150 kDa 

DMAC 945b 13 (Maia and Mira. 2002) 

Abbreviation: p-dimethylaminocinnamaldehyde - DMAC         a = from cytosol, b= from crud extract (homogenate) 

Table 21: Summary of purification protocols for aldehyde oxidase from rodent species. 
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Species Tissue Enzyme Purification steps Molecular mass Substrates Fold purification a, b Yield % References 
Bovine 

(Bos taurus) Liver AOX 
Cytosol,  heat at 60 oC, 40% (NH4)2SO4 , 
Fast-Q,Sephacryl, Benzamidine sepharose 6B 

SDS PAGE 150 kDa 
 

Phenanthridine 307a 3 (Calzei et al., 1995) 

Chicken 
(Gallus gallus) Kidney AOX1 

Cytosol, heat at 55 oC, 40% (NH4)2SO4 , 
Benzamidine Sepharose 6B, MonoQ 

SDS PAGE 150 kDa 
MALDI MS 

 
All-trans retinaldehyde -  - (Terao et al., 2006) 

Drosophila 
(Drosophila 

melanogaster) 

 

Flies AOX 
Cytosol, heat at 68 oC, 55-75% (NH4)2SO4,  
Sephadex G200, DEAE -Cellulose 

Native PAGE 280 kDa 
 

Benzaldehyde 481a 18 (Andres. 1976) 

Drosophila 
(Drosophila 

melanogaster) Flies AOX 
Crude extract, CM-cellulose,  55-75% 
(NH4)2SO4,  DEAE –Cellulose, 
hydroxylapatite 

------------------- 
 

Benzaldehyde 361b 16 (Dickinson. 1970) 

Sea bream 
(Pagrus major) 

Liver AOX 
Cytosol, heat at 50 oC,  30-50% ((NH4)2SO4, 
DEAE-cellulose 

------------------- 
 

Benzaldehyde 33a 5.6 
(Kitamura et al., 

2003) 

Sea bream 
(Pagrus major) Liver AOX 

Cytosol, heat at 45 oC,  30-45% (NH4)2SO4 , 
DEAE-cellulose column chromatography 

------------------- 
 

Benzaldehyde, 
2-nitrofluorene 

2-hydroxypyrimidine 
-  

 
- 
 

(Ueda et al., 2002) 

Pig 
(Sus scrofa) 

Liver AOX 
Crude extract, heat at 55 oC, 60% (NH4)2SO4   
, Acetone precipitation, Alumina Cỷ, DEAE-
cellulose, preparative electrophoresis 

Disc gel electrophoresis 270 kDa 
 

N1-methylnicotinamide 115b 6.8 (Felsted et al., 1973) 

Rabbit 
(Oryctolagus 

cuniculus) Liver AOX 

Crude extract, heat at 55 oC, 60% (NH4)2SO4   
, Acetone precipitation, Calcium phosphate 
gel, DEAE-cellulose, preparative 
electrophoresis 

Disc gel electrophoresis 260 kDa 
 

N1-methylnicotinamide 118b 14.4 (Felsted et al., 1973) 

Rabbit 
(Oryctolagus 

cuniculus) Liver AOX 

Crude extract, heat at 58 oC, 50% (NH4)2SO4   
, 50% Acetone precipitation, DEAE-
Sephacel,HA-Ultrogel, Sephacryl S-300, 
MonoQ 

Native PAGE 290 kDa 
SDS PAGE 144 kDa 
EPR spectroscopy 

 

1-methylnicotinamide - - (Turner et al., 1995) 

Rabbit 
(Oryctolagus 

cuniculus) Liver AOX 
Crude extract, heat at 55 oC, 50% (NH4)2SO4, 
Benzamidine sepharose 6B, MonoQ 

SDS PAGE 150 kDa 
MALDI-TOF MS, 

Zymogram, western blot 
 

Phthalazine 400b 64 (Stell et al., 1989) 

Abbreviation:   a = from cytosol, b= from crude extract (homogenate) 

Table 22: Summary of purification protocols for aldehyde oxidase from non-rodent species. 
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Species Tissue Enzyme Purification steps Molecular mass Substrates Fold purification a, b Yield % References 
Chicken 

(Gallus gallus) 
Liver XDH 

Crude extract, heat at 70°C, 30% (NH4)2SO4,  
Sephadex G25, DEAE -Sephadex 

Native PAGE 300 kDa 
 

Xanthine + NAD+ -  - 
(Rajagopalan and Handler. 

1967) 
Drosophila 

(Drosophila 

melanogaster) Flies XDH 
Crude extract, heat at 68°C, 30-50% 
(NH4)2SO4,  Sephadex G200,  DEAE -
Cellulose 

Native PAGE 300 kDa 
 

Isoxanthopterin + 
NAD+ 481b 18 (Andres. 1976) 

Drosophila 
(Drosophila 

melanogaster) Flies XDH 
Crude extract,  30-55% (NH4)2SO4, Acetone 
25-50% ,  DEAE –Cellulose, Sephacryl-
HR200, Superose 12, MonoQ 

SDS PAGE 150 kDa 
 

Pterin+NAD+ 2840b 21 (Hughes et al., 1994) 

Carp 
(Cyprinus  carpio) Liver XOR 

Cytosol, 30-60% (NH4)2SO4, Sephadex G-25, 
DEAE-Sephacel 

--------------- 
 

Xanthine, 
Hypoxanthine + NAD+ 

- - 
(Kamiński and Jeżewska. 

1985) 

Pig 
(Sus scrofa) 

Liver XO 
Crude extract, heat at 55 oC, 60% (NH4)2SO4 , 
Acetone precipitation,  Alumina Cỷ, DEAE-
cellulose 

--------------- 
 

Xanthine 83b 3 (Felsted et al., 1973) 

Rabbit 
(Oryctolagus 

cuniculus) 
Liver XO 

Crude extract, heat at 55C°, 60% (NH4)2SO4 , 
Acetone precipitation. 

--------------- 
 

Xanthine 98b 19 (Felsted et al., 1973) 

Rat 
(Rattus norvegicus) Liver XO 

Crude extract, heat at 55oC, 60% (NH4)2SO4 , 
HTP, Q-Sepharose F.F. 

Native PAGE 300 kDa 
 

SDS PAGE 150 kDa 
 

Xanthine 1167b 19 (Maia and Mira. 2002) 

Rat 
(Rattus norvegicus) Liver XOR 

Crude extract, heat at 65 oC, 50% (NH4)2SO4, 
Benzamidine Sepharose 6B, Sephadex G-50 

SDS PAGE 150 kDa 
 

Xanthine + NAD+ 199b 5.7 (McManaman et al., 1996) 

Rat 
(Rattus norvegicus) Liver XO 

Crude extract, DEAE bath,  43% acetone 
precipitation, DEAE Sephacel pool, HA 
Ultrogel 

SDS PAGE 137 kDa 
 

Xanthine 781b 19 (Engerson et al., 1987) 

Rat 
(Rattus norvegicus) Liver XDH 

Crude extract, DEAE bath, 43% acetone 
precipitation, DEAE Sephacel pool, HA 
Ultrogel 

SDS PAGE 137 kDa 
 

Xanthine+NAD+ 1060b 47 (Engerson et al., 1987) 

Abbreviations: a = from cytosol, b= from crude extract (homogenate) 

Table 23: Summary of xanthine oxidoreductase purification from different species 
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water molecules away from the surfaces of the proteins. This exposes hydrophobic 

patches on the proteins causing them to interact with each other forming inter-protein 

complexes. When a protein complex becomes too large it comes out of solution as a 

precipitate (Bonner. 2007). In all 18 protocols for AOX purification, ammonium 

sulphate fractionation has been used as an enrichment step prior to chromatography 

(Table 21 and 22). Sometimes a single ammonium sulphate fractionation is used but 

some protocols use two steps of ammonium sulphate fractionation to generate a 

narrower precipitation range (Table 21 and 22). Ammonium sulphate fractionation 

used for the purification protocols of AOX range from 30-75 % saturation with 30-50 

% saturation being the most common ammonium sulphate fractionation used.  

With regards chromatography steps, four types of chromatography media have been 

used in the purification of AOXs namely ion exchange, gel filtration, hydrophobic 

interaction and affinity chromatography. 

For AOX purification anion exchange media is the preferred ion exchange 

chromatography reagent used to separate negatively charged proteins. The molecular 

basis of this chromatography is that the resin in anion exchange columns contains 

cationic (positively charged) sites to bind proteins with a net negative charge. The 

bound proteins are then eluted by gradually increasing the salt concentration of the 

eluting buffer. A typical elution used is a gradient of 0 – 1M NaCL(Bonner. 2007). 

Anion exchange has been used in 10 out of 18 AOX purification protocols with 

DEAE-cellulose, 7 out of 18 AOX purification protocols with Mono-Q and 1 out of 

18 AOX purification protocols with FAST-Q media being used. Anion exchange has 

been used in the purification of the related enzyme XOR (Table 23).  
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Gel filtration that separates molecules on the basis of their differences in size and 

shape have been used in 4 out of 18 AOX purification protocols (Table 21 and 22). 

Affinity chromatography that separates proteins on the basis of a reversible interaction 

between a protein or group of proteins and a specific ligand have been used in 9 out of 

18 AOX purification protocols (Table 21 and 22). 8 out of 18 AOX purification 

protocols were with benzamidine sepharose 6B media being used on the basis of 

benzamidine being a competitive inhibitor of AOX (Table 21 and 22) (Stell et al., 

1989). 

 A literature survey (Table 21 and 22) reveals that to obtain a homogeneous 

preparation of AOX as assessed by SDS-PAGE or mass spectrometry generally the 

enrichment factor from liver is 89 – 2840 folds (Table 21 and 22). In order to achieve 

this yields range from 1.7 – 64 % (Table 21 and 22) liver AOX. 

With regards substrates used to monitor the purification of AOX the most popular are 

2-hydroxypyrimidine, N1-methylnicotinamide, benzaldehyde, phthalazine, all-trans 

retinaldehyde, octanal, p-dimethylaminocinnamaldehyde (DMAC), phenanthridine 

and 2-nitrofluorene (Table 21 and 22). In these assays which are generally 

spectrophotometric some investigations do not directly measure substrate or product. 

These indirect assays use artificial electron acceptors such as dichloroindophenol 

(DCIP) and ferricyanide (Table 21 and 22). 

With regards determining the native molecular mass of AOX, gel filtration has been 

used in 23 out of 28 protocols to determine this native molecular mass of purified 

enzyme preparations. These range from 212 – 300 kDa (Tables 21, 22 and 23). 
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1.7. Aims of the project. 

As indicated in the introduction the study of MFEs in fish has received much less 

attention than their mammalian counterparts. Of particular interest for aquatic 

organisms is a group of nitrogen containing polycyclic aromatic hydrocarbons 

(NPAHs) and their metabolites that are found as aquatic environmental pollutants 

(Blumer et al., 1977, Balch et al., 1995, Osborne et al., 1997, de Voogt and Laane. 

2009) are AOX substrates that are cytotoxic, embryotoxic, teratogenic, genotoxic and 

carcinogenic (Southworth et al., 1979, Balch et al., 1995, Jung et al., 2001, Barron et 

al., 2004, Peddinghaus et al., 2012, Brinkmann et al., 2014). These include AOX 

substrates such as phenanthridine, quinoline, isoquinoline, hydroxyisoquinolines, 

cinchonine, phthalazine, hydroxyphthalazines, quinazoline, hydroxyquinazolines and 

acridine (Rajagopalan and Handler. 1964b, Palmer et al., 1969, Krenitsky et al., 1972, 

McCormack et al., 1978, Stubley et al., 1979, Stubley and Stell. 1980, McMurtrey and 

Knight. 1984, Beedham et al., 1992, Robertson and Bland. 1993, Rashidi. 1996, 

Schofield et al., 2000, Beedham. 2001, Al -Tayib. 2009, Pryde et al., 2010, Barr and 

Jones. 2013, Mu et al., 2014). 

Despite NPAHs being important aquatic pollutants to date only one of these, 

phthalazine, has been investigated as an AOX substrate in a fish species ( Nile tilapia 

juveniles (Oreochromis niloticus)) (Hegazi et al., 2010). 

The species focussed on in this research project and aims of this study are as follows: 

Rainbow trout (Oncorhynchus mykiss) was the focus of this study for several reasons. 

Rainbow trout is a member of the Salmonidae family, are widely distributed fish 

species cultured in regions with cold and cool water temperatures around the world 

(Harvey. 2004). They are important food and sport fish and the most cultivated cold 
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freshwater fish in the US, Canada and European countries (Wolf and Rumsey. 1985). 

Due to its economic importance and ease of availability of tissue it is one of the most 

rigorously studied fishes in many research areas including carcinogenesis, toxicology, 

comparative immunology, disease ecology, physiology and nutrition (Behnke. 1992). 

With regards MFEs rainbow trout belongs to a class of fish Salmonidae, that have a 

single active AOX gene (AOXβ) that is the ancestral AOX gene that gave rise to 

AOX1 the predominant hepatic AOX in rodents and the only AOX in 

humans(Kurosaki et al., 2013). Despite the aforementioned reasons for studying AOX 

in a Salmoniforme there has been no study to date (Tables 10, 11 and 12). 

(a) The initial aim was to compare the biotransformation of endogenous and 

exogenous substrates by AOX and XOR in rainbow trout, rat and human. 

(b) Up until now there has been no published work on any fish AOX and XOR with 

Km and Vmax measurements. An aim was therefore to determine the Km and Vmax 

for MFEs in rainbow trout and compare it with results in rat and human using 

spectrophotometric and HPLC assays. 

(c) An additional aim of this project was to determine if environmental pollutants, 

drugs and estrogens might inhibit AOX in fish.  

(d) As there has been no report of the purification of any piscine AOX to 

homogeneity, another goal was to purify the AOX enzyme from rainbow trout liver to 

examine its molecular characteristics. 
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2.0. Materials and methods. 

All reagents and chemicals were obtained from Fisher Scientific and Sigma / Aldrich 

Chemical Company Ltd, Poole, UK. Solvents and mobile phase reagents were 

obtained from different companies but were all for HPLC grade purity. The control of 

substances hazardous to health (COSHH) risk assessment for all reagents and 

chemicals were prepared before experiments were initiated. 

Male Wistar rats (Rattus norvegicus) and male New Zealand white rabbit liver cytosol 

were obtained from the biomedical services unit, University of Dundee (Dr 

D.J.Clarke). Pooled human liver cytosol was obtained from Invitrogen Ltd. Immature 

rainbow trout (Oncorhynchus mykiss) liver was obtained from Pennine Trout Farm 

and Fishery, Calderbrook Road, Littleborough OL15 9HL, UK. 

2.1. In vitro  analysis of molybdo-flavoenzyme activity. 

2.1.1. Preparation of cytosol. 

For the preparation of cytosol all steps were carried out at 0 – 4°C. Approximately 10 

g of liver, kidney and gill were weighed out and homogenised in 40 ml of cold buffer 

(0.25 M sucrose, 10 mM Tris HCL pH 7.4) with a motor-driven tissue mortar fitted 

with a Teflon pestle (clearance 0.15-0.23mm, speed 10000 rpm and 5 minute 

duration) to produce a 25% w/v homogenate. The homogenate was then centrifuged at 

4°C for 15 minutes at 10,000 xg, to pellet out the nuclear/mitochondrial fractions of 

the homogenate. The supernatant was then removed and centrifuged for a further 60 

minutes at 4°C at 105,000 xg to obtain the cytosolic fraction. This fraction was then 

collected and separated into 0.5 ml aliquots and stored at -80°C.  
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2.1.2. Gel filtration of cytosol. 

Gel filtration of cytosol was carried out in order to remove endogenous small 

molecules, such as endogenous substrates and inhibitors, which may interfere with 

enzyme assays. A PD-10 gel filtration column was used (GE Healthcare Bio-Science, 

UK). Prior to use the column was allowed to drain before being equilibrated with 25 

ml (5 column volumes) 50 mM Tris HCL pH 7.4. 2.5 ml of cytosol was then loaded 

onto the column and eluted with 3.5 ml of 50 mM Tris HCL pH 7.4, the protein 

containing fraction was then collected, pooled and aliquoted into 0.5 ml fractions in 

1.5 ml polypropylene Eppendorf tubes to avoid repeated freeze/thawing and stored at -

80°C. 

2.2. Protein determination. 

The amount of protein in each sample was calculated using a modification of the 

method described by Smith et al. using bovine serum albumin (BSA) as standard 

(Smith et al., 1985). The bicinchoninic acid (BCA) based assay is available as a kit 

from Sigma-Aldrich Co. 

2.2.1. Bicinchoninic acid reagents. 

a) 1000 ml solution containing bicinchoninic acid (40 g), sodium carbonate (Na2CO3) 

(8 g), sodium tartrate (Na2C4H4O6 )(16 g) and sodium bicarbonate (NaHCO3 ) (9.5 g) 

in 0.1N NaOH (final pH 11.25).Purchased from Sigma- Aldrich Co. 

b) 25 ml solution containing 4% w/v copper sulphate pentahydrate (CuSO4. 

5H2O).For preparing of a set protein standards a 1mg/ml stock solution of bovine 

serum albumin (BSA) was prepared. This was then used to make the dilutions for the 

calibration curve as shown in (Table 24). 

 



69 

 

Table 24. Preparation of protein calibration standards 

Final protein concentration 
(mg/mL) 

Volume BSA stock solution 
(µl) 

Distilled water 
(µl) 

0 
0.2 
0.4 
0.6 
0.8 
1.0 

0 
20 
40 
60 
80 
100 

100 
80 
60 
40 
20 
0 

 
 

2.2.2. Bicinchoninic acid methodology. 

a) The required amount of protein determination reagent was prepared by adding 1 

part CuSO4. 5H2O 4% w/v solution to 50 parts bicinchoninic acid solution. 

b) Bovine serum albumin standards or 1 in 20 dilution gel-filtered cytosol (20 µl 

cytosol + 380 µl PBS) were prepared in duplicate. 

c) 300 µl of freshly protein determination reagent was added to 15 µl of diluted 

cytosol or protein standard and vortexed. 

d) All tubes were incubated at 37°C for 30 minutes. 

e) The absorbance at 562 nm was then measured on a microplate reader and distilled 

water was used to zero the instrument. 

 

2.3. Preparation of substrate stocks. 

5 mM individual stock solution of AOX and XOR substrates and corresponding 

metabolites were prepared with appropriate solvent as indicated in (Table 25). After 

preparing the stock solutions, working standard solutions of 1 mM were prepared by 

dilution with water. 
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Table 25: List of stock substrates, products and solvent used to prepare them. 

Substrate and product 
(5mM stock solution) 

Comment AOX and XOR Solvent/treatment 

Allopurinol Hyperuricemia drug AOX/XOR 
10 mM  NaOH 

/sonicating 

Oxipurinol Allopurinol metabolite AOX/XOR 
10 mM  NaOH 

/sonicating 
All-trans retinal Vitamin A AOX Absolute ethanol 

Retinoic acid Vitamin A metabolite AOX Absolute ethanol 

Cinchonine Anti-malarial drug AOX 
dissolve in minimum 
volume of 0.1M HC 

then dH2O added 
DMAC Colouring dye AOX Absolute ethanol 

6-mercaptopurine Anti-cancer drug AOX/XOR 
10 mM  NaOH 

/sonicating 

6-thiouric acid 
6-mercaptopurine 

metabolite 
AOX/XOR 

10 mM  NaOH 
/sonicating 

1-methylxanthine Purine metabolism XOR 
10 mM  NaOH 

/sonicating 

1-methyl uric acid 
1-methylxanthine 

metabolite 
XOR 

10 mM  NaOH 
/sonicating 

N1- methylnicotinamide 
Endogenous vitamin 

metabolite 
AOX dH2O /sonicating 

Phenanthridine Environmental pollutant AOX Absolute ethanol 
Phenanthridone Phenanthridine metabolite AOX Absolute ethanol 

Phthalazine Environmental pollutants 
AOX 

Absolute ethanol 

Phthalazinone Phthalazine metabolite 
AOX 

Absolute ethanol 

Pyrazinamide 
Tuberculosis drug 

AOX/XOR 
10 mM NaOH 

/sonicating 

Pyridoxal Vitamin B6 AOX 

dissolve in minimum 
volume of absolute 
ethanol then dH2O 

added 

6-pyridoxic acid Pyridoxal metabolite AOX 

dissolve in minimum 
volume of absolute 
ethanol then dH2O 

added 
Vanillin Food constituent AOX dH2O /heated to 700C 

Vanillic acid Vanillin metabolite AOX dH2O /heated to 700C 

Xanthine Purine metabolism XOR 
10 mM  NaOH 

/sonicating 

Uric acid Xanthine metabolite XOR 
10 mM  

NaOH/Sonicating 
Abbreviation: DMAC – dimethylaminocinnamaldehyde. 

2.4. Spectrophotometric determination of aldehyde oxidase activity. 

 AOX assays were performed with 40µl of gel filtered cytosol, 10µl of 1mM of 

substrate (dimethylaminocinnamaldehyde (DMAC), phenanthridine or vanillin) and 

50µl Tris HCL pH 7.4 at 37°C. Spectrophotometric molybdo-flavoenzyme assays 

were conducted by using a microplate spectrophotometer (BioTek) at 37ºC. All assays 
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were executed in triplicate in 100 µl reaction volumes. All cytosol samples were 

frozen and thawed just once, and the spectrophotometric data were collected at 5 

second intervals for γ to 5 minutes utilizing Gen5™ software on the Windows XP PC 

connected to the microplate reader’s spectrophotometer (BioTek), using the 

appropriate wavelength and molar absorption coefficient for each substrate / product 

as summarised in (Table 26). 

Table 26: Wavelength and molar absorption coefficients used for the spectrophotometric 
measurement of aldehyde oxidase activity 

Substrates 
Principle of assay 

 

 
Wavelength 

nm 

Molar 
absorption, 
Ɛ (M -1 cm-1) 

Reference 

DMAC Disappearance of substrate 398 30500 (Kurth and Kubiciel. 1984) 

Phenanthridine Appearance of product 322 6400 (Johnson et al., 1984) 

Vanillin  Disappearance of substrate 310 8854 
(Panoutsopoulos and Beedham. 

2004) 

Abbreviation: DMAC – dimethylaminocinnamaldehyde. 

 

 

 

2.5. Spectrophotometric determination of xanthine oxidoreductase 

activity. 

The oxidation of xanthine to the uric acid and 1-methylxanthine to the 1-methyluric 

acid was assayed by monitoring the appearance of uric acid or 1-methyluric acid at 

295 nm with the electron acceptors NAD+ and O2 (Waud and Rajagopalan. 1976). A 

summary of the assay conditions is given in (Table 27). The specific activity was 

calculated using the molar extinction coefficient for uric acid and 1-methyluric acid 

which is 9,600 M-1 cm-1. 
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Table 27: Summary of xanthine oxidoreductase assay setup. 

XO activity assay XO activity blank 

Reagent Volume Final concentration Reagent Volume 
Final 

concentration 

Gel-filtered cytosol 60 µl  
Gel-filtered 
cytosol 

60 µl  

100 mM Tris HCL, 
pH 8.0 

20 µl 
20 mM Tris HCL 

 pH 8.0 

100 mM Tris 

HCL, pH 8.0 
20 µl 30 mM 

1.5 mM (X or 1-MX) 
in 10 mM NaOH 

10 µl 
0.15 mM (X or 1MX) 

1mM NaOH 
10 mM NaOH 10 µl 1 mM 

dH2O 10µl  dH2O 10µl  

XOR activity assay XOR activity blank 

Reagent 
Volum

e 
Final concentration Reagent Volume 

Final 
concentration 

Gel-filtered cytosol 60 µl  
Gel-filtered 
cytosol 

60 µl  

100 mM Tris HCL, 
pH 8.0 

20 µl 
20 mM Tris HCL 

 pH 8.0 

100 mM Tris 

HCL, pH 8.0 
20 µl 20 mM 

6.7 mM NAD+ 10 µl 0.67 mM NAD+ 6.7 mM NAD+ 10 µl 0.67 mM 
1.5 mM (X or 1-MX) 

in 10 mM NaOH 
10 µl 

0.15 mM (X or 1MX) 
1mM NaOH 

10 mM NaOH 10 µl 1 mM 

Abbreviation; Xanthine(X) and 1-methylxanthine (1-MX) 

 

 

The total XOR activity was calculated following subtraction of the XOR blank. This 

gave the total XOR activity with both NAD+ and O2 as electron acceptors and was the 

total activity of the enzyme in the sample as both a dehydrogenase and oxidase. The 

XO activity was calculated following subtraction of the XO blank. This gave the 

activity with O2 as an electron acceptor. In order to calculate the XDH activity in the 

sample, the XO activity was subtracted from the XOR activity to give the activity with 

NAD+ as electron acceptor only. The percentage XDH activity in the sample was 

calculated by dividing the XDH activity by the total XOR activity and multiplying by 

100. Similarly the percentage XO activity was calculated by dividing the XO activity 

by the total XOR activity and multiplying by 100. 
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2.6. Determination of specific activity from spectrophotometric data. 

The number of nmoles of substrate biotransformed per minute was calculated using 

the absorbance change observed per minute using the relationship :c = A/Ɛl where c = 

concentration (mM), A = absorbance, l = path length of absorbing solution in cm, Ɛ = 

molar extinction coefficient. The light path for 100µl in a 96-well microplate was 

0.681cm. Specific activity was then calculated as the number of nmoles of substrate 

converted per minutes per mg of protein. The protein concentration of the sample was 

measured as described in the section 2.2. 

2.7. Determination of optimum conditions of molybdo-flavoenzymes. 

As enzyme activity changes according to the reaction conditions changes in pH, 

temperature and substrate concentration were investigated. 

2.7.1. Determination of optimum pH of buffer. 

The pH dependence of AOX and XDH were analyzed by assay of the enzymes at 

37°C for 5 minutes at different pH values 5.6, 6.5, 7, 7.5 and 8.0 utilizing sodium 

phosphate buffers (50 mM final concentration). 

2.7.2. Temperature dependence of AOX and XOR activities. 

This assay was performed to study the effects of incubation temperature on reaction 

rates of enzyme activity at different incubation temperature. The aliquots of filtered 

cytosol were assayed at 25, 30, 37, 40, 45, 55°C and 60°C  in a microplate reader with 

a final DMAC concentration of 100µM as substrate of AOX and  a final xanthine 

concentration of 100µM as substrate of XOR and 0.67mM NAD+ as an electron 

acceptor. As summarized in (Tables 26 and 27). 
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2.7.3. Heat stability study. 

The aliquots of filtered cytosol were incubated at 55˚C for 15, γ0 and 60 minute in a 

thermocycler machine (PCR machine) with a heated lid. The heated lid of the PCR 

machine prevented evaporation and losses due to refluxing. The cytosols were 

removed from heating and cooled in ice for 5 min and cooled cytosol centrifuged at 

13,000 xg for 5 min and any precipitate discarded. The assays were performed on the 

supernatant fraction using standard assay conditions for AOX activity with DMAC, as 

summarized in section 2.4. 

2.8. Assay of molybdo-flavoenzyme activity using high pressure liquid 

chromatography. 

All aldehydes and N- heterocyclic compounds mentioned before in section 2.3 (Table 

25) were purchased from Sigma Aldrich and reagents required for the preparation of 

the HPLC mobile phases were all of HPLC grade purity from the same company.  

The analysis of aldehyde and N-heterocyclic compounds and their corresponding 

metabolites were carried out by reverse phase HPLC. The system used comprised of a 

Beckman Coulter System GoldTM 127 Solvent HPLC Module (dual pump) and a 

programmable UV detector (module 166) or  a programmable diode array detector 

(module 168) along with injector designed with a 20 µl sample loop and auto sampler. 

The analytical columns used were either: a Kromasil (25 cm X 4. 6 mm, 5µm; RP-

C18), Hypersil ODS (25 cm X 4. 6 mm, 5µm; RP-C18), LiChrosphere® (25 cm X 4 

mm, 5µm; RP-C18) or Spherisorb® (5µm CNRP 4.6 X 15 cm; RP-C18). A guard 

column with same stationery phase as the main chromatography column was used 

upstream in the analytical column. These columns were from Phenomenex, UK and 

Capital HPLC limited, UK. The mobile phases were filtered through a 0.45µm filter 
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before use. Isocratic and gradient methods were utilized to develop the optimal 

conditions for the separation of analytes and the most highly sensitive method for the 

determination of the different compounds.  

5 mM individual stock solutions of AOX and XOR substrates and corresponding 

metabolites were prepared within appropriate solvent as described in (Table 25) in 

section 2.3. After preparing the stock solutions 1mM working standard solutions were 

prepared by dilution along with water. Quantification was done using five standards 

prepared from stock solutions with distilled water, 0.01, 0.02, 0.03, 0.05 and 0.1mM. 

20µl of these compounds were injected onto the HPLC instrument starting with the 

lowest concentration to give a range of 0.2 to 2 nmol, as documented in figures 1- 5 in 

the Appendix 3. All stock's solutions were stored at 40C for up to 3 months with the 

exception of vanillin and N1-methylnicotinamide, which were stored at -200C. 

Calibration standards injected on the same day were used to calculate intra-day 

accuracy and precision. This is a measure of the distribution of individual 

measurements around the mean. This parameter was assessed by repeated analysis of 

the same solution and expressed as the relative standard deviation (RSD) otherwise 

known as the coefficient of variation (CV). % RSD for retention time was calculated 

by dividing the standard deviation by the mean of retention time of three replicates in 

the same day (Miller and Miller. 2005, Ghassan et al., 2010). The accuracy of the 

assay was calculated by comparison of the nominal analyte concentration to the actual 

concentration obtained from the linear regression line within the concentration 

investigated (0.01, 0.02, 0.03, 0.05, 0.1mM) (Accuracy = nominal concentration / 

actual concentration x 100). By using slope, intercept and the correlation coefficient 

(RSQ or r2) for the linearity of the calibration curve was determined for each analyte. 

The lower limit of quantification (LOQ) and limit of detection (LOD) were 
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determined for each analyte. According to international conference on harmonisation 

(ICH) guidelines, the LOD is defined as the lowest concentration of an analyte in a 

sample that can be detected but not quantified. The LOQ is the lowest amount of 

analyte in a sample that can be quantitatively determined with suitable precision and 

accuracy under the standard operational conditions of the method (ICH. 1994). The 

lower LOQ and LOD of samples was defined as the lowest added analyte 

concentration that can be measured with a low RSD and an accuracy of 100 ± 20% 

that can be discriminated significantly from the basal concentration of analyte. The 

ICH has listed two options available to calculate both the LOD and the LOQ of an 

assay. One of these options are expressed as a concentration at a specified signal to 

noise ratio, usually 3:1 and 10:1 for the signal to noise ratio for LOD and LOQ 

respectively (ICH. 1994). The LOD and the lower of LOQ were calculated from the 

mean of the slope (S) and standard deviation of the intercept of three calibration 

curves using the linear regression method. The LOD and LOQ are calculated 

according to the following equations: The LOD = 3.3 (SD/S) and the LOQ = 10 

(SD/S) (ICH. 1994, Miller and Miller. 2005). All mobile phases and HPLC methods 

for assay of MFE activity for allopurinol, 6-mercaptopurine, 1-methylxanthine, 

xanthine, pyridoxal, all-trans retinal, vanillin, cinchonine, N1-methylnicotinamide, 

phenanthridine, phthalazine and pyrazinamide are summarized in (Tables 28 and 29). 
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Analytes 
Chromatograph 

column 
Mobile phases 

Gradient/ 

Isocratic 

Flow rate 

ml/min 
Wavelength Reference 

Cinchonine 
Hypersil ODS 5µm 

 (25 cm x 4.6 mm, C18) 

A:0.4% w/v CH3COONH4,  pH 3.27 

B:Acetonitrile 35% v/v. 
Isocratic 1.0 

248 nm 

UV detector 
(Beedham et al., 1992) 

Pyrazinamide 

Kromasil 5µm  

(25cm x 4.6mm, C18) 

with guard column 5µm 

A: 20 mM KH2PO4, pH 5.2 

B:Acetonitrile 5% v/v 
Isocratic 0.8 

268 nm 

UV detector 
(Kraemer et al., 1998) 

Pyridoxal 

Kromasil 5µm 

 (25cm x 4.6mm, C18) 

with guard column 5µm 

A: 60 mM Na2HPO4, pH 6.5 

B: Methanol 25% v/v. 
Isocratic 0.8 

315 nm 

UV detector 

Modified from(Talwar et al., 

2003) 

 

 

All-trans 

retinal 

Kromasil 5µm  

(25cm x 4.6mm, C18) 

with guard column 5µm 

A: 30 mM CH3COONH4, pH 4.5 

B: Acetonitrile 70% v/v. 
Isocratic 1.0 

378 nm 

diode array detector 

Modified from(Huang and 

Ichikawa. 1997) 

 

Vanillin 

Kromasil 5µm 

 (25cm x 4.6mm, C18) 

with guard column 5µm 

A: 0.22 M KH2PO4, pH 2.9 

B: Acetonitrile 15% v/v. 
Isocratic 1.5 

285 nm 

UV detector 

(Panoutsopoulos and Beedham. 

2004) 

 

Table 28: Isocratic HPLC protocols for the measurement of MFE activity 
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Analytes 
Chromatograph 

column 
Mobile phases 

Gradient/ 
Isocratic 

Flow rate ml/min Wavelength Reference 

Allopurinol and 
oxipurinol 

Kromasil 5µm (25cm 
x 4.6mm, C18) with 
guard column 5µm 

A: water H2O with addition of 0.1% v/v of 
glacial acetic acid.   
B: Acetonitrile. 

Gradient  
see table 30 

Flow rate was varied 
according to table 31 

280 nm 
UV detector 

This study 

6-mercaptopurine and 
 6-thioxanthine 

Kromasil 5µm (25cm 
x 4.6mm, C18) with 
guard column 5µm 

A: water H2O with addition of 0.1% v/v of 
glacial acetic acid. 
B: Acetonitrile. 

Gradient  
see table 31 

Flow rate was varied 
according to table 32 

280 nm 
UV detector 

This study 

N1- methylnicotinamide 
(2PY and 4PY) 

Water Spherisorb® 
5um (CNRP 4.6 x 

150 mm; C18) 

A: 0.1% v/v of formic acid 
B: Acetonitrile 

Gradient  
see table 32 

0.8 
254 nm 

UV detector 
(Szafarz et al., 2010) 

N1- methylnicotinamide 
(2PY and 4PY) 

Kromasil 5µm (25cm 
x 4.6mm, C18) with 
guard column 5µm 

A: water H2O with addition of 0.1% v/v of 
glacial acetic acid.  
B: Acetonitrile 

Gradient  
see table 30 

Flow rate was varied 
according to table 31 

280 nm 
UV detector 

This study 

Phenanthridine and 
6(5H)-phenanthridone 

Kromasil 5µm (25cm 
x 4.6mm, C18) with 
guard column 5µm 

A: water H2O 
B: Acetonitrile 

Gradient 
 see table 33 

1.5 
254 nm 

UV detector 

Modified from(LaVoie et 
al., 1985) 

 

Phthalazine and 
phthalazinone 

Kromasil 5µm (25cm 
x 4.6mm, C18) with 
guard column 5µm 

A: water H2O with addition of 0.1% v/v of 
glacial acetic acid.  
B: Acetonitrile. 

Gradient  
see table 31 

Flow rate was varied 
according to table 32 

280 nm 
UV detector 

This study 

 Xanthine  and  
1-methylxanthine 

Kromasil 5µm (25cm 
x 4.6 mm, C18) with 
guard column 5µm 

A: water H2O with addition of 0.1% v/v of 
glacial acetic acid.  
B: Acetonitrile 

Gradient  
see table 31 

Flow rate was varied 
according to table 32 

280 nm 
UV detector 

Modified from(Begas et al., 
2007) 

Pyrazinamide 
5-hydroxypyrazinamide 

Kromasil 5µm (25cm 
x 4.6mm, C18) with 
guard column 5µm 

A: water H2O with addition of 0.1% v/v of 
glacial acetic acid.  
B: Acetonitrile 

Gradient  
see table 31 

Flow rate was time 
programmed with the 

variation in the solvent 
which was as follows see 

table 32 

268 nm 
UV detector 

This study 

Abbreviations:  (2-PY) -N1-methyl-2-pyridone-5-carboxamide, (4-PY)-N1-methyl-4-pyridone-5-carboxamide  

Table 29: Gradient HPLC protocols for the measurement of MFE activity 
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Table 30: HPLC program for the separation of allopurinol, N1-methylnicotinamide and their 
metabolites 

Time Solvent A (%) Solvent B (%) Flow (mL/min) 
0 
16 
16 
20 
20 
24 

100 
100 
85 
85 
100 
100 

0 
0 
15 
15 
0 
0 

0.8 
0.8 
1.2 
1.2 
0.8 
0.8 

Solvent A: water H2O with addition of 0.1% v/v of glacial acetic acid, Solvent B: Acetonitrile. 

Table 31:HPLC program for the separation of 6-mercaptopurine, 1-methylxanthine, xanthine, 
phthalazine, pyrazinamide and their metabolites 

Time Solvent A (%) Solvent B (%) Flow (mL/min) 
0 
7 
7 
15 
15 
19 

22.5 
22.5 
25 

100 
100 
100 
90 
90 
85 
85 
100 
100 

0 
0 
0 
10 
10 
15 
15 
0 
0 

0.8 
0.8 
1.5 
1.5 
1 
1 
1 

1.2 
1.2 

Solvent A: water H2O with addition of 0.1% v/v of glacial acetic acid, Solvent B: Acetonitrile. 

Table 32:HPLC program for the separation of N1-methylnicotinamide and its metabolites on a 
polar cyan column 

Time Solvent A (%) Solvent B (%) Flow (mL/min) 
0 
1 
2 
3 
4 
5 
6 
9 
9 
15 

55 
61 
67 
72 
78 
84 
90 
90 
55 
55 

45 
39 
33 
28 
22 
16 
10 
10 
45 
45 

0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

Solvent A: 0.1% v/v of formic acid, Solvent B: Acetonitrile. 
 
 

Table 33:HPLC program for the separation of phenanthridine and 6(5H) phenanthridone 
Time Solvent A (%) Solvent B (%) Flow (mL/min) 

0 
1 
6 
12 
15 
15 
20 

95 
90 
50 
0 
0 
90 
90 

5 
10 
50 
100 
100 
10 
10 

1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 

Solvent A: water H2O, Solvent B: Acetonitrile. 
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2.8.1. HPLC analysis of the in vitro  metabolism of molybdo-
flavoenzyme substrates. 

HPLC assays of AOX and XOR were performed with a final volume of 100µl as 

following, 50µl of gel filtered cytosol, 10µl of 1mM stock of substrates (vanillin, 

pyridoxal, all-trans retinal, phenanthridine, phthalazine, N1-methylnicotinamide, 

methotrexate, cinchonine, xanthine, 1-methylxanthine and 6-mercaptopurine and 40µl 

(40 mM Tris HCL pH 7.4) at 37°C. XDH assays were similar with the exception that 

30µl of (40 mM Tris HCL pH 7.4) was used and 10µl of 6.7mM NAD+ was added in 

addition to the substrate. Reactions were terminated with the addition of 60µl of 

acetonitrile and samples centrifuged at 12000 xg prior to chromatography of the 

supernatant on HPLC. 

Validation that a compound was a substrate for AOX or XOR was achieved using 

enzyme specific inhibitors and electron acceptors. 
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2.9. Determination of Km and Vmax for molybdo-flavoenzymes. 

The rate of oxidation of varying concentrations of substrate of AOX and XOR were 

monitored such that linear reaction rates were observed and used for Km and Vmax 

calculations. The volume of cytosol added was varied to provide suitable reaction 

rates over the range of substrate concentrations used. The substrates concentrations 

used were 25, 40, 55, 70, 85 and 100 µM for DMAC, vanillin, phenanthridine, 

xanthine, 1-methylxanthine, pyridoxal, all-trans retinal, allopurinol, phthalazine and 6-

mercaptopurine. Specific activity was then calculated as described in section 2.6. 

Eadie Hofstee plots V/[S] versus [V] were then plotted (Figure 23). The intercept on 

the ordinate axis is Vmax and the slope is -Km, the line of best fit through the points 

on plot was determined using linear regression by least squares method using 

Microsoft Excel (Microsoft Office). 

 

Figure 23: Eadie- Hofstee plot. 
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2.10. Determination of the mode of inhibition and inhibitor constant 

(Ki) 

The effects of the AOX and XOR inhibitors were studied as summarized in (Table 34) 

using DMAC and xanthine in spectrophotometric assay. The stock inhibitors were 

prepared in different solvents as follows. A stock solution of menadione was prepared 

by dissolving 1mg in 1ml of dimethyl sulphoxide (DMSO). Estradiol, 17α-ethinyl 

estradiol and phenanthridine stock solutions were prepared by dissolving 1mg in 1ml 

of ethanol. 5µM, 10µM and 50µM inhibitor stock solutions were prepared from these 

by dilution in water and one tenth of these were added to assays to give final 

concentration 0.5, 1 and 5µM inhibitor. The XOR inhibitor oxipurinol was prepared as 

a stock solution by dissolving in 10mM NaOH. 0.25mM, 0.5mM and 1mM oxipurinol 

stock solutions were prepared from this by dilution in water and one tenth of these 

were added to assays to give final concentration of 25µM, 50µM and 100µM 

oxipurinol. 
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Table 34: Summary of AOX and XOR inhibitors assays 

AOX inhibitor assay 
Substrate  stock 

concentration  
in assay 

Inhibitor  Final concentration 
in assay 

Mode of 
inhibition of 
mammalian 

enzyme 
 

 

DMAC 

 

25, 40, 55, 70, 
85 and 100µM 

 

Menadione 

Estradiol 

17α-ethinyl estradiol 

Phenanthridine 

Chlorpromazine 

0.5, 1and 5µM 

0.5, 1and 5µM 

0.5, 1and 5µM 

0.5, 1and 5µM 

0.5, 1and 5µM 

Non-competitive 

Uncompetitive 

Uncompetitive 

Competitive 

competitive 

XOR inhibitor assay 
Substrate   stock 

concentration  
in assay 

Inhibitor  Final concentration 
in assay 

Mode of inhibition 
of mammalian 

enzyme 

Xanthine 
NAD+ 

25, 40, 55, 70, 85 
and  

100µM 

NAD+  0.67mM 
 

Oxipurinol 25, 50 and 100µM Non-competitive 

Abbreviation; DMAC – dimethylaminocinnamaldehyde. 

 

Determination of the mode of inhibition and subsequently the inhibitor constant was 

achieved by use of the method described for the determination of Michaelis-Menten 

constants with the addition of inhibitor to each cuvette. The initial rate of oxidation at 

varying substrate concentrations was measured alone and in the presence of a fixed 

concentration of inhibitor. This procedure was then repeated in the presence of a 

second inhibitor concentration. The type of inhibition was then determined by 

examination of double reciprocal plots of both non-inhibited and inhibited data (Cook 

and Cleland. 2007) and the inhibitor constant (Ki) was calculated by using this 

equation for the exhibited competitive inhibition. Ki = Km [I]/ (Km app-Km) where: 

Km = uninhibited Km, Km app= apparent inhibited Km and [I] = inhibitor 

concentration and for exhibited uncompetitive and non-competitive inhibition using 
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this equation. Ki = [Vmax app][I]/Vmax, where Vmax = uninhibited Vmax, Vmax 

app= apparent inhibited Vmax and [I] = inhibitor concentration. To determine Km and 

Vmax for these calculations Lineweaver-Burk plots1/V versus 1/[S] were plotted. The 

intercept on the ordinate axis is 1/Vmax and the slope is Km/Vmax. From these plots 

the mode of inhibition was also determined. (Figure 24) illustrates the different plots 

expected for competitive (Figure 24 A), uncompetitive (Figure 24 B) and non-

competitive (Figure 24 C).  

 

 

 

 

 

 

 

 

 

 

Figure 24: Lineweaver-Burk plots with different types of inhibitors. 
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2.11. Purification of aldehyde oxidase 

2.11.1. Chromatography instruments media and concentrators used 

The instrument used was a GE Healthcare AKTA FPLC System with dual pump and 

fraction collector operated with Unicorn 4.11 Software. Chromatography media used 

was Q Sepharose 30/100, Superose 6 prep grade XK 16/70, MonoQ 5/50 GL, 

benzamidine Sepharose 6B and Mono P HR 5/20 were purchased from VWR 

International Ltd .UK. The centrifugal concentrators used were Amicon Ultra-15, 

Ultracel-PL Membrane, purchased from Millipore (UK) Ltd. All mobile phases were 

of FPLC grade purity and were filtered through a 0.45µm filter before use. Isocratic 

and gradient chromatography methods were using to develop the optimal conditions 

for the purification of enzymes from original sample. 

2.11.2. Buffers used in purification protocols. 

The following buffers were used in the course of the purification: 

Buffer A: 20mM Tris-HCL, 1mM cysteine, 5% (v/v) glycerol. The pH of this buffer 

was varied depending on chromatographic conditions required. 

Buffer B: 20mM Tris-HCL, 1mM cysteine, 5% (v/v) glycerol, 0.3-0.6M KCL. The pH 

of this buffer was varied depending on chromatographic conditions required. 

Buffer C: 0.075M Tris HCL pH 9.3. 

Buffer D: 10% (v/v) polybuffer 96, adjusted to pH 6.0 with glacial acetic acid. 

Buffer E: 0.1mM glycine pH 9.0, 0.1M NaCL. 

Buffer F: 0.1mM glycine pH 9.0, 0.1M NaCL, 20mM benzamidine. 

Buffer G: 20mM Tris-HCL pH8.0, 1mM cysteine, 5% (v/v) glycerol, 0.1M NaCL. 
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All buffers were prepared from ultrapure reagents dissolved in Milli Q grade water 

and filtered through 0.45µM filters (Millipore, U.K.). 

2.11.3. Purification of AOX 

Purification of enzyme activity was monitored throughout the purification procedure 

with DMAC as substrate. Protein elution was monitored at 280nm with an on-line 

spectrophotometric detection cell in the FPLC instrument. All procedure was carried 

out at 0 - 4°C. (Figure 25) summarises the protein purification protocols used. 

2.11.3.1. Preparation of cytosol. 

Cytosol was prepared as previously described in section 2.1.1. with 20 to 70 g of fresh 

liver. 

2.11.3.2. Heat treatment step. 

Cytosol was subjected to heat treatment in a water bath at 55°C for 15 minutes and 

after that cooled on ice for 10 minute then centrifuged at 10,000 xg for 15 minutes. 

The supernatant was then removed and used for subsequent experiments. 

2.11.3.3. Ammonium sulphate fractionation step. 

Cytosol or heat treated supernatant derived from cytosol were subjected to ammonium 

sulphate fractionation as follows. Finely ground ammonium sulphate was added 

slowly to the sample with stirring to a concentration of 13.82g/100ml. This solution 

was stirred for a further 20 minutes and then centrifuged at 15,000 xg for 15 minutes 

to pellet protein precipitated by a 25% ammonium sulphate saturation. The 

supernatant was then subjected to a further fractionation so that the final ammonium 

sulphate concentration was 14.91g/100ml (60% saturation) and after stirring and 

centrifuging as in the first ammonium sulphate fractionation step the pellet was 

resuspended in approximately 5ml of buffer A. 
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Procedure 1 

 
Cytosol preparation 

 

Heat treatmentat55°C 

 
25-50% ammonium 

sulphate fractionation 

 
Q-sepharose 30/100 anion   
exchange chromatography 

 
Benzamidine 6B affinity    

chromatography 
 

MonoQ 5/50 anion exchange    
chromatography 

Procedure 2 

 
Cytosol preparation 

 
 

25-50% ammonium 
sulphate fractionation 

 
Q-sepharose 30/100 anion         
exchange chromatography 

 
Benzamidine 6B affinity 

chromatography 
 

MonoQ 5/50 anion   exchange 
chromatography 

Procedure 3 

 
Cytosol preparation 

 
25-50% ammonium 

sulphate fractionation 

 
Q-sepharose 30/100 anion 
exchange chromatography 

 
Mono P HR 5/20 
chromatography 

 

Procedure 4 

 
Cytosol preparation 

 
25-50% ammonium 

sulphate fractionation 

 
Q-sepharose 30/100 anion 
exchange chromatography 

 
 

Superose 6 16/70 gel filtration 
chromatography 

 
MonoQ 5/50 anion exchange 

chromatography 
 

Figure 25: AOX purification protocols. 
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The sample was then dialysed against three changes of 100 volumes of buffer A over 

a 24 hour period and the dialysate centrifuged at 15,000 xg for 15 minutes to remove 

any undissolved material. The sample was then subjected to chromatography for 

further purification. 

2.11.3.4. Q-Sepharose anion exchange fast flow chromatography. 

In this case the pH of buffer A and B was varied from pH 8.0 to pH 8.6 in different 

chromatographic runs. The dimensions of the Q-Sepharose column were 2.5 x 55cm 

and the flow rate was 10ml/minute. Following ammonium sulphate fractionation 10ml 

of the sample was applied to the Q-Sepharose column which had previously been 

equilibrated with buffer A. Unbound protein was eluted with 140ml of buffer A and 

protein retained on the column was eluted with 150ml of a gradient of 0.6M KCL in 

buffer B. The fractions containing AOX activity were pooled and concentrated to 4-

5ml by ultrafiltration using Amicon Ultra-15 centrifugal concentrator. Following this 

anion exchange chromatography step, pooled fractions were further purified by 

affinity chromatography or chromatofocusing or size exclusion followed by a further 

anion chromatographic step on MonoQ, as outlined in (Figure 25). 

2.11.3.5. Affinity chromatography on benzamidine Sepharose 6B. 

Benzamidine Sepharose 6B was used as an affinity matrix to bind AOX (Figure 25). 

In procedure 1 the AOX-active pooled fractions from the anion exchange columns Q-

Sepharose were dialysed in 100 volumes of buffer E, with three changes over 24 hours 

and applied to a 15ml bed volume benzamidine Sepharose 6B column (2.5 x 10cm) at 

a flow rate was 0.5ml/minute.  After application the flow was stopped for 30 minutes 

to facilitate binding of AOX to the benzamidine-ligands. Unbound material was then 

eluted at a flow rate of 1ml/minute by washing the column with 6 ml of buffer E. 

Bound AOX was eluted by sequential batch elution with 10ml of 5mM benzamidine, 



89 

 

10ml of 10mM benzamidine and 10ml of 20mM benzamidine in buffer F. The column 

was regenerated for further use by washing the column with 20 ml of 2M NaCL to 

remove any protein still bound and the re-equilibrated in buffer E.  

 

2.11.3.6. Chromatofocusing on Mono P HR 5/20. 

The pooled fractions from the Q-sepharose anion exchange step were passed through a 

Sephadex G25 column (PD 10; 9.1ml bed volume) equilibrated with buffer C for 

buffer exchange prior to chromatofocusing. 2ml of protein of the resultant sample was 

then applied to a Mono P HR 5/20 column fitted to an AKTA FPLC system which had 

previously been equilibrated with buffer C. The column was then washed with two 

column volumes of buffer C at flow rate of 1ml/minute followed by 35ml of buffer D 

to generate a pH gradient from pH 9.3 to pH 6.0 over 30ml. Any material still bound 

to the column was then removed by a 2M NaCL elution.  

2.11.3.7. Gel filtration chromatography. 

A Superose 6 16/70 column equilibrated with buffer G was used as a step to separate 

proteins on the basis of their differences in their native molecular mass (Figure 25). In 

procedure 4, 0.5ml of the AOX active concentrated fraction from Q-sepharose anion 

exchange chromatography was applied to the Superose column and eluted at a flow 

rate of 1ml/minute with 140ml of buffer G using 0.1M NaCL as isocratic elution. The 

column was then equilibrated with the buffer G for the next run. 
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2.11.3.8. MonoQ chromatography. 

This was used as a final step for the purification of AOX as it has proved a suitable 

medium for the final purification step of AOX in other species (Table 22). In thiscase 

the pH buffer A and B were varied from pH 8.0 to pH 8.6 in different 

chromatographic runs, the column dimensions were 5 x 50 mm and the flow rate was 

1ml/minute. Following equilibration with 2 bed volumes of buffer A, 0.3ml of 

concentrated protein sample containing AOX was eluted by washing the column with 

2ml of buffer A to remove unbound protein and bound protein was eluted with 20ml 

of a linear gradient of 0-0.3M KCL in buffer B. Active AOX fractions eluted by the 

salt were pooled and concentrated to 1-2ml by ultrafiltration using Amicon Ultra-15 

membrane. The column was then regenerated for further use by washing the column 

with one bed volume of each of the following: 1M NaCL, 1.5M NaOH, and 20% (v/v) 

ethanol. The column was the re-equilibrated in buffer A. 

2.11.4. Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), a 

technique for separating of proteins according to their mass was used to monitor the 

purification of AOX(Laemmli. 1970). All SDS-PAGE gels and reagents were from Life 

Technologies Ltd, UK. The material for SDS-PAGE is described in the (Table 35) and 

the protocols used according to Life Technology (www.lifetechnologies.com). 

Table 35: SDS-polyacrylamide gel electrophoresis reagents (SDS- PAGE) 

Materials 
Gel used NuPAGE® Novex® 3-8% Tris-Acetate Gel 1.5 mm 

Running buffer NuPAGE® Tris-Acetate SDS 
Sample buffer NuPAGE® LDS 

Ladder Hiεark™ Unstained Protein Standard 
Denaturing agent DTT 
Antioxidant agent NuPAGE® Antioxidant (N,N-dimethylformarmide) 

Abbreviations: LDS- Lithium dodecyl sulphate, DTT-Dithiothreitol, concentration  DTT 5% (w/v), MOPS SDS- 3-(N-
morpholino) propanesulfonic acid, concentration MOPS 0.6M, SDS 2%  and pH 8.4±0.1. 
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2.11.4.1. Staining of SDS polyacrylamide gels 

For the staining of SDS PAGE gels Coomassie blue and silver staining methods were 

used. All materials used purchased from Sigma Aldrich Company UK. The summary 

of the two methods are given in (Table 36). 

Table 36: Summary of Coomassie Blue and Silver stains used for protein visualisation of 
SDS-PAGE. 

Staining Materials Method 

Coomassie 
blue 

For 500ml of 
Coomassie blue stain. 
1) 1.25g Serva G blue. 
2) 228ml methanols. 
3) 46ml acetic acid. 
4) 226ml distilled H2O 
Stir for 15 minute. 
5) Filter through 
general grade whatman 
filter paper. 

1) Stain gels with gentle shaking for at least 30 
minutes with Coomassie blue stain heated to 600C 
or two hours at room temperature. 
 
2) Destain overnight with 10% v/v methanol, 15% 
v/v acetic acid, 75% v/v distilled H2O. 
 

Reference (Laemmli. 1970) 
  

Staining Materials Method 

Silver 

1) Oxidiser, 3.4mM 
potassium dichromate 
with 0.0032N Nitric 
Acid. 
2) Silver nitrate 
solution 
0.012M silver nitrate. 

 

3) Developing agent 
0.28M sodium 
carbonate+0.5ml/L 
formalin. 
 

1) Soak gel 2 times for 10 minutes in 40% 
methanol+10% acetic acid (200ml/gel). 
2) Soak gel 2 times for 10 minutes with 10% 
ethanol+5% acetic acid(200ml/gel). 
3) Soak gel for 10minutes in oxidiser (200ml/gel at 
RT). 
4) Wash with distilled H2O three times for 10 
minutes or until gel colourless (200ml/gel at RT). 
5) Soak for 30 minute in 0.012M silver nitrate 
(200ml/gel) at RT. 
6) Wash with distilled H2Ofor two minutes. 
7) Develop three times with developing reagent for 
1, 5 and 3minutes respectively (200ml/gel at RT). 
8) Stop with 5% v/v acetic acid for 5 minutes, then 
immerses gel in deionised H2O. 

Reference (De Moreno et al., 1985) 
Abbreviations: room temperature (RT) 
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2.11.4.2. Determination of native molecular mass using Superose 6 
chromatography. 

The gel filtration marker kit for protein molecular masses 29,000-700,000 Da was 

obtained from Sigma Aldrich UK. A summary and concentration of the standards used 

in the calibration curve for the Superose 6 16/70 chromatography is shown in (Table 

37). The buffer used for prepare the standard proteinswas20mM Tris HCl pH8.0, 

1mM cysteine and 5% (v/v) glycerol with 0.1M NaCL. 1 ml of each prepared standard 

was injected onto the FPLC starting with the highest molecular mass standard Dextran 

blue 2,000,000 Da first followed by protein mixture containing all proteins listed in 

(Table 37). The method and sample preparation was according to (Whitaker. 1963, 

Andrews. 1964, Marshall. 1970)noting that the Blue Dextran was not mixed with 

other standards because many proteins bind to dextran. Blue dextran and the protein 

standards were applied in 1 ml volume and eluted with a 1 ml/minute flow rate. 

Table 37: Summary of gel filtration standards used for native molecular mass determination 

Standard protein 
Approximate Molecular 

mass 

Recommended 

concentration 

Carbonic anhydrase from bovine erythrocytes 29000 Da 3mg/1ml 

Albumin, bovine serum 66000 Da 10mg/1ml 

Alcohol dehydrogenase from yeast 150000 Da 5mg/1ml 

β-Amylase from sweet potato 200000 Da 4mg/1ml 

Apoferritin from horse spleen 443000 Da 10mg/1ml 

Thyroglobulin, bovine 669000 Da 8mg/1ml 

Blue Dextran 2000000 Da 2mg/1ml 

 

Absorbance was recorded at 280nm and a graph was drawn by plotting the logarithms 

of molecular mass of all standards versus to the elution volume of the standards. This 

graph was used to calculate the molecular mass of AOX. 
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2.12. Statistical analysis. 

2.12.1. ANOVA-test 

Each experiment was repeated at least three times. Statistical analysis was carried out 

using Microsoft Excel 2010 software. The result of each experiment was determined 

as the mean ± standard deviation. Data were then analysed for significance using one 

way ANOVA. Differences with p values ≤0.05 were considered statistically 

significant. 
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3. Results. 
The section of results is divided into 6 main sections as follows. Firstly sections 3.1, 

3.2 and 3.3 describe the quantification of molybdo-flavoenzyme activity in rainbow 

trout, human and rat using spectrophotometric and HPLC assays. In sections 3.4 and 

3.5 the determination of the kinetic parameters and comparison different inhibitors of 

AOX and XOR in different species are described. The final section 3.6 covers the 

purification of AOX from rat and trout. 

3.1. Quantification of molybdo-flavoenzyme activity 

A number of spectrophotometric assays were used to measure the relative reaction 

rates of the AOX and XOR. Three spectrophotometric assays measured the rate of 

biotransformation of two aldehyde compounds vanillin and 

dimethylaminocinnamaldehyde (DMAC) and one N-heterocyclic AOX substrate 

phenanthridine with molecular oxygen as an electron acceptor. A further 

spectrophotometric XOR assay was performed using endogenous substrate xanthine 

and the caffeine metabolite, 1-methylxanthinewith O2 or with NAD+ plus O2 as 

electron acceptors. These assays were carried out with 20 – 40 µl of gel filtered 

cytosol at 37ºC as described in materials and methods section 2.4 to give linear 

reaction kinetics. As the majority of MFEs substrates and products cannot be 

quantified by spectrophotometry, HPLC assays were used to measure MFEs oxidation 

rates for 13 substrates. In order to optimise the experimental conditions for the assays 

a series of experiments were performed to assess the optimal pH and temperature. In 

addition prior to performing HPLC assays the methods were tested for accuracy and 

precision. 
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3.1.1. Effect of pH on trout, rat and human molybdo-flavoenzymes 
activity. 

In order to test the effect of pH on trout, human and rat AOX these were assayed 

under standard assay condition, except that the reaction pH was varied between 5.7 

and 8.0 as described in section 2.7.1. The maximum activity of AOX was found to be 

at pH 7.0 with all three species as shown (Figure 26). 

 

Figure 26: Effect of pH on of trout, human and rat AOX activity. 

 
AOX activity was measured at γ7˚C. 0.1 mε DεAC was used as the substrate in AOX assay. 
Each point represents the mean ± S.D. of three experiments with liver cytosol from ~3 
animals.  
 

 

In order to test the effect of pH on of trout, human and rat XO and XDH these were 

assayed under standard assay condition, except that the reaction pH was varied 

between 5.7 and 8.0 as described in section 2.7.1 and 2.8.1. The maximum activities 

of XO and XDH were found to be pH 7.0 with the three species tested as shown 

(Figure 27a and b). 
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Figure 27: Effect of the pH on of trout, human and rat XOR activity. 

 
The (a) XO activity was measured at γ7˚C with 0.15 mε xanthine and O2 as electron 
acceptor. (b) XDH activity was measured at γ7˚C with 0.15 mε xanthine and 0.67 mε NAD+ 

plus O2 as electron acceptor. Each point represents the mean ± S.D. of three experiments with 
pooled cytosol from ~3 animals.  
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3.1.2. Effect of temperature on trout, rat and human molybdo-
flavoenzymes activity. 

In the initial assays γ7˚C was used for assays but in order to determine if this was the 

optimum temperature to use a series of experiments were performed. In order to test 

effect of temperature on the activity of trout, rat and human AOX this was measured 

as at different incubation temperatures as described in section 2.7.2. The rate of 

reaction of trout AOX with DMAC increase gradually with increasing temperature 

from β5˚C to γ7˚C then decreased gradually until it fell to < 10 % at 55˚C and 60˚C 

compared to the activity at 37°C as shown in (Figure 28). The activity at 60°C was ~ 

10% obtained at 37°C. The rate of reaction of human and rat AOX with DMAC 

increase gradually with increasing temperature from β5˚C to γ7˚C then decrease 

gradually as shown in (Figure 28) and the activity of human and rat at 60°C was ~ 

60% obtained at 37°C  respectively. As the maximum reaction rate was obtained at 

γ7˚C for AOX enzymes, this temperature was therefore selected for all assays. 

 

Figure 28: Effect of the assay incubation temperature on of trout, human and rat AOX 
activity. 

Enzyme activity was measured with 0.1 mM DMAC was used as the substrate in AOX assays. Each 
point represents the mean ± S.D. of three experiments with pooled cytosol from 3 animals.  
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In order to test the effect of temperature on the activity of trout, human and rat XOR 

this was measured at different incubation temperatures. The rate of reaction of  human 

and rat XO with xanthine and O2 as an electron acceptor. Gradually increasing with 

increase temperature from β5˚C to γ7˚C then decrease gradually as shown in figure 

29a and the activity of human and rat at 60°C was ~ 60% obtained at 37°C 

respectively. The rate of reaction of trout XOR with xanthine and NAD+ with O2 as 

electron acceptors. Increasing gradually with increasing temperature from β5˚C to 

γ7˚C then decreased gradually until fell to near zero at 55˚C and 60˚C as shown in 

(Figure 29b). The activity at 60°C was ~ 5% of that obtained at 37°C. The rate of 

reaction of human and rat XDH with xanthine and NAD+ increase gradually with 

increasing temperature from β5˚C to γ7˚C then gradually decrease as shown in (Figure 

29b) the activity of human and rat at  60°C was ~ 60% obtained at 37°C respectively . 

As the maximum reaction rate was obtained at γ7˚C for XOR enzyme, this 

temperature was therefore selected for all assays. 
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Figure 29: Effect of the assay incubation temperature on of trout, human and rat XOR 
activity. 

Enzyme activity was measured with (a) 0.15 mM xanthine and O2 as an electron acceptor. (b) 0.15 mM 
xanthine and 0.67 mM NAD+ plus O2 as an electron acceptors. Each point represents the mean ± S.D. of 
three experiments with pooled cytosol from ~3 animals. 
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3.1.3. Validation of the accuracy and precision of HPLC assays 

The precision of the various HPLC assays was determined by injecting five 

concentrations (0.01, 0.02, 0.03, 0.05 and 0.1 mM) of all AOX and XOR substrates 

and the products listed in materials and methods section 2.8., three times on the same 

day to determine the intra-day variation. The intra-day variation assessed as the 

coefficient of variation in peak area ratio. The relative standard deviation (%RSD) 

calculation for retention time was described in section 2.8. The lower the value is the 

better the assay performance. At lower level it was below 3.5% for 3 replicates, see 

Appendix3 (Table 1). The accuracy of the assay was calculated by comparison of the 

nominal analyte concentration to the actual concentration obtained from the linear 

regression line within the concentration range investigated (0.01 mM to 0.1 mM), see 

Appendix3(Table 2). Appendix3 (Table 2) showed that the intra-day values ranged 

between 95.1-100.8%. The precision of all concentrations of analyte was 

approximately less than ± 5%. The calibration graphs obtained with these HPLC 

methods were linear over the concentration range used and the (r2) values were 0.92 to 

0.99 for each analyte when plotted for the mean peak area for three injections against 

the actual concentration (Figures 1- 5 in Appendix 3). This demonstrates that these 

HPLC methods are precise and repeatable and can be successfully used to analyse 

MFE catalysed biotransformations in this study. In addition to accuracy and precision 

tests, the limit of detection (LOD) and the limit of quantification (LOQ) were 

calculated for each of the analytes in section 2.5.2.3. The LOD of all substrates and 

products were ranged between 0.1-5.4 nmol and LOQ was ranged from 0.9 to 94 

nmol. From these results, it can be concluded that the HPLC methods were 

sufficiently sensitive to detect low concentrations of substrates and products of 
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molybdo-flavoenzyme catalysed reactions enzymes. The results of linearity, limit of 

detection and limit of quantification are presented in Appendix3 (Table 3). 

3.2. Screening of molybdo-flavoenzyme activities. 

Following optimisation and validation of the assays, AOX and XOR activities in 

rainbow trout, Wistar rat and human cytosols were assessed using a multitude of 

spectrophotometric and HPLC assays prior to scrutinising the Km and Vmax for 

different substrates.  

3.2.1. AOX activity with exogenous aldehydes in trout tissue and 
mammalian liver cytosol. 

The substrates used to evaluate AOX activity in this research included the exogenous 

food flavouring agent vanillin (4-hydroxy-3-methoxybenzaldehyde) and artificial dye 

dimethylaminocinnamaldehyde (DMAC). (Figures 30 and 31) illustrate 

spectrophotometric assays with the two aldehyde substrates vanillin and DMAC. This 

demonstrated that liver cytosols from all three species had measurable AOX activity 

towards these two aromatic aldehydes. In contrast rainbow trout kidney and gill 

cytosols had no measurable activity towards these substrates (data not shown). In 

order to check unequivocally if there was no AOX activity towards vanillin in kidney 

and gill cytosols an HPLC assay was used. This showed that even following a 120 

minute incubation with this substrate there was no vanillic acid formed in contrast to 

li ver cytosol (Figure 32). (Figure 33) shows an HPLC chromatogram for all liver 

cytosol from trout, rat and human with vanillin. 
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Figure 30: Spectrophotometric assays of aldehyde oxidase activities using rainbow trout, 
Wistar rat and human liver cytosol at γ7˚C with AOX substrate DMAC. For assays using 50 
µL rainbow trout [red], 30 µL Wistar rat [green] and 20 µL human [black] liver cytosol. 100 
µM final substrate concentrations were used. For analysis conditions see section 2.4. 

 

 

 

Figure 31: Spectrophotometric assays of aldehyde oxidase activities using rainbow trout, 
Wistar rat and human liver cytosol at γ7˚C with AOX substrate vanillin. For assays using 
rainbow trout [red], Wistar rat [green] and human [black] liver cytosol. For all assays 100 µM 
final substrate concentrations were used.  For analysis conditions see section 2.4. 
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Figure 32: HPLC analysis of the in vitro biotransformation of vanillin by rainbow trout 
cytosol. (a) Liver, (b) kidney and (c) gill liver cytosol. Times at the left hand side of the 
chromatograms indicate incubation times. HPLC chromatograms are offset on the vertical 
axis to allow comparison between different incubation times. Analytes were injected onto a C-
18 column (Kromasil 5 µm) and eluted with a 0.22 M KH2PO4: acetonitrile system (85: 15) 
as mobile phase. The wavelength of the detection was 285 nm.   
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Figure 33: HPLC analysis of the in vitro biotransformation of vanillin by liver cytosol. 

HPLC chromatogram of the in vitro oxidation of vanillin to vanillic acid by (a) rainbow trout, 
(b) Wistar rat and (c) human liver cytosol. Times at the left hand side of the chromatograms 
indicate incubation times. HPLC chromatograms are offset on the vertical axis to allow 
comparison between different incubation times. Analytes were injected onto a C-18 column 
(Kromasil 5 µm) and eluted with a 0.22 M KH2PO4: acetonitrile system (85: 15) as mobile 
phase. The wavelength of the detection was 285 nm.   
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3.2.2. HPLC analysis of AOX activity with endogenous vitamins and 
vitamin metabolites. 

When the endogenous vitamin B6 (pyridoxal) was incubated with rainbow trout, 
Wistar rat and human liver cytosol its metabolite pyridoxic acid was generated with 
cytosols from all three species (Figure 34).  

 

 

 

Figure 34: HPLC analysis of the in vitro biotransformation of endogenous compound 
pyridoxal by liver cytosol from different species. HPLC chromatogram of the in vitro oxidation of 
pyridoxal to pyridoxic acid by (a) rainbow Trout, (b) Wistar rat, (c) human liver cytosol. Times at the 
left hand side of the chromatograms indicate incubation times. HPLC chromatograms are offset on the 
vertical axis to allow comparison between different incubation times. Analytes were injected onto a C-
18 column (Kromasil 5 µm) using methanol: 60 mM Na2HPO4 (25: 75) as mobile phase. The 
wavelength of the detection was 315 nm. 
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When all-trans retinal (vitamin A) was incubated with rainbow trout, Wistar rat and 

human liver cytosol, the AOX metabolite retinoic acid was generated with cytosols 

from all three species (Figure 35).  

 

 

 

Figure 35: HPLC analysis of the in vitro biotransformation of endogenous compound all-
trans retinal by liver cytosol from different species. HPLC chromatogram of the in vitro oxidation 
of all-trans retinal to retinoic acid by (a) rainbow Trout, (b) Wistar rat, (c) human liver cytosol. Times 
at the left hand side of the chromatograms indicate incubation times. HPLC chromatograms are offset 
on the vertical axis to allow comparison between different incubation times. Analytes were injected 
onto a C-18 column (Kromasil 5 µm) and eluted with a 30 mM CH3COONH4: acetonitrile (30: 70) as 
mobile phase. The wavelength of the detection was 378 nm. 
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When liver cytosol from rainbow trout, Wistar rat and human were incubated with N1-

methylnicotinamide (NMN)two products (Figure 36) were observed with retention 

times of (9 minute) N1-methyl-2-pyridone-5-carboxamide (2-PY) and (12 minute) N1-

methyl-4-pyridone-5-carboxamide (4-PY) (Szafarz et al., 2010). 

 

 

 

Figure 36: HPLC analysis of the in vitro biotransformation of N1-methylnicotinamide by liver 
cytosol from different species. HPLC chromatogram of the in vitro oxidation of N1-methylnicotinamide 
to (2-PY and 4-PY) by (a) rainbow Trout, (b) Wistar rat, (c) human liver cytosol. Times at the left hand side 
of the chromatograms indicate incubation times. HPLC chromatograms are offset on the vertical axis to 
allow comparison between different incubation times. Analytes were injected onto a C-18 column 
(Spherisorb; CNRP 5 µm) and eluted with a 0.8 % v/v formic acid: acetonitrile gradient as described in 
section 2.5.3 as mobile phase. The wavelength of the detection was 254 nm. 
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3.2.3. Spectrophotometric and HPLC analysis of AOX activity with 
exogenous N-heterocyclic compounds. 

3.2.3.1. Phenanthridine. 

When the prototypical N-heterocyclic AOX substrate phenanthridine was used as a 

substrate in a spectrophotometric assay (Beedham. 2001) (Figure 37) only Wistar rat 

and human liver cytosol had activity. Cytosols prepared from trout liver, kidney and 

gill had no detectable activity (Figure 37). As there is evidence that at least one fish, 

the carp, generates phenanthridone from phenanthridine in vivo, an HPLC assay was 

used to determine if any activity could be detected. This demonstrated that rainbow 

trout liver cytosol AOX was able to generate measurable phenanthridone (Figure 39). 

In contrast there was no detectable phenanthridone formed with extended incubation 

with rainbow trout kidney or gill cytosol (Figure 38). Rat and human liver cytosol 

were also able to carry out this biotransformation (Figure 39). 

 

Figure 37: Spectrophotometric assays of aldehyde oxidase activities using rainbow trout, 
Wistar rat and human liver cytosol at γ7˚C with AOX substrate phenanthridine. For assays 
using rainbow trout [red], Wistar rat [green] and human [black] liver cytosol. For all assays 
100 µM final substrate concentrations were used. For analysis conditions see section 2.4 

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0 1 2 3 4 5

O
D

 

Time (minute) 

Trout

Rat

Human



109 

 

 

 

 

 

 

 

Figure 38: HPLC analysis of the in vitro biotransformation of phenanthridine by trout 
cytosol. (a) Liver, (b) kidney and (c) gill trout cytosol. Times at the left hand side of the 
chromatograms indicate incubation times. HPLC chromatograms are offset on the vertical axis to allow 
comparison between different incubation times. Analytes were injected onto a C-18 column (Kromasil 
5 µm) and eluted with water: acetonitrile gradient system as described in section 2.5.3 as mobile phase. 
The wavelength of the detection was 254 nm. 
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Figure 39: HPLC analysis of the in vitro biotransformation of phenanthridine by rainbow 
trout, Wistar rat, and human liver cytosol. (a) rainbow trout, (b) Wistar rat, (c) human liver cytosol. 
HPLC chromatogram of the in vitro oxidation of phenanthridine to phenanthridone. Times at the left 
hand side of the chromatograms indicate incubation times. HPLC chromatograms are offset on the 
vertical axis to allow comparison between different incubation times. Analytes were injected onto a C-
18 column (Kromasil 5 µm) and eluted with water: acetonitrile gradient system as described in section 
2.5.3 as mobile phase. The wavelength of the detection was 254 nm. 
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3.2.3.2. Phthalazine. 

When the N-heterocyclic phthalazine was incubated with rainbow trout, Wistar rat and 
human liver cytosol, all were found to be capable of biotransforming it to the AOX 
product phthalazinone (Figure 40).  

 

 

 

 

Figure 40: HPLC analysis of the in vitro biotransformation of phthalazine by rainbow trout, 
Wistar rat and human liver cytosol. (a) rainbow trout, (b) Wistar rat, (c) human liver cytosol. HPLC 
chromatogram of the in vitro oxidation of phthalazine to phthalazinone Times at the left hand side of 
the chromatograms indicate incubation times. HPLC chromatograms are offset on the vertical axis to 
allow comparison between different incubation times. Analytes were injected onto a C-18 column 
(Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic acid: acetonitrile gradient system as 
described in section 2.5.3 as mobile phase. The wavelength of the detection was 280 nm. 
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3.2.3.3. Cinchonine. 

When anti-malaria drug N-heterocycle cinchonine was incubated with rainbow trout, 

Wistar rat and human liver cytosol, a metabolite of cinchonine was detected by HPLC 

with all samples (Figure 41) that had a retention time (12 minute) indicative of 2’-

cinchoninone (Beedham et al., 1992). 

 

 

 

Figure 41: HPLC analysis of the in vitro biotransformation of cinchonine to 2-cinchoninone 
by rainbow trout, Wistar rat and human liver cytosol. (a) rainbow trout, (b) Wistar rat, (c) human 
liver cytosol. Times at the left hand side of the chromatograms indicate incubation times. HPLC 
chromatograms are offset on the vertical axis to allow comparison between different incubation times. 
Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.4% w/v 
CH3COONH4: acetonitrile (65: 35) as mobile phase. The wavelength of the detection was 248 nm.   
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3.2.3.4. Pyrazinamide. 

In mammals the tuberculosis drug pyrazinamide is biotransformed by AOX and XOR. 

Pyrazinamide was incubated with rainbow trout, Wistar rat and human liver cytosol 

with O2 or with NAD+ as electron acceptor and HPLC analysis were carried out. After 

incubation with rainbow trout liver cytosol with O2 or with NAD+ (Figure 42). The 

incubation of rainbow trout liver cytosol with pyrazinamide in the presence of O2 as 

an electron acceptor for 240 minute incubation time did not show the production of 

any metabolite peak as seen in (Figure 42a). In contrast, the incubation of trout liver 

cytosol with pyrazinamide with NAD+ as an electron acceptor generated 5-

hydroxypyrazinamide (Figure 42b). In contrast Wistar rat and human liver cytosol 

displayed activity with both O2 and NAD+ as electron acceptor (Figure 43 and 44), 

indicating that in these species pyrazinamide was a substrate for both oxidase and 

dehydrogenase enzymes. 
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Figure 42: HPLC analysis of the in vitro biotransformation of pyrazinamide by rainbow trout 
liver cytosol at γ7˚C. Incubation (a) with O2(b) with NAD+ as an electron acceptor. Times at 
the left hand side of the chromatograms indicate incubation times. HPLC chromatograms are 
offset on the vertical axis to allow comparison between different incubation times. Analytes 
were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 20 mM KH2PO4: 
acetonitrile (95: 5) as mobile phase. The wavelength of the detection was 268 nm.   
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Figure 43: HPLC analysis of the in vitro biotransformation of pyrazinamide by Wistar rat and 
human liver cytosol at 37°C. Incubation with O2 as an electron acceptor. (a) Wistar rat, (b) 
human liver cytosol. Times at the left hand side of the chromatograms indicate incubation 
times. HPLC chromatograms are offset on the vertical axis to allow comparison between 
different incubation times. Analytes were injected onto a C-18 column (Kromasil 5 µm) and 
eluted with a 20 mM KH2PO4: acetonitrile (95: 5) as mobile phase. The wavelength of the 
detection was 268 nm.   
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Figure 44: HPLC analysis of the in vitro biotransformation of pyrazinamide by Wistar rat and 
human liver cytosol at 37°C.Incubation with NAD +as an electron acceptor. (a) Wistar rat, (b) 
human liver cytosol. Times at the left hand side of the chromatograms indicate incubation 
times. HPLC chromatograms are offset on the vertical axis to allow comparison between 
different incubation times. Analytes were injected onto a C-18 column (Kromasil 5 µm) and 
eluted with a 20 mM KH2PO4: acetonitrile (95: 5) as mobile phase. The wavelength of the 
detection was 268 nm.   
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The rainbow trout AOX activity were tested in liver, kidney and gill cytosol and it was 

found exclusively in the liver using HPLC and spectrophotometric assays. Hepatic 

aldehyde oxidase in cytosols of rainbow trout, human and rat (Table 38) were able to 

catalyse the oxidation of a range of MFE substrates to varying degrees. These 

included the exogenous aldehydes (DMAC and vanillin), endogenous vitamin 

substrates (all-trans retinal, pyridoxal and N1-methylnicotinamide), NPAH 

environmental pollutants (phenanthridine, phthalazine and cinchonine), and drug 

(pyrazinamide). The activity of rainbow trout with DMAC as AOX substrate in 

spectrophotometric assay were found lower compared to that other species (Table 38). 

The activity of Wistar rat with vanillin as AOX substrate was greater compared than 

that with human and trout respectively. The activity of human with endogenous 

vitamin substrates (all-trans retinal, pyridoxal and N1-methylnicotinamide) was 

greater than that with Wistar rat and trout respectively (Table 38). The lowest activity 

found of NPAH environmental pollutants (phenanthridine, phthalazine and 

cinchonine) was in trout compared with that of Wistar rat and human and the highest 

activity found was with human for phthalazine as AOX substrate and the highest 

activity with Wistar rat was for phenanthridine and cinchonine (Table 38). The highest 

activity found for pyrazinamide as substrate was with human and the lowest activity 

was found with trout (Table 38). 
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Table 38: Summary of in vitro studies of hepatic aldehyde oxidase activity in different 
species using HPLC and spectrophotometric assays with different substrates 

Substrate Species Activity 

DMAC 
Rainbow trout 

Wistar rat 
Human 

+++ 
++++ 

+++++ 

Vanillin 
Rainbow trout 

Wistar rat 
Human 

++ 
+++++ 

+++ 

Pyridoxal 
Rainbow trout 

Wistar rat 
Human 

++ 
++++ 

+++++ 

All-trans retinal 
Rainbow trout 

Wistar rat 
Human 

++ 
++++ 

+++++ 

N1-methylnicotinamide 
Rainbow trout 

Wistar rat 
Human 

+ 
++++ 

+++++ 

Phenanthridine 
Rainbow trout 

Wistar rat 
Human 

+ 
+++++ 
++++ 

Phthalazine 
Rainbow trout 

Wistar rat 
Human 

++ 
++++ 

+++++ 

Cinchonine 
Rainbow trout 

Wistar rat 
Human 

++ 
+++++ 
++++ 

Pyrazinamide 
Rainbow trout 

Wistar rat 
Human 

+ 
+++++ 
++++ 

 (+++++ = ultra-high activity,++++ =high activity, +++ = intermediate activity, ++ = low activity, 
 + = very low activity). 

 

 

 

 

 

 

 



119 

 

3.3. Spectrophotometric and HPLC analysis of molybdo-flavoenzyme 
activity with endogenous purine and purine analogue substrates. 

3.3.1. Xanthine and 1-methylxanthine. 

For XOR activity two substrates were assessed using spectrophotometry. These were 

the endogenous purine catabolite xanthine and the major caffeine metabolite 1-

methylxanthine. (Figure 45) illustrates spectrophotometric assays with the xanthine 

demonstrating that liver cytosols from Wistar rat and human had measurable XOR 

activity with and without NAD+. In contrast rainbow trout liver cytosol only had 

measurable XOR activity in presence of NAD+ (Figure 45b). Similar 

spectrophotometric results were obtained with 1-methylxanthine (data not shown). 

Rainbow trout kidney and gill cytosols had no measurable activity towards either of 

these substrates.  

In order to check unequivocally if there was no XDH activity towards xanthine and 1-

methylxanthinein kidney and gill cytosols a sensitive HPLC assay was used, this 

showed that even following a 120 minute incubation with these substrates there was 

no uric acid metabolite formed in contrast to liver cytosol (Figures 46 and 

47).Reflecting the results from the spectrophotometric assay even after an extended 2 

hour incubation no uric acid metabolite was formed with O2 as an electron acceptor. 

When xanthine and 1-methylxanthine were incubated with rainbow trout liver cytosol 

(Figures 48 and 49) there were appreciable levels of uric acid produced with NAD+ as 

electron acceptor. This was in contrast to that found when rat and human liver cytosol 

was incubated with these substrates where both electron acceptors were utilised 

resulting in uric acid metabolite being formed with both the endogenous and 

exogenous purine (Figures 50, 51, 52 and 53). 

 

 



120 

 

 

 

 

 

 

Figure 45: Spectrophotometric assays of xanthine oxidoreductase activities using rainbow 
trout, Wistar rat and human liver cytosol at γ7˚C with XOR substrates. (a) xanthine oxidase 
activity assay. (b) xanthine oxidoreductase activity assay. Rainbow trout [red], Wistar rat [green] and 
human [black] liver cytosol. For all assays 100 µM final xanthine concentrations were used. For the 
XOR assay 670 µM NAD+ was used as the electron acceptor. For analysis conditions see section 2.5. 
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Figure 46: HPLC analysis of the in vitro biotransformation of xanthine + NAD+ by rainbow 
trout cytosol. The chromatogram(a) Liver, (b) Kidney and (c) Gill  trout cytosol with xanthine and 
NAD+. Times at the left hand side of the chromatograms indicate incubation times. HPLC 
chromatograms are offset on the vertical axis to allow comparison between different incubation times 
.Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic 
acid: acetonitrile gradient system as described in section 2.5.3 as mobile phase. The wavelength of the 
detection was 280 nm.  
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Figure 47: HPLC analysis of the in vitro biotransformation of 1-methylxanthine + NAD+ by 
rainbow trout cytosol. The chromatogram (a) Liver, (b) Kidney and (c) Gill  trout cytosol with 
xanthine and NAD+. Times at the left hand side of the chromatograms indicate incubation times. HPLC 
chromatograms are offset on the vertical axis to allow comparison between different incubation times 
.Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic 
acid: acetonitrile gradient system as described in section 2.5.3 as mobile phase. The wavelength of the 
detection was 280 nm.  
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Figure 48: HPLC analysis of the in vitro biotransformation of xanthine by rainbow trout liver 
cytosol. The chromatogram (a) HPLC analytes generated by rainbow trout liver cytosol with xanthine 
in presence of O2 as an electron acceptor. The chromatogram (b) HPLC analytes generated by rainbow 
trout liver cytosol with xanthine and NAD+. Times at the left hand side of the chromatograms indicate 
incubation times. HPLC chromatograms are offset on the vertical axis to allow comparison between 
different incubation times .Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with 
a 0.1% v/v glacial acetic acid: acetonitrile gradient system as described in section 2.5.3 as mobile 
phase. The wavelength of the detection was 280 nm.  
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Figure 49: HPLC analysis of the in vitro biotransformation of 1-methylxanthine by rainbow 
trout liver cytosol at 37ºC. The chromatogram (a) HPLC analytes generated by rainbow trout liver 
cytosol with 1-methylxanthine in the presence of O2 as an electron acceptor. The chromatogram (b) 
HPLC analytes generated by trout liver cytosol with 1-methylxanthine and NAD+ as an electron 
acceptor. Times at the left hand side of the chromatograms indicate incubation times. HPLC 
chromatograms are offset on the vertical axis to allow comparison between different incubation times 
.Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic 
acid: acetonitrile gradient system as described in section 2.5.3 as mobile phase. The wavelength of the 
detection was 280 nm. 
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Figure 50: HPLC analysis of the in vitro biotransformation of xanthine by Wistar rat liver 
cytosol. The chromatogram (a) HPLC analytes generated by rat liver cytosol with xanthine and O2 as 
electron acceptor. The chromatogram (b) HPLC analytes generated by Wistar rat liver cytosol with 
xanthine and NAD+. The amount of NAD+ added to incubation 675µM. Times at the left hand side of 
the chromatograms indicate incubation times. HPLC chromatograms are offset on the vertical axis to 
allow comparison between different incubation times. Analytes were injected onto a C-18 column 
(Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic acid: acetonitrile gradient system as 
described in section 2.5.3 as mobile phase. The wavelength of the detection was 280 nm. 
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Figure 51: HPLC analysis of the in vitro biotransformation of 1-methylxanthine by Wistar rat 
liver cytosol at 370C. The chromatogram (a) HPLC analytes generated by Wistar rat liver cytosol 
with 1-methylxanthine and O2 as an electron acceptor. The chromatogram (b) HPLC chromatogram for 
incubation of Wistar rat liver cytosol with 1-MX and NAD+ as an electron acceptor. Times at the left 
hand side of the chromatograms indicate incubation times. HPLC chromatograms are offset on the 
vertical axis to allow comparison between different incubation times .Analytes were injected onto a C-
18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic acid: acetonitrile gradient system 
as described in section 2.5.3 as mobile phase. The wavelength of the detection was 280 nm. 
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Figure 52: HPLC analysis of the in vitro biotransformation of xanthine by human liver 
cytosol. The chromatogram (a) HPLC analytes generated by human liver cytosol with xanthine and O2 

as electron acceptor. The chromatogram (b) HPLC analytes generated by human liver cytosol with 
xanthine and NAD+. The amount of NAD+ added to incubation 675µM. Times at the left hand side of 
the chromatograms indicate incubation times. HPLC chromatograms are offset on the vertical axis to 
allow comparison between different incubation times Analytes were injected onto a C-18 column 
(Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic acid: acetonitrile gradient system as 
described in section 2.5.3 as mobile phase. The wavelength of the detection was 280 nm. 
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Figure 53: HPLC analysis of the in vitro biotransformation of 1-methylxanthine to 1-
methyluric acid by human liver cytosol at 370C. The chromatogram (a) HPLC analytes generated 
by human liver cytosol with 1-methylxanthine using O2 as an electron acceptor. The chromatogram (b) 
HPLC analytes generated by human liver cytosol with 1-methylxanthine (1-MX) and NAD+. Times at 
the left hand side of the chromatograms indicate incubation times. HPLC chromatograms are offset on 
the vertical axis to allow comparison between different incubation times .Analytes were injected onto a 
C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic acid: acetonitrile gradient 
system as described in section 2.5.3 as mobile phase. The wavelength of the detection was 280 nm. 
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When the liver cytosol from all three species was incubated with the XOR inhibitor 

oxipurinol and AOX inhibitor menadione, oxipurinol gave 100% inhibition while the 

menadione did not have any effect (Figures 54, 55, 56, 57, 58 and 59), this illustrates 

that XOR is responsible for biotransformation of xanthine and 1-methylxanthine to 

their metabolites in these species. 
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Figure 54: HPLC analysis of the in vitro biotransformation of xanthine by rainbow trout liver 
cytosol with and without enzyme inhibitors. The chromatogram of xanthine, NAD+ plus (a) 
oxipurinol and (b) menadione. Red line with inhibitor and black line without inhibitor. The amount of 
inhibitor added to incubation its 100µM. Times at the left hand side of the chromatograms indicate 
incubation times. HPLC chromatograms are offset on the vertical axis to allow comparison between 
different incubation times. Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with 
a 0.1% v/v glacial acetic acid: acetonitrile gradient system as described in section 2.5.3 as mobile 
phase. The wavelength of the detection was 280 nm. 
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Figure 55: HPLC analysis of the in vitro biotransformation of 1-methylxanthine by rainbow 
trout liver cytosol with and without xanthine oxidoreductase and aldehyde oxidase inhibitors. 
HPLC chromatogram for incubation of trout liver with (1-MX), NAD+ with (a) oxipurinol, (b) 
menadione. Red lines with inhibitors and black lines without inhibitors. The amount of inhibitors added 
to incubation its 100µM. Times at the left hand side of the chromatograms indicate incubation times. 
HPLC chromatograms are offset on the vertical axis to allow comparison between different incubation 
times. Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial 
acetic acid: acetonitrile gradient system as described in section 2.5.3 as mobile phase. The wavelength 
of the detection was 280 nm. 

(a) 

Time (minutes) 

Time (minutes) 

(b) 

Rainbow trout 

Liver 

1-methylxanthine 

 + NAD+ 

+ Oxipurinol 

XOR 

 

Rainbow trout 

Liver 

1-methylxanthine 

 + NAD+ 

+ Menadione 
XOR 

 



132 

 

 

 

 
 
Figure 56: HPLC analysis of the in vitro biotransformation of xanthine by Wistar rat liver 
cytosol with and without enzyme inhibitors. HPLC chromatogram for incubation of Wistar rat 
liver cytosol with xanthine and (a) oxipurinol, (b) menadione. Red lines with inhibitors and 
black lines without inhibitors. The amount of inhibitor added to incubation its 100µM. Times 
at the left hand side of the chromatograms indicate incubation times. HPLC chromatograms 
are offset on the vertical axis to allow comparison between different incubation times. 
Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v 
glacial acetic acid: acetonitrile gradient system as described in section 2.5.3 as mobile phase. 
The wavelength of the detection was 280 nm. 
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Figure 57: HPLC analysis of the in vitro biotransformation of 1-methylxanthine by Wistar rat 
liver cytosol with and without enzyme inhibitors. HPLC chromatogram for incubation of rat 
with 1-MX and (a) oxipurinol, (b) menadione. Red lines with inhibitors and black lines 
without inhibitors. The amount of inhibitors added to incubation its 100µM. Times at the left 
hand side of the chromatograms indicate incubation times. HPLC chromatograms are offset 
on the vertical axis to allow comparison between different incubation times. Analytes were 
injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic acid: 
acetonitrile gradient system as described in section 2.5.3 as mobile phase. The wavelength of 
the detection was 280 nm. 
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Figure 58: HPLC analysis of the in vitro biotransformation of xanthine by human liver 
cytosol with and without enzyme inhibitors. The chromatogram of human liver cytosol with 
xanthine and (a) oxipurinol, (b) menadione. Red lines with inhibitors and black lines without 
inhibitors The amount of inhibitor added to incubation its 100µM. Times at the left hand side 
of the chromatograms indicate incubation times. HPLC chromatograms are offset on the 
vertical axis to allow comparison between different incubation times. Analytes were injected 
onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic acid: 
acetonitrile gradient system as described in section 2.5.3 as mobile phase. The wavelength of 
the detection was 280 nm. 
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Figure 59: HPLC analysis of the in vitro biotransformation of 1-methylxanthine by human 
liver cytosol with and without enzyme inhibitors. HPLC chromatogram for incubation of 
human liver with 1-MX and (a) oxipurinol, (b) menadione. Red lines with inhibitors and black 
lines without inhibitors. The amount of inhibitors added to incubation its 100µM. Times at the 
left hand side of the chromatograms indicate incubation times. HPLC chromatograms are 
offset on the vertical axis to allow comparison between different incubation times. Analytes 
were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic 
acid: acetonitrile gradient system as described in section 2.5.3 as mobile phase. The 
wavelength of the detection was 280 nm. 
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3.3.3. 6-mercaptopurine. 

6-mercaptopurine (6-MP) is a thiopurine anti-leukemia drug in which carbon 6 of 

purine has been substituted with a sulphur atom. In mammals 6-MP is oxidized to 6-

thiouric acid via 6-thioxanthine or 8-oxo-6-mercaptopurine by AOX or XOR (Figure 

17) although there is some controversy over the in vitro studies (Krenitsky et al., 

1972, Hall and Krenitsky. 1986, Rashidi et al., 2007). In order to validate the assay in 

this study, rabbit liver cytosol was incubated with 6-MP and the products generated 

analysed by HPLC. This demonstrated that when rabbit cytosol was incubated with 6-

MP with O2 as sole electron acceptor it was biotransformed to 6-thiouric acid via 6-

thioxanthine (Figure 60). This confirmed that the HPLC procedure and incubation 

conditions had successfully detected and resolved the expected 6-MP metabolites 

confirming the lack of detectable activity in rainbow trout liver cytosol towards this 

substrate was not due to experimental conditions. According to the in vitro 

experiments with rainbow trout, Wistar rat and human in this study, trout liver cytosol 

incubated with 6-MP with and without NAD+ as an electron acceptor for 60 minute 

incubation time no peak of 6-thiouric acid formed (Figure 61). In contrast Wistar rat 

and human liver cytosol incubated with 6-mercaptopurine is a substrate for either 

XOR or AOX using O2 or NAD+ as electron acceptors (Figures 62 and 63). On the 

other hand as in the (Figures 64 and 65), in the Wistar rat and human liver cytosol 

incubated with XOR inhibitor oxipurinol and AOX inhibitor menadione it was found 

that oxipurinol produced 100% inhibition while menadione did not have any effect. 

This shows that XOR was responsible for biotransformation of 6-mercaptopurine (6-

MP) to 6-thiouric acid. Due to the 6-MP not being a substrate for rainbow trout it was 

decided to test 6-thioxanthine as a substrate for either XOR or AOX of rainbow trout 

liver cytosol without and with NAD+ as electron acceptors (Figure 66). On the other 
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hand, as in (Figure 67), trout liver cytosol incubated with XOR inhibitor oxipurinol 

and AOX inhibitor menadione found that oxipurinol produced 100% inhibition while 

the menadione does not have any effect, this shows that XOR is responsible for 

biotransformation of 6-thioxanthine to 6-thiouric acid.  

 

Figure 60: HPLC analysis of the in vitro biotransformation of 6-mercaptopurine by rabbit 
liver cytosol. Times at the left hand side of the chromatograms indicate incubation times. 
HPLC chromatograms are offset on the vertical axis to allow comparison between incubation 
times. Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% 
v/v glacial acetic acid: acetonitrile gradient system as described in section 2.5.3 as mobile 
phase. The wavelength of the detection was 280 nm.    
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Figure 61: HPLC analysis of analytes produced following the in vitro incubation of 6-
mercaptopurine with rainbow trout liver cytosol at 37°C. HPLC chromatogram (a) of analytes 
generated following incubation of 6-MP with trout liver cytosol and O2 as an electron acceptor. HPLC 
chromatogram (b) of analytes generated following incubation of 6-MP with trout liver cytosol and 
NAD+ as an electron acceptor. Times at the left hand side of the chromatograms indicate incubation 
times. HPLC chromatograms are offset on the vertical axis to allow comparison between different 
incubation times. Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% 
v/v glacial acetic acid: acetonitrile gradient system as described in section 2.5.3 as mobile phase. The 
wavelength of the detection was 280 nm.  
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Figure 62: HPLC analysis of analytes produced following the in vitro incubation of 6-
mercaptopurine with Wistar rat liver cytosol at 37°C. HPLC chromatogram (a) of analytes 
generated following incubation of 6-MP and O2 as an electron acceptor. HPLC chromatogram 
(b) of analytes generated following incubation of 6-MP and NAD+. Times at the left hand side 
of the chromatograms indicate incubation times. HPLC chromatograms are offset on the 
vertical axis to allow comparison between different incubation times .Analytes were injected 
onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic acid: 
acetonitrile gradient system as described in section 2.5.3 as mobile phase. The wavelength of 
the detection was 280 nm.  
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Figure 63: HPLC analysis of the in vitro biotransformation of 6-mercaptopurine by human 
liver cytosol. HPLC chromatogram (a) for incubation of human liver with 6-MP and O2 as an electron 
acceptor. HPLC chromatogram (b) for incubation of human liver with 6-MP and NAD+ as an electron 
acceptor. Times at the left hand side of the chromatograms indicate incubation times. .HPLC 
chromatograms are offset on the vertical axis to allow comparison between different incubation times. 
Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic 
acid: acetonitrile gradient system as described in section 2.5.3 as mobile phase. The wavelength of the 
detection was 280 nm. 
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Figure 64: HPLC analysis of the in vitro biotransformation of 6-mercaptopurine by Wistar rat 
liver cytosol with and without enzyme inhibitors. HPLC chromatogram for incubation of 
Wistar rat with 6-MP and (a) oxipurinol, (b) menadione. Red lines with inhibitors and black 
lines without inhibitors. The amount of inhibitor added to incubation its 100µM. Times at the 
left hand side of the chromatograms indicate incubation times. HPLC chromatograms are 
offset on the vertical axis to allow comparison between different incubation times. Analytes 
were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic 
acid: acetonitrile gradient system as described in section 2.5.3 as mobile phase. The 
wavelength of the detection was 280 nm. 
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Figure 65: HPLC analysis of the in vitro biotransformation of 6-mercaptopurine by human 
liver cytosol with and without enzyme inhibitors. Human liver with 6-MP and (a) oxipurinol, 
(b) menadione. Red lines with inhibitors and black lines without inhibitors. The amount of 
inhibitor added to incubation its 100µM. Times at the left hand side of the chromatograms 
indicate incubation times. HPLC chromatograms are offset on the vertical axis to allow 
comparison between different incubation times. Analytes were injected onto a C-18 column 
(Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic acid: acetonitrile gradient system as 
described in section 2.5.3 as mobile phase. The wavelength of the detection was 280 nm. 
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Figure 66: HPLC analysis of the in vitro biotransformation of 6-thioxanthine by rainbow 
trout liver cytosol at 37°C. HPLC chromatograms (a) generated by rainbow trout liver cytosol 
with 6-thioxanthine and O2as electron acceptor. HPLC chromatograms (b) generated by Trout 
liver cytosol with 6-thioxanthine and NAD+ as electron acceptor. Times at the left hand side of 
the chromatograms indicate incubation times. HPLC chromatograms are offset on the vertical 
axis to allow comparison between different incubation times .Analytes were injected onto a C-
18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic acid: acetonitrile 
gradient system as described in section 2.5.3 as mobile phase. The wavelength of the detection 
was 280 nm. 
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Figure 67: HPLC analysis of the in vitro biotransformation of 6-thioxanthine by rainbow 
trout liver cytosol with and without enzyme inhibitors. The chromatogram of rainbow trout with 
6-thioxanthine and (a) oxipurinol, (b) menadione. Red lines with inhibitors and black lines without 
inhibitors. Times at the left hand side of the chromatograms indicate incubation times. The amount of 
inhibitor added to incubation its 100µM. HPLC chromatograms are offset on the vertical axis to allow 
comparison between different incubation times. Analytes were injected onto a C-18 column (Kromasil 
5 µm) and eluted with a 0.1% v/v glacial acetic acid: acetonitrile gradient system as described in 
section 2.5.3 as mobile phase. The wavelength of the detection was 280 nm. 
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3.3.4. Allopurinol. 

When liver cytosol from rainbow trout, Wistar rat and human were incubated with 

hyperuricemia drug allopurinol the two mammalian species exhibited activity with 

both the O2 and NAD+ as electron acceptor indicative of both oxidase and 

dehydrogenase activity (Figures 68 and 69). In contrast the piscine XOR enzyme was 

only active as a dehydrogenase as no activity was present even after prolonged 

incubation times without NAD+ figure 71.  

 

 

 
Figure 68: HPLC analysis of the in vitro biotransformation of allopurinol to oxipurinol by 
Wistar rat liver cytosol at 37°C. (a) HPLC chromatograms of incubation of Wistar rat and 
allopurinol with O2 as an electron acceptor. (b) HPLC chromatograms of incubation of Wistar rat and 
allopurinol with NAD+ as an electron acceptor. Times at the left hand side of the chromatograms 
indicate incubation times. HPLC chromatograms are offset on the vertical axis to allow comparison 
between different incubation times. Analytes were injected onto a C-18 column (Kromasil 5 µm) and 
eluted with a 0.1% v/v glacial acetic acid: acetonitrile gradient as described in section 2.5.3 as mobile 
phase. The wavelength of the detection was 280 nm.   
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Figure 69: HPLC analysis of the in vitro biotransformation of allopurinol by human liver 
cytosol at 37°C. (a) HPLC chromatograms of incubation of human and allopurinol with O2 as an 
electron acceptor. (b) HPLC chromatograms of incubation of human and allopurinol with NAD+ as 
an electron acceptor. Times at the left hand side of the chromatograms indicate incubation times. 
HPLC chromatograms are offset on the vertical axis to allow comparison between different incubation 
times. Analytes were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial 
acetic acid: acetonitrile gradient as described in section 2.5.3 as mobile phase. The wavelength of the 
detection was 280 nm. 
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Figure 70: HPLC analysis of the in vitro biotransformation of allopurinol by rainbow trout 
liver cytosol at 37°C. (a) HPLC chromatograms of analytes from incubation of rainbow trout 
with allopurinol using O2 as an electron acceptor. (b) HPLC chromatograms from analytes 
from incubation of rainbow trout and allopurinol with NAD+ as an electron acceptor. Times at 
the left hand side of the chromatograms indicate incubation times. HPLC chromatograms are 
offset on the vertical axis to allow comparison between different incubation times. Analytes 
were injected onto a C-18 column (Kromasil 5 µm) and eluted with a 0.1% v/v glacial acetic 
acid: acetonitrile gradient as described in section 2.5.3 as mobile phase. The wavelength of the 
detection was 280 nm.   

Time (minutes) 

Time (minutes) 

(a) 

(b) 

Rainbow trout 

Liver 

Allopurinol 

+ O2 

XO 

Rainbow trout 

Liver 

Allopurinol 

+ NAD+ 

XOR 



148 

 

3.4. Determination of the kinetic parameters for aldehyde oxidase 
and xanthine oxidoreductase in trout, rat and human 
 
Km and Vmax were calculated for the oxidation of exogenous aldehydes, endogenous 

vitamin and purines and exogenous N-heterocycles as substrates for AOX and XOR as 

described in methods section 2.8. Mean values of Km, Vmax and substrate efficiency 

(Ks = Vmax/Km) of AOX and XOR were determined using Eadie-Hofstee plots that 

gave good correlation coefficients (r2)> 0.97 Appendix 3 (Figures 6 – 25). The 

advantage of this linearization method is that it tends to distribute the points more 

evenly so that it gives equal weight to data points in any range of substrate 

concentration or reaction rate. 

3.4.1. Exogenous aldehydes as substrates for AOX 

The Km and Vmax were calculated for two exogenous aromatic aldehyde compounds, 

vanillin and dimethylaminocinnamaldehyde (DMAC) by AOX. 

The results obtained in the present study shows that DMAC and vanillin were good 

substrates of trout AOX. The enzyme kinetic parameters for AOX for all species are 

listed in table 38. Km values for DMAC and vanillin were 21.5 ± 1.05 µM and 53.2 ± 

2.1 µM respectively for trout liver cytosols. Vmax values obtained 0.69 ± 0.13 

nmol/min/mg protein and 1.51 ± 0.18 nmol/min/mg protein respectively. The Km 

values for DMAC in trout were approximately 4 and 7-fold higher than that in rat and 

human. The Km value of vanillin in the trout was approximately 5 and 10-fold higher 

compared with that in rat and human respectively in spectrophotometric assay and 

Vmax value was similar for both mammalian species. The substrate efficiency (Ks) 

value of DMAC and vanillin in the trout was lower compared with that in rat and 

human respectively see Appendix3(figures 6 - 25) (Table 39). 
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Table 39: Kinetic constants for trout, rat and human liver AOX substrates in 
spectrophotometric and HPLC assays 

Species Substrates K m
** (µM)  

Vmax 
(nmol/min/mg 

protein) 

Ks = (Vmax/ Km) 
(ml/min/mg 

protein) 

Rainbow 
 trout  

DMAC  

Vanillin  

Vanillin  

Pyridoxal 

All-trans retinal  

N1-methylnicotinamide 

Phenanthridine 

Phthalazine 

Cinchonine 

21.5 ± 1.05a 

53.2 ± 2.11a 

54.2 ± 0.64 

121.9 ± 3.69 

124.7 ± 2.27 

273.9 ± 2.89 

55.0 ± 1.63 

61.2 ± 1.41 

174.7 ± 2.55 

0.69 ± 0.13a 

1.51 ± 0.18a 

1.89 ± 0.27 

1.41 ± 0.69 

2.22 ± 0.62 

1.63 ± 1.33 

1.78 ± 0.55 

2.02 ± 0.46 

1.63 ± 1.33 

0.032 

0.028 

0.035 

0.012 

0.017 

0.006 

0.032 

0.033 

0.009 
 

Wistar 
rat 

DMAC  

Vanillin  

Vanillin  

Pyridoxal 

All-trans retinal  

N1-methylnicotinamide 

Phenanthridine 

Phthalazine 

Cinchonine 

5.4 ± 1.62a 

9.7 ± 1.56a 

10.2 ± 0.55*  

46.4 ± 2.51 

30.9 ± 1.23 

156.2 ± 3.68 

5.60 ± 0.65*  

10.5 ± 0.55 

37.3 ± 1.99 

2.24 ± 0.07a 

3.77 ± 0.21a 

5.97 ± 0.05 

6.28 ± 0.59 

5.16 ± 0.56 

5.92 ± 0.68*  

2.43 ± 0.14 

5.79 ± 0.08 

4.53 ± 0.52 

0.415* 

0.388 

0.585* 

0.135 

0.166 

0.037 

0.433* 

0.551 

0.121 
 

Human 

DMAC  

Vanillin  

Vanillin  

Pyridoxal 

All-trans retinal  

N1-methylnicotinamide 

Phenanthridine 

Phthalazine 

Cinchonine 

3.4 ± 1.21a 

5.5 ± 1.83a 

8.1± 0.36 

34.1 ± 1.97*  

12.6 ± 0.58 

139.5 ± 2.86 

3.2 ± 0.23a 

9.8 ± 0.59*  

43.8 ± 1.62 

3.14 ± 0.07a 

4.65 ± 0.10a 

6.29 ± 0.04*  

9.16 ± 0.56 

8.32 ± 0.06 

6.69 ± 0.74 

4.16 ± 0.14a 

9.43 ± 0.07*  

8.69 ± 0.53 

0.923 

0.845 

0.776* 

0.268 

0.660* 

0.047 

1.300 

0.962* 

0.198 
 

 

Values shown are the mean ± S.D. The typical results are from three independent 
experiments. (*P< 0.05 one way ANOVA are marked with asterisks) compared with the 
rainbow trout, **n = 3. (a)-Spectrophotometric assays,  
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3.4.2. Endogenous vitamin aldehydes as substrates for AOX 

Two endogenous vitamin aldehydes, pyridoxal (vitamin B6), all-trans retinal (vitamin 

A) and N1-methylnicotinamide (NMN) (a vitamin B3 metabolite) were used as AOX 

substrates. The Km value of endogenous vitamin was measured using an HPLC assays 

with trout, rat and human liver cytosols, Km, Vmax and Ks values are summarized in 

(Table 39). 

3.4.2.1. Vitamin B6 (pyridoxal) 

The Km value of trout AOX with pyridoxal its 121.9 ± 3.6 µM was approximately 3-

fold more than that for mammalian AOX with Wistar rat and human  of 46.4 ± 0.55 

µM and 34.1 ± 1.97 µM respectively (Table 39). The Vmax value of trout AOX with 

pyridoxal found to be 1.41 ± 0.69 nmol/min/mg protein and was approximately 6 and 

9-fold lower than that Wistar rat and human respectively. The substrate efficiency 

(Ks) value of trout AOX was lower compared than that of human and rat respectively 

(Table 39). 

3.4.2.2. Vitamin A (all-trans retinal) 

The Km value of trout AOX with all-trans retinal was 124.7 ± 2.27 µM was 

approximately 4-fold greater than that measured with Wistar rat with all-trans retinal 

and ~ 10 fold more than that of human AOX (Table 39). The Vmax value of trout 

AOX with all-trans retinal was 2.22 ± 0.62 nmol/min/mg protein and was 

approximately 3 and 4-fold lower than that Wistar rat and human respectively. The 

substrate efficiency (Ks) value of trout with all-trans retinal was lower than that of rat 

and human respectively (Table 39). 
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3.4.2.3. N1-methylnicotinamide 

The Km value of N1-methylnicotinamide was measured and it was found to be 273.9 

± 2.89 µM with trout AOX, 156.2 ± 3.68 µM with Wistar rat AOX and 139.5 ± 2.86 

µM with human AOX. The activity of trout AOX with N1-methylnicotinamide 

approximately 1.5-fold more than that of mammalian AOX with N1-

methylnicotinamide table 38. The Vmax value of Wistar rat and human with N1-

methylnicotinamide was approximately 5 and 6-foldgreaterrespectivelythan the 

piscine AOX. The substrate efficiency (Ks) value of trout AOX with N1-

methylnicotinamide was lower than that both mammalian species (Table 39). 

3.4.3. Exogenous N-heterocycles as substrates for AOX 

The Km, Vmax and Ks values were calculated for three exogenous NPAHs that are 

environmental pollutants (phenanthridine, phthalazine and cinchonine) are shown in 

(Table 39).  

3.4.3.1. Phenanthridine 

Phenanthridine oxidation by trout cytosol was below detection limits of the 

spectrophotometric assay at all substrate concentrations used. However the activity 

was measurable with a sensitive HPLC assay. The Km value of exogenous N-

heterocyclic phenanthridine with trout it was 55.0 ± 1.63µM. On other hand, the Km 

value of mammalian enzyme Wistar rat and human with exogenous N-heterocyclic 

phenanthridine were 5.60 ± 0.65 µM, 3.20 ± 0.23 µM respectively (Table 39). The 

Km of the piscine AOX with phenanthridine was approximately 10 times greater than 

that with mammalian AOX. The Vmax value of Wistar rat and human with 

phenanthridine was approximately 2 and 4 times respectively more than that with trout 

AOX. The substrate efficiency (Ks) value of Wistar rat and human with 

phenanthridine was greater than that with trout AOX (Table 39). 
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3.4.3.2. Phthalazine 

The Km value of exogenous N-heterocyclic phthalazine with trout it was 61.2 ± 1.41 

µM. On other hand, the Km value of mammalian enzyme Wistar rat and human with 

exogenous N-heterocyclic phthalazine was 10.50 ± 0.55 µM and 9.8 ± 0.59 µM (Table 

39). The Km of the piscine AOX with exogenous N-heterocyclic phthalazine was 

approximately 6 times higher than that with rat and human AOX activity. The Vmax 

value of trout AOX with phthalazine found to be 2.02 ± 0.46 nmol/min/mg protein 

and was approximately 2 and 4 times lower than that Wistar rat and human 

respectively. The substrate efficiency (Ks) value of trout AOX with phthalazine was 

lower compared with Wistar rat and human respectively (Table 39). 

3.4.3.3. Cinchonine 

The Km value of exogenous N-heterocyclic cinchonine with rainbow trout AOX 

approximately 4-fold higher than that two mammalian AOX with cinchonine (Table 

39). The Vmax value of Wistar rat and human with cinchonine was approximately 4 

and 8-fold greater than that trout AOX. The substrate efficiency (Ks) value of human 

AOX was greater compared than that Wistar rat and trout respectively (Table 39). 
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3.4.4. Endogenous and exogenous purines and purine analogs as 
substrates for XOR 

The Km, Vmax and Ks values of purines and purine analogs were measured using 

spectrophotometric and HPLC assays with rainbow trout, Wistar rat and human as in 

(Table 40). 

3.4.4.1. Xanthine. 

The Km value for O2-dependent xanthine oxidase assay for human was approximately 

2-fold lower than that of rat in spectrophotometer and HPLC assay (Table 40). The 

Km value of NAD-dependent xanthine dehydrogenase with trout in 

spectrophotometric assay was 2-fold and 3-fold higher than that Wistar rat and human 

respectively (Table 40). The Km value of NAD-dependant xanthine dehydrogenase 

with trout in HPLC assay were 3 times higher than that with Wistar rat and human 

(Table 40). The NAD-dependant Vmax value for xanthine dehydrogenase with Wistar 

rat and human was approximately 5 and 7-fold greater than that O2-dependant 

respectively (Table 40). The substrate efficiency (Ks) value of NAD-dependent 

xanthine dehydrogenase with trout in spectrophotometer was lower compared with 

that in Wistar rat and human respectively (Table 40).  

3.4.4.2. 1-methylxanthine. 

The NAD-dependent Km value for 1-methylxanthine as an XDH substrate for trout 

was approximately 2-fold higher than that of other species as in (Table 40). The O2-

dependant Km value for 1-methylxanthine as substrate for both mammals was similar, 

and the NAD-dependant Vmax value for 1-methylxanthine dehydrogenase with 

Wistar rat and human was approximately 5 and 8-fold greater than the O2-

dependantactivity respectively (Table 40). The NAD-dependent substrate efficiency 

(Ks) value for 1-methylxanthine as an XDH substrate for trout was lower than that of 
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other species (Table 40). The O2-dependant substrate specificity (Ks) value for 1-

methylxanthine as substrate for human was greater compared with that Wistar rat 

(Table 40). 
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Table 40: Kinetic constants for trout, rat and human liver XOR substrates in 
spectrophotometric and HPLC assays 

Species Substrates K m
** (μM) 

Vmax  

(nmol/min/mg protein) 

Ks = Vmax / K m 

(ml/min/mg 
protein) 

Rainbow 
trout  

Xanthine+NAD+ 

Xanthine+NAD+ 

1-MX+NAD + 

1-MX+NAD + 

6-Thioxanthine + O2 

6-Thioxanthine+NAD+ 

Allopurinol +NAD + 

Pyrazinamide + O2 

Pyrazinamide +NAD+ 

13.5 ± 1.9a 

15.8 ± 0.58 

17.6 ± 1.23a 

18.2 ± 0.55 

39.9 ± 0.85 

30.9±1.52 

63.2 ± 0.98 

ND 

209.5 ± 2.40 

0.56 ± 0.15a 

0.77 ± 0.03 

0.52 ± 0.14a 

0.51 ± 0.05 

1.67 ± 0.30 

5.01 ± 0.98 

0.56 ± 0.75 

ND 

1.21 ± 0.74 

0.041 

0.048 

0.029 

0.028 

0.026 

0.099 

0.008 

ND 

0.005 
 

Wistar 
rat 

Xanthine 

Xanthine 

Xanthine+NAD+ 

Xanthine+NAD+ 

1-MX + O2 

1-MX+NAD + 

1-MX+NAD + 

6-MP + O2 

6-MP+NAD+ 

Allopurinol + O 2 

Allopurinol +NAD + 

Pyrazinamide + O2 

Pyrazinamide +NAD+ 

13.2 ± 1.7a 

9.2 ± 0.45 

5.5 ± 1.45a 

6.4 ±0.81 

10.7 ± 0.56*  

9.2 ± 0.62a 

8.2 ± 0.62 

29.1 ± 0.85 

24.6±0.85*  

20.9 ± 0.76 

15.30±1.05 

163.3 ± 1.46 

92.2 ± 1.20*  

1.69 ± 0.11a 

1.27±0.17 

4.27 ± 0.87a 

5.17 ± 0.15*  

1.01 ± 0.04 

5.31± 0.10a 

5.13 ± 0.95 

1.61 ± 0.06*  

3.68±0.45 

1.19 ± 0.08 

3.53±0.27 

1.30 ± 1.33*  

4.25 ± 1.06 

0.128 

0.138 

0.776* 

0.807 

0.094 

0.577* 

0.625 

0.055 

0.149 

0.056 

0.230* 

0.007 

0.046 
 

Human 

Xanthine 

Xanthine 

Xanthine+NAD+ 

Xanthine+NAD+ 

1-MX + O2 

1-MX+NAD + 

1-MX+NAD + 

6-MP + O2 

6-MP+NAD+ 

Allopurinol + O 2 

Allopurinol+NAD + 

Pyrazinamide + O2 

Pyrazinamide +NAD+ 

3.0 ± 0.65a 

5.5 ± 0.50*  

1.9 ± 0.20a 

2.4 ± 0.35 

7.0 ± 0.58*  

6.6 ± 1.05a 

5.7 ± 0.30 

25.7 ± 0.51 

20.80±0.41 

16.7 ± 0.62*  

15±0.25 

153.1 ± 2.05 

90.7 ± 1.00 

1.41 ± 0.01a 

1.97±0.05 

5.48 ± 0.07a 

7.25 ± 0.17*  

1.02 ± 0.15 

8.31 ± 0.96a 

8.18 ± 0.85 

1.73 ± 0.04*  

6.62±0.64 

1.73 ± 0.05 

5.52± 1.07*  

1.07 ± 0.37 

6.41 ± 0.94 

0.470 

0.358 

2.884* 

3.021* 

0.145 

1.259* 

1.435* 

0.067 

0.318 

0.103 

0.368* 

0.006 

0.070 
 

 

The values shown are the mean ± S.D. The typical results are from three independent 
experiments. (*P< 0.05 one way ANOVA are marked with asterisks) compared with the 
rainbow trout, **n = 3. (a)-Spectrophotometric assays. 
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3.4.4.3. Allopurinol 

The NAD-dependant Km values for allopurinol as an XDH substrate with trout was 

approximately 4-fold greater than that both mammalian species (Table 40). The O2-

dependant Km value for allopurinol as XO substrate with Wistar rat and human are 

similar as in (Table 40). The NAD-dependant Vmax value for allopurinol as XDH 

substrate with Wistar rat and human was approximately 3 and 5-fold more than that 

O2-dependant Vmax value respectively (Table 40). The NAD-dependant substrate 

efficiency (Ks) values for allopurinol as an XDH substrate with trout was lower 

compared than that with Wistar rat and human respectively (Table 40). The O2-

dependant substrate efficiency (Ks) value for allopurinol as XO substrate with human 

was lower than that with Wistar rat (Table 40). 

3.4.4.4. 6-mercaptopurine (6MP). 

The NAD-dependant Km value for 6-MP as an XDH substrate with both mammalian 

are similar as in (Table 40).The NAD-dependant Vmax value for 6-MP with Wistar 

rat and human was approximately 3 and 6-fold greater than that O2-dependant Vmax 

value (Table 40).The NAD and O2- dependent substrate efficiency (Ks) value for 6-

MP with Wistar rat was lower than that with human (Table 40). 

3.4.4.4. 6-thioxanthine. 

 The NAD-dependant Vmax value for 6-thioxanthine as an XOR substrate with trout 

was approximately 2-fold greater than that O2-dependant Vmax value (Table 40). The 

O2-dependant substrate efficiency (Ks) value for 6-thioxanthine as an XOR substrate 

with trout was lower than that with NAD-dependent (Table 40).Due to time 

constraints activities were not measured for the mammalian species. 
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3.4.3.4. Pyrazinamide 

With the anti-tuberculosis drug pyrazinamide no activity was found with O2 as an 

electron acceptor with rainbow trout cytosol. In contrast, pyrazinamide was 

biotransformed in the presence of O2 with the both mammalian enzymes with Km 

values for both Wistar rat and human being similar as in (Table 40). When NAD+ was 

used as an electron acceptor both Wistar rat and human had approximately 4 and 6-

fold enhanced Vmax respectively and the trout cytosol had measurable NAD-

dependent activity. The Km value for the trout enzyme was approximately 2-fold 

higher than two mammalian enzymes (Table 40). The NAD-dependent substrate 

efficiency (Ks) value of trout with pyrazinamide as XDH substrate was found to be 

lower compared with that Wistar rat and human respectively (Table 40). The O2-

dependent substrate efficiency (Ks) value for both mammalians with pyrazinamide as 

substrate was similar (Table 40). 

 

3.5. Comparison of menadione, benzamidine and oxipurinol as 
molybdo-flavoenzyme inhibitors in different species. 

Inhibition of AOX was determined with menadione and benzamidine, whereas 

inhibition of XOR was determined with oxipurinol (Figure 72). Enzyme activity was 

measured spectrophotometrically and inhibitor concentrations used were from 0.5 µM 

to 5 µM menadione and from 25µM to 100µM for benzamidine and oxipurinol 

respectively. As seen in (Figure 71a), the AOX inhibitor 5µM menadione strongly 

inhibited AOX in trout liver with approximately 80% inhibition, while with rat and 

human enzymes were inhibited ~ 90%. Another AOX inhibitor tested was 

benzamidine which has been shown to be an inhibitor of AOX in rabbit and rat (Stell 

et al., 1989, Maia and Mira. 2002) and has been found to be a good affinity ligand for 
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the purification of AOXs in rabbit, rat, mouse, bovine and chicken (Tables 21 and 22). 

Benzamidine inhibition is pH dependent with higher pH giving stronger inhibition. 

Whereas 100µM benzamidine inhibited rat and human AOX ~ 80% at pH 7.4 and by 

~ 90% for both rat and human at pH 9.0, in contrast 100µM benzamidine did not 

inhibit trout AOX either pH (Figures 71b and 71c). The XOR inhibitor oxipurinol at 

100µM inhibited XDH in trout, rat and human liver cytosol with ~ 60%, ~ 92% and~ 

95% inhibition respectively.  
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Figure 71: Inhibition of trout, human and rat aldehyde oxidase by menadione and 
benzamidine. 

(a) Menadione (b) benzamidine at pH 7.4(c) benzamidine at pH 9.0.  AOX assays were carried out with 
100µM DMAC final concentration. The bar graph shows the mean ± S.D.(*) signify a statistically 
significant difference (one way ANOVA  p. ≤ 0.05) compared with the control. The typical results are 
from three independent experiments. 
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Figure 72: Inhibition of trout, human and rat xanthine oxidoreductase by oxipurinol at pH 
7.4. 

(a) oxipurinol. XO assays were carried out with 100µM xanthine final concentration (b) oxipurinol. 
XOR assays were carried out with 100µM xanthine final concentration and670µM NAD+ final 
concentration as electron acceptor. The bar graph shows the mean ± S.D. (*) signify a statistically 
significant difference (one way ANOVA p. ≤ 0.05) compared with the control. The typical results are 
from three independent experiments. 
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3.5.1. Determination of Ki for molybdo-flavoenzyme inhibitors in 
trout liver cytosol. 

In order to determine the Ki for AOX and XOR inhibitors with the trout liver 

molybdo-flavoenzymes a series of experiments were conducted with menadione, 

ethinyl estradiol, estradiol, chlorpromazine, phenanthridine and oxipurinol with 25µM 

to 100µM substrate concentration and 0.5µM to 5µM inhibitor concentration except 

oxipurinol concentration from 25µM to 100µM. Lineweaver-Burk plots from this data 

were used to determine the inhibitor constant Ki. (Figures 73 to 84) show the effect of 

these inhibitors on trout liver AOX and XDH. (Table 41) summarises the inhibition 

constants (Ki) and mode of inhibition of different inhibitors with trout AOX and 

XDH. 
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Figure 73: Saturation kinetics plot for menadione inhibition with DMAC as an AOX 
substrate in trout liver cytosol. 

The concentration of DMAC as aldehyde oxidase substrate was varied from 25µM to 100µM and 
menadione concentration ranged from 0.5µM to 5µM. The typical results are from three independent 
experiments. 
 
 
 
 
 
 
 
 

 

Figure 74: Lineweaver-Burk plot for menadione inhibition with DMAC as an AOX substrate 
in trout liver cytosol. 

The concentration of DMAC as aldehyde oxidase substrate varied from 25µM to 100µM and 
menadione concentration ranged from 0.5µM to 5µM. The typical results are from three independent 
experiments. 
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Figure 75: Saturation kinetics plot for estradiol inhibition with DMAC as an AOX substrate 
in trout liver cytosol. 

The concentration of DMAC as aldehyde oxidase substrate was varied from 25µM to 100µM and 
estradiol concentration ranged from 0.5µM to 5µM. The typical results are from three independent 
experiments. 

 

 

 

Figure 76: Lineweaver-Burk plot for estradiol inhibition with DMAC as an AOX substrate in 
trout liver cytosol. 

The concentration of DMAC as aldehyde oxidase substrate was varied from 25µM to 100µM and 
estradiol concentration ranged from 0.5µM to 5µM. The typical results are from three independent 
experiments. 
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Figure 77: Saturation kinetics plot for 17α-ethinyl estradiol inhibition with DMAC as an 
AOX substrate in trout liver cytosol. 

The concentration of DMAC as aldehyde oxidase substrate was varied from 25µM to 100µM and 17α-
ethinyl estradiol concentration ranged from 0.5µM to 5µM. The typical results are from three 
independent experiments. 

 

 

Figure 78: Lineweaver-Burk plot for 17α-ethinyl estradiol inhibition with DMAC as an AOX 
substrate in trout liver cytosol. 

The concentration of DMAC as aldehyde oxidase substrate was varied from 25µM to 100µM and 17α-
ethinyl estradiol concentration ranged from 0.5µM to 5µM. The typical results are from three 
independent experiments. 
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Figure 79: Saturation kinetics plot for chlorpromazine inhibition with DMAC as an AOX 
substrate in trout liver cytosol. 

The concentration of DMAC as aldehyde oxidase substrate was varied from 25µM to 100µM and 
chlorpromazine concentration ranged from 0.5µM to 5µM. The typical results are from three 
independent experiments. 

 

 

Figure 80: Lineweaver-Burk plot for chlorpromazine inhibition with DMAC as an AOX 
substrate in trout liver cytosol. 

The concentration of DMAC as aldehyde oxidase substrate was varied from 25µM to 100µM and 
chlorpromazine concentration ranged from 0.5µM to 5µM. The typical results are from three 
independent experiments. 
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Figure 81: Saturation kinetics plot for phenanthridine inhibition with DMAC as an AOX 
substrate in trout liver cytosol. 

The concentration of DMAC as aldehyde oxidase substrate was varied from 25µM to 100µM and 
phenanthridine concentration ranged from 0.5µM to 5µM. The typical results are from three 
independent experiments. 

 

 

Figure 82: Lineweaver-Burk plot for phenanthridine inhibition with DMAC as an AOX 
substrate in trout liver cytosol. 

The concentration of DMAC as aldehyde oxidase substrate was varied from 25µM to 100µM and 
phenanthridine concentration ranged from 0.5µM to 5µM. The typical results are from three 
independent experiments. 
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Figure 83: Saturation kinetics plot for oxipurinol inhibition with xanthine as an XOR 
substrate in trout liver cytosol. 

The concentration of xanthine + NAD+ as xanthine dehydrogenase substrate was varied from25µM to 
100µM with 6.7mM NAD+ and oxipurinol concentration ranged from 25µM to 100µM. The typical 
results are from three independent experiments. 

 

 

 

 

Figure 84: Lineweaver-Burk plot for oxipurinol inhibition with xanthine as an XOR substrate 
in trout liver cytosol. 

The concentration of xanthine + NAD+ as xanthine dehydrogenase substrate was varied from 25µM to 
100µM with 6.7mM NAD+ and oxipurinol concentration ranged from 25µM to 100µM. The typical 
results are from three independent experiments. 
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Table 41: Summary of inhibition constant (Ki) and mode of inhibition of different inhibitors 
with trout AOX and XDH. 

 
AOX inhibitor Ki (µM) ** Mode of inhibition 

Menadione 0.17 ± 0.03 Non-competitive 

Estradiol 0.34 ± 0.05 Uncompetitive 

Ethinyl estradiol 0.44±0.05 Uncompetitive 

Chlorpromazine 0.76 ±0.06 Competitive 

Phenanthridine 0.77±0.07 Competitive 

 

XOR inhibitor Ki (µM)  ** Mode of inhibition 

Oxipurinol 0.37±0.06 Non-competitive 
 
The values shown are the (average ± S.D** ), obtained from three separate liver cytosol fractions for each 
trout. 

It was found that all AOX inhibitors had a Ki values between 0.1µM to 1µM with the 

lowest Ki value with menadione. The weakest AOX inhibitors found were 

phenanthridine and chlorpromazine. Lineweaver-Burk plot analysis revealed that the 

inhibitors had different modes of inhibition. Menadione was a non-competitive 

inhibitor, while estradiol and 17α-ethinyl estradiol were uncompetitive inhibitors. In 

contrast, chlorpromazine and phenanthridine were competitive inhibitors. Despite its 

structural similarity to XOR substrates xanthine and hypoxanthine, oxipurinol was 

found to be a non-competitive inhibitor. 
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3.6. Purification of aldehyde oxidase. 

Purification of AOX from rat and fish was monitored throughout the purification 

procedure with DMAC as substrate. Protein elution was monitored at 280nm with an 

on-line spectrophotometric detection cell in the FPLC instrument. All procedures were 

carried out at 0 - 4°C. For preliminary experiments AOX was purified from Wistar rat 

as known protocols existed in published literature. 

3.6.1.Purification of AOX from Wistar rat liver. 

AOX was purified from Wistar rat liver with a series of purification steps as described 

in material and method section 2.11. (Figure 25), procedure 1.The first step of 

purification was heat treatment of liver cytosol at 55ºC for 15 minutes and this step 

which gave~ 80% yield with a 2-fold purification as seen in (Table 42). The second 

step of purification was ammonium sulphate precipitation. 0-25%, 50-60% and 70-

100% ammonium sulphate fractions had no activity. In contrast the 25-50% fraction 

had DMAC oxidase activity. This fraction retained 78 % yield of the initial cytosolic 

activity and there was an overall 3-fold purification of the enzyme. The third step of 

purification was Q-sepharose anion exchange chromatography which gave a 37 % 

yield and 12-fold purification as seen in (Table 42) and (Figure 85) and which gave 

two peaks. The later eluting DMAC oxidase activity peak had activity towards the 

both substrates DMAC and phenanthridine. 
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Figure 85: Chromatography of heat treated ammonium sulphate fractionated rat liver cytosol 
on a Q-sepharose column at pH 8.0. Using 20mM Tris HCL pH8.0 with 1mM cysteine and 5% (v/v) 
glycerol. Following elution of unbound proteins a linear 0 – 600 mM KCL gradient was applied. 
Fractions were collected at 1ml/minute and assayed for DMAC oxidase activity. Protein was monitored 
at 280 nm with an online detector. The result was typical from three independent experiments.  

 

 

 

 

Following concentration using an Amicon concentrator, the peak eluting with high salt 

(DMAC oxidase peak 2) was further purified by affinity chromatography using 

benzamidine sepharose 6B as described in materials and methods and following 

elution of unbound proteins, AOX containing fractions were batch eluted with 10ml of 

5mM benzamidine. Pooled and dialysed AOX-active fractions from this step were 

then subjected to chromatography on a Mono-Q 5/10 anion exchange column (Figure 

86). Overall this last step in the purification gave a 22% yield and 227-fold 

purification of AOX from Wistar rat liver cytosol as seen in (Table 42). 
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Figure 86: Mono-Q 5/10 anion exchange chromatography column of pooled fractions from 
affinity chromatography step. Using 20mM Tris HCL pH8.6 with 1mM cysteine and 5% (v/v) 
glycerol. Following elution of unbound proteins a linear 0 – 300 mM KCL gradient was applied. 
Fractions were collected at 5ml/minute and assayed for DMAC oxidase activity. Protein was monitored 
at 280 nm with an online detector. The result from three independent experiments. 

 

A summary of purification of Wistar rat AOX is given in (Table 42).  
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Table 42: Summary of Wistar rat AOX purification. 

Purification stage 
Volume 

[ml] 
Total protein 

[mg] 
Total activity 
[nmol/min] 

Specific activity 
[nmol/min/mg protein] 

Yield % Purification fold 

Cytosol preparation 36.6 7593.3 21109.4 2.78 100 1 

Heat treatment at 55ºC  26.9 3037.3 16887.5 5.56 80 2 

25-50% Ammonium sulphate precipitation 6.8 1895.1 16676.3 8.80 79 3 

Qsepharose ion exchange chromatography 1.5 235.8 7873.8 33.39 37.3 12 

Benzamidine Sepharose 6B affinity chromatography 0.5 32.2 5973.9 185.15 28.3 67 

MonoQ ion Exchange chromatography 0.3 7.4 4686.3 631.83 22.2 227 

 

The data shown is from a typical experiment.
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3.6.2. SDS PAGE analysis of Wistar rat AOX 

The SDS PAGE was used as described in materials and methods section 2.11.4 to 

analyse purified fractions figure 87 demonstrates that the purified preparations 

contained several polypeptide bands < 66kDa indicating that the enzyme had 

undergone proteolysis.  

 

 

Figure 87: SDS PAGE of purified hepatic AOX from Wistar rat liver. 

The lane [1] cytosol 20µg, lane [2] purified AOX 5µg from Mono Q, lane [3] molecular mass markers.   

The principle and procedure of SDS PAGE and staining as described in method and material section 
2.10.1 table 14. The result obtained represents a typical result from three independent purification 
experiments. 
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3.6.3. Purification of AOX from rainbow trout liver. 

AOX was purified from rainbow trout liver with a series of purification steps as 

described in materials and methods section 2.11. (Figure 25), procedure 4.In order to 

determine if heat treatment that is used for the initial purification of mammalian AOX 

(Table 21 and 22) could be used for the trout enzyme the thermal stability of the trout 

enzyme was tested at 55°C for 15-60 minutes as described in section 2.7.3. These 

experiments with the trout enzyme indicated that it was much more heat labile than 

the rodent or human enzyme with 80% activity lost after a brief 15 minute incubation 

at the standard temperature used for many mammalian AOX purifications (Figure 88) 

and (Table 21 and 22). This indicated that this procedure could not be used as a 

purification step for the piscine enzyme. 

 

Figure 88: Thermal stability of rainbow trout, human and rat liver AOX activity at 55°C. 

Enzyme activity was measured at γ7˚C, pH 7.5 with 0.1 mε DMAC as the substrate in AOX assays. 
The bar graph shows the AOX activity mean ± S.D.(*) signify a statistically significant difference (one 
way ANOVA p. ≤ 0.05) compared with the control of three experiments with pooled cytosol from ~3 
animals.  
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Rather than use heat treatment as for the mammalian enzyme the first step used for 

purification of the trout enzyme was ammonium sulphate precipitations. 0-25%, 50-

60% and 70-100% ammonium sulphate precipitations had no AOX activity. In 

contrast, the 25-50% fraction had ~90% of AOX activity of the initial cytosol and 

there was an overall 3-fold purification of the enzyme. The 25-50% ammonium 

sulphate fraction was then subjected to Q-Sepharose anion chromatography. Both 

buffer pH and salt gradient used were optimised in a series of experiments to obtain 

good resolution of the AOX-active fraction. (Figure 89) illustrates a typical 

chromatographic profile obtained using pH 8.6 and a 75 ml 0-1.2M KCL gradient. 

Following selective pooling of AOX-active fractions this gave a51-fold and 15.4% 

yield purification as seen in (Table 43 and Figure 89). 

 

 

 

Figure 89: Chromatography of ammonium sulphate fractionated trout liver cytosol on a Q-
sepharose column at pH 8.6. 

Proteins were dialysed in 20mM Tris HCL pH8.6 with 1mM cysteine and 5% (v/v) glycerol and 
injected onto column.  Following elution of unbound proteins a linear 0 – 1200 mM KCL gradient was 
applied. Fractions were collected at 1ml/minute and assayed for DMAC oxidase activity. Protein was 
monitored at 280 nm with an online detector. The result shown is representative from three independent 
experiments.  
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The third step of purification step was Superose 6 gel filtration chromatography that 

gave 14.6% yield and 70-fold purification as seen in (Table 43 and Figure 90). 

 

 

 

Figure 90: Superose 6 16/70 gel filtration chromatography column of pooled active fractions 
from Q-sepharose chromatography step. 

The proteins were chromatographed using 20mM Tris HCL pH8.0, 100mM NaCL with 1mM 
cysteine and 5% glycerol. Fraction were collected at 1ml/minute and assayed for DMAC oxidase 
activity. Protein was monitored at 280 nm with an online detector. The result shown is representative 
from three independent experiments.  
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The fourth step of the purification was using a Mono-Q 5/10 anion exchange 

chromatography of the AOX-active fraction collected from the gel filtration 

chromatography step. This resulted in the chromatogram in (Figure 91). This last step 

in the purification resulted in an overall 12% yield and 210-fold purification of AOX 

from rainbow trout liver cytosol as seen in (Table 43). 

The summary of the purification of rainbow trout AOX is given in the (Table 43).  

 

 

 

Figure 91: Mono-Q 5/10 anion exchange chromatography column of pooled active fractions 
from gel filtration chromatography step. 

The proteins were chromatographed using 20mM Tris HCL pH 8.6 with 1mM cysteine and 5% 
(v/v) glycerol. Following elution of unbound proteins a linear 0 – 300 mM KCL gradient was applied. 
Fractions were collected at 1ml/minute and assayed for DMAC oxidase activity. Protein was monitored 
at 280 nm with an online detector. The result shown is representative from three independent 
experiments. 
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Table 43: Summary of rainbow trout AOX purification. 

Purification stage 
Volume 

[ml] 
Total protein 

[mg] 
Total activity 
[nmol/min] 

Specific activity 
[nmol/min/mg protein] 

Yield % Purification fold 

Cytosol preparation 27.4 1138.91 1161.7 1.02 100 1 

25-50% ammonium sulphate fractionation 5.3 344.03 1073.4 3.12 92.4 3 

Q-sepharose anion exchange chromatography 1.5 3.38 178.9 52.96 15.4 51 

Superose 6  gel filtration chromatography 0.5 2.36 169.6 71.76 14.6 70 
Mono Q  anion Exchange chromatography 

0.3 0.71 149.8 214.61 12.9 210 
 

The data shown is from a single representative experiment from typical data from three independent experiments. 
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3.6.4. Determination of the native molecular mass of rainbow trout 
liver AOX using Superose 6 gel filtration chromatography. 

 

In order to determine the native molecular mass of rainbow trout liver AOX a 

Superose 6 chromatography column (16 x 70 cm) was calibrated using protein 

molecular mass standards with the same buffer used for the AOX chromatography. 

The elution volume of each of the standards is shown in (Table 44) and a calibration 

graph was constructed from this data (Figure 92).   

Table 44: Elution volume and relative molecular mass of the proteins standards on Superose 
6 16/70 gel filtration chromatography 

Molecular mass marker Elution volume  
[ml] Relative molecular mass [kDa] 

Thymoglobulin 65 669 

Apoferritin 72.5 443 

β-amylase 77.5 200 

Alcohol dehydrogenase 81 150 

Bovine serum albumin 85 66 

Carbonic anhydrase 94.6 29 

 
 

 

Figure 92: Calibration curve for determination of molecular mass of AOX by gel filtration 
chromatography. 
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As the elution volume of the peak of rainbow trout liver AOX activity in Superose 6 

16/70 was 75ml, the native molecular mass of the fish AOX was calculated from the 

equation (y = 1E+09e-0.113x) derived from the calibration curve. The mass calculated 

was 295 kDa. This suggests that the enzyme was a homodimer of ~ 150 kDa subunits 

as has been shown in mammals, however the SDS-PAGE gel analysis did not have 

any band of this mass. Instead the final purified preparation was composed of many 

polypeptides less than 150 kDa. This suggests that the trout AOX retained activity in a 

proteolysed form. Such as phenomenon is also found with proteolysed mammalian 

XOR that also retains activity and an overall native mass similar to the intact enzyme 

estimated by gel filtration chromatography (Engerson et al., 1987). 
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3.6.5. SDS PAGE analysis of rainbow trout AOX. 

The SDS PAGE used its described in method and material section 2.11.4 to analyse 

purified fractions (Figure 93) demonstrates that the purified preparations contained 

several polypeptide bands < 55kDa. This suggests that the enzyme had undergone 

significant proteolysis as the expected single subunit mass was 150 kDa. 

 

 
 

 
Figure 93: SDS PAGE of purified hepatic AOX from rainbow trout liver. 

The lane [1] cytosol 20µg, lane [2] purified AOX5µg from Mono Q, lane [3] molecular mass markers.  

The principle and procedure of SDS PAGE and staining as described in method and material section 
2.10.1 table 14. The result obtained represents a typical result from three independent purification 
experiments. 
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As well as the aforementioned methods outlined above two others were tested.  In 

order to determine if chromatofocusing could be used as a purification step following 

concentration of the fraction from Q-sepharose anion exchange column, 

chromatofocusing was performed on a Mono P HR 5/20 column with 0.075M Tris 

HCL pH 9.3 and a pH 9.3 to pH 6.0 gradient was generated with 10% (v/v) polybuffer 

96, adjusted to pH 6.0 with glacial acetic acid. Following chromatography fractions 

were assayed for DMAC oxidase activity. No activity was found in any fraction. In 

addition as benzamidine sepharose is frequently used as an affinity matrix for the 

purification of mammalian AOX this was tested with partially purified trout liver 

AOX. This was unsuccessful and not entirely unexpected as benzamidine was not an 

effective inhibitor of the trout enzyme (Figure 71). 
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4. Discussion. 

This discussion section follows the order of the results section.  

4.1. Quantification of molybdo-flavoenzyme activities in trout, human 

and rat. 

Both spectrophotometric and HPLC assays were used for the quantification of 

molybdo-flavoenzyme activities. For oxidation reactions, substrates in this study were 

classified into two structure types: aldehydes, which undergo oxidation to carboxylic 

acids and aromatic azaheterocyclic compounds, which undergo oxidation to lactams. 

Prior to testing with a number of substrates, the optimal conditions of the activities of 

both molybdo-flavoenzymes were studied in trout, human and rat using 

spectrophotometric assays with dimethylaminocinnamaldehyde (DMAC) for AOX 

and xanthine for XOR as substrates. The effect of pH on trout AOX and XOR was 

assayed under standard assay condition for trout, human and rat. The maximum 

activity of AOX and XOR with all species was achieved at a similar pH optimum of 

pH 7.0 as shown (figures 26 and 27). The pH optimum characteristics are similar to 

the pH-dependent kinetic study of XOR by Choi et al. who demonstrated that the 

steady-state and reductive half-reaction kinetics of the enzyme exhibits a bell-shaped 

profile with the pKas of 6.6 and 7.4. These were assignable respectively to an active 

site base and the first ionization of substrate (Choi et al., 2004). In contrast, Stripe and 

Della Corte (1969) found that the optimum pH of rat liver XO pH 8.0 (Stirpe and 

Della Corte. 1969). The optimum pH for AOX from trout, human and rat was 

observed in the present study is similar to that found by Stoddart and Levine (1992) 

who found the optimal pH of rabbit AOX was 7.5. (Stoddart and Levine. 1992). In 

order to test the effect of temperature the activity of AOX and XOR of trout was 

measured at different incubation temperatures for 5 minutes as described in section 
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2.7.2. The rate of reaction of trout AOX and XOR gradually increased with increase 

temperature from 25˚C up to γ7˚C, and the activity dramatically decreased after 45ºC 

with less than 10% remaining at 60ºC (Figure 28). In contrast the rate of reaction of 

human and rat AOX and XOR gradually increased with increase temperature from 

25ºC up to 37ºC, then the activity decreased gradually until 60ºC with approximately 

50% activity remaining at highest temperature. These results resemble those with most 

animal enzymes that become denatured at temperatures above 40˚C (Figure β8). This 

present result showed that the assay temperature of γ7˚C is suitable for use with the 

trout, human and rat MFE. The contrast in the thermolability of the piscine and 

mammalian AOXs may reflect differences in the primary amino acid sequence of 

mammalian AOXs that may have increased hydrophobic, ionic and hydrogen bonding 

that are known to stabilise proteins at elevated temperatures. At present it is not 

known which amino acid residues are involved in this. 

As well as optimising incubation conditions all HPLC protocols for analytes were 

tested for method linearity, accuracy and precision were checked. Regression for 

calibration (r2) standards injected were more than 0.997 for all analytes tested. 

Accuracy for the method was more than 95% and precision < 3.5%, calculated by 

using three injections on the same day as calibration standards (intraday) (Tables 1 

and 2 in Appendixes 3). For the linearity for the results, the lower limit of 

Quantification (LOQ) and limit of detection (LOD) were determined for each analyte 

(Table 3 in Appendix 3). According to (Miller and Miller. 2005) these methods have 

acceptable limits for both accuracy and precision and were therefore used to analyzed 

samples from this study.  
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4.1.1. Exogenous aldehydes as substrates for AOX 

Two exogenous aromatic aldehyde compounds, vanillin and (DMAC), were used as 

substrates of AOX. Enzyme activity of AOX was measured spectrophotometrically 

using two different substrates (DMAC and vanillin) with O2 as electron acceptor as 

follows. These were chosen for the following reasons. DMAC is a specific substrate 

for rat AOX (Kurth and Kubiciel. 1984, Moriwaki et al., 1998, Maia and Mira. 2002). 

Vanillin has also been shown to be a good substrate with a high affinity for AOX 

(Panoutsopoulos and Beedham. 2004). 

4.1.1.1. Vanillin and DMAC 

Vanillin is an aromatic aldehyde found in food material as an additive and it can be 

biotransformed to its carboxylic metabolite with O2 as an electron acceptor primarily 

by AOX. In the presence of NAD+, aldehyde dehydrogenase (ALDH) plays a 

significant role (Beedham. 2001, Obach et al., 2004, Sahi et al., 2008, Pryde et al., 

2010, Garattini and Terao. 2013). Only two studies have directly measured the 

kinetics of a substrates disappearance or product generation spectrophotometrically on 

mammals, mollusks, crustaceans, insects and fish AOX. Wurzinger and Hartenstein 

(1974) used vanillin as substrate of fish and mammalian AOX with O2 as an electron 

acceptor in a spectrophotometric assay measuring vanillic acid production (Wurzinger 

and Hartenstein. 1974). Using (DMAC) and vanillin substrates of fish AOX with O2 

as an electron acceptor (Wurzinger and Hartenstein. 1974, Maia and Mira. 2002, 

Kitamura et al., 2003, Choughule et al., 2013).  

Km and Vmax were determined from the Eadie- Hofstee plot of V versus V/[S] as 

described in the section materials and methods using simple rapid spectrophotometric 

assays. The lowest Km value for an AOX substrate was found with DMAC being 21.5 

± 1.05 µM (mean ± SD) with trout and 3.4 ± 1.2 µM with human and 5.4 ± 1.6 µM 
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with rat. In agreement with the present result Li et al. (2009) found that the DMAC is 

an excellent substrate for rat liver AOX with a low Km value (9.6 µM) (Liu et al., 

2009). The results of this study indicated that DMAC is a better substrate of trout 

AOX than vanillin with a Km value 2-fold higher (53.2 ± 2.1 µM). The Km values for 

DMAC in trout were approximately 4 and 7-fold higher than that in rat and human. 

The Km value of vanillin in the trout was approximately 5 and 10-fold higher 

compared with that in rat and human respectively in spectrophotometric assay and 

Vmax value was similar for both mammalian species (see Appendix 3 Figures 6 - 24) 

(Table 39). The Km value for trout AOX with vanillin was approximately two times 

more than that found guinea pig liver AOX that has a Km value of β9 µM 

(Panoutsopoulos et al., 2005). Obach, (2004) found vanillin is an excellent substrate 

for human liver AOX with a low Km of 2.7 µM (Obach. 2004). Vanillin has also been 

used to study species variation of aldehyde oxidase occurrence in 79 species. 

Wurzinger and Hartestein (1974) found vanillin to be a substrate of aldehyde oxidase 

from mollusks, crustaceans, insects and fish. Panoutsopoulos and Beedham (2004) 

incubated guinea pig AOX with vanillin and as shown by HPLC its metabolite vanillic 

acid formed quickly (Panoutsopoulos and Beedham. 2004). In this study trout liver, 

kidney and gill cytosol were incubated with vanillin and products analysed by HPLC. 

With trout kidney and gill cytosol no vanillic acid peak formed, while when incubated 

with trout liver cytosol the vanillic acid peak formed (Figure 34a). The trout kidney 

and gill lack AOX activity and the activity are found only in the liver. The lack of 

measurable AOX activity in kidney and gill contrasts that found by Krenitsky et al 

1974 who measured AOX in the kidney of a Cypriniformes  goldfish (Carassius 

auratus) and Asagba et al 2010 who found AOX activity in the kidney and gill of a 

Siluriforme African catfish (Clarias gariepinus). The Km of vanillin with trout liver 
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AOX determined using HPLC was found to be 57.20 ± 0.6 µM, which is ~ two times 

more than that found with human and rat AOX (Table 39).  

4.1.2. Endogenous vitamin aldehydes as substrates for AOX 

Two endogenous vitamin aldehydes, pyridoxal (vitamin B6), all-trans retinal (vitamin 

A) and the vitamin B3 metabolite N1-methylnicotinamide (NMN) were used as 

aldehyde substrates of AOX.  

4.1.2.1. Vitamin B6 pyridoxal 

Vitamin B6 is a water-soluble compound that contains a pyridine ring that is present 

in nature as several different forms such as pyridoxal , pyridoxine (PN), pyridoxamine 

and the active form is pyridoxal 5'-phosphate  (PLP) (Fitzpatrick et al., 2007). PLP is 

the coenzymatically active form of vitamin B6 and plays an important role in 

maintaining the biochemical homeostasis of the body (Meister. 1990, Snell. 1990). 

There are more than 100 PLP-dependent enzymes in a cell that perform essential roles 

in various metabolic pathways including amino acid metabolism (such as amino acid 

synthesis and degradation), fatty acid metabolism (such as the synthesis of 

polyunsaturated fatty acids) and carbohydrate metabolism (such as the breakdown of 

glycogen) (Mooney et al., 2009). The preferred degradation route from PLP to 4-

pyridoxic acid involves the dephosphorylation of PLP by a phosphatase followed 

separately by the actions of AOX and -nicotinamide adenosine dinucleotide-

dependent dehydrogenase (Schwartz and Kjeldgaard. 1951, Stanulovic and Chaykin. 

1971). When pyridoxal was incubated with trout, rat and human cytosol pyridoxic 

acid was produced (Figures 35) with Km value for trout AOX  121.9 ± 3.6 µM, rat 

AOX Km value of 46.4 ± 2.51 µM and human AOX Km value of 34.1 ± 1.97 µM 

respectively (Table 39). The Km value of trout AOX with pyridoxal is three times 
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more than that with human and rat AOX activity with pyridoxal. The Vmax value of 

trout AOX with pyridoxal found to be 1.41 ± 0.69 nmol/min/mg protein and was 

approximately 6 and 9-fold lower than that Wistar rat and human respectively. 

4.1.2.2. Vitamin A all-trans retinal 

Another potential substrate of AOX of physiological importance is all-trans- 

retinaldehyde which it oxidised to retinoic acid (Haung et al., 1999). Retinoic acid is a 

key regulator of the homoeostasis of keratinized epithelia and a recognized 

morphogen of the vertebrate organisms (Chambon. 1996), although its role in fish is 

less well understood. All-trans retinal congeners are components of rhodopsin visual 

system in all vertebrate and invertebrates including fish (Lee et al., 1996, Seki et al., 

1998). Interestingly the all-trans retinal determination network that is responsible for 

controlling eye development is one of the most extensively studied gene regulatory 

networks in both invertebrate and vertebrate species (Datta et al., 2011) . The first 

report of fish AOX being involved in the biotransformation of all-trans retinal was by 

Lakshamanan et al. (1964) who examined the oxidation of the aldehydes of both 

vitamin A1 (all-trans retinal) and vitamin A2 (3, 4-dehydro-all-trans retinal) to the 

corresponding acids by AOX enzyme in the liver of several freshwater-fish 

(Ophiocephalus muralius, Labeo calbasu and Cyprinus carpio communis) as shown in 

(Table 10). The study also found that the enzyme from these freshwater fish livers was 

inhibited by the AOX inhibitor menadione (Lakshmanan et al., 1964). Although the 

genes and proteins that control eye development are fully understood proteins that 

might regulate the levels of all-trans retinal and retinoic acid in fish are poorly 

understood. In this study, it was important to establish if trout AOX is capable of 

oxidizing all-trans retinaldehyde to its metabolite retinoic acid like vertebrate AOX 

(Huang and Ichikawa. 1994, Haung et al., 1999, Kitamura et al., 2006, Garattini et al., 
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2008, Terao et al., 2009, Garattini and Terao. 2011, Garattini and Terao. 2012). 

Incubation of trout cytosol with all-trans retinaldehyde generated retinoic acid (Figure 

36a). This indicated that all-trans retinal is a substrate for trout AOX. These finding 

are consistent with Lakshamanan et al. (1964) who first observed the role of AOX in 

the oxidation of all-trans retinaldehyde to retinoic acid in fish by liver AOX 

(Lakshmanan et al., 1964) and Huang and Ichikawa, (1994) and Tsujita et al. (1994) 

who first observed the role of AOX in the oxidation of all-trans retinaldehyde to 

retinoic acid without NAD+ in rabbit by liver cytosol AOX (Huang and Ichikawa. 

1994, Tsujita et al., 1994). The Km value for trout, rat and human with all-trans retinal 

was determined using HPLC and it was found that Km value of trout AOX with all-

trans retinal of 124.7 ± 2.27 µM, rat AOX Km value of 30.9 ± 1.23 µM and human 

AOX Km value of 12.6 ± 0.58 µM (Table 39). The  Km value of trout AOX with all-

trans retinal was ten and four times more than that human and rat AOX activity with 

all-trans retinal respectively. The Vmax value of trout AOX with all-trans retinal was 

2.22 ± 0.62 nmol/min/mg protein and it found to be approximately 3 and 4-fold lower 

than that Wistar rat and human respectively (Table 39).The Km values found in this 

study were of a similar magnitude to those found by Schumann et al., 2009 it found 

the Km value of all-trans retinaldehyde (vitamin A) with mouse AOX1 of 55.8 ± 8.8 

µM (Schumann et al., 2009). 

4.1.2.3. N1-methylnicotinamide (NMN) 

Another vitamin tested in this study was N1-methylnicotinamide (NMN) which is 

often used as a marker for aldehyde oxidase (Felsted and Chaykin. 1967, Stanulovic 

and Chaykin. 1971, Beedham. 1987, Sugihara et al., 2006). NMN is formed from 

nicotinamide by nicotinamide N-methyltransferase which is widely distributed in 

animals (Yan et al., 1997) . Many findings are consistent with the role of AOX in the 
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conversion of NMN to N1-methyl-2-pyridone-5-carboxamide (2-PY) and N1-methyl-

4-pyridone-5-carboxamide (4-PY) in the final steps of the nicotinamide degradation 

pathway (Felsted and Chaykin. 1967, Stanulovic and Chaykin. 1971, Beedham. 1987, 

Sugihara et al., 2006, Peretz et al., 2012). Previously Kitamura et al, (2003) examined 

the activity of AOX from sea bream (Pagrus major) and goldfish (Carassius auratus), 

while using N1-methylnicotinamide as electron donor and organothiophosphate 

insecticide fenthion sulphoxide as an electron acceptor as shown in (Table 

10)(Kitamura et al., 2003). Rather than measure NMN metabolites Kitamura’s study 

measured fenthion. In this study when NMN was incubated with trout, rat and human 

cytosol two product peaks were found (Figures 36) suggesting that there was AOX 

activity towards this compound. Based on what is found in mammals it is assumed 

that these might be N1-methyl-2-pyridone-5-carboxamide (2-PY) and N1-methyl-4-

pyridone-5-carboxamide (4-PY) (Figure 36). The metabolism of NMN to 2-PY and 4-

PY has been reported to be catalysed by AOX in a number of mammals including 

humans (Felsted and Chaykin. 1967, Stanulovic and Chaykin. 1971, Sugihara et al., 

2006). NMN showed different metabolic profiles in mice and humans by AOX in vivo 

and in vitro; for example the major product was 2-PY in humans, whereas in mice 

were 2-PY and 4-PY (Kitamura et al., 2008). The ratio of 2-PY/4-PY from NMN 

differs and varies among species (Kitamura et al., 2006, Garattini et al., 2008, 

Kitamura et al., 2008, Garattini and Terao. 2011). Krenitsky et al. (1986) reported that 

the N1-methylnicotinamide is substrate of human liver XO with very high Km value 

of 48 mM (Krenitsky et al., 1986). In contrast, Krenitsky et al. (1972) reported that N-

methylnicotinamide is an excellent substrate of rabbit liver AOX with low Km value 

of 1 mM (Krenitsky et al., 1986).  Hall and Krenitsky (1986) reported that the N-

methylnicotinamide is a substrate of rabbit AOX with Km value of 7.9 mM (Hall and 



191 

 

Krenitsky 1986). In contrast, Rajagopalan and Handler (1964) incubated the N1-

methylnicotinamide with rabbit liver AOX and found that the Km value at pH 10 was 

80 µM and at pH 7.8 was 300 µM respectively. These studies measured N1-

methynicotinamide indirectly using 2, 6-dichlorophenolindol (2, 6-DCPIP) as electron 

acceptor.  In this study for the first time N1-methylnicotinamide oxidation by AOX 

was assayed in trout liver cytosol using sensitive a HPLC method as a new direct 

assay for evaluating the AOX activity in trout. This indicated that N1-

methylnicotinamide is a substrate for trout AOX. The Km value of N1-

methylnicotinamide measured was found of 273.9 ± 2.89 µM with trout AOX, 156.2 ± 

3.68 µM with Wistar rat AOX and 139.5 ± 2.86 µM with human AOX and Vmax 1.63 

± 1.33 nmol/min/mg protein, 5.92 ± 0.68 nmol/min/mg protein and 6.69 ± 0.74 

nmol/min/mg protein with trout, rat and human respectively as in (Table 39). The Km 

of trout AOX with N1-methylnicotinamide ~ 1.5-fold more than that of mammalian 

AOX with N1-methylnicotinamide.The Km measured in this study were of the same 

magnitude as that found with  N1-methylnicotinamide with mouse AOX3 128.5 ± 5.8 

µM (Coelho et al., 2012, Mahro et al., 2013).The Vmax value of Wistar rat and 

human with N1-methylnicotinamide was approximately 5 and 6-fold greater 

respectively than the piscine AOX (Table 39). 

4.1.3. Exogenous N-heterocycles as substrates for AOX. 

Four exogenous N-heterocycles, phenanthridine, phthalazine, pyrazinamide, 

cinchonine were used as N-heterocycles substrates of AOX. 

4.1.3.1. Phenanthridine. 

Phenanthridine is an NPAH pollutant found in terrestrial and aquatic environments 

from industrial activities associated with fossil fuels (Blumer et al., 1977). NPAHs are 

therefore a cause for concern both to humans and aquatic wildlife. Several papers 
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reported that the phenanthridine is a good substrate and has a very high affinity 

towards AOX (Stubley and Stell. 1980, Rashidi. 1996, Beedham. 2001). In the AOX 

spectrophotometric assays one N-heterocyclic compound, phenanthridine was used as 

a substrate. Enzyme activity of AOX was measured spectrophotometrically using 

phenanthridine as substrate with O2 as electron acceptor as follows. These were 

chosen for the following reasons, phenanthridine has been shown to be a good specific 

substrate for monitoring mammalian AOX activity in many studies (Lake et al., 2002, 

Pirouzpanah et al., 2006, Sorouraddin et al., 2008) . Phenanthridine is a specific 

substrate of mammalian AOX (Table 1). At present it is not known whether AOX in 

aquatic species such as fish can metabolise phenanthridine to a more polar metabolite 

(phenanthridone) aiding its excretion. However, Bleeker et al, (2001) examined the 

metabolism of the environmental pollutant phenanthridine in carp (Cyprium carpio) 

liver and bile into its metabolite 6(5H)-phenanthridinone (phenanthridone) suggesting 

that fish AOX catalyses this biotransformation. NPAHs are derivatives of polycyclic 

aromatic hydrocarbons in which one carbon atom is substituted by a nitrogen atom. 

Phenanthridine has been identified in air, marine and freshwater environments, and in 

ground water. High environmental concentrations in the field result from human 

activities such as combustion of fossil fuels. The presence of the electronegative 

nitrogen atom makes NPAHs more water soluble than their homocyclic analogues; 

this increase their mobility and bioavailability in aquatic environments (Bleeker et al., 

2001). The activity with phenanthridine was not detectable with trout liver cytosol 

using the standard spectrophotometric assay. It was a good substrate with both rat and 

human in my study and with a Km value of 5.6 ± 0.65 µM with rat and Km value of 

3.2 ± 1.23µM with human. This agreement with phenanthridine as a specific substrate 

of AOX has been used in several papers and Km previously has been estimated were 
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< 1 με with rabbit and guinea pig liver AOX enzyme and 6 με and 14 με with rat 

and human liver AOX respectively (Stubley and Stell. 1980, Rashidi et al., 1997, 

Beedham. 2001). In this study trout liver, kidney and gill cytosol incubated with 

phenanthridine and product analysed by HPLC, with trout kidney and gill cytosol no 

6(5H)-phenanthridinone (phenanthridone) metabolite peak found. This indicated no 

AOX activity in trout kidney and gill, while in trout liver cytosol the 6(5H)-

phenanthridinone (phenanthridone) metabolite formed (Figure 39a) with a Km value 

of 55.0 ± 1.63 µM. The Km values of trout AOX with phenanthridine it found seven 

and six times more than that human and rat AOX activity respectively. The Vmax 

value of Wistar rat and human with phenanthridine was approximately 2 and 4 times 

respectively more than that with trout AOX (Table 38).In contrast, Hartmann et al., 

(2012) it found the Km value of phenanthridine with pure human AOX of 3.9 ± 0.8 

µM. On other hand, Coelho et al., (2012) and Mahro et al., (2013) it found the Km 

value of phenanthridine with mouse AOX3 32.3 ± 1.4 µM and 32 ± 1 µM respectively 

(Coelho et al., 2012, Mahro et al., 2013). 

4.1.3.2. Phthalazine. 

Phthalazine an aromatic heterocyclic compounds which have a CH=N- group, which 

its biotransformed to its  corresponding metabolite 1-phthalazinone by mammalian 

AOX (Stubley et al., 1979, Beedham et al., 1990, Obach. 2004, Panoutsopoulos and 

Beedham. 2004, Barr and Jones. 2011). In this study phthalazine was incubated with 

trout, rat and human liver cytosol and its metabolite was formed (Figure 40). The Km 

value determined for trout, rat and human AOX with phthalazine was 61.2 ± 1.41 µM, 

10.5 ± 0.55 µM and 9.80 ± 0.59 µM respectively (Table 39). The Km value for trout 

AOX activity was therefore six and two times more than that human and rat AOX 

respectively. The Vmax value of trout AOX with phthalazine found to be 2.02 ± 0.46 



194 

 

nmol/min/mg protein and was approximately 2 and 4 times lower than Wistar rat and 

human respectively (Table 39).study by Beedham et al., (1995) which incubated 

human, rabbit, guinea pig and baboon liver cytosol with phthalazine, determined the 

Km for human AOX  was41µM (Beedham et al., 1995). This result is similar with 

trout and was ~ 4-fold higher than that with rat and human in this study. Barr and 

Jones (2011 and 2013) incubated human liver cytosol with phthalazine, identified its 

metabolite formed 1-phthalazinone using HPLC and determined the Km of human 

AOX with phthalazine and it found it to be 8.0 ± 0.4 µM (Barr and Jones. 2011, Barr 

and Jones. 2013). This result is similar what was found with human cytosol in this 

study. On other hand Hartmann et al., (2012) measured the activity of phthalazine 

spectrophotometrically with pure human AOX using 2,6-dichlorophenol-indophenol 

(2,6-DCIP) as electron acceptor and it found the Km value of phthalazine with human 

AOX of 1.3 ± 0.3 µM; this result was ~ 10-fold lower than human in this study due to 

use of an artificial electron transport. On other hand Schumann et al., 2009 found the 

Km value of phthalazine with mouse AOX1 of 11.4 ± 4.0 µM (Schumann et al., 2009) 

and this agrees with the Km value of phthalazine with human in this study. In contrast 

Coelho et al., 2012 and Mahro et al., 2013 found the Km value of phthalazine with 

mouse AOX3 was 1.4 ± 0.2 µM (Coelho et al., 2012, Mahro et al., 2013); this result 

was ~ 10-fold lower than human and rat in this study.  

4.1.3.3. Cinchonine. 

Cinchonine is a cinchona alkaloid a widely used in the treatment of malaria (Hunter. 

1988). All four cinchona alkaloids, quinine, quinidine, cinchonine and cinchonidine, 

are oxidised by AOX to the 2'-quinolone derivatives in mammals (Palmer et al., 1969, 

Stubley et al., 1979, Beedham et al., 1992, Zhao and Ishizaki. 1997, Al -Tayib. 2009). 

When cinchonine was incubated with trout, rat and human cytosol a metabolite of 
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cinchonine was produced (Figures 41) suggesting AOX plays an role in the 

metabolism of cinchonine in these species. The Km value of cinchonine with rainbow 

trout AOX was ~ 4-fold higher than that of two mammalian AOXs (Table 39).The 

Vmax value of Wistar rat and human AOX with cinchonine was approximately 4 and 

8-fold greater than that of trout AOX (Table 39). A study by Fukiya et al., 2010, 

found the Km value of cinchonidine with rabbit of 124 ± 2.44 µM (Fukiya et al., 

2010) this was similar to that found with trout and was ~ 3-fold higher than that found 

with rat and human AOX in this study. 

4.1.3.4. Pyrazinamide. 

Pyrazinamide is a drug used to treat tuberculosis that is metabolised to 5-

hydroxypyrazinamide by the action of XOR and AOX in mammals (Moriwaki et al., 

1993, Mehmedagic et al., 1997, Mehmedagic et al., 2002, Kitamura et al., 2006). 

When pyrazinamide was incubated with trout in the presence of O2 as an electron 

acceptor there was no production of 5-hydroxypyrazinamide (Figure 42a), but when 

pyrazinamide was incubated with trout in the presence of NAD+, 5-

hydroxypyrazinamide was produced (Figures 42b). This was in contrast with that 

found when pyrazinamide was incubated with both rat and human liver cytosol as 5-

hydroxy pyrazinamide was formed both in presence of NAD+ and without of 

NAD+(Figures 44a, 44b, 45a and 45b). The Km value for the NAD+-dependent trout 

enzyme was approximately 2-fold higher than that two mammalian enzyme (Table 

40). With the addition of NAD+ to the assay the Vmax of the rat and human activities 

were increased about 4 and 6-fold respectively than when oxygen was the sole 

electron acceptor. This result was consistent with finding in previous in vitro study, 

which confirmed that both AOX and XOR can oxidise pyrazinamide to 5-

hydroxypyrazinamide in humans and rats (Yamamoto et al., 1987, Moriwaki et al., 
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1993). As in (table 38) the AOX substrate specificity is different from different 

substrate with the same species as well as with different species tested in this study. 

For more affinity of substrate to trout AOX found DMAC the best followed with 

vanillin and the lowest affinity found with N1-methylnicotinamide as it have high Km 

value and lower substrate efficiency (Ks) value. On other hand, the substrate 

specificity with two mammalian species rat and human AOX have high specificity 

with DMAC and vanillin with lowest Km value and highest substrate efficiency (Ks) 

value and lowest specificity with N1-methylnicotinamide as high Km value and lowest 

substrate efficiency (Ks) value. These different in specificity due to differentiation in 

amino acid sequence with different species as mentioned with (Pryde et al., 2010) it 

used modelling of different AOX substrates to expect its reaction with enzyme and 

measured by using X-ray crystallography to find the activity of different substrates 

with the AOX. 

4.1.4. Endogenous and exogenous purines and purine analogs as 
substrates for XOR 

4.1.4.1. Xanthine. 

Kinetic analyses of XOR enzymes revealed that the endogenous purine xanthine is the 

preferred substrate for XOR(Moriwaki et al., 1993). In this study using the standard 

spectrophotometric assay the Km value of rat and human for XO with xanthine using 

O2 as an electron acceptor was 13.2 ± 1.7 µM (mean ± SD) and 3.0 ± 0.65 µM (mean 

± SD), respectively, while the Km value of rat and human for XDH with xanthine 

using NAD+ as an electron acceptor was 5.5 ± 1.45 µM (mean ± SD) and 1.9 ± 0.2 

µM (mean ± SD), respectively. The NAD-dependant Vmax value for xanthine 

dehydrogenase with Wistar rat and human was approximately 5 and 7-fold greater 

than that O2-dependant respectively (Table 40). In contrast the trout XOR enzyme 
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only displayed activity in the presence of NAD+ as an electron acceptor as no activity 

with O2 was detected even after prolonged 120 minute incubations using a sensitive 

HPLC assay (Figure 48 b). The Km value of trout for XDH with xanthine using NAD+ 

as an electron acceptor was 2-3-fold higher than the mammalian enzymes (13.5 ± 1.9 

µM (mean ± SD) (Table 40).  This Km value is similar to that obtained by Kaminski 

and Jezewska (1985) who found that the Km of the carp (Cyprinus carpio) enzyme 

was 24.7 µM. The Km value obtained with the piscine enzyme using xanthine as a 

XDH substrate was about 2.5 and 6-fold higher than those obtained with rat and 

human respectively. The activity of XOR in the three species was inhibited by the 

XOR inhibitor oxipurinol (Figures 54, 56 and 58).These finding agree with Kaminski 

and Jezewska, (1985) who observed that XDH of carp (Cyprinus carpio) converted 

xanthine to uric acid only with NAD+ present and reported that allopurinol is a potent 

inhibitor of carp (Cyprinus carpio) XOR (Kamiński and Jeżewska. 1985). On other 

hand, Schumann et al., (2009) examined the activity of xanthine with mouse XDH and 

it measured its Km value and it found of 59 ± 10 µM (Schumann et al., 2009)this 

result was ~ 4-fold greater than trout and was~ 10-fold greater than rat and was ~ 25-

fold higher than human in this study. The Km value of mouse XDH was ~ 10-fold 

greater than rat which may be due to species variation in molybdo-flavoenzyme 

activity. Krenitsky et al. (1986) reported that the xanthine is an substrate of human 

liver XO that have low Km value of 7.0 με (Krenitsky et al., 1986). This result is 

similar to that with found with human in this study. 

The lack of detectable XO activity is similar to that found by other investigators with 

fish XOR (Krenitsky et al., 1974, Wurzinger and Hartenstein. 1974, Cleare et al., 

1976, Kamiński and Jeżewska. 1985). However in their assays a much less sensitive 

spectrophotometric assay was used which might not detect XO activity. The current 
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study which used a 120 minute incubation and a sensitive HPLC assay therefore 

unequivocally proves no XO activity exists with trout liver XOR. These results 

contrast with these by a number of investigators that have seemingly measured XO 

activity (Sastry and Rao. 1984, Basha and Rani. 2003, Pandey et al., 2003, Asagba et 

al., 2010, Hegazi et al., 2010, Hari and Neeraja. 2012). In these studies where XO has 

been apparently measured it important to note that either crude homogenates or crude 

post nuclear or mitochondrial supernatants were used and additionally gel filtered was 

not carried out to remove small molecules that may interfere with the assay. This 

would therefore result in erroneous measurement of XOR activities. As the study 

describe in this thesis and other studies have used cytosol that has been gel filtered do 

not detect any activity with O2 as an electron acceptor it is likely that studies that 

detect XO with crude non-gel filtered extracts gave false positive results. This is 

backed up by the fact that all studies that have used the correct procedure with non-

mammalian species have consistently not found measurable XO activity. These 

included fish, amphibians, reptiles and birds where the enzyme exists as a non-

convertible XDH form (Kamiński and Jeżewska. 1985, Frost et al., 1986, Zakrzewska 

and Jeźewska. 1989, Nishino et al., 2008). In addition XORs in non-mammalian 

species lack the cysteines required for the XO conversion. Protein sequence 

information from chicken and Drosophila XOR revealed that these NAD-dependant 

XDHs lack a cysteines (cysteine 535 and cysteine 992) necessary for this XO 

conversion (Nishino and Nishino. 1997, Nishino et al., 2008). Similarly fish XORs 

also lack these cysteines (D. J. Clarke personal communication). 
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4.1.4.2. 1-methylxanthine. 

Previous studies with bovine milk xanthine oxidase demonstrated it catalyses the 

oxidation of 1-methylxanthine, 7-methylxanthine and theophylline, to varying degrees 

with the 1-methylxanthine being the best substrate (Krenitsky et al., 1972). In this 

study the caffeine metabolite 1-methylxanthine was tested as a substrate for trout, rat 

and human XOR. Trout cytosolic XOR was also able to convert 1-methylxanthine to 

1-methyluric acid when NAD+ was present as an electron acceptor (Figure 49b), but 

no product was formed without NAD+ (Figure 49a). The Km value of trout for XDH 

with 1-methylxanthine using NAD+ as an electron acceptor was 17.6 ± 1.23µM (mean 

± SD) (Table 40). The Km value obtained with the piscine enzymes using 1-

methylxanthine as XDH substrate was about 2-fold higher than those obtained with 

human and rat respectively (Table40). The NAD-dependant Vmax value for 1-

methylxanthine dehydrogenase with Wistar rat and human was approximately 5 and 

8-fold greater respectively than the O2-dependant (Table 40). The Km value of rat and 

human XOR in my study with 1-methylxanthine using NAD+ as an electron acceptor 

were similar being 9.2 ± 0.62 µM (mean ± SD) and 8.6 ± 1.05  µM (mean ± SD), 

respectively (Table 40). 1-methylxanthine oxidation was inhibited in the presence of 

XOR inhibitor oxipurinol in all three species tested (Figures 55a, 57a and 59a). These 

results agree with Reinke et al. (1987) who found the XDH of rat can catalyse the 

oxidation of 1-methylxanthine to 1-methyluric acid (Reinke et al., 1987).  

4.1.4.3. Allopurinol 

The exogenous purine, allopurinol, is a prodrug that is metabolised to oxipurinol by 

the action of both AOX and XOR (Reiter et al., 1990, Ichida et al., 1998, Pacher et 

al., 2006, Yu et al., 2009).When allopurinol was incubated with trout liver cytosol 

with O2 as an electron acceptor no activity was detected indicating it was not a 
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substrate for AOX or XO in this species. Similar to the two xanthine substrates when 

NAD+ was included in the incubation allopurinol was biotransformed to oxipurinol 

indicating that trout XDH was capable of this biotransformation. In contrast when the 

two mammalian liver cytosols were incubated with allopurinol, oxipurinol was formed 

with O2 and NAD+ (Figures 67 and 68) indicating AOX/XO and XDHs involvement 

in this drug biotransformation as has been previously shown by others (Reiter et al., 

1990, Yamamoto et al., 1991, Moriwaki et al., 1993) . The Km value of allopurinol 

with trout cytosol in presence of NAD+ as an electron acceptor was 63.2 ± 0.98 µM 

with a Vmax value of 2.06 ± 0.75 nmol/min/mg protein, in contrast, the rat and human 

liver cytosol metabolise allopurinol as XO in presence of O2 as an electron acceptor 

and with Km value of 20.9 ± 0.76 µM and 16.7 ± 0.05 µM respectively, and as XDH 

in presence of NAD+ as an electron acceptor and with Km value of 15.30 ± 1.05 µM 

and 15.0 ± 0.25 µM respectively with rat and human. The Km value of trout XDH was 

four times more than that of rat and human XDH activity (Table 40). The NAD-

dependant Vmax value for allopurinol as XDH substrate with Wistar rat and human 

was approximately 3 and 5-fold respectively more than that O2-dependant Vmax 

value(Table 40).The Km results are in higher than that reported by Krenitsky et al. 

(1986) who reported that the allopurinol is an substrate of human liver XO with a low 

Km value of 1.7 με (Krenitsky et al., 1986). 

4.1.4.4. 6-mercaptopurine (6MP) 

In the present study, the anti-cancer drug 6-mercaptopurine (6-MP) was incubated 

with the cytosolic fraction of trout, rat and human. Both rat and human cytosolic 

fraction biotransformed 6-MP directly to 6-thiouric acid in the presence of NAD+ or 

without NAD+ (Figures 62a, 62b, 64a and 64b) and this activity was inhibited by the 

XOR inhibitor oxipurinol (Figures 63a and 65a) but was not inhibited by menadione 
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an AOX inhibitor (Figures 63b and 65b). This suggests XOR was the major enzyme 

responsible for 6-MP to 6-thiouric acid conversion in the two mammalian species. The 

NAD-dependant Km value for 6-MP as an XDH substrate with both mammalian are 

similar as in (Table 40). The NAD-dependant Vmax value for 6-MP with Wistar rat 

and human was approximately 3 and 6-fold greater than that O2-dependant Vmax 

value (Table 40).In contrast no metabolites were formed when 6-MP was incubated 

with trout liver cytosol with or without NAD+ (Figure 60) indicating this was not a 

substrate for trout AOX or XOR. 

In order to determine if the structurally related metabolite of 6-MP, 6-thioxanthine 

was also not a substrate for the trout enzyme; 6-thioxanthine was incubated with trout 

liver cytosol with and without NAD+. 6-thiouric acid was formed with both O2 and 

NAD+ as electron acceptors, with enhanced activity with NAD+ (Figure 66). This 

activity was inhibited by the XOR inhibitor oxipurinol but not by the AOX inhibitor 

menadione (Figure 67).The NAD-dependant Vmax value for 6-thioxanthine as an 

XOR substrate with trout was approximately 3-fold greater than that O2-dependant 

Vmax value (Table 40). Due to time constraints 6-thioxanthine was not used as a 

substrate for the mammalian species. The substrate specificity and species differences 

between 6-mercaptopurine and 6-thioxanthine in trout, rat and human XOR may be 

due to amino acid differences at the active site of the enzymes. 
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4.2. Determination of kinetic parameters for aldehyde oxidase and 
xanthine oxidoreductase inhibitors for trout, rat and human. 

In this study preliminary experiments were performed with three well documented 

inhibitors of AOX and XOR. In this study the AOX inhibitor benzamidine did not 

have any effect with trout liver cytosol at two pH 7.4 and 9.0 as seen in (Figures 71a 

and 71b), while with human and rat liver cytosol it resulted in 80-90% inhibition using 

100µM benzamidine. When the prototypical AOX inhibitor menadione was used the 

AOX activity was inhibited 80-92% in the three species tested using a 5 µM final 

concentration (Figure 70). The XOR inhibitor oxipurinol inhibited the two 

mammalian XORs 90-95% whereas the trout XOR was inhibited ~ 60% with 100µM 

final concentration of this inhibitor (Figure 72). 

In order to further understand the mode and kinetics of inhibition with trout AOX and 

XOR this was scrutinised with six different inhibitors and the mode of inhibition and 

Ki determined using Lineweaver-Burk plots. Menadione had a Ki of 0.17 ± 0.03µM 

and mode of inhibition non-competitive inhibition as seen in (Figures 73 and 74) and 

(Table 41). The inhibition effect of estradiol and 17α-ethinyl estradiol as inhibitors 

with trout AOX was uncompetitive with Ki values of 0.34 ± 0.05 µM and 0.44 ± 0.05 

µM respectively (Figures 75, 76, 77 and 78). The mode of inhibition and Ki value of 

chlorpromazine as AOX inhibitor with trout was also tested and a Ki value of 0.76 ± 

0.06 µM was obtained and mode of inhibition as competitive (Figures 79 and 80), the 

environmental pollutant NPAH phenanthridine was found to be competitive inhibitor 

of trout AOX with a Ki value of 0.77 ± 0.7 µM as in (Figures 81 and 82) which is 3-

fold higher than that found with bovine AOX (Table 5). When the XOR inhibitor 

oxipurinol was tested with trout XOR the mode of inhibition was non-competitive 
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inhibition with Ki value of 0.37 ± 0.06 µM as in (Figures 84 and 85) as similar that it 

found with bovine in introduction (Table 6). 

In conclusion all six different inhibitors tested displayed similar modes of inhibition in 

trout to that found in mammals (Table 4, 5 and 6). 
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4.3. Purification of AOX from rainbow trout and Wistar rat liver 
cytosol. 

Prior to the purification of AOX from rainbow trout and Wistar rat liver a literature 

survey was carried out to establish the best methodologies to use to purify AOX. 

AOX has been purified from many different species with different methodologies as 

summarised in the (Tables 21 and 22). Reviewing the literature on the subject reveals 

that the initial step of purification of AOX is generally subcellular fractionation to 

generate cytosol where the enzyme resides. A popular subsequent purification method 

used for AOX is heat precipitation as mammalian AOXs are thermotolerant. In some 

purification protocols buffers used to purify AOX contain dithiothreitol and cysteine 

to protect proteins containing sulfhydryl groups. (Rajagopalan and Handler. 1967, 

Felsted et al., 1973, Andres. 1976, MacGibbon et al., 1979, Yoshihara and Tatsumi. 

1985, Stell et al., 1989, Hughes et al., 1994, Calzei et al., 1995, Turner et al., 1995, 

McManaman et al., 1996, Yoshihara and Tatsumi. 1997, Sugihara et al., 1999, Terao 

et al., 2001, Maia and Mira. 2002, Kitamura et al., 2003, Kurosaki et al., 2004, Vila et 

al., 2004, Terao et al., 2006, Terao et al., 2009, Mahro et al., 2011). Prior to initiating 

experiments to purify AOX from the piscine species, in order to check procedures 

were operating successfully initially AOX was purified from Wistar rat liver cytosol 

using procedure 1 in materials and methods section (Figure 25). Heat treatment, Q-

sepharose anion exchange chromatography, affinity chromatography using 

benzamidine 6B Sepharose column and MonoQ anion exchange chromatography 

successfully gave a 227-fold purification and a 22 % yield. The fold purification was 

about 4-fold lower than Maia and Mira (2002) found. When AOX was purified from 

rainbow trout a different procedure was used, as the piscine enzyme was more heat 

liable than that rodent enzyme with 80% activity lost after a brief 15 minute 

incubation at the 55°C standard temperature used for mammalian AOX purification 
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(Tables 21 and 22 and Figure 88). The heat treatment step was therefore omitted from 

the procedure for purification of AOX from rainbow trout. In addition the affinity 

chromatography step was also not useful for purification of AOX from rainbow trout, 

due to the benzamidine not being an effective inhibitor of rainbow trout AOX (Figure 

71). The alternative procedure used to purify the AOX from rainbow trout liver started 

with the second step of the purification of AOX from rat liver, this was ammonium 

sulphate precipitation that successfully purified the piscine enzyme 3-fold. 

Subsequently a series of chromatography steps were carried out including Q-

sepharose anion exchange chromatography, gel filtration chromatography on Superose 

6 16/70 and the final step was MonoQ anion exchange chromatography. This resulted 

in a 210-fold purification and 12.9 % yield. The native molecular mass of rainbow 

trout AOX estimated using gel filtration was found to be similar to its mammalian, 

avian and insect counterparts being ~ 295 kDa (Table 22). SDS PAGE indicated the 

trout AOX had undergone extensive proteolysis as several low molecular mass 

polypeptides were apparent at less than the expected monomeric mass of the enzyme 

of 150 kDa. This result is in agreement with other researchers that purified AOX from 

another fish the Sea bream (Pagrus major) that also suggested proteolysis had 

occurred during purification (Kitamura et al., 2003). Despite this the procedure used 

in this laboratory had a much enhanced success compared with Kitamura et al. (2003) 

in that the partially purified AOX from Sea bream liver was only purified 33-fold with 

a 5.5 % yield. A possible solution to the problems of purification of piscine AOX 

might be to add a protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF). 

Another solution to characterising purified AOX in fish is to use a recombinant 

protein expression system in which piscine AOX cDNA is expressed in bacteria and 

subsequently purified using a simple protocol that would avoid the proteases that are 
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found in animal liver. Such a system has been used successfully to study mouse, 

monkey, rat and human AOX (Kane et al., 2006, Schumann et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



207 

 

4.4. Conclusions. 

This study aimed to determine whether a fish rainbow trout (Oncorhynchus mykiss) 

can biotransform AOX and XOR substrates like their mammalian counterparts. To 

date there has been no study of AOX in any Salmoniforme despite their commercial 

and scientific importance. 

Rainbow trout AOX and XOR activities were tested in liver, kidney and gill cytosol 

and it was found exclusively in the liver using HPLC and spectrophotometric assays. 

Hepatic cytosols of rainbow trout, human and rat were able to catalyse the oxidation 

of a range of MFE substrates to varying degrees. These included the exogenous 

aldehydes (DMAC and vanillin), endogenous vitamin substrates (all-trans retinal, 

pyridoxal and N1-methylnicotinamide), NPAH environmental pollutants 

(phenanthridine, phthalazine and cinchonine), and drugs (allopurinol and 

pyrazinamide). The exogenous purine and purine analogues xanthine, 1-

methylxanthine, 6-mercaptopurine, 6-thioxanthine were also biotransformed by XOR 

in all species tested (Table 1). The study also demonstrated that the XOR activity of 

rainbow trout was exclusively NAD+-dependant activity unlike that in the two 

mammalian species tested (Table 40). When Eadie-Hofstee plots were used to 

determine kinetic values of rainbow trout MFE activities with different substrates and 

compared with human and rat and it was found that the Km was higher and the Vmax 

lower in rainbow trout. This study therefore demonstrated that a piscine AOX has the 

ability to metabolise several NPAH environmental pollutants and is capable of the 

oxidative biotransformation of several endogenous vitamin substrates like its 

mammalian counterparts. With regards to the physiological role of NPAH 

biotransformation by AOX this is an important detoxication mechanism as several 

studies in vivo and ex vivo have demonstrated that NPAHs are harmful. AOX 
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substrates phenanthridine, phthalazine, isoquinoline and acridine together with several 

benzoacridine and dibenzoacridine have been shown to be cytotoxic in cultured cell 

lines such as H4IIE rat hepatoma and mouse embryonic carcinoma P19/A15 cell lines 

(Sovadinova et al., 2006, Beníšek et al., 2011). Bleeker et al (1999) also demonstrated 

that NPAH compounds acridine, benzo[c]acridine, benzo[a]acridine, quinoline, 

benzo[f]quinoline, benzo[h]quinoline and phenanthridine were toxic to Chironomus 

riparius (midge) (Bleeker et al., 1999). Benzoquinoline-diones have also been shown 

to be teratogenic to cricket embryos resulting in extra heads and legs (Walton et al., 

1983). Many of the harmful effects of NPAHs have also been documented in fish 

species. Baylock et al., (1985) found that acridine was toxic to fathead minnows 

(Pimephales promelas) (Blaylock et al., 1985),whilst acridine and quinoline have also 

been shown to cause embryotoxicity in rainbow trout (Salmo 

gairdneri=Oncorhynchus mykiss) (Black et al., 1983), largemouth bass (Micropterus 

salmoides) (Black et al., 1983) and zebrafish (Danio rerio) (Peddinghaus et al., 2012). 

As well as in vivo studies ex vivo work using the fish hepatoma PLHC-1 cell line 

(derived from Poeciliopsis lucida) has also shown that benzo[a]acridine and dibenz[a, 

h]acridine are cytotoxic (Jung et al., 2001). Very recently research utilising the 

rainbow trout liver cell line RTL-W1 has shown that acridine is genotoxic in 

micronucleus assays (Brinkmann et al., 2014). With regards compounds that interfere 

with AOX biotransformation several compounds were tested in these studies that have 

physiological importance. Endogenous steroids (estradiol) and drugs (menadione and 

chlorpromazine) and exogenous environmental pollutants (phenanthridine and 17α-

ethinyl estradiol) were inhibitors of the piscine AOX enzyme. These results may 

therefore have important physiological consequences for fish that live in an aquatic 

environment exposed to pollutants such as NPAHs, estrogens and drugs(Furlong and 
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Carpenter. 1982, Jobling et al., 1996, Schultz et al., 2001, Schultz et al., 2003, Vulliet 

and Cren-Olivé. 2011, Brulik et al., 2013)as it may have effects on vitamin A, B3 or 

B6 metabolism (Spinneker et al., 2007, Van der Sluijs et al., 2011). With regards 

compounds that effect XOR biotransformation the compounds tested were of less 

physiological importance to a fish, but the results reveal species similarities and 

differences exist. Whereas oxipurinol was a potent inhibitor of XOR in all species 

tested, in contrast to the mammalian AOXs benzamidine did not inhibit the piscine 

AOX. 

In order to further characterise trout AOX protein purification was carried out. In 

contrast to mammalian AOX, the piscine enzyme was not thermotolerant at 55°C nor 

was it inhibited by benzamidine, thus heat treatment and affinity chromatography 

could not be used as a purification steps. Trout AOX was purified 210-fold using 

ammonium sulphate fractionation, together with ion exchange and gel filtration 

chromatography. The native molecular mass of the piscine AOX was 295 kDa, which 

is similar to mammalian AOXs. 

In conclusion this study yields new insight into groups of anthropogenic 

environmental pollutants, drugs and vitamins that are substrates and inhibitors of 

piscine AOX that is an ancestral vertebrate AOX. 

 

 

 

 

 

 



210 

 

4.5. Recommendations for future work. 

This study could be expanded to analyse a wider range of xenobiotics including drugs 

that are potential piscine MFE substrates. A particular focus could be NPAHs which 

are well documented aquatic environmental pollutants (Blumer et al., 1977, Balch et 

al., 1995, Osborne et al., 1997, de Voogt and Laane. 2009) that are cytotoxic, 

embryotoxic, teratogenic, genotoxic and carcinogenic  (Southworth et al., 1979, Balch 

et al., 1995, Jung et al., 2001, Barron et al., 2004, Peddinghaus et al., 2012, 

Brinkmann et al., 2014). 

Another set of compounds that could be tested are MFEs reductase substrates such as 

acetophenone oxime, salicylaldoxime, benzamidoxime, aromatic and heterocyclic 

hydroxamic acids, fenthion sulfoxide, sulindac sulfoxide and zonisamide (Table 2) 

some of which are found in aquatic environment. 

Another area that could be researched is the induction of MFEs by NPAHs. 

Although cytochrome P450 have been well documented to be induced by PAHs 

including NPAHs in mammals (Sovadinova et al., 2006, Beníšek et al., 2011) the 

effect of such compounds on MFEs have received scant attention. There have been the 

only two studies with two environmental polycyclic aromatic hydrocarbons (PAHs) 

demonstrating that such compounds can induce MFEs. Johnson et al., (1984) found 

that oral administration of the NPAH phthalazine (50mg/kg/day) to female rabbits 

caused an 2 to 3-fold increase in the activity of the hepatic AOX and XOR, whereas 

there was no effect on microsomal cytochrome P-450 activity (Johnson et al., 1984). 

Sugihara et al., (2001) demonstrated that 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin 

(TCDD) induced hepatic XOR and AOX in liver of mice about 3-fold and 1.5-fold 

respectively (Sugihara et al., 2001). This suggests that induction of MFEs in fish 
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might be a useful monitor for NPAH pollution to complement the use of CYP1A 

induction in environmental monitoring (Stagg et al., 2000, Basu et al., 2001, Tom et 

al., 2001). In order to determine the extent of NPAHs induction of MFEs in fish, 

investigations could be conducted by treating fish in laboratory conditions with a 

range of NPAHs to determine if MFE induction occurs. MFEs could also be measured 

in fish from polluted environments to determine if there is a correlation between 

NPAHs levels and MFEs activity. 
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6.0. Appendices.  

6.1. Appendix 1. 
Table 1:Fish species order and family. 

Common name Scientific name Order Family Habitat 
African Catfish Clarias Gariepinus Siluriformes   Clariidae F/P 

Blue Fish Pomatomus Saltatrix Perciformes  Pomatomidae S/D 
Bluegill Lepomis Macrochirus Perciformes  Centrarchidae F/D 

Brill Scophthalmus Rhombus Pleuronectiformes  Scophthalmidae S/D 
Black Sole Solea Solea Pleuronectiformes  Soleidae S/D 

Brown Trout Salmo Trutta Salmoniformes  Salmonidae F/P 

Carp Cyprium Carpio Cypriniformes  Cyprinidae F/P 
Cutlips Minnow Exoglossum Maxilingua Cypriniformes  Cyprinidae F/P 
Common Carp Cyprinus Carpio Communis Cypriniformes  Cyprinidae F/D 

Channel Catfish Icatalurus Punctatus Siluriformes  Ictaluridae F/P 
Cod Gadus Morhua Gadiformes  Gadidae S/D 
Dab Limanda Limanda Pleuronectiformes  Pleuronectidae S/D 

Electric Catfish Malapterurus Electricus Siluriformes Malapteruridae F/D 
Fathead Minnow Pimephales Promelas Cypriniformes  Cyprinidae F/P 
Florida Pompano Trachinotus Carolinus Perciformes  Carangidae S/P 

Goldfish Carassius Auratus Cypriniformes  Cyprinidae F/P 
Great Snakehead Ophiocephalus Muralius Perciformes Channidae F/P 

Gurnard Chelidonichthys Cuculus Scorpaeniformes  Triglidae S/D 
Herring Clupea Harengus Clupeiformes Clupeidae S/P 
Haddock Melanogrammus Aeglefinus Gadiformes  Gadidae S/D 

John Dory Zeus Faber Zeiformes  Zeidae S/P 
Largemouth Bass Micropterus Salmoides Perciformes  Centrarchidae F/P 

Lesser Spotted Dogfish Scyliorhinus Canicula Carcharhiniformes  Scyliorhinidae S/P 
Lemon Sole Microstomus Kitt Pleuronectiformes  Pleuronectidae S/D 

Margined Madtom Noturus Insignis Siluriformes  Ictaluridae F/P 
Mozambique Tilapia Oreochromis Mossambicus Perciformes Cichlidae F/P 

Mackerel Scomber Scombrus Perciformes  Scombridoe S/P 
Megrim Lepidorhombus Whiffagonis Pleuronectiformes  Scophthalmidae S/D 

Northern Hog Sucker Hypentelium Nigricans Cypriniformes  Catostomidae F/D 
Norfolk Spot Leiostomus Xanthurus Perciformes  Sciaenidae S/P 

Northern Pike Esox Lucius Esociformes  Esocidae F/D 
Nile Tilapia Juveniles Oreochromis Niloticus Perciformes  Cichlidae F/P 

Orange-Fin Labeo Labeo Calbasu Cypriniformes  Cyprinidae F/P 
Pumpkinseed Sunfish Lepomis Gibbosus Perciformes  Centrarchidae F/P 

Perch Perca Fluviatilis Perciformes  Percidae F/D 
Pike Esox Lucius Esociformes  Esocidae S/D 

Plaice Pleuronectes Platessa Pleuronectiformes  Pleuronectidae S/D 
Ray Dipturus Canutus Rajiformes  Rajidae S/P 

Rankin Cod Epinephelus Multinotatus Perciformes Serranidae S/D 
Red Emperor Lutjanus Sebae Perciformes Lutjanidae S/D 

Smooth Dogfish Mustelus Canis Carcharhiniformes  Triakidae S/P 
Spangled Emperor Lethrinus Nebulosus Perciformes Lethrinidae S/P 
Stoneroller Minnow Campostoma Anomalous Cypriniformes  Cyprinidae F/P 
Spanish Mackerel Scomberonorus Maculatus Perciformes  Scombridae S/D 

Sea Mullet Menticirrhus Saxatilis Perciformes  Sciaenidae S/D 
Summer Flounder Paralichthyes Dentatus Pleuronectiformes  Paralichthyidae S/D 

White Sucker Catostamus Commersoni Cypriniformes  Catostomidae F/D 
Walleye Stizostedion Vitreum Perciformes  Percidae F/P 
Whiting Merlangius Merlangus Gadiformes  Gadidae S/P 

White Pollack Pollachius Virene Gadiformes  Gadidae S/P&D 
White Sole Solea Solea Pleuronectiformes  Soleidae S/D 

White Trout Salmo Trutta Salmoniformes  Salmonidae S/D 
Yellow Perch Perca Flavescens Perciformes  Cichlidae F/P 
Zebra Fish Danio Rerio Cypriniformes Cyprinids F/P 

Abbreviations: F-freshwater fish, S- saltwater fish, P- pelagic, D-demersal. 
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6.2. Appendix 2. 
 

 
Figure 1: Diagram showing pump flow rate (red line) and pump gradient (blue line) change 
for allopurinol and oxipurinol. 

 

 
 
Figure 2:Diagram showing pump flow rate (red line) and pump gradient (blue line) change 
for purines, phthalazine and pyrazinamide. 
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Figure 3:Diagram showing pump flow rate (red line) and pump gradient (blue line) 
change for N1-methylnicotinamide. 

 

 
 
Figure 4:Diagram showing pump flow rate (red line) and pump gradient (blue line) 
change for phenanthridine and 6(5H)-phenanthridone. 
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6.3. Appendix 3. 
 

Table 1:% RSD of retention time of three replicates was the same day of calibration standard 
for intra- day precision. 
 
The % RSD for retention time between injections is in the range of 0.09-3.31. 
 

%RSD for retention time (n=3) 

Analyte 0.01mM 0.02mM 0.03mM 0.05mM 0.1mM 

Allopurinol 0.61 1.23 2.26 0.22 1.28 

Cinchonine 1.66 1.68 0.15 2.11 0.74 

Hypoxanthine 1.11 1.36 0.39 0.78 0.75 

6-Mercaptopurine 2.51 0.68 0.39 1.11 0.17 

Methotrexate 0.97 1.01 1.12 1.19 0.27 

1-Methylxanthine 1.61 1.25 1.86 1.02 0.61 

1-Methyluric acid 0.72 0.98 1.02 1.23 0.88 

N1-methylnicotinamide 1.12 2.13 0.52 0.27 1.66 

Oxipurinol 0.87 2.05 1.83 0.59 1.18 

Phenanthridine 2.25 3.17 1.13 0.22 0.78 

Phenanthridone 2.41 2.14 2.17 1.21 0.26 

Phthalazine 0.87 2.21 3.21 1.34 1.19 

1-Pthalazone 2.11 1.06 1.27 0.31 0.25 

Pyridoxal 1.41 0.18 0.24 0.89 1.86 

Pyridoxic acid 2.14 0.77 0.26 1.13 0.66 

Pyrazinamide 1.12 1.51 0.57 1.42 1.29 

6-Thioxanthine 1.51 2.22 0.35 0.16 2.32 

Uric acid 1.22 1.53 0.52 1.37 2.26 

Vanillin 1.02 2.23 0.42 0.25 1.16 

Vanillic acid 0.77 1.61 0.89 0.35 0.59 

Xanthine 1.21 0.98 0.19 0.11 1.79 
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Table 2:% Accuracy calculated for intra-day analysis of compounds used in HPLC analysis in 
this study. 
 

Mean ± SD of accuracy (%) (n=3) 
 Nominal concentration 

Analyte 0.01 mM 0.02 mM 0.03 mM 0.05 mM 0.1 mM 

Allopurinol 98.2 ± 1.2 99.2 ± 1.1 97.1 ± 0.7 98.5 ± 1.3 98.5 ± 1.7 

Cinchonine 97.5 ± 1.5 98.3 ± 0.8 97.8 ± 1.4 105.6 ± 0.2 96.9 ± 1.2 

Hypoxanthine 99.6 ± 1.1 99.5 ± 1.7 99.7 ± 2.1 99.5 ± 1.1 99.6 ± 1.9 

6-Mercaptopurine 98.2 ± 0.3 97.2 ± 1.6 95.5 ± 1.7 98.8 ± 1.1 99.2 ± 1.7 

Methotrexate 99.3 ± 1.3 97.1 ± 1.7 98.9 ± 0.5 96.1 ± 2.4 98.9 ± 1.8 

1-Methylxanthine 98.5 ± 2.5 100.3 ± 0.9 99.8 ± 2.3 98.1 ± 0.7 99.9 ± 0.2 

1-Methyluric acid 95.1 ± 1.1 97.3 ± 0.4 96.2 ± 0.9 99.9 ± 0.2 96.7 ± 0.7 

N1-methylnicotinamide 95.1 ± 0.7 98.5 ± 0.4 99.9 ± 0.4 100.3 ± 0.7 96.8 ± 1.4 

Oxipurinol 99.2 ± 2.1 99.1 ± 1.1 100.4 ± 2.2 96.6 ± 1.9 98.8 ± 2.1 

Phenanthridine 100.6 ± 1.9 99.8 ± 1.4 99.2 ± 0.3 99.1 ± 1.3 100.8 ± 1.1 

Phenanthridone 99.5 ± 0.7 97.5 ± 0.2 99.5 ± 1.7 99.5 ± 1.1 99.5 ± 0.8 

Phthalazine 99.1 ± 1.3 98.7 ± 2.2 95.2 ± 1.7 98.9 ± 1.5 99.8 ± 1.5 

1-pthalazone 98.6 ± 1.5 100.4 ± 0.2 98.7 ± 1.8 99.5 ± 2.1 95.6 ± 2.3 

Pyridoxal 98.2 ± 0.7 97.9 ± 1.6 95.9 ± 2.3 99.9 ± 0.6 100.2 ± 1.7 

Pyridoxic acid 98.4 ± 1.5 95.4 ± 0.7 99.1 ± 2.4 98.2 ± 1.8 99.2 ± 1.3 

Pyrazinamide 100.5 ± 0.4 97.3 ± 1.3 99.9 ± 1.1 99.3 ± 1.2 98.3 ± 2.2 

6-Thioxanthine 100.2 ± 0.2 98.4 ± 2.3 98.5 ± 1.1 99.8 ± 1.9 98.2 ± 1.3 

Uric acid 95.6 ± 1.7 99.7 ± 1.1 99.7 ± 1.2 98.3. ± 1.9 97.2 ± 0.7 

Vanillin 97.1 ± 1.2 99.1 ± 1.1 98.8 ± 1.1 95.2 ± 1.7 98.5 ± 0.7 

Vanillic acid 97.1 ± 1.7 98.5 ± 1.8 100.5 ± 0.4 97.5 ± 1.3 99.1 ± 0.9 

Xanthine 97.4 ± 1.2 99.6 ± 1.3 100.2 ± 0.1 99.8 ± 0.7 99.6 ± 2.1 
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Mean area of three injections in the same day of calibration standards (n=3) 

Analyte 
0.01 

(mM) 
 

0.02 
(mM) 

 

0.03 
(mM) 

 

0.05 
(mM) 

 

0.1 
(mM) 

 

Slope 
 

Intercept 
 RSQ LOD (nmol) LOQ (nmol) 

Allopurinol 14726 29588 49432 96833 188236 1926912 -4388 1.00 3 80 

Cinchonine 99785 151658 197633 390061 889728 8843599 -21381 0.990 0.2 7 

Hypoxanthine 39196 64887 109794 187645 378529 1902 - 3135 0.998 5.4 65 

6-Mercaptopurine 39438 79514 139407 288320 591803 6091107 -23441 0.994 4 70 

Methotrexate 128570 171092 276739 493204 998593 9945386 -3388 0.997 0.6 0.9 

1-Methylxanthine 134653 265966 408825 648214 1250231 6228 15347 0.994 4.3 52 

1-Methyluric acid 307169 539389 835522 1431411 2952992 14769 - 22718 0.998 1.7 57 

N1-methylnicotinamide 44454 91846 169578 308302 661872 6764775 -24091 0.996 1 50 

Oxipurinol 23394 47904 76786 129660 233588 2714 2357371 1.00 1 50 

Phenanthridine 571679 992255 1180187 2130945 4222854 41430984 66235 0.997 2 80 

Phenanthridone 132015 260381 397202 689057 1322123 13294923 1474 0.999 2 70 

Phthalazine 253827 565518 887197 1506345 2906879 29355401 -7478 0.999 2 70 

1-pthalazone 157996 290877 404934 712217 1524442 15199887 -16689 0.998 2 60 

Pyridoxal 28160 45701 77618 112825 202247 1944019 7967 0.992 2 70 

Pyridoxic acid 31017 50616 87722 138318 230686 2304745 9060 0.987 2 90 

Pyrazinamide 70181 148691 217140 331506 640131 6337483 12796 0.998 4 80 

6-Thioxanthine 51175 92429 134115 259511 485648 4904335 -1172 0.997 2 70 

Uric acid 482658 1095004 1494725 2563976 4955041 24777 30879 0.999 3.5 90 

Vanillin 54118 146188 211879 378212 734053 7447551 -6589 0.999 2 60 

Vanillic acid 38737 99515 181284 281098 553041 5617796 -4343 0.997 0.1 20 

Xanthine 123857 253547 406308 642818 1253249 6273 7542 0.995 4.6 94 

Table 3:  Regression calculation based on mean area of three replicates in the same day of calibration standards against the actual concentration. 
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Figure 1:Standard curves for substrates and products used in this study 
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Figure 2:Standard curves for substrates and products used in this study 
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Figure 3:Standard curves for substrates and products used in this study 

y = 5E+06x - 6704.3 

R² = 0.9999 

0

1000000

2000000

3000000

4000000

5000000

6000000

0 0.5 1 1.5 2 2.5

p
e

a
k

 a
re

a
 

nmol/l of phenanthridine 

y = 1E+07x + 139700 

R² = 0.9993 

0

500000

1000000

1500000

2000000

2500000

0 0.5 1 1.5 2 2.5

p
e

a
k

 a
re

a
 

nmol/l of phenanthridinone 

y = 3E+06x - 3020.6 

R² = 0.9991 

0

50000

100000

150000

200000

250000

300000

350000

0 0.5 1 1.5 2 2.5

p
e

a
k

 a
re

a
 

nmol/l of phthalzine 

y = 5E+06x - 6571.8 

R² = 0.9992 

0

100000

200000

300000

400000

500000

600000

700000

0 0.5 1 1.5 2 2.5
p

e
a

k
 a

re
a

 
nmol/l of phthalazinone 



246 

 

 

 

Figure 4:Standard curves for substrates and products used in this study 
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Figure 5: Standard curves for substrates and products used in this study 
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Figure 6: Eadie- Hofstee plot of AOX and XDH activities in trout.(a) AOX-catalyzed oxidation of DMAC. (b) AOX-catalyzed oxidation of vanillin. (c)  XDH-
catalyzed oxidation of xanthine. (d) XDH-catalyzed oxidation of 1-methylxanthine.The substrates concentrations were 25-100 µM of AOX and XDH substrates. The typical 
results are from three independent experiments. 
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Figure 7: Eadie- Hofstee plot of AOX activities in rat.(a) AOX-catalyzed oxidationof DMAC. (b) AOX-catalyzed oxidation of vanillin. (c)  AOX-catalyzed oxidation of 
phenanthridine. The substrates concentrations were 25-100 µM of AOX substrates. The typical results are from three independent experiments. 
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Figure 8: Eadie- Hofstee plot of XOR activities in rat. (a) XO-catalyzed oxidation of xanthine. (b) XDH-catalyzed oxidation of xanthine. (c)  XDH-catalyzed oxidation 

of 1-methylxanthine. The substrates concentrations were 25-100 µM of XOR substrates. The typical results are from three independent experiments. 
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Figure 9: Eadie- Hofstee plot of AOX activities in human.  (a) AOX-catalyzed oxidation of DMAC. (b) AOX-catalyzed oxidation of vanillin. (c)  AOX-catalyzed 
oxidation of phenanthridine. The substrates concentrations were 25-100 µM of AOX substrates. The typical results are from three independent experiments. 
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Figure 10: Eadie- Hofstee plot of XOR activities in human.  (a) XO-catalyzed oxidation of xanthine. (b) XDH-catalyzed oxidation of xanthine. (c)  XDH-catalyzed 
oxidation of 1-methylxanthine. The substrates concentrations were 25-100 µM of XOR substrates. The typical results are from three independent experiments. 
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Figure 11: Eadie- Hofstee plot of AOX activities in rainbow trout. (a) AOX-catalyzed oxidation of vanillin. (b) AOX-catalyzed oxidation of pyridoxal. (c)  AOX-catalyzed 
oxidation of all-trans retinal. (d)AOX-catalyzed oxidation of  N1-methylnicotinamide.  The substrates concentrations were 25-100 µM of AOX substrates. The typical results 
are from three independent experiments. 
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Figure 12: Eadie- Hofstee plot of AOX activities in rainbow trout. (a) AOX-catalyzed oxidation of phenanthridine. (b) AOX-catalyzed oxidation of phthalazine. (c)  
AOX-catalyzed oxidation of cinchonine. The substrates concentrations were 25-100 µM of AOX substrates. The typical results are from three independent experiments. 
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Figure 13: Eadie- Hofstee plot of XOR activities in rainbow trout. (a) XDH-catalyzed oxidation of xanthine. (b) XDH-catalyzed oxidation of 1-methylxanthine. (c) XDH-
catalyzed oxidation of allopurinol. (d) XO-catalyzed oxidation of 6-thioxanthine. The substrates concentrations were 25-100 µM of XOR substrates. The typical results are 
from three independent experiments. 

y = -0.0158x + 0.7704 

R² = 0.9973 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

sp
e

ci
fi

c 
a

ct
iv

it
y

 n
m

o
l/

m
in

/m
g

 

p
ro

te
in

 

V/S (ml/min/mg protein) 

(a) 

y = -0.0176x + 0.5174 

R² = 0.9961 

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30

sp
e

ci
fi

c 
a

ct
iv

it
y

 n
m

o
l/

m
in

/m
g

 

p
ro

te
in

 

V/S (ml/min/mg protein) 

(b) 

y = -0.0632x + 0.5603 

R² = 0.9994 

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35

sp
e

ci
fi

c 
a

ct
iv

it
y

 n
m

o
l/

m
in

/m
g

 

p
ro

te
in

 

V/S (ml/min/mg protein) 

(c) 

y = -0.0399x + 1.6758 

R² = 0.9951 

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
sp

e
ci

fi
c 

a
ct

iv
it

y
 n

m
o

l/
m

in
/m

g
 

p
ro

te
in

 
V/S (ml/min/mg protein) 

(d) 



256 

 

 

 

 
 

 

 

Figure 14: Eadie- Hofstee plot of XOR activities in rainbow trout. (a) XDH-catalyzed oxidation 
of 6-thioxanthine. (b) XDH-catalyzed oxidation of pyrazinamide. The substrates concentrations were 
25-100 µM of XDH substrates. The typical results are from three independent experiments. 
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Figure 15: Eadie- Hofstee plot of AOX activities in rat. (a) AOX-catalyzed oxidation of vanillin. (b) AOX-catalyzed oxidation of pyridoxal. (c)  AOX-catalyzed oxidation 
of ATR. (c) AOX-catalyzed oxidation of NMN. The substrates concentrations were 25-100 µM of AOX substrates.  
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Figure 16: Eadie- Hofstee plot of AOX activities in rat. (a) AOX-catalyzed oxidation of phenanthridine. (b) AOX-catalyzed oxidation of phthalazine. (c)  AOX-
catalyzed oxidation of cinchonine. (d) AOX-catalyzed oxidation of pyrazinamide. The substrates concentrations were 25-100 µM of AOX substrates.  
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Figure 17: Eadie- Hofstee plot of XOR activities in rat. (a) XO-catalyzed oxidation of xanthine. (b) XDH-catalyzed oxidation of xanthine. (c)  XO-catalyzed oxidation of 1-
MX. (d) XDH-catalyzed oxidation of 1-MX. The substrates concentrations were 25-100 µM of AOX substrates. 
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Figure 18: Eadie- Hofstee plot of XOR activities in rat. (a) XO-catalyzed oxidation of 6-MP. (b) XDH-catalyzed oxidation of 6-MP. (c)  XO-catalyzed oxidation of 
allopurinol. (d) XDH-catalyzed oxidation of allopurinol. The substrates concentrations were 25-100 µM of AOX substrates. 
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Figure 19: Eadie- Hofstee plot of XDH activities in rat. XDH-catalyzed oxidation of 
pyrazinamide. The substrates concentrations were 25-100 µM of XDH substrates. The typical results 
are from three independent experiments. 
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Figure 20: Eadie- Hofstee plot of AOX activities in human. (a) AOX-catalyzed oxidation of vanillin. (b) AOX-catalyzed oxidation of pyridoxal. (c)  AOX-catalyzed 
oxidation of ATR. (d) AOX-catalyzed oxidation of NMN. The substrates concentrations were 25-100 µM of AOX substrates.  
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Figure 21: Eadie- Hofstee plot of AOX activities in human. (a) AOX-catalyzed oxidation of phenanthridine. (b) AOX-catalyzed oxidation of phthalazine. (c)  AOX-
catalyzed oxidation of cinchonine. (d) AOX-catalyzed oxidation of pyrazinamide. The substrates concentrations were 25-100 µM of AOX substrates.  
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Figure 22: Eadie- Hofstee plot of XOR activities in human. (a) XO-catalyzed oxidation of xanthine. (b) XDH-catalyzed oxidation of xanthine. (c)  XO-catalyzed 
oxidation of 1-MX. (d) XDH-catalyzed oxidation of 1-MX. The substrates concentrations were 25-100 µM of AOX substrates.  
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Figure 23: Eadie- Hofstee plot of XOR activities in rat. (a) XO-catalyzed oxidation of 6-MP. (b) XDH-catalyzed oxidation of 6-MP. (c)  XO-catalyzed oxidation of 
allopurinol. (d) XDH-catalyzed oxidation of allopurinol. The substrates concentrations were 25-100 µM of AOX substrates. 

y = -0.0257x + 1.7325 

R² = 0.9976 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30

sp
e

ci
fi

c 
a

ct
iv

it
y

 n
m

o
l/

m
in

/m
g

 

p
ro

te
in

 

V/S (ml/min/mg protein) 

(a) 

y = -0.0208x + 6.6262 

R² = 0.993 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30

sp
e

ci
fi

c 
a

ct
iv

it
y

 n
m

o
l/

m
in

/m
g

 

p
ro

te
in

 

V/S (ml/min/mg protein) 

(b) 

y = -0.0167x + 1.733 

R² = 0.9947 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35

sp
e

ci
fi

c 
a

ct
iv

it
y

 n
m

o
l/

m
in

/m
g

 

p
ro

te
in

 

V/S (ml/min/mg protein) 

(c) 

y = -0.015x + 5.5225 

R² = 0.9985 

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35
sp

e
ci

fi
c 

a
ct

iv
it

y
 n

m
o

l/
m

in
/m

g
 

p
ro

te
in

 
V/S (ml/min/mg protein) 

(d) 



266 

 

 
 

 
 
 
Figure 24: Eadie- Hofstee plot of XOR activities in human. XDH-catalyzed oxidation of 
pyrazinamide. The substrates concentrations were 25-100 µM of AOX substrates. The typical 
results are from three independent experiments. 
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Figure 25: Eadie- Hofstee plot of purified AOX activities in rainbow trout. AOX-catalyzed oxidation of (a) vanillin, (b) pyridoxal and (c) all-trans retinal. 
The substrates concentrations were 25-100 µM of AOX substrates. The typical results are from three independent experiments. 
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