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Abstract 

 
Solid dispersions are commonly used to overcome bioavailability issues of poorly water 

soluble drugs. Various preparation methods along with carrier systems have been used to 

develop solid dispersions. However, this study investigates the application of microwave 

heating methods in formulation development alongside associated analytical investigations. 

Formulations of poorly soluble drugs, namely, fenofibrate, gemfibrozil, ibuprofen, ibuprofen 

(+) S and phenylbutazone were prepared using a microwave technique and compared with 

standard formulation techniques. Mesoporous silicas and polyethylene glycol were used as 

excipients. Then in vitro dissolution analysis was carried out for the performance evaluation of 

the resultant formulations. It was found that effective products were produced as a result of 

microwave processing compared with the traditional techniques. Analytical techniques such as 

differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron 

microscopy (SEM) and Fourier transform infrared spectroscopy ((FTIR) were employed to 

determine the solid state properties, i.e. thermal stability, crystalline state, physical appearance 

and chemical stability of developed formulations. The overall findings indicate that successful 

formulation can be achieved using microwave heating. 

Isothermal titration calorimetry (ITC) was used to probe the interactions of model 

drugs, namely, caffeine, diprophylline, etofylline, paracetamol and theophylline with 

excipients such as sodium dodecyl sulphate (SDS), sodium deoxycholate (NaDC) and PEG. 

Thermodynamic data suggests the successful use of ITC to investigate drug-excipient 

interactions. In summary, the potential of microwave heating in formulation development and 

ITC to characterise drug-excipient interactions was thoroughly investigated and both found as 

potential alternatives to more traditional techniques.  
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Chapter 1: Introduction 
 

1.1. Introduction 
 

  Advances in combinatorial chemistry and high-throughput screening have facilitated the 

development of highly potent and versatile new chemical entities. In spite of having such 

incredible properties, very few of these compounds reach the market because of their poor 

aqueous solubility and associated bioavailability. Drugs need to be fully dissolved in the 

gastrointestinal (GI) tract to be absorbed into general circulation to produce a pharmacological 

response. Various approaches have been used to circumvent such issues utilising excipients 

that can enhance the solubility of an active pharmaceutical ingredient (API). There are several 

proposed mechanisms by which excipients can increase the dissolution rate of insoluble APIs. 

For example, the solubilising effect of surfactants, inclusion complexes with cyclodextrins, 

API-excipient binding through covalent or hydrogen-bonding and adsorption of the API onto 

excipient. However, a judicious choice of excipients could also possibly decrease the adverse 

effects associated with the drug delivery system. The choice of a suitable excipient is a 

combination of its physicochemical properties and interaction with the drug. Therefore, 

designing an optimised formulation requires a thorough investigation into API-excipient 

interactions.  

 

1.2. Formulation development and drug dissolution 
 

Drugs have traditionally been administered in several forms, namely, ingestion, 

inhalation, injection, infusion, and topical application (Fasinu et al., 2011). Oral delivery is the 

most preferred route of drug administration, accounting for more than a 50 % share of the 

global drug delivery market. The convenience of drug administration and patient compliance 
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make it the most frequent and suitable drug delivery route (Desai et al., 2012). However, this 

route of delivery is not devoid of challenges which can result in poor bioavailability (Alam et 

al., 2013, Henchoz et al., 2009). Investigating a potential drug candidate is a complex, time-

consuming and costly procedure which is divided into two phases, namely drug discovery and 

drug development as depicted in Figure 1.1. An inappropriate pharmacokinetic profile has been 

recognised as one of the key factors leading to the rejection of chemical entities during drug 

development. Therefore, rigorous studies are conducted to select a pharmaceutical compound 

that has significant potency and a suitable pharmacokinetic profile (Henchoz et al., 2009, Alam 

et al., 2013, Kerns, 2001). 

 

Figure 1.1: The drug research process: adapted from (Henchoz et al., 2009). 

 

Among physicochemical properties, solubility is a parameter of prime importance in drug 

development as poor aqueous solubility limits the efficacy of compounds. To achieve optimal 

success with oral administration, drug molecules need to dissolve and permeate through the 

gastrointestinal tract (Alam et al., 2013). The extent of oral bioavailability is also affected by 

physiological factors, including, luminal degradation (Granero and Amidon, 2006), ionisation 

of the compounds (Kostewicz et al., 2004), intestinal mucosal metabolism (Lown et al., 1997, 
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Choi et al., 2011, S. Darwich et al., 2010), hepatic metabolism (Zhu et al., 2010), a narrow 

absorption window and active influx/efflux transporters (Murphy et al., 2012, Lown et al., 

1997, Choi et al., 2011). In general, it can be stated that the rate of absorption, and therefore 

extent of clinical effect, are determined by the dissolution of the drug and subsequent transport 

into general blood circulation (Alam et al., 2013) as illustrated in Figure 1.2. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

The pharmacokinetic profile of an orally administered drug is based on interacting 

parameters associated with absorption, distribution, metabolism, and excretion (ADME). The 

absorption component of this cascade can be assessed in the context of Fick’s First law (Eq. 

1.1), where the flux (J) of a drug through the GI wall depends on the permeability coefficient 

Figure 1.2: The fate of a drug administered via the oral route depicting the various biochemical 
and enzymatic factors responsible for poor bioavailability (Fasinu et al., 2011). 
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(P) of the GI barrier for the drug and the drug concentration (C) in the gastrointestinal lumen 

(assuming sink conditions) (Brouwers et al., 2009): 

PCJ                                                                                                                              (Eq. 1.1) 

 

Combining these two parameters, namely, solubility and permeability explains the basis 

of the biopharmaceutical classification system (BCS) (Amidon et al., 1995). The BCS is an 

important tool, providing a better understanding of physicochemical and biopharmaceutical 

properties of drugs and is used in decision making when developing formulations (Kawabata 

et al., 2011, Amidon et al., 1995). According to the BCS, four different drug groups are 

specified (Figure 1.3). 

 

 

Figure 1.3: The Biopharmaceutical Classification system (BCS) (Amidon et al., 1995). 
 

Definitions for the BCS are (Langham, 2011, Alam et al., 2013); 

1. A drug is classed as poorly soluble if the highest dose strength of the immediate release 

product is not soluble in 250 mL or less of aqueous media over the pH range of 1 to 

7.5. 
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2. A drug is classed as having low intestinal permeability when the extent of absorption 

in humans is less than 90 % of the administered dose based on a mass - balance 

determination or in comparison with an intravenous dose. 

3. A drug is classed as rapidly dissolving if  ≥ 85 % of the immediate release dissolves 

within 30 minutes with either USP dissolution apparatus I at 100 rpm or USP 

dissolution apparatus II at 50 rpm in ≤ 900 mL of 1 N HCl, or simulated gastric fluid, 

or pH 4.5 and pH 6.8 buffer, or simulated intestinal fluid. 

 

Drugs need to dissolve in gastrointestinal fluids to permeate the gut wall, passing 

through the liver without being inactivated and reaching systemic blood circulation to produce 

a pharmacological response which requires good aqueous solubility. However, the majority of 

newly developed compounds are lipophilic in nature resulting in poor dissolution profiles 

owing to their low aqueous solubility (Janssens and Van den Mooter, 2009). Therefore, the rate 

of dissolution is the most influential factor controlling the bioavailability of drugs.  

 

The chemists Arthur Noyes and Willis Whitney published a mathematical expression 

for dissolution in a paper entitled “The rate of solution of solid substances in their own solution” 

(Noyes and Whitney, 1897). A modified form of the Noyes-Whitney equation highlights 

important factors affecting the dissolution profile of poorly soluble drugs, (Leuner and 

Dressman, 2000, Alam et al., 2013, Janssens and Van den Mooter, 2009) as expressed in Eq. 

(1.2): 

 

 
h

CCsAD

t

C 
                                                                                                         (Eq. 1.2) 
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where ∂C/∂t is the rate of dissolution, A is the surface area available for dissolution, D is the 

diffusion coefficient of the compound, Cs is the solubility of compound in the dissolution 

medium, C is the concentration of drug in the medium at time t and h is the thickness of the 

diffusion boundary layer adjacent to the surface of dissolving compound.  

 

Using parameters outlined in the Noyes-Whitney equation leads to the following 

possibilities for improving the solubility of poorly water soluble drugs (Leuner and Dressman, 

2000): 

1. Increasing the surface area by reducing the particle size of compound, i.e. increasing A 

2. Improving the wetting properties of the compound 

3. Reducing the boundary-layer  thickness, i.e. reducing h 

4. Ensuring sink conditions are maintained 

5. Enhancing drug solubility in the physiological relevant dissolution media, i.e. 

increasing Cs  

 

Hence, the following three approaches could be considered for the development of an 

enhanced effective drug delivery system (Fasinu et al., 2011): 

1. Modification of the physicochemical properties of the drug molecule (for example, 

modifying lipophilicity and enzyme susceptibility) 

2. Addition of  novel functionality (e.g. receptor recognition or cell permeability) 

3. The use of an innovative drug delivery system  

1.3. Strategies to enhance dissolution  

There are six common strategies used to enhance the dissolution and bioavailability of 

drugs, namely, salt formation, prodrug formation, solvent modification, physical modification, 

particle size reduction and carrier systems. 
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1.3.1. Salt formation 
 

An enhanced dissolution profile of a solid oral dosage form can sometimes be achieved 

through salt formation (Nelson, 1957, Nelson, 1958). This is the most common technique in 

the pharmaceutical industry for ionisable drugs because stable ionic bonds can be formed when 

the ionisable group on the drug and the salt’s counter-ion have a difference in pKa values of at 

least three units thus preventing dissociation (Bowker, 2002, Childs et al., 2007). According to 

the Henderson-Hasselbalch equation, the aqueous solubility of ionisable drugs is highly 

dependent on pH which can be altered through salt formation (Avdeef, 2007). For example, 

celecoxib (in the form of the sodium salt) displayed an enhanced dissolution rate and oral 

bioavailability compared with the corresponding free acid form (Guzman et al., 2007). Another 

example is the solubility of haloperidol mesylate which is significantly higher than that of its 

hydrochloride salt at a lower pH (Li et al., 2005). In summary, an appropriate salt form can 

possibly help enhance solubility depending upon the physicochemical properties of the drug 

under investigation. 

 

1.3.2. Prodrug formation  
 

The concept of a “prodrug” was introduced by Adrian Albert in 1958 to describe 

compounds that undergo biotransformation prior to eliciting their pharmacological effect, i.e. 

"therapeutic agents that are inactive but can be transformed into one or more active 

metabolites” (Albert, 1958). Forming a prodrug has become an established technique and a 

powerful tool in optimising pharmacologically potent structures and overcoming 

physicochemical, pharmaceutical and biopharmaceutical barriers to a drug’s usefulness (Stella 

and Nti-Addae, 2007, Fleisher et al., 1996, Rautio et al., 2008). To develop a successful 

prodrug, there must be a suitable functional group on the compound along with a mechanistic 
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pathway in the body to transform the prodrug into an active metabolite after administration 

(Stella and Nti-Addae, 2007). 

 

1.3.3. Alteration of the solvent system 
 

A change in pH significantly affects the solubility of poorly water soluble drugs having 

functional groups that can be protonated or deprotonated. pH modification can be used for both 

oral and parenteral administrations. To evaluate the appropriateness of this approach for a 

particular formulation, the buffer capacity and suitability of the selected pH must be 

considered. The extent of solubility of drugs changes as the pH increases from stomach to 

intestine (Lachman et al., 1986, Venkatesh et al., 1996). Furthermore, the pKa value of a 

compound is an important factor to be considered when changing the pH of the solvent when 

improving the solubility of a drug (McMorland et al., 1986, Jain et al., 2004). pH adjustment 

is also used with co-solvents to enhance the solubility of poorly soluble drugs (Vemula et al., 

2010).  

 

1.3.4. Physical modification 
 

Many drug-like compounds can exist in several different solid forms ranging from 

disordered amorphous materials to ordered crystalline materials. Materials having the same 

chemical composition but different lattice structures are known as polymorphs and this 

phenomenon is polymorphism (Kawabata et al., 2011, Rodrı́guez-Spong et al., 2004). The 

physicochemical properties of polymorphs, including solubility, physical stability, melting 

point, density and compatibility make them potential candidates for pharmaceutical research 

(Brittain, 1999, Kawabata et al., 2011). Previous studies have reported that metastable forms 
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of polymorphs are more soluble than thermodynamically stable forms (Blagden et al., 2007) 

and this difference in solubility can be significant (Pudipeddi and Serajuddin, 2005).  

 

The formation of polymorphs is an effective strategy to improve the dissolution profile 

for poorly soluble drugs. However, it is necessary to monitor for further polymorphic 

transformations during both manufacturing and storage of dosage forms to ensure 

reproducibility. This is because metastable forms will eventually transform into 

thermodynamically stable forms which may exhibit variations in bioavailability (Kawabata et 

al., 2011). 

 

In recent years, considerable attention has been given to co-crystals to increase the 

dissolution rate of poorly water-soluble drugs. These are defined as crystalline materials 

comprised of at least two different components (Schultheiss and Newman, 2009). 

Pharmaceutical co-crystals are formed with an API and a guest molecule (co-crystal former) 

without any proton transfer but in many cases, requires hydrogen bonding to make a stable co-

crystal. Generally, pKa is an indicator for distinguishing between salts and co-crystals 

(Kawabata et al., 2011). There have been several studies claiming an improved dissolution rate 

and oral bioavailability by co-crystal formation (Jung et al., 2010, McNamara et al., 2006). One 

such example is AMG-517 (Amgen) which is a potent and selective VR1 antagonist. It is a 

base and the co-crystals with ascorbic acid demonstrated a higher dissolution rate in the fasted 

state simulated intestinal fluid compared with the original form (Bak et al., 2008). 

 

1.3.5. Particle size reduction 

  
Dissolution is intrinsically related to particle size as reducing the size of particles 

provides a larger surface area resulting in an increased rate of dissolution owing to the 
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improved solvation of the solute (Savjani Ketan et al., 2012). Therefore, this approach is widely 

used to increase the dissolution rate of a drug (Hörter and Dressman, 2001). According to the 

Prandtl boundary layer equation, a decrease of the diffusion layer thickness by reducing particle 

size, particularly down to < 5 µm, results in accelerated dissolution (Mosharraf and Nyström, 

1995). The micronisation approach to enhance the bioavailability of poorly water-soluble drugs 

such as griseofulvin, digoxin, and felodipine has proven successful (Atkinson et al., 1962, 

Jounela et al., 1975, Scholz et al., 2002). The micronised drug particles are obtained through 

mechanical pulverisation while jet milling, ball milling and pin milling are also commonly 

used. Micronisation of drug particles sometimes results in agglomeration which can decrease 

the dissolution rate by reducing the available surface area. Surfactants have previously been 

employed to avoid such issues (Kawabata et al., 2011).  

 

Nanocrystal formation is an attractive technique for poorly water soluble drugs, used to 

reduce particle size to a nano-meter range (< 1 µm). An increase in dissolution can be observed 

by decreasing particle size to less than 1 µm, as described by Ostwald-Freundlich’s equation 

(Müller and Peters, 1998). Nanocrystal formulations are commonly produced by wet-milling 

with beads, high-pressure homogenisation, or controlled precipitation (Shegokar and Müller, 

2010). Nanocrystals are obtained after dispersing drug particles into inert carriers followed by 

a drying process such as spray drying or freeze drying. Most importantly for stabilised 

nanocrystals, hydrophilic polymers and/or surfactants are also used. These products can be 

defined as a crystalline solid dispersion (CSD). There have been numerous studies 

demonstrating an enhanced oral bioavailability of pharmaceuticals and neutraceuticals by 

nanocrystal technologies (Xia et al., 2010, Wu et al., 2004, Sylvestre et al., 2011, Fakes et al., 

2009). Nanocrystal formulations of either neutral or acidic compounds such as danazol 

(Liversidge and Cundy, 1995), cilostazol (Jinno et al., 2006), tranilast (Kawabata et al., 2010) 
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and curcumin (Onoue et al., 2010) have been found to exhibit enhanced pharmacokinetic 

profiles compared with basic compounds through using nanocrystal technologies. 

 

1.3.6. Carrier systems 
 

Drugs have been incorporated with a range of carrier systems as a technique to enhance 

dissolution. For example, complexation of drugs with cyclodextrin has been achieved using 

different methods, including kneading (Swarbirck and Boylan, 2001), co-precipitation 

(Baboota et al., 2005), solvent evaporation (Parikh et al., 2005), lyophilisation (Chiou and 

Riegelman, 1971) and microwave irradiation (Charman, 2000). Cyclodextrins are 

oligosaccharides containing a hydrophilic exterior and hydrophobic core in which appropriate 

sized drug molecules can form non-covalent complexes resulting in improved aqueous 

solubility and chemical stability (Loftsson and Brewster, 1996). Cyclodextrins and their 

derivatives have been extensively used in pharmaceutical research to enhance the dissolution 

rate of poorly soluble drugs and currently more than ten solid dosage forms containing 

cyclodextrins are available on the market (Kawabata et al., 2011).  

 

In recent years, self-emulsification drug-delivery systems (SEDDS) have been utilised 

to enhance the oral bioavailability of poorly water soluble drugs, especially highly lipophilic 

drugs. A SEDDS is an isotropic mixture of oil, surfactant, co-solvent, and solubilised drug 

(Neslihan Gursoy and Benita, 2004). These formulations are further classified into self-

microemulsifying drug delivery systems (SMEDDS) and self-nanoemulsifying drug delivery 

systems (SNEDDS) according to the size range of the oil droplets (Kohli et al., 2010). 

Improved oral bioavailability, and subsequently higher plasma concentrations of drugs, is 

attributed to the rapid emulsification of these formulations whereas the droplet size of the 

emulsion has a pronounced effect on the extent of absorption. Neoral®, a cyclosporin SNEDDS 
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formulation, is a good example of the effectiveness of the utilisation of droplets of a smaller 

size. Neoral® has an increased maximum plasma concentration (Cmax) and absorption area 

under the curve (AUC) compared with Sandimmune®, a coarse SMEDDS formulation, in 

humans (Mueller et al., 1994). The intrinsic lipophilicity of a drug is the prime requirement of 

a SEDDS as the API must be dissolved in a limited amount of oil within the formulation. 

(Kawabata et al., 2011). 

 

Surfactants have been used to improve the solubility of water-insoluble drugs for many 

years (Gharaei-Fathabad, 2011). Surfactants have the ability to form micelles at a certain 

concentration known as the critical micelle concentration (CMC) and the phenomenon is called 

micellisation (Figure 1.4). Micellisation results from a delicate balance of intermolecular 

forces, including hydrophobic, steric, electrostatic, hydrogen bonding and Van der Waals 

interactions. The hydrophobic effect associated with the nonpolar surfactant tail is the main 

attractive force whereas the main opposing force results from steric and electrostatic repulsion 

between the surfactant polar heads (Rangel-Yagui et al., 2005b, Torchilin, 2007). Micelles 

reduce surface tension and increase solubility by entrapping drug molecules inside the 

hydrophobic core (Emara et al., 2002a), i.e. they have an ability to increase the solubility of 

drugs in water (Hosseinzadeh et al., 2009). Therefore, the utilisation of micelles can be 

advantageous for drug delivery purposes with the possibility of improving bioavailability, 

reducing toxicity and enhancing permeability across physiological barriers (Torchilin, 2007). 

Drug interactions with micelles can induce changes in the physiochemical properties of  drugs 

(solubility, spectroscopic and acid-base properties) and these can be used to quantify the degree 

of drug-micelle interaction, expressed as the drug-micelle binding constant and micelle-water 

partition coefficient (Čudina et al., 2005).  
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Often non-ionic surfactants are used, including polysorbates, polyoxyethylated castor 

oil, polyoxyethylated glycerides, lauroyl macroglycerides, and mono- and di-fatty acid esters 

of low molecular weight polyethylene glycols, to stabilise micro emulsions and suspensions 

into which drugs are dissolved (Rangel-Yagui et al., 2005). 

 

 

Figure 1.4: Surfactant micellisation and demicellisation. 
 

1.4. Solid dispersion based formulations 
 

Solid dispersion has been considered one of the major developments in overcoming 

bioavailability issues of poorly water soluble drugs with several successfully marketed 

products (Vo et al., 2013). These have been defined as a dispersion of one or more 

pharmaceutically active ingredients in an inert carrier or matrix in the solid state prepared by 

solvent, melting or solvent-melting methods (Chiou and Riegelman, 1971; Janssens and Van 

den Mooter, 2009). 

 

Several studies on solid dispersions have been published, confirming the advantageous 

properties of solid dispersions in increasing the solubility and dissolution rate of poorly water 

soluble drugs. Solid dispersions tend to reduce particle size, possibly to a molecular level, and 

CMC 
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change the crystalline state of drugs, thereby promoting their solubility (Vasconcelos et al., 

2007; Vo et al., 2013). 

 

1.4.1. Classification of solid dispersions 
 

First generation solid dispersions are known as crystalline solid dispersions. Sekiguchi 

and Obi prepared solid dispersions for the first time using urea as a carrier to form a eutectic 

mixture with sulphathiazole (Sekiguchi and Obi, 1961). The eutectic (or monotectic) mixture 

is formed when a crystalline drug is dispersed within a crystalline carrier (Chiou and 

Riegelman, 1971). The melting temperature of the eutectic mixture is lower than the API and 

carrier as both the drug and carrier are crystallised simultaneously in the cooling process, 

resulting in a dispersed state, thus improving the dissolution rate (Figure 1.5) (Leuner and 

Dressman, 2000). Moreover, if the system is not specifically at a eutectic composition, the solid 

dispersion will comprise of a blend of the microfine dispersion and another constituent as a 

distinct phase because one component will be progressively crystalline until the eutectic point 

is reached. 

 

Figure 1.5: Phase diagram of a eutectic system (Leuner and Dressman, 2000). 
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An API can exist as a substitutional crystalline solid solution (where drug molecules can 

substitute carrier molecules in the crystal lattice) or an interstitial crystalline solid solution 

(where drug resides in interstitial spaces between the solvent molecules) in the crystal lattice 

(Figure 1.6) (Leuner and Dressman, 2000). 

 

 

Figure 1.6: Schematic of a) substitutional crystalline solid solution and b) an interstitial 
crystalline solid solution. Solvent molecules are represented as open circles, and filled circles 

indicate solute molecules (Leuner and Dressman, 2000). 
 

Urea (Sekiguchi and Obi, 1961) and sugars such as sorbitol and mannitol (Jachowicz, 

1987) are crystalline carriers generally used in first generation solid dispersions. The small 

particle size, improved wettability and polymorphic change are the leading factors for 

enhancing drug solubility and dissolution. The results of mannitol-based solid dispersions 

using nifedipine as a model drug revealed significant enhancement in the dissolution rate of 

nifedipine compared with the physical mixture, despite retaining the crystalline state (Zajc et 

al., 2005). Okonogiet and co-workers (1997) developed a solid dispersion of ofloxacin with 

urea and mannitol. The urea based solid dispersions exhibited a higher solubility and 

dissolution rate than mannitol because of a greater reduction in the degree of crystallinity as 

revealed by X-ray diffraction and differential scanning calorimetry. The prominent drawback 

of crystalline solid dispersions is the high thermodynamic stability of the carriers that decreases 

their dissolution rate compared with amorphous solid dispersions. 
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In the late sixties (Simonelli et al., 1969; Chiou and Riegelman, 1969), second 

generation solid dispersions appeared containing amorphous carriers, also known as 

amorphous solid dispersions (Figure 1.7). These can be classified into amorphous solid 

solutions (glass solutions), amorphous solid suspensions or mixtures of both, according to the 

physical state of the drug (Vo et al., 2013).  

 

 

 

 

 

 

 

In amorphous solid solutions, the drug and amorphous carrier are miscible to form a 

molecularly consistent mixture while an amorphous solid suspension comprises of two distinct 

phases, formed with drugs having a high melting point or limited solubility in the excipient 

(Van Drooge et al., 2006). When an API is dissolved and/or suspended in the carrier, a 

heterogeneous system is obtained with mixed properties of amorphous solid solutions and 

amorphous solid suspensions, respectively (Vasconcelos et al., 2007). In amorphous solid 

dispersions, drug molecules are dispersed in an amorphous carrier (Tanaka et al., 2006) which 

promotes wettability and dispersibility of drugs along with an inhibition of precipitation when 

solid dispersions are dissolved in water (Chauhan et al., 2013, Crowley et al., 2007).  

 

Amorphous carriers are divided into synthetic and natural polymers. Examples of 

synthetic polymers include povidone (PVP) (Taylor and Zografi, 1997), polyethylene glycol 

(PEG) (Bley et al., 2010), crospovidone (PVP-CL) (Shin et al., 1998), polyvinylpyrrolidone-

Figure 1.7: An amorphous solid solution (Leuner and Dressman, 2000). 
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co-vinyl acetate (PVPVA) (Bley et al., 2010) and polymethacrylate (Huang et al., 2006). 

Natural polymers include cellulose derivatives such as hydroxypropylmethyl cellulose 

(HPMC), hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose phthalate (HPMCP) 

(Miyazaki et al., 2011), hydroxypropylmethylcellulose acetate succinate (HPMCAS) (Zhang 

et al., 2012), starch (corn starch, potato starch) (Bialleck and Rein, 2011) and sugar glass 

(trehalose, sucrose, inulin) (Van Drooge et al., 2004). Among them, HPMC, PEG and PVP are 

extensively used (Bialleck and Rein, 2011). In contrast to the amorphous polymers listed 

above, PEG has a semi-crystalline structure with a very low melting point (below 65 °C) 

regardless of its molecular weight. Therefore, it is possible to formulate solid dispersions using 

the melting method, particularly suited to heat-sensitive drugs (Vo et al., 2013). 

 

All polymers discussed previously have excellent solubility profiles in a wide range of 

solvents, making them ideal candidates for solid dispersions by the solvent method plus the 

greater aqueous solubility improves the wettability of drugs. The solubility and viscosity of 

these polymers is dependent on molecular weight, which is important in selecting an 

appropriate polymer as a carrier. For example, the recrystallisation of drugs during preparation, 

storage and dissolution can be prevented using high viscosity polymers but at the same time, 

these can hinder the release of drug in water during dissolution (Vo et al., 2013).  PEG with 

molecular weights of 1500-20000 and PVP with molecular weights of 2500-50000 (K12 to 

K30) are commonly used polymers in developing solid dispersions (Leuner and Dressman, 

2000).  

 

An investigation of albendazole solid dispersions using HPMC and HPMCP as carriers 

indicated an improved dissolution profile along with inhibition of crystallisation in a neutral 

medium for eight hours (Crowley et al., 2007) In fact, HPMC and its derivatives have been 



 
18 

successfully applied in many marketed solid dispersion products. Similarly, sugar glasses such 

as trehalose, sucrose and inulin are used to formulate solid dispersions owing to their fast 

dissolution rate, which sometimes leads to precipitation of drugs (Van Drooge et al., 2004). 

Inulin dissolves more gradually than sucrose and trehalose because of its oligomeric nature; 

therefore, the precipitation and crystallisation rate of inulin based solid dispersions in water is 

lower than trehalose and sucrose based solid dispersions (Visser et al., 2010, Vo et al., 2013). 

 

To overcome precipitation and recrystallisation issues, carriers having surface activity 

or self-emulsifying properties were later introduced, known as third generation solid 

dispersions. These are composed of surfactants or combinations of amorphous polymer and 

surfactants, intended to achieve the highest possible degree of bioavailability of poorly soluble 

drugs (Vo et al., 2013, Vasconcelos et al., 2007). Moreover, surfactants are capable of 

improving wettability and hinder drug precipitation which further enhances dissolution profiles 

as well as the physical and chemical stability of drugs. 

 

Examples of carriers include inutec SP1 (Van den Mooter et al., 2006), poloxamer 

(Passerini et al., 2002), compritol 888 ATO (Li et al., 2006a), gelucire 44/14 (Karataş et al., 

2005; Yüksel et al., 2003) and soluplus (Kalivoda et al., 2012) (proven to be effective in 

producing enhanced bioavailability). A solid dispersion of PEG and polysorbate 80 containing 

a model drug was evaluated to acquire information regarding bioavailability and dissolution 

enhancement. A 10-fold increased bioavailability (compared with dry micronised drug) was 

observed, with physical and chemical stability for at least 16 months (Dannenfelser et al., 

2004). Solid dispersions of ketoprofen and ibuprofen with poloxamer 407 and 188 

demonstrated higher levels of drug release as a result of hydrogen bonding between drug and 

carrier,  indicated by fourier transform infrared spectroscopy (FTIR) studies (Ali et al., 2010). 
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Additional surfactants used as additives in solid dispersions include sodium dodecyl 

sulphate (SDS) (Moes et al., 2011), Tween 80 (Joshi et al., 2004), polyoxyethylene 

hydrogenated castor oil (Won et al., 2005) and sucrose laurate (SzĦts et al., 2011). 

 

The principal objective of fourth generation solid dispersions was to improve solubility 

along with the release of drug in a controlled fashion, therefore, they are more commonly 

known as controlled release solid dispersions (CRSD). The significant increase in solubility is 

achieved through a dispersion of drug in the carrier while a swellable polymer is used to delay 

the drug release in the dissolution media (Huang et al., 2006). Thus an effective amount of drug 

is delivered for a prolonged period of time, increasing patient compliance by reducing dose 

frequency and decreased side effects (Desai et al., 2006). Retarding polymers used in CRSD 

include ethyl cellulose (EC) (Desai et al., 2006), Eudragit RS and RL (Cui et al., 2003), 

polyethylene oxide (PEO) and carboxyvinyl polymer (Carbopol) (Ozeki et al., 2000). Diffusion 

and erosion profiles dictate the release mechanisms of drug from CRSD systems (Vo et al., 

2013). 

 

Cui and co-workers (2003) developed nitrendipine controlled release solid dispersions, 

containing HPMCP55 and aerosil as the solid dispersion agents with Eudragit RS, PEO and 

EC as retarding agents. The results of these studies revealed a more effective absorption profile 

and improved bioavailability compared with the reference tablets (Baypress TM) and 

conventional tablets.  
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1.4.2. Advantages of solid dispersions 
 

Solid dispersions are considered one of the most successful techniques used to enhance 

the dissolution of poorly water soluble drugs. In comparison with other techniques, such as 

those addressed earlier i.e. salt formation, prodrug formation, solubilisation and micronisation, 

solid dispersion presents several advantages. The particle size of a drug can be reduced to a 

molecular level in solid dispersions while a size limit around 2-5 µm is obtained by 

conventional techniques, i.e. accelerating the chances of agglomeration upon dissolution and 

during storage of formulation (Karavas et al., 2006, Pouton, 2006). Drugs are therefore released 

in a supersaturated state i.e. as high energy drug particles, which subsequently improves 

bioavailability. Additionally, drug-polymer interactions can avoid agglomeration of drug 

particles by maintaining the size of particles to a sub-micron level resulting in improved 

dissolution rates (Leuner and Dressman, 2000, Serajuddin, 1999). 

 

The process to develop solid dispersions is relatively simple compared with other 

techniques such as salt formation or nanoparticle preparation. Solid oral dosage forms are more 

acceptable to patients than liquid formulations developed through solubilisation techniques 

(Karavas et al., 2006, Serajuddin, 1999). The improved wettability and polymorphic changes 

are some of the unique properties of solid dispersions. Recently, Zhang and co-workers (2012) 

developed amorphous solid dispersions of fenofibrate using a thin film freezing technique. The 

results showed a significant increase in surface area, which dramatically enhanced the 

dissolution rate and bioavailability of fenofibrate. Several other studies on solid dispersions 

confirmed a change in the polymorphic state of drugs from a crystalline to amorphous form, 

thus increasing the solubility of the drug (Taylor and Zografi, 1997). This polymorphic change 

is highly dependent upon the preparation process and underlying drug carrier interactions (Vo 

et al., 2013). 
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1.4.3. Common problems with solid dispersions 
 

Stability related issues frequently limit the commercial use of solid dispersions. The 

most commonly encountered problem with solid dispersions is recrystallisation of drug during 

preparation (as well as during storage), which results in a decreased dissolution rate. The 

recrystallisation mechanism involving nucleation followed by crystal growth, leads to 

disruption in the arrangement of drug molecules (Baird and Taylor, 2012). Physical stability is 

based on molecular mobility, which is divided into global mobility (α-relaxations) and local 

mobility (β-relaxations) (Van den Mooter, 2012). The physical stability of a drug is highly 

influenced by the storage conditions, such as moisture and temperature. Higher water content 

and elevated temperature can enhance drug mobility, which quickly recrystallises the drug in 

solid dispersions (Duddu and Sokoloski, 1995). These issues are the main hurdles in the bench 

to market scalability of solid dispersion (Vasconcelos et al., 2007). Some common issues for 

solid dispersion based formulations include:thermal instability of drugs and carriers using the 

melt method, solvent residues using the solvent method, the recrystallisation of drugs in the 

developing process, the low in vivo-in vitro correlation and the precipitation of drugs in 

dissolution media owing to supersaturation (Vo et al., 2013). Ayenew and co-workers (2012) 

evaluated tablet compression on the miscibility of naproxen-PVP K25 solid dispersions. It was 

found that the amorphous-amorphous phase separation at a compression pressure beyond 

565.05 MPa could be the result of intermolecular hydrogen bond disruption between drug and 

polymer. 

 

To avoid phase separation and recrystallisation, a polymer has to be miscible with the 

drug to form strong intermolecular hydrogen bonds and reduce molecular mobility 

(Vasanthavada et al., 2004, Vasanthavada et al., 2005). This is possible using polymers with a 
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glass transition temperature (Tg) higher than the Tg of the drug (Taylor and Zografi, 1997) 

(Yoshioka et al., 1994).  

 

Vasanthavada and co-workers (2005) studied factors affecting the solid solubility and 

phase separation kinetics in griseofulvin-PVP and indoprofen-PVP solid dispersions. 

Indoprofen miscibility with polymer under accelerated study conditions for three months was 

around 13 % w/w while griseofulvin was completely insoluble in the polymer. The author’s 

findings indicated that strong hydrogen bonding between indoprofen and PVP could explain 

the higher miscibility, which was confirmed by FTIR results while no such H-bonding was 

observed in the case of griseofulvin-PVP. Therefore, it was concluded that phase separations 

were proportional to drug-polymer interactions and the drug content of dispersions. In many 

studies, drugs retain their crystallinity even in a solid dispersion, displaying a significant 

improvement in bioavailability in comparison with the physical mixture and having good 

stability (Ali et al., 2010, Yan et al., 2012). Furthermore, the addition of surface active agents 

as an additive in the formulation can reduce the rate of recrystallisation, improve wettability 

and inhibit precipitation by developing micelles to encapsulate drugs (Vo et al., 2013).   

 

1.4.4. Methods for preparing solid dispersions 
 

a. Solvent evaporation method 

 

The solvent evaporation technique involves dissolving drug and carrier in a common 

solvent to form a homogenised solution followed by evaporation of the solvent (Chiou and 

Riegelman, 1971). This is a method of choice, particularly for thermo-labile drugs (Janssens 

and Van den Mooter, 2009, Vo et al., 2013, Vasconcelos et al., 2007). Tachibana and Nakamura 

(1965) developed solid dispersions using the solvent evaporation approach to solubilise β-
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carotene and polyvinylpyrrolidone (PVP) in a common solvent, namely chloroform. The 

physical state of drug in the resultant solid dispersion is often determined by the rate of 

solidification; hence rapid solidification guarantees the amorphous content of drug, which can 

be achieved by the fast removal of solvent (Vo et al., 2013). Several techniques of solvent 

removal are used in practice including heating on a hot plate (Desai et al., 2006), vacuum drying 

(Won et al., 2005), rotary evaporation (Ceballos et al., 2005), spray drying (Li et al., 2011), 

freeze drying (García-Rodriguez et al., 2011), spray freeze drying (Lim et al., 2010) and ultra-

rapid freezing (Overhoff et al., 2007). Solvents used in solid dispersions may include methanol, 

ethanol, ethyl acetate, methylene chloride, acetone and water or mixtures of these solvents 

(Hoshino et al., 2007), however, toxicity of several organic solvents is a major limitation of 

this technique. Furthermore, the plasticising effect of residual solvent can provoke phase 

separation; resulting in physical instability of solid dispersions. Environmental issues, high cost 

of production (as it requires extra facilities for solvent removal) and protection against an 

explosion, affect its suitability and frequent use to produce solid dispersions (Vo et al., 2013, 

Janssens and Van den Mooter, 2009) 

  

b. Melting or fusion method 

 

Solid dispersions are generally prepared by melting methods i.e. melting an API and a 

carrier above their melting points, followed by mixing and cooling (Sekiguchi and Obi, 1961, 

Chiou and Riegelman, 1971). The resultant solid mass is then subjected to crushing, sieving 

and pulverising to reduce the particle size without milling (Owusu-Ababio et al., 1998). 

Sources of heating can be a laboratory hot-plate, specialised equipment i.e. a hot melt extruder 

or a microwave unit.   
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The drug-polymer incompatibility, as well as the slow cooling process, can cause phase 

separation, which can be controlled by the addition of a suitable surfactant and processing 

through spray congealing (Passerini et al., 2006, Vo et al., 2013). APIs having low thermal 

stability can be suspended in a previously molten carrier to reduce drug heating time and 

thermal degradation (Vippagunta et al., 2007, Karataş et al., 2005). A pluronic-tadalafil solid 

dispersion is an example of such a formulation approach (Mehanna et al., 2010). Differential 

scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy 

(SEM) demonstrated the formation of a microcrystalline uniform dispersion of tadalafil in the 

pluronic system. A dramatic enhancement in the dissolution rate of pluronic-tadalafil solid 

dispersions was observed, compared with their physical mix.  

 

Hot melt extrusion is an appropriate method to prepare solid dispersions at a 

manufacturing scale. In recent years, this strategy has gained prominence to formulate solid 

dispersions (Bruce et al., 2007, Nollenberger et al., 2009). The drug and carrier are 

simultaneously subjected to intense mixing and agitation followed by a heating cycle which 

results in a homogeneous dispersion (Verhoeven et al., 2009, Crowley et al., 2007). The 

reduced residence time of the drug and carrier at elevated temperatures in the extruder make it 

a superior method for thermo-labile drugs (Leuner and Dressman, 2000). Additional benefits 

of this approach include effectiveness, easy scale up and thermodynamically stable products 

compared with other methods (Williams et al., 2010). Hot melt extrusion and its advanced 

technology, for example, MeltrexTM, are the most successful approaches to prepare solid 

dispersions with many marketed products such as Cesamet®, Rezulin®, Kaletra® (MeltrexTM), 

Novir® (MeltrexTM) and Isotip® (MeltrexTM) (Maniruzzaman et al., 2012, Vo et al., 2013). 
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Despite several advantages, hot melt extrusion also faces challenges to produce solid 

dispersions of thermo-labile compounds. The use of plasticisers can mitigate thermal 

degradation, but this approach is not applicable for all formulations as variable processing is 

required for different components. Furthermore, optimisation of different operational variables 

such as the feed rate, screw speed and extrusion temperature makes it a lengthy process 

(Langham, 2011). 

 

The use of microwave technology in pharmaceutical processing is categorised on the 

basis of thermal and non-thermal effects of microwaves. Microwave drying of pharmaceuticals 

is a result of thermal effects whereas microwave energy is used to induce a heating process in 

the system. Apart from heating and drying applications, microwaves offer an avenue for the 

modification of the physicochemical properties of materials via specific microwave-material 

interactions, which have been considered as non-thermal in nature (Ku et al., 2002). These are 

exploited primarily for the design of controlled release dosage forms. Microwave technology 

has been employed to develop controlled drug delivery formulations based on natural polymers 

such as alginate, chitosan and pectin (Wong et al., 2002, Nurjaya and Wong, 2005, Wong et 

al., 2005). In these studies, a laboratory scale microwave was used to prepare polymer beads 

and microspheres followed by characterisation using DSC and fourier transform infra-red 

(FTIR) spectroscopy. The results indicated the effective formation of crosslinkages, resulting 

in a strong polymer-polymer and drug-polymer complexation in matrices. These matrices were 

highly efficient in controlling the release of sulphathiazole and sodium diclofenac without 

affecting the chemical stabilities of drug and the polymer. It appeared that selection of 

appropriate microwave conditions, along with polymer structural arrangement, influence the 

matrices' effectiveness. Several other studies have been made to encapsulate drugs in synthetic 

polymers such as poly (methyl vinyl ether-co-maleic acid) using a microwave to achieve better 
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results (Wong et al., 2008). However, varying degrees of success were achieved with different 

polymers.  

 

After exploring the utility of microwaves in designing controlled release dosage forms, 

researchers started investigating the potential of microwaves to enhance solubility and 

bioavailability of poorly soluble drugs via the formation of solid dispersions and 

nanocomposite materials. Kerc and co-workers (1998) used microwave heating to prepare a 

binary solid mixture of felodipine and amorphous silicon dioxide or crystalline sodium 

chloride. The conversion of crystalline felodipine to its amorphous or microcrystalline state is 

evident from the results obtained using differential scanning calorimetry and X-ray diffraction. 

The dissolution properties of the formulation were influenced by the exposure time of the 

material to microwaves. 

 

In another study, the microwave technique was employed to develop solid dispersions 

of ibuprofen and polyvinylpyrrolidone-vinyl acetate copolymer or hydroxypropyl-β-

cyclodextrin (Moneghini et al., 2008). The significant enhancement in the in vitro dissolution 

rate was achieved in the microwave treated solid dispersions as compared with the pure drug. 

Bergese and co-worker (2003) developed nanocomposites of crospovidone or β-cyclodextrin 

carrying ibuprofen, nimesulide or nifedipine in an embedded form. A remarkable reduction in 

crystallinity was produced under the influence of microwave treatment. 

 

In recent times, solid dispersions of a water insoluble drug, tibolone, in a polyethylene 

glycol matrix were formulated by both conventional and microwave-induced melt mixing 

(Papadimitriou et al., 2008). The unaffected tibolone stability was confirmed by the results of 

liquid chromatography. The penetrative and volumetric heating of microwaves induced the 
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rapid production of solid dispersions in comparison with conventional heating methods. 

Additionally, the drug was dispersed uniformly as fine particles in a carrier which was 

confirmed by the results of scanning electron microscopy (SEM). In summary, an elevated 

dissolution rate of tibolone melt dispersions was developed through microwave techniques. 

 

Microwaves are part of the electromagnetic spectrum, the frequency range of which is 

300MHz to 300GHz. Microwave processing of material is through direct interaction of material 

with microwave radiation and a range of parameters dictate the extent of material heating, but 

the dielectric properties of materials have a particular relevance. Therefore, microwaves may 

confer several advantages for suitable systems over conventional heating (Solanki et al., 2011, 

Waters et al., 2011) including: 

 Uniform and deep heating of material in contrast to surface heating through 

conventional heating. 

 Rapid heating and cooling. 

 High efficiency of heating achieved through dielectric polarisation and conduction 

(while conduction is the only mechanism in conventional heating). 

 Desirable physical and chemical effects. 

 Increased efficiency and decreased operating costs. 

 Increased reaction rates in some cases. 

 Reduction in unwanted side effects (reaction quenching). 

 Increased purity of final product. 

 Improved reproducibility. 

 Lower energy usage. 

 Increased environmental safety. 
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These potential beneficial effects have led to the widespread use of microwaves in 

various fields such as compound synthesis in chemistry, drug extraction, microwave assisted 

drying, sterilisation and pharmaceutical dosage form development (Solanki et al., 2011). 

However, controlling the temperature throughout an experimental run is a major challenge, 

since constant power does not ensure a constant temperature and changes in dielectric 

properties are likely to happen with phase changes during the process. Furthermore, the 

variable coupling capability of materials with microwaves causes thermal runaway as the 

temperature increases, which can produce detrimental effects in the final formulation (Waters 

et al., 2011). Therefore, temperature control is vital to make microwaves a potential alternative 

technique for the development of successful formulations.  

 

1.5. Drug-excipient interactions  
 

Orally administered drugs undergo rapid disintegration; therefore, systemic absorption 

of a dosage form containing a hydrophobic drug is controlled by the dissolution rate while 

permeation is the rate limiting step for hydrophilic drugs. Drug instability, such as degradation 

of drug into an inactive form and drug-excipient interactions, can affect its bioavailability 

during absorption (Panakanti and Narang, 2012). Therefore, careful consideration must be 

taken in selecting a suitable excipient because stability, efficacy and toxicity of the final active 

moiety are entirely dependent upon the drug-excipient interactions (Panakanti and Narang, 

2012). Drug-excipient incompatibilities can produce serious biopharmaceutical implications 

such as modification in the release mechanism, reduced bioavailability and potency loss, thus 

implicating adverse effects. Modification in the physicochemical properties of drugs, produced 

as a result of drug-excipient interactions, can be divided into the following three categories: 

 

 



 
29 

a. Specific drug-excipient binding 
 

Cyclodextrin complexation has been shown to enhance the dissolution rate of several 

drugs including ibuprofen (Nambu et al., 1978), nifedipine (Emara et al., 2002b), griseofulvin 

(Dhanaraju et al., 1998) and theophylline (Ammar et al., 1996). However, absorption and 

bioavailability of certain drugs has been decreased as a result of strong drug-excipient 

interactions. For example, complexation of tetracycline with divalent cations such as calcium 

(Shargel et al., 2005) and phenobarbital with PEG 4000 (Benet et al., 1966), decreased their 

bioavailability. Similarly, increased phenytoin toxicity was observed in patients receiving a 

phenytoin formulation containing lactose as the excipient compared with the initial 

formulations containing calcium sulphate. The decreased drug absorption with calcium 

sulphate was found to be a result of the development of an insoluble complex with the drug 

while no such complex formed with lactose, resulting in increased side effects (Cacek, 1986). 

Surfactants can also develop insoluble complexes, which are micellar in nature. For example, 

the complex formation of polysorbate 80 and sodium lauryl sulphate with chlorpromazine 

reduced its permeability through a polydimethylsiloxane membrane (Nakano, 1971). 

 

b. Non-specific drug-excipient binding 

 

Non-specific drug-excipient interactions are commonly encountered in immediate drug 

delivery systems. These are also known as ionic drug-excipient interactions (Panakanti and 

Narang, 2012). For example, interactions between croscarmellose sodium, a weakly acidic 

anionic excipient, and phenylpropanolamine HCl, a weakly basic cationic drug, resulted in a 

40 % decrease in drug release in water, compared with the formulation containing starch as an 

excipient. The author proposed that a nonspecific ion-exchange mechanism could be the reason 

for these interactions (Hollenbeck, 1988). In addition to ionic binding, the entropic gain 



 
30 

produced by aggregation of surface active drugs accelerated strong interactions of amphiphilic 

drug with the excipient (Panakanti and Narang, 2012). 

 

c. Drug adsorption on an excipient surface  

 

The results of ketoprofen and griseofulvin adsorbed onto silica using supercritical 

carbon dioxide demonstrated an improved dissolution rate (Smirnova et al., 2004). Similarly, 

excipients such as magnesium aluminium trisilicate promoted wetting, which subsequently 

resulted in an increased dissolution rate of griseofulvin, indomethacin and prednisone. These 

drug-excipient bindings could be the result of weak van der Waals forces (McGinity and Harris, 

1980). It was observed that the release of drug from an adsorption based formulation was 

reduced on exposure to a solution phase owing to strong drug binding to the insoluble excipient. 

For example, the antimicrobial activity of cetylpyridinium chloride decreased when prepared 

with magnesium stearate anions because of the ionic binding between drug and excipient 

(Richards et al., 1996). Another example is the reduced oral bioavailability of 

chlordiazepoxide, formulated with talc (Panakanti and Narang, 2012).  

 

These studies indicate how drug-excipient interactions can affect the physicochemical 

and pharmacokinetic properties of drugs. The effective drug loading achieved through either 

covalent bonding or non-covalent bonding i.e. electrostatics, hydrophobic, or hydrogen-

bonding, hinders the ultimate drug release from the dosage form. These strong drug-excipient 

bindings often reduce the optimum drug dose delivered to target site in humans or animals (da 

Silva et al., 2010). Therefore, a thorough understanding of drug-excipient interactions is the 

leading requirement to design an effective drug therapy. Over the years, drug-excipient 

interactions have been studied extensively from simple techniques, such as conductivity and 
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fluorescence spectroscopy to complex techniques, such as NMR. More recently, isothermal 

titration calorimetry (ITC) has gained importance when evaluating drug-excipient interactions 

(Freire, 2004; Falconer and Collins, 2011).  

1.6. Isothermal titration calorimetry (ITC) 
 

Almost any chemical reaction or physical change is accompanied by a change in heat 

or enthalpy. A measure of heat taken up from the surroundings (for an endothermic process) 

or given up to the surroundings (for an exothermic process) is simply equal to the amount of 

the reaction that has occurred, and the enthalpy changes for the reaction (Núñez et al., 2012). 

A calorimeter is therefore, an ideal instrument to measure the rate of reaction. In contrast to 

optical methods, calorimetric measurements are applicable for spectroscopically silent 

reactants (a chromophore or fluorophore tag is not required), opaque, turbid, or heterogeneous 

solutions (for example, cell suspensions), and a range of biologically relevant conditions (such 

as temperature, salt or pH.) (Núñez et al., 2012). 

ITC has been used for the determination of binding affinities (Ka) (O’Neill and 

Gaisford, 2011) for several reasons including; 

1. It does not require optical clarity of the solution. 

2. It is rapid. 

3. There is no need to develop a specific assay for each interaction. 

4. It can be used for the direct  measurement of  binding enthalpy (ΔaH) 

Indeed, it is the only technique which can measure a thermodynamic profile directly 

and obviates the need for indirect determinations via van’t Hoff analyses. Additionally, careful 

experimental design can provide information for parameters such as changes in the Gibbs free 

energy (ΔaG), entropy (ΔaS), heat capacity (ΔCp) and the stoichiometry (n), of binding in a 

single experiment (Freire et al., 1990, Gaisford and O'Neill, 2007).  
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1.6.1. ITC instrumentation 
 

 A schematic diagram of an ITC instrument is shown in Figure 1.8. It consists of two 

identical cells, sample and reference, shielded in an adiabatic jacket. These cells are kept at 

thermal equilibrium throughout the experiment to determine heat energy per unit time. When 

one component is injected from the syringe into the sample cell, an enthalpic change is 

produced in the form of raw ITC signals. If the interaction is exothermic less heat per unit time 

will be required by the sample cell to keep the two cells in thermal equilibrium; if the 

interaction is endothermic, the inverse will be observed (Núñez et al., 2012, Blandamer et al., 

1998). 

 

Figure 1.8: Isothermal titration calorimetry instrumentation: (a) a schematic diagram of the 
main components of a titration calorimeter, (b) a general representation of titration calorimetry 
experiment of a substrate with ligand. In panel A) the titration thermogram is represented as 
heat per unit of time released after each injection of the ligand into the substrate (black), as 
well as the dilution of ligand into buffer (red). In panel B) the dependence of released heat in 
each injection versus the ratio between total ligand concentration and total protein 
concentration is represented. Circles represent experimental data and the line corresponds to 
the best fitting model (Martinez et al., 2013). 

(a) (b) 
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1.6.2. General operation of ITC 
 

The heat signals produced in ITC experiments may contain heat effects from several 

sources such as the heat of binding, the heat of dilution of the macromolecule, the heat of 

dilution of ligand and the heat of mixing. Therefore, control experiments are required to remove 

these artifacts which usually involve a further three blank experiments (O’Neill and Gaisford, 

2011, Grolier and Del Río, 2012). 

I. Dilution of the ligand by the solvent. 

II.  Dilution of the substrate by the solvent. 

III.  Solvent mixing 

These unwanted heat effects can be removed by subtracting these from the main ligand 

substrate experiment (O’Neill and Gaisford, 2011). 

The raw data from an ITC experiment is a plot of power versus time displaying a series 

of peaks corresponding to successive injections of ligand solution into substrate solution 

(Figure 1.8. b. top). Integration of binding isotherms, using an appropriate fitting model, can 

generate a bonding constant (Ka) (Figure 1.8. b. bottom) along with a complete thermodynamic 

picture of binding (Grolier and Del Río, 2012, Velazquez-Campoy et al., 2004).  

 

To derive meaningful binding constant values it is vital to choose suitable 

concentrations of reacting species, which passes through its saturation point during the binding 

process. This can be easily confirmed when the titration peaks settle to a constant and minimum 

value, representing just the dilution of ligand substrate. The strength of binding affinity dictates 

the generation of the binding isotherms which can be characterised through the use of a c-value 

where c is a unit-less parameter and equals the product of binding affinity (Ka), the 
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concentration of binding sites (Stot) and the binding stoichiometry (n) (Eq. 1.3) (Velazquez-

Campoy et al., 2004): 

 nSKc tota                                                                                                                   (Eq. 1.3) 

 

The c value lies between 1 and 1000 and can provide confidence in this type of analysis. The 

value of c is near to 1000 for those binding partners having a high concentration. In such cases, 

all the ligand molecules added in any injection will bind to its binding partner until saturation 

occurs and a steep increase in the shape of the ITC curve will result. In contrast, if the c value 

lies near to the concentration of the binding partner an exponential type of curve will result, in 

which saturation is barely reached. The optimum concentration of binding partners, with a c 

value around 500, can be used to produce a sigmoidal curve (Wiseman et al., 1989, Turnbull 

and Daranas, 2003).  

1.6.3. ITC experiment analysis 
 

A typical ITC experiment is carried out by the stepwise addition of ligand in the syringe 

to the macromolecule in the calorimetric cell. A certain amount of heat (qi) will be released or 

absorbed, which is  proportional to the amount of ligand that binds to the macromolecule in a 

particular injection (V×ΔLi) and the characteristic binding enthalpy (ΔH) for the reaction as 

can be seen in Eq. (1.4). 

�� = � × ܪ∆ × ∆��                                                                                                        (Eq. 1.4) 

where V is the volume of the reaction cell and ΔLi is the increase in the concentration of 

bound ligand after  i th injections 

The enthalpy change after each injection is obtained by calculating the area under each 

peak. The uncomplexed macromolecule available decreases after each successive injection as 
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shown by the magnitude of the peaks becoming progressively smaller. Once saturation has 

been achieved, subsequent injections produce similar peaks corresponding to dilution or 

mechanical effects that need to be subtracted before analysis. For one binding site the equation 

becomes that seen in Eq. (1.5) (Leavitt and Freire, 2001); 

� = � × ܪ∆ × ሺ�ሻ × [ ௄�[௅]�ଵ+௄�[௅]� − ௄�[௅]�−1ଵ+௄�[௅]�−1]                                                                                (Eq. 1.5) 

 

where Ka is the binding constant, P is the product of a single binding event and [L] is the 

concentration of free ligand, (as the known experimental quantity is the total ligand 

concentration, rather than the free ligand concentration). Analysis of the data yields ΔH and 

ΔG= -RT akln . Heat capacity (Cp) associated with the binding reaction is determined by taking 

the derivative of enthalpy (ΔH) with respect to temperature (T), using Eq. (1.6) (Leavitt and 

Freire, 2001);                                            

௣ܥ = �∆���                                                                                                                       (Eq. 1.6) 

ITC has been used in several studies to evaluate drug-polymer interactions and 

characterise the thermodynamic profile of these systems (Yousefpour et al., 2011, Tian et al., 

2007, Li et al., 2006b). Yousefpour and co-workers (2011) used ITC to characterise the 

thermodynamic profile of doxorubicin-dextran interactions. Thermal analysis of DOX-dextran 

complexation revealed that each DOX molecule bound with 3 dextran glycosyl monomers. 

Isothermal titration calorimetry clearly showed the pH effects on the DOX-polymer binding. 

The electrostatic interactions were found to be predominant for the DOX/ pluronic-PAA 

complex formation while a shielding effect of NaCl on the positively charged amino group and 

negatively charged COOH decreased the strength of interactions (Tian et al., 2007). The 

interaction of several other drugs such as verapamil HCl (Li et al., 2006b), imipramine HCl 
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(He et al., 2010), benzophenone and tamoxifen (Daoud-Mahammed et al., 2009) with their 

polymeric carriers have been studied using ITC. The objective of all these studies was to 

understand the basic mechanism of drug-polymer binding and thermodynamic profile to 

modify drug-delivery systems. 

 

The enthalpy of sertaconazole/hydroxypropyl-β-cyclodextrin complexation was 

recorded by ITC which confirmed the potential use of cyclodextrins as solubilisers (Rodriguez‐
Perez et al., 2006). The association of anionic surfactants with β-cyclodextrin was also studied 

by means of ITC. The results demonstrated that the association phenomenon was characterised 

by favourable enthalpy and entropy changes (Eli et al., 1999). 

 

Furthermore, isothermal titration calorimetry has been employed to obtain 

thermodynamic information for surfactant based systems to understand the underlying 

mechanism of drug-surfactant interactions.  

 

Isothermal titration calorimetry (ITC) has become the method of choice to determine 

thermodynamic information for a variety of chemical and biological systems. It has also been 

used to evaluate the energetics of surfactant based systems, especially with respect to their 

ability to self-aggregate to form micelles (Chatterjee et al., 2001). The monitoring of 

micellisation phenomena of surfactants is possible through ITC as it can determine critical 

micellar concentration (űMű), changes in enthalpy (ΔHmic), entropy (ΔSmic) and free energy 

(ΔGmic) of micellisation from a simple series of surfactant injections (Bouchemal et al., 2010).  

 

For example, the effect of temperature on micelle formation for four surfactants has 

been investigated. The results indicated that a change in temperature produced a large change 
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in ΔHmic and ΔSmic but not in ΔGmic (Paula et al., 1995). Several other studies have identified 

factors capable of modifying the physicochemical properties of the surfactant, including the 

CMC, such as the presence of NaCl (Volpe, 1995), aqueous buffers (Taheri-Kafrani and 

Bordbar, 2009) and polymers (Wang and Olofsson, 1998). For example, a study based on the 

interactions between polyethylene glycol and sodium dodecyl sulfate (SDS) revealed 

relationships between the molecular weight of polymer and binding behavior (Dai and Tam, 

2001). Studies such as surfactant-membrane partitioning and membrane solubilisation, have 

only been possible through the development of high-sensitivity ITC (Heerklotz and Seelig, 

2000) which has been shown to surpass more traditional techniques to determine CMC, such 

as conductivity, measurement of dielectric constants and quantitative model systems (Pérez-

Rodríguez et al., 1998, Gezae Daful et al., 2011). 

 

Furthermore, drug surfactant binding has been investigated to monitor a model for the 

hydrophobic contribution to the free energy of DNA intercalation reactions (Dignam et al., 

2007). To obtain a thorough understanding of drug-micelle interactions, studies were expanded 

to other surfactants systems, particularly those with a differently charged head group, including 

cationic surfactant based systems (Akhtar et al., 2008).  

 

In summary, even though only limited drug-micelle interaction based studies have 

utilised ITC (Bouchemal, 2008), it is already identified as a sensitive analytical tool for 

characterising drug-excipient interactions, such as those observed between pharmaceutical 

compounds and cyclodextrins (Waters et al., 2010).  
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1.7. Aims and objectives 
 

The overall aim of the research presented in this thesis is to establish a novel 

formulation method for the development of solid dispersions and investigate thermodynamic 

parameters associated with these drug-excipient interactions. 

 
The objectives of this work are as follows: 

 

1. To develop bespoke mesoporous silica based solid dispersions using a novel 

microwave system. 

2. To develop Syloid® silica based solid dispersions using a novel microwave system. 

3. To develop a hydrophilic carrier based solid dispersion using a novel microwave 

system. 

4. To investigate drug-excipient interactions based on surfactant saturation limits and 

micellisation studies.  

 

In summary, this project seeks to develop novel formulations with enhanced 

physicochemical properties and use thermodynamic analysis to fully characterise such drug-

excipient interactions. 
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Chapter 2: Materials and methods 
 

This chapter provides information about the materials, i.e. the drugs and excipients, for 

the development of formulations using different approaches. The methods for solid state 

characterisation of formulations, as well as techniques used to evaluate drug-excipient 

interactions in solution, are also discussed.  

2.1. Chemicals 
 

All samples of mesoporous silica, namely Core Shell (CS), Core Shell rehydrox (CSR), 

SBA-15 (SBA) and the non-porous Stober (ST), were supplied by Glantreo Ltd., Ireland. Silica 

gel (SG) was supplied from Alfa Aesar (UK). Syloid® (SYL) was supplied from WR Grace 

(USA). Polyethylene glycol 6000 (PEG) (Sigma-Aldrich, Dorset, UK), sodium dodecyl 

sulphate (SDS) (Sigma-Aldrich, Dorset, UK) and sodium deoxycholate (NaDC) (Fisher 

Scientific, UK) were used as purchased with a minimum purity of 99 %. Caffeine (Fisher 

Scientific, UK), diprophylline (Acros Organics, UK), etofylline (TCI, UK), fenofibrate 

(Sigma-Aldrich, Dorset, UK), gemfibrozil (Sigma-Aldrich, Dorset, UK), ibuprofen (BASF, 

Cheshire, UK), ibuprofen S (Shahsun pharmaceuticals limited, India), paracetamol (Sigma-

Aldrich, Dorset, UK), phenylbutazone (Sigma-Aldrich, Dorset, UK) and theophylline (TCI, 

UK) were used as purchased with a minimum purity of 99 %. Disodium hydrogen 

orthophosphate dodecahydrate and sodium dihydrogen orthophosphate anhydrous were 

purchased from Fisher Scientific, UK with a minimum purity of 99 %. De-ionised water was 

used throughout the experiments. 

The structures of chemicals, along with their physicochemical properties, are presented 

in Table 2.1. 
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Table 2.1: Physicochemical properties of chemicals1 

Sodium Dodecyl Sulphate Structure 

Molecular weight 288.4 g/mol 

 

Melting point 204-207 °C 

Charge Anionic 

CMC 8.1 mM 

CAS no. 151-21-3 

Sodium Deoxycholate  

Molecular weight 414.55 g/mol 

 

Melting point 357-365 °C 

Charge Anionic 

CMC 5 mM 

CAS no. 302-95-4 

Polyethylene glycol 6000  

Molecular weight 6000 

 

Melting point 45-65 °C 

Charge Neutral 

CAS no. 25322-68-3 

Caffeine  

Molecular weight 194.2 g/mol 
 

Melting point 238 °C 

LogP -0.13 

Charge Neutral 

CAS no. 58-08-2 

Diprophylline  

Molecular weight 254.2 g/mol 

 

Melting point 158 °C 

LogP -1.10 

Charge Neutral 

CAS no. 479-18-5 

                                                           

1 Molecular weight, melting point, CMC and LogP were generated from ACD/Labs, RSC 
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Etofylline Structure 

Molecular weight  224.2 g/mol 

 

Melting point 161-166 °C 

LogP -0.55 

Charge Neutral 

CAS no. 519-37-9 

Fenofibrate  

Molecular weight 360.8 g/mol 

 

Melting point 80-81 °C 

LogP 4.80 

Charge Neutral 

CAS no. 49562-28-9 

Gemfibrozil  

Molecular weight  250.33 g/mol 

 

Melting point 59-63 °C 

LogP 4.39 

Charge Anionic 

CAS no. 25812-30-0 

Ibuprofen  

Molecular weight  206.3 g/mol 

 

Melting point 75-77 °C 

LogP 3.72 

Charge Anionic 

CAS no. 15687-27-1 

Ibuprofen S (+)  

Molecular weight  206.3 g/mol 

 

Melting point 52-55 °C 

LogP 3.72 

Charge Anionic 

CAS no. 51146-56-6 
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Paracetamol  

Molecular weight 151.2 g/mol 

 

Melting point 169-170 °C 

LogP 1.08 

Charge Neutral 

CAS no. 103-90-2 

Phenylbutazone  

Molecular weight  308.4 g/mol 

 

Melting point 105 °C 

LogP 3.16 

Charge Neutral 

CAS no. 50-33-9 

Theophylline  

Molecular weight  180.2 g/mol 

 

Melting point 270-274 °C 

LogP -0.17 

Charge Neutral 

CAS no. 58-55-9 

 

The physiochemical properties of the bespoke forms of mesoporous silica are depicted in 
Table 2.2. 

 

Table 2.2: Physicochemical properties of mesoporous silica 

Silica 

grade 
Description 

Surface area 

(m2g-1) 

Particle size 

(µm) 
Manufacturer 

SBA-15 

(SBA) 

Hexagonally ordered high surface 

area silica 
660 10 Glantreo 

Core Shell 

(CS) 

Core Shell silica material (solid 

core with porous outer shell) 
91 5.0 Glantreo 

Core Shell 

rehydrox 

(CSR) 

Core Shell silica material (solid 

core with porous outer shell) 

rehydroxylated in acid 

91 5.0 Glantreo 
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Silica Gel 

(SG) 
Standard silica gel 462 70 Alfa Aesar 

Stober (ST) Non-porous silica particles 3.0 0.4 Glantreo 

Syloid® 

(SYL) 

Syloid AL 1 FP (SYL 1) A 

pharmaceutical grade excipient  
676 7.0 WR Grace 

Syloid 72 FP (SYL 72) A 

pharmaceutical grade excipient 
405 6.0 WR Grace 

Syloid 244 FP EU (SYL 244) A 

pharmaceutical grade excipient 
379 5.5 WR Grace 

 

 

2.2. Methods 
 

The main novelty in the formulation aspects of this project is the application of 

microwave heating. Two specialised systems were used. The first is based around a modified 

domestic microwave oven (multi-mode cavity) and used for the formulations prepared in an 

aqueous medium (Waters et al., 2011). The system uses pulse-width modulation to control the 

power (0 to 800 W) and accurate temperature measurement is provided using a fibre optic 

temperature probe (Luxtron) located directly in the formulation suspension.  

 

 The second microwave system utilises a single-mode cavity with a variable power 

supply (0 to 1000 W) and was used for the solid-phase formulations. Originally designed for 

microwave thermogravimetry (Williams and Parkes, 2008), the system incorporates a 5-figure 

balance and utilises a IR pyrometer (Omega) for temperature measurement (Figure 2.1). The 

balance means that the mass of the sample can be monitored in real-time which can be useful 

in detecting if any thermal decomposition of the formulation occurs during processing. 
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Both microwave systems have computerised control and data acquisition where the 

microwave power can be continuously altered so that the temperature of the mixture being 

processed follows a pre-defined programme (e.g. 5 °C min-1 to 100 °C, hold isothermally for 

20 minutes, etc.). Experiments using manual control of the microwave power are also possible.   

 

 

 

Figure 2.1: Schematic view of the single-mode microwave system used to heat solid materials 
under controlled conditions. 

 

2.2.1. Mesoporous silica based formulations 
 

Prior to formulation using microwave based methods, a more conventional method 

was adopted for comparative purposes 

2.2.1.1.Conventional melt formulation 
 

Physical mixtures of all six silica samples (CS, CSR, SBA, SG, SYL 1 and ST) were 

each prepared with fenofibrate at 1:1, 3:1 and 5:1 excipient drug to mass ratios using tumble 

mixing for 5 minutes to achieve a homogenous mixture. A sample mass (0.5 g) of each 

 

A 
B 

C 

D 

 MWTG (waveguide configuration) 

A. 1000 W microwave generator and launcher. 

B. Manual 3-stub tuner. 

C. Sample section with removable vertical chokes and fixed side choke. 

D. Plunge-tuner / sliding short circuit. 

 

4.6712 g 

A 

B 

C 

D 

E 

F 

G 
H 

 MWTG (sample environment) 

A. Sample crucible. 

B. Silica stem and platform. 

C. Silica outer tube. 

D. Glass environment chamber. 

E. Sartorius 5-figure balance. 

F. Gas outlet. 

G. Gas inlet. 

H. Infrared pyrometer.  

Balance 
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formulation was added to 35 mL of deionised water (DI), placed on a hot plate stirrer with the 

temperature gradually increased from 25 °C to 90 °C, monitored using the fibre optic 

temperature probe. This temperature was maintained for 10 minutes, removed from the hot 

plate and allowed to cool to 25 °C with the resultant product collected by vacuum filtration and 

dried overnight at 45 °C in a standard oven. 

 

2.2.1.2.Multi-mode microwave processed formulation 
 

Silica samples together with fenofibrate were tumble mixed as described for the 

conventionally prepared samples. 0.5 g of each formulation was added to 35 mL of deionised 

water (DI) and placed in a 100 mL beaker in the microwave oven. The fibre optic probe was 

placed in the liquid which was slowly stirred with the aid of a magnetic stirrer. The software 

was set to heat the water-suspended mixture to 90 °C and hold isothermally for 10 minutes 

before the microwave power was reduced to zero to allow the sample to cool. Stirring was 

maintained throughout. Samples were then collected by vacuum filtration and dried overnight 

at 45 °C. A typical example of core shell (CS): fenofibrate (1:1) is illustrated in Figure 2.2. 
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Figure 2.2: Example of processing of fenofibrate and Core Shell (1:1) using the multi-mode 
microwave system. 

 

2.2.1.3.Single-mode microwave processed formulation 
 

0.5 g of a physically mixed sample of fenofibrate with silica (CS, CSR, SBA, SG, SYL 

1 and ST) at silica/drug ratios of 1:1, 3:1, 5:1 and gemfibrozil with silica (Syloid AL-1, Syloid 

72 and Syloid 244) at silica/drug ratios of 1:1 and 3:1, was placed in an alumina crucible in the 

microwave oven with the fibre optic probe positioned directly in the sample. The software was 

set to continuously modify the microwave power such that the sample was heated slightly 

above the melting temperature of the respective drug, maintained isothermally (10 minutes for 

fenofibrate and 20 minutes for gemfibrozil) and then cooled to room temperature, after which 

the sample was removed and cooled. An example of dry microwave heating is illustrated in 

Figure 2.3. 
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Figure 2.3: Example of processing of fenofibrate and Core Shell (1:5) using the single mode 
microwave system. 

 

 All the formulations were subjected to drug content analysis. Three random samples of 

10 mg drug equivalent from each formulation were dissolved in methanol and appropriately 

diluted and the drug content was evaluated by UV-analysis. The drug content was found to be 

in the range of 90-98 %.                                                             

2.2.2. Polyethylene glycol 6000 (PEG) based formulations  
 

Solid dispersions of fenofibrate (FF), ibuprofen (IBU), ibuprofen S (IBU S) and 

phenylbutazone (PB) were formulated with polyethylene glycol (PEG) firstly using 

conventional heating, followed by microwave heating for comparison.  

2.2.2.1.Conventional formulation method 
 

For conventional heating, PEG together with FF, IBU or IBU S were tumble mixed in 

ratios of 1:1, 3:1, 5:1 while 1:1 and 1:5 ratios were prepared for PB. A sample mass (0.5 g) of 
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each formulation was heated to the respective melting temperature of each drug in a 

conventional oven for 20 minutes, removed from the oven and then cooled to room 

temperature. 

2.2.2.2.Microwave formulation method 
 

PEG, together with FF, IBU, IBU S and PB were tumble mixed as described for the 

conventionally prepared samples. 0.5 g of each formulation was placed in an alumina crucible 

and heated in the single mode microwave system. At this point two distinct methods were 

employed. Firstly, the software was set to continuously modify the microwave power such that 

the sample was heated to the melting temperature of the excipient, maintained isothermally for 

20 minutes and then cooled to room temperature, after which time the sample was removed 

and cooled. For identification, these formulations were denoted with a symbol MW*. For the 

second method the temperature of the samples was increased continuously up to the melting 

temperature of the drugs, maintained isothermally for 20 minutes and then cooled to room 

temperature, after which time the sample was removed and cooled. These formulations were 

identified with a symbol MW.  

All the formulations were pulverised in a mortar and pestle, sieved through a 150-mesh 

screen, and stored in screwed-cap vials at room temperature until further use. 

Drug content was determined spectrophotometrically (in methanol) and found to be in 

the range of 95-97 %. 

 

2.3. Characterisation techniques 
 

In summary, a total of 117 formulations were prepared using both mesoporous silica 

and polyethylene glycol based excipients (with a total of five drugs) to investigate the 

suitability of microwave heating as a formulation technique. Little can be determined from the 
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physical appearance of the resultant products, the true suitability of microwave formulation can 

only be determined based on their physicochemical properties, which in turn dictates the 

bioavailability and stability of the products. Therefore, following on from formulation it was 

essential to undertake a thorough analytical review of all products. 

 

2.3.1. Dissolution testing 
 

To assess the drug release of developed formulations, dissolution analysis was 

performed using the type II (paddle method). This was a fully automated assembly, comprising 

a dissolution bath (Pharmatest DT 70), peristaltic pump and UV visible spectrophotometer 

(Cecil 3021, series 3000) (Figure 2.4). 

 

Figure 2.4: Dissolution apparatus used for analysing formulations. 

 

2.3.1.1. In vitro dissolution of mesoporous silica based formulations 
 

Formulated samples of fenofibrate (equivalent to 10 mg of drug in each) were placed 

in 900 mL of freshly prepared 0.1 M HCl solution (pH 1.2 ± 0.1) containing 1 % (w/v) sodium 
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dodecyl sulphate. Samples of gemfibrozil (equivalent to 20 mg of drug in each) were placed in 

500 mL of freshly prepared 0.1 M HCl solution (pH 1.2 ± 0.1) containing 0.5 % (w/v) sodium 

dodecyl sulphate. The temperature of the dissolution bath was set at 37 °C and a paddle stirring 

speed of 50 rpm. Samples were taken by an auto sampling system equipped with filters at 

intervals of 5 minutes over a time period of 30 minutes and returned to the original solution. 

UV measurements were carried out at 290 nm and 277 nm for fenofibrate and gemfibrozil 

respectively. All experiments were repeated in triplicate with percentages of drug release 

calculated based on a series of standard solutions at known concentrations. 

         

2.3.1.2. In vitro dissolution of PEG based formulations 
 

 Formulated samples (equivalent to 10 mg of fenofibrate in each or equivalent to 10 mg 

of phenylbutazone in each) were placed in 900 mL of freshly prepared 0.1 M HCl solution (pH 

1.2 ± 0.1) containing 1 % (w/v) sodium dodecyl sulphate or 0.5 % (w/v) sodium dodecyl 

sulphate respectively. Samples (equivalent to 25 mg of ibuprofen or ibuprofen S in each) were 

placed in 500 mL of freshly prepared 0.1 M phosphate buffer solution (pH 6.8 ± 0.1). The 

temperature of the dissolution bath was set at 37 °C and a paddle stirring speed of 50 rpm. 

Samples were taken by an auto sampling system equipped with filters at intervals of 5 minutes 

over a time period of 30 minutes and returned to the original solution. UV analysis was carried 

out at wavelengths of 290 nm, 238 nm, 222 nm and 222 nm for fenofibrate, phenylbutazone, 

ibuprofen and ibuprofen S respectively. All experiments were repeated in triplicate with 

percentages of drug release calculated based on a series of standard solutions at known 

concentrations. 
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2.3.2. Solid state characterisation 
 

The elucidation of a drug’s physical state within a solid dispersion is a vital step to 

investigate the mechanism by which an enhanced dissolution profile occurs. The particular 

techniques used in this work are discussed in the following section. 

 

2.3.2.1. X-ray diffraction (XRD) 
 

XRD is an established tool to evaluate the crystalline or amorphous content of solid 

dispersions and forms the basis of most solid-state testing regimens in the pharmaceutical 

industry. For this study, powder X-ray diffraction experiments utilised a D2-Phaser (Bruker) 

X-ray diffractometer, equipped with a Cu Kα radiation source at 30 kV voltage and10 mA 

current. Diffraction patterns were obtained in the 2θ range of 5–50° using a 0.02 step size. 

 

2.3.2.2. Differential scanning calorimetry (DSC) 
 

Differential scanning calorimetry (DSC) is the most frequently used thermal analysis 

technique, mainly because of its promptness, simplicity and wide range of applications. DSC 

is routinely used to investigate the miscibility of solid dispersion components and to identify 

the crystalline or amorphous nature of materials. DSC may involve heating or cooling a sample 

at a constant temperature rate, holding at a specific temperature, or any sequence of these in an 

inert atmosphere under the flow of a suitable gas. Detailed information based on phase 

transitions of substances can be obtained (for example, melting points, recrystallisation and 

glass transitions). 

In this study differential scanning (Mettler Toledo DSC 821) analysis for all 

formulations was performed using 5–10 mg samples, an atmosphere of flowing nitrogen at 50 

mL per minute and a temperature program of 10 °C/min from 25 °C to 120 °C. 
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2.3.2.3. Fourier-transform infrared spectroscopy (FTIR)  
 

Fourier-transform infrared spectroscopy (FTIR) is routinely used to identify functional 

groups of compounds, whereas, in the field of solid dispersions, it can provide information 

about drug-drug and drug-excipient intermolecular bonding. In this study, the infrared 

spectrum for all formulations was recorded using a Nicolet-380 Fourier Transform Infrared 

spectrometer (FT-IR) with an ATR crystal. Powder samples were placed directly onto the 

diamond crystal and the anvil lowered to ensure that sample was in full contact with the 

diamond. Each spectrum was obtained in the range of 400 – 4000 cm-1 with 2 cm-1 resolution. 

2.3.2.4. Scanning electron microscopy (SEM) 
 

Scanning electron microscopy (SEM) is a technique in which the sample is scanned 

using a high-energy beam of electrons, to produce images at much higher levels of 

magnification than is possible with optical microscopy. Sample preparation involves mounting 

the material to a specimen stub, and coating the surface of the material in an ultrathin layer of 

gold to inhibit accumulation of electrostatic charges, making the surface of the sample 

electrically conductive. In this study, the morphology of the prepared samples was 

characterised using scanning electron microscopy (SEM), (JEOL JSM-6060LV, Japan) with 

gold-plating prior to imaging using a sputter coater (SC7620). 

 

2.3.3. Isothermal titration calorimetry (ITC) 
 

Thermodynamic interactions were investigated using a Microcal calorimetric unit (ITC) 

linked to a Microcal MCS observer with data analysed using Origin software (Figure 2.5). A 

thorough review of the theory of ITC can be found in Chapter 1. 
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Figure 2.5: A MicroCal VP-ITC used in this study to investigate the thermodynamics of 
drug-excipient interactions. 

 

In this study a chemical test reaction, namely, the complex formation between barium 

(Ba+2) and 18-crown-6 (1, 4, 7, 10, 13, 26-hexaoxacyclooctadecane) was conducted to avoid 

systemic instrumental errors. It was chosen as it is reliable test reaction involving inexpensive 

and stable compounds that are easily available in sufficiently pure form (Wadsö and Goldberg, 

2001). 

 In this study, the values obtained for the binding stoichiometry (N) 1.0 ± 0.01, binding 

constant (Ka), 6.0 ± 0.1 x 103 mol.dm-3 and binding enthalpy (∆Hb), -31.0 ± 0.1 KJ.mol-1 were 

in good agreement with values reported previously (Wadsö and Goldberg, 2001, Sgarlata et 

al., 2013) (Figure 2.6). 
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Figure 2.6: ITC calibration of barium (Ba+2) and 18-crown-6. 
 

ITC studies focused on saturation limit measurements and CMC determinations. Firstly, 

saturation studies were conducted by injecting aqueous drug solution into a micellar solution 

in which micelles were in excess over the course of titration such that all drug added at each 

step partitioned (Waters et al., 2005), i.e. moved from the aqueous solvent phase to within the 

micellar core. The sample cell (1.413 cm3) was filled with an aqueous micellar solution of SDS 

(20 mM) and the syringe (0.290 cm3) was filled with aqueous drug solution. The drug 

concentration chosen for each set of experiments was based on initial findings where each 

experiment was optimised to give a signal of appropriate amplitude to suit the calorimetric 

output, i.e. 30 mM for theophylline, 80 mM for etofylline and diprophylline, 90 mM for 
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paracetamol and 100 mM for caffeine. The volume per injection was 0.010 cm3 with a time 

between each injection of 200 s and duration for each injection of 20 s. Experiments were 

conducted at T = 298 K and 310 K with the change in cell feedback measured as a function of 

time with each experiment repeated in triplicate with freshly prepared solutions. Heats of 

dilution were determined by titrating an equivalent concentration of drug solution into 

deionised water alongside deionised water titrated into micellar solutions. The area under each 

peak was obtained by integration (following subtraction of the heats of dilution); the resultant 

values were combined together and divided by the total number of moles of drug added to 

calculate the enthalpy change. This enthalpy change corresponded to the process related to the 

saturation of a micelle with drug and is therefore referred to as ∆Hsaturation/ (kJ ∙ mol -1) of drug.  

 

From these data, it was possible to calculate the drug: surfactant ratio based on the 

knowledge of the concentrations of both solutions along with the syringe and cell volumes. 

Through calculating the number of drug molecules added during the experiment and based on 

an average surfactant aggregation number of n = 62 (Mutelet et al., 2003), the saturation limit 

for the micellar solutions in the presence of drugs was determined, i.e. the number of drug 

molecules per micelle, given by Equations (2.1) and (2.2). 

 �ଵ ܵܵܦሺ�௤ሻ → ଵሺ���,�௤ሻ,                                                                                        (Eq. 2.1) �ଶ�ሺ�௤ሻ�ܵܦܵ + ଵ�ܵܦܵ   ∙  ��ଶሺ���,�௤ሻ,                                                                                   (Eq. 2.2) 

 

where N1 is the average number of SDS molecules in a micelle and N2 is the average number 

of ligands L bound to the micelle. 
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It should be noted that this work assumed the aggregation number does not vary during 

the course of the study or in the presence of drugs. Furthermore, a small change in the 

aggregation number would not dramatically alter the drug to micelle ratios presented in this 

work and changes in the associated enthalpy are independent of this factor. Using luminescent 

probes, it is possible to measure the aggregation number for a surfactant (da Graça Miguel, 

2001) although data are not available for the surfactant used in this work in the presence of 

these particular drugs and therefore assumed to be unaffected by this potential variable. 

 

Following on from saturation studies, ITC was secondly used to determine the CMC of 

surfactants alone or in the presence of drugs. This was achieved by titrating micelles 

(concentration of SDS surfactant solution [SDS1] = 200 mM or NaDC surfactant solution 

[NaDC1] = 50 mM) from the 290 µL syringe into deionised water (DI) or an aqueous drug 

solution in the sample cell (1.4 mL) at T = 298, 304 and 310 K. When time t = 0, the 

concentration of SDS [SDS2] or NaDC [NaDC2] in the cell was zero and then upon injections, 

increased through the respective CMC points. At all times, [SDS1 or NaDc1] > [SDS2 or 

NaDc2]. Initially, there were no micelles present until the point of micellisation was reached 

which is identified as a break in the thermogram. The enthalpy (∆Hmic) of micellisation was 

calculated by integrating the area under each peak and summing the values obtained. Data was 

also analysed to determine the change in Gibbs free energy (∆Gmic) and entropy (∆Smic). The 

concentration of drugs used was 20 mM in all cases (with the exception of paracetamol at 60 

mM) with a pH range from 6.4 to 8.0 as detailed earlier in the experimental section. All 

experiments were comprised of 48 ten second 2.5 µL injections with a time interval between 

each injection of 240 s. The stirring speed was set at 307 rpm. Each experiment was repeated 

in triplicate with freshly prepared solutions. 
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To investigate the possible excipient-excipient or drug-excipient interactions, the same 

study was repeated with PEG 6000 as an excipient. The sample cell comprised of either PEG 

solution (0.2 mM) or drug-PEG solution where the concentration of drugs used was the same 

as in the previous experiments. This was titrated with 200 mM SDS or 50 mM NaDC solution 

in the 290 µL syringe and stirred at 307 rpm. Experiments were conducted at three temperatures 

(298, 304 and 310 K), all in triplicate to ensure reproducibility. The effect of PEG and drugs 

on the critical micelle concentration of both surfactants was evaluated through data analysis. A 

full thermodynamic profile including changes in enthalpy (∆Hmic), Gibbs free energy (∆Gmic) 

and entropy (∆Smic) of micellisation were also obtained. 

 

In summary, six analytical techniques were utilised to investigate the range of products 

formulated in this work. Each technique provides valuable information concerning specific 

properties, which, when combined, can help to evaluate the potential suitability of each 

formulated product as a medicinal product. 
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Chapter 3: Mesoporous silica based formulations 
 

3.1. Introduction 
 

Many drugs exhibit poor water solubility, leading to limitations in potential formulation 

options and in some cases, resulting in drug candidates being rejected during the development 

process. Limited solubility results in low levels of bioavailability, often overcome using a 

variety of methods including alterations to the physical properties of the drug, for example, by 

forming solid dispersions (Torrado et al., 1996). In the last 10 years, mesoporous silica based 

drug delivery systems have been investigated to enhance solubility and thus improve 

bioavailability (Vallet-Regí et al., 2007). These systems offer the ability to maintain therapeutic 

levels of a drug over a specified period of time through the controlled design of ordered pore 

networks, high pore volumes, high surface areas and functionalised surfaces. Furthermore, 

silica based formulations offer a biocompatible and stable product that has become a suitable 

method for the sustained release of drugs to specific organs within the body (Barbé et al., 2004).  

 

Many ordered and non-ordered forms of mesoporous silica have been proposed as 

carriers for drugs that exhibit poor water solubility. This is because the increase in surface area, 

along with the potential of the drug to exist in pores in the amorphous form (rather than 

crystalline), can aid dissolution. Kinnari et al. have shown that the anti-fungal drug itraconazole 

exists in the amorphous form when formulated with silica (Kinnari et al., 2011), while 

Mellaerts et al. working with the same drug combined with SBA-15 found it to reside both in 

the micro- and mesopores (Mellaerts et al., 2008). Through modifying the pore size, 

connectivity and geometry, it is known that drug release can be controlled for model drugs such 

as ibuprofen (Andersson et al., 2004; Zhu et al., 2005) and many other compounds (Van 

Speybroeck et al., 2009, Zhang et al., 2010).  
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Modifying the structure of the silica is not the only approach researchers have taken to 

enhance drug release from silica based systems. An alternative route to achieving enhanced 

bioavailability is to modify the formulation method employed to encourage drug particles to 

enter the ordered silica structure. Examples of such methods include spray-drying (Takeuchi 

et al., 2004), wet granulation (Vialpando et al., 2012), the freeze–thaw method (Tozuka et al., 

2010) and, more recently, supercritical carbon dioxide processing (Ahern et al., 2012). Loading 

methods, such as those discussed here, have also been compared with several functionalised 

ordered and non-ordered mesoporous silicas to establish which overall system provides optimal 

release conditions (Limnell et al., 2011). 

 

This study involves the application of a unique formulation method with a model drug 

known to exhibit poor water solubility, namely fenofibrate which is used to treat high 

cholesterol levels. One area of research that has only received limited interest to date is the 

preparation of drug–silica materials using microwave irradiation despite the possibility that it 

could provide an ideal formulation method to create materials with a highly predictable and 

potentially enhanced drug release profile. A limited number of studies have attempted to use 

microwave-based methods to incorporate materials with poorly water soluble drugs, such as 

loratidine with cyclodextrin derivatives and found that an enhanced product results from this 

method (Nacsa et al., 2008). Usually such methods involve irradiation of a sample with no 

power control, i.e. the sample is heated for a specified period of time regardless of sample 

temperature during the experiment. This is known to be problematic as samples may heat 

uncontrollably with significant consequences for the stability of the drug concerned. However, 

more recently a novel method of heating samples with a feedback system has been adapted to 

ensure the temperature of the sample can be controlled throughout the duration of the 

experiment (Waters et al., 2011). This method ensures that a sample does not exceed a specified 
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temperature, helping avoid unwanted drug degradation reactions. A similar heating approach 

is used in this study with its first application for producing mesoporous silica based drug 

delivery materials. 

 

3.2. Results and discussion 
 

3.2.1. In -vitro  dissolution of fenofibrate 
 

The in vitro release profiles of drug from drug-silica samples, along with pure and 

processed fenofibrate measured using standard dissolution analysis over a period of 30 minutes 

are presented in Figures 3.1-3.6.  

3.2.1.1. Dissolution studies of Core Shell silica based formulations 
 

Figure 3.1 highlights results for formulations based on Core Shell silica as the excipient 

using microwaves and traditional heating along with physically mixed products over a period 

of 30 minutes. Formulating fenofibrate with Core Shell silica increased the extent of dissolution 

compared with the percentage release of pure fenofibrate, i.e. 41.9 (± 0.6) % after 30 minutes 

(Figure 3.1c). For the Core Shell dry microwave (DM) formulations, the 5:1 (Figure 3.1c) and 

3:1 (Figure 3.1b) products provided the greatest drug release, i.e. 84.1 (± 4.9) % and 73.4 (± 

0.4) %, respectively, whereas percentage releases of  46.6 (± 0.3) % and 45.2 (± 0.9) %, 

respectively, were achieved from the physical mixtures (PM) of the same products, after 30 

minutes. Diverse dissolution profiles were observed from formulations prepared using wet 

microwave (WM) and traditional heating (TH) techniques (Figure 3.1a, b & c). From some 

formulations, a slightly increased extent of drug release was observed compared with pure 

fenofibrate, however, a marked reduction in the extent of dissolution was observed for the 

remaining formulations.  
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Upon melting using the dry microwave method it is plausible that fenofibrate molecules 

could be transported into the pores under capillary action and interact with the free silanol 

groups. However, surface adsorption would also be anticipated. The effective pore volume 

accommodates drug molecules and on cooling, the surface adsorbed and pore confined drug 

can exist in an amorphous or a semi-crystalline state depending on the silica content of 

formulation. When this formulation comes into contact with the dissolution media, a rapid 

release of fenofibrate in the form of fine particles occurs, possibly because of desorption of 

fenofibrate by the influx of the dissolution media inside the pores. However, less drug dissolved 

over a period of 30 minutes from the 1:1 dry microwave formulation. The available drug/pore 

ratio for the loading of drug is less, hence, the drug left after pore filling is deposited between 

the pore walls and on the free surface of silica. Such loaded drug can easily attain a crystalline 

state on cooling as confirmed from the SEM images (See Section 3.2.2.2). Consequently, an 

influx of dissolution media in the pores is hindered by the bulk crystalline drug accumulated 

on the surface which results in a slow release in comparison with samples containing higher 

silica content. The significantly slower release of fenofibrate was also observed using water as 

a vehicle which might be displaced into the pores of silica causing partial pore blockage, thus 

the drug crystallises on top of the pores. This co-adsorbed water significantly affects the 

interactions of drug molecules with pore walls and thereby alters the adsorption, and diffusion 

behaviour of drug molecules. 

 

In summary, it would appear that the presence of Core Shell silica can influence the 

dissolution of fenofibrate. This is especially true if combined with the application of the dry 

microwave based technique, doubling the percentage of release after 30 minutes. 
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Figure 3.1: Fenofibrate release profiles for pure fenofibrate along with Core Shell (CS) based 
formulations using traditional heating methods (TH), physical mixing (PM), microwave 
irradiation wet (WM) and dry (DM), all at silica/drug ratios of 1:1 (a), 3:1 (b) and 5:1 (c). Each 
data point represents the mean of 3 results with SD error bars. 
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3.2.1.2.Dissolution studies of Core Shell rehydrox based formulations  
 

The release behaviour of fenofibrate from Core Shell rehydrox (CSR) is presented in 

Figure 3.2. For the CSR dry microwave based formulations, the 5:1 (Figure 3.2c) and 3:1 

(Figure 3.2b) products provided the greatest drug release, i.e. 86.6 (± 2.8) % and 81.2 (± 9) %, 

respectively after 30 minutes. The physical properties of CSR resemble those of CS except its 

surface was treated to increase the hydrophobicity of the silica which might justify the slightly 

higher dissolution rate compared with Core Shell (CS). As fenofibrate is hydrophobic in nature, 

the drug could be entrapped through hydrophobic interactions (along with van der Waals 

interactions) with the pore walls which aids the movement of drug molecules into the pores 

during the melting process. For the remaining formulations with Core Shell rehydrox a wide 

range of dissolution profiles was observed. In some cases, formulation made little difference 

to the dissolution behaviour, compared with pure fenofibrate yet for others a marked reduction 

in the extent of dissolution was observed. 

 

In summary, Core Shell rehydrox had a similar enhancement on dissolution compared 

with core shell silica using the dry microwave formulation method for both the 3:1 and 5:1 

ratios.  
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Figure 3.2: Fenofibrate release profiles for pure fenofibrate (FF) along with Core Shell rehdrox 
(CSR) based formulations using traditional heating methods (TH), physical mixing (PM), 
microwave irradiation wet (WM) and dry (DM), all at silica/drug ratios of 1:1 (a), 3:1 (b) and 
5:1 (c). Each data point represents the mean of 3 results with SD error bars. 
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3.2.1.3.Dissolution studies of SBA-15 based formulations 
 

Dissolution profiles for fenofibrate from SBA silica based formulations over a period 

of 30 minutes are presented in Figure 3.3. An improved dissolution rate was observed at 

different drug to silica ratios but there was no particular trend between the extent of drug release 

and ratio of drug to silica in the SBA samples. From analysis of the dissolution profiles, it 

appears that a significant amount of drug was released from the dry microwave formulation at 

a silica/drug ratio of 3:1, i.e. 78.8 (± 6.5) % after 30 minutes (Figure 3.3b). A percentage release 

of 65.5 (± 4.1) % from the physically mixed product at a silica/drug ratio of 3:1 after 30 minutes 

confirmed the influence of the silica surface on the transformation of a crystalline to a non-

crystalline drug state which resulted in enhanced release compared with pure fenofibrate 

(Figure 3.3b). A delayed release behaviour was observed from the traditionally heated and wet 

microwave processed formulations (Figure 3.3a, b & c).   
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Figure 3.3: Fenofibrate release profiles for pure fenofibrate (FF) along with SBA-15 (SBA) 
based formulations using traditional heating methods (TH), physical mixing (PM), microwave 
irradiation wet (WM) and dry (DM), all at silica/drug ratios of 1:1 (a), 3:1 (b) and 5:1 (c). Each 
data point represents the mean of 3 results with SD error bars. 
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3.2.1.4.Dissolution studies of Syloid AL-1 based formulations 
 

The release behaviour of fenofibrate from Syloid AL-1 (SYL 1) silica is depicted in 

Figure 3.4. For the SYL 1 dry microwave based formulations, the 3:1 product provided the 

greatest drug release, i.e. 87.3 (± 0.7) %, after 30 minutes as seen in Figure 3.4b. At the same 

silica/drug ratio, the physically mixed formulation released 63.6 (± 3.1) %, after 30 minutes 

(Figure 3.4b). The large surface area presented by SYL 1 can be considered as a potential 

reason for the enhanced release of fenofibrate. For the remaining formulations, a markedly 

reduced extent of dissolution was observed compared with pure fenofibrate (Figure 3.4a, b & 

c).  

In summary, the dissolution results confirmed that the 3:1 dry microwave product is an 

ideal formulation for both SBA-15 and Syloid AL-1 silica. 
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Figure 3.4: Fenofibrate release profiles for pure fenofibrate (FF) along with Syloid AL-1 (SYL 
1) based formulations using traditional heating methods (TH), physical mixing (PM), 
microwave irradiation wet (WM) and dry (DM), all at silica/drug ratios of 1:1 (a), 3:1 (b) and 
5:1 (c). Each data point represents the mean of 3 results with SD error bars. 
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3.2.1.5.Dissolution studies of silica gel based formulations 
 

Figure 3.5 highlights fenofibrate release from silica gel (SG) based formulations. For 

the silica gel (SG) dry microwave formulations, the 1:1 product provided the greatest extent of 

drug release, i.e. 85.8 (± 1.3) % whereas a percentage release of  64.5 (± 3.8) % was achieved 

from the physical mixture of the same product after 30 minutes (Figure 3.5a). This can be 

explained on the basis of the physical properties of silica as the particle size was 70 µm along 

with a pore diameter of 4.7 nm and a pore volume of 0.71 cm3g-1. The viscous molten drug has 

therefore possibly diffused deep into the pores. Consequently, rapid release was observed from 

the 1:1 product as a result of the free direct contact between the dissolution media and dispersed 

drug particles. The reduced release at the high SG ratio can be ascribed to the larger silica 

particle size as drug molecules were entrapped deep inside the large silica particles and media 

influx into the silica faced strong steric hindrance. For the traditionally heated and wet 

microwave processed formulations a significant reduction in the extent of dissolution was 

observed (Figure 3.5a, b & c).  
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Figure 3.5: Fenofibrate release profiles for pure fenofibrate (FF) along with silica gel (SG) 
based formulations using traditional heating methods (TH), physical mixing (PM), microwave 
irradiation wet (WM) and dry (DM), all at silica/drug ratios of 1:1 (a), 3:1 (b) and 5:1 (c). Each 
data point represents the mean of 3 results with SD error bars. 
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To this end, it appeared that silica/drug products formulated through dry microwave 

irradiation generally increased drug release. Furthermore, the physical properties of the silica 

particles such as pore size, volume and surface area seem to influence the dissolution rate.  

3.2.1.6.Dissolution studies of Stober based formulations 
 

To further confirm the role of silica physical properties on the drug release, a non-

porous silica, namely Stober was used to compare with porous silica materials. As expected, 

Stober did not show any enhancement in drug release after formulation with the maximum 

achievable drug release only 14.3 (± 0.8) % (Figure 3.6a, b & c). This anomaly can be attributed 

to the dramatically different properties of the silica, compared with the other five in the series. 

Stober has a far smaller pore volume, particle size and surface area compared with the other 

forms of silica; furthermore, this silica is the only non-porous silica tested, which could result 

in far less drug entering the pores during the formulation process and not creating the same 

type of product as seen for the remaining silicas. 
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Figure 3.6: Fenofibrate release profiles for pure fenofibrate (FF) along with Stober (ST) based 
formulations using traditional heating methods (TH), physical mixing (PM), microwave 
irradiation wet (WM) and dry (DM), all at silica/drug ratios of 1:1 (a), 3:1 (b) and 5:1 (c). Each 
data point represents the mean of 3 results with SD error bars. 
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3.2.1.7.Summary  
 

For all six forms of silica in the series, it was very clear that using traditional heating 

methods did not positively influence, and in some cases even retarded, the extent of drug 

release compared with pure fenofibrate over a 30 minutes period. For example, using traditional 

heating methods at a 1:1 ratio, SYL 1 silica only achieved a percentage drug release of 14.8 (± 

1.5) % (Figure 3.4a) compared with drug alone 41.9 (± 0.6) % after 30 minutes (Figure 3.4c). 

More surprisingly, using microwave irradiation in the presence of water also retarded drug 

release with a percentage drug release of only 5.1 (± 0.4) % for a 5:1 formulation for SBA over 

30 minutes (Figure 3.3c). This phenomenon can be explained as water may interact with silanol 

groups inside the pores of silica, reduce drug loading and therefore, the drug may retain its 

crystalline state which may result in a decreased rate of dissolution. 

 
 

Such a dramatic increase in drug release can be explained by considering the 

physicochemical properties of the drug under investigation, i.e. fenofibrate is a hydrophobic 

compound with poor aqueous solubility. Therefore, it is plausible that during the microwave 

formulation process, the drug melts into the pores of the silica where it is stored in the partially 

crystalline or amorphous form, thus helping encourage a more rapid and extensive, subsequent 

drug release. In the majority of cases for the five forms of silica in the series where this 

phenomenon is observed, products formulated using a physical mixing method proved to be 

the next most efficient method to maximise the extent of drug release for fenofibrate. This also 

supports the theory that drug enters the silica pores as a partial enhancement was observed, yet 

the amorphous transformation is not so dramatic without the direct input of energy supplied by 

the microwave source thus only creating a partial increase in drug release. This could be a result 

of simple particle size reduction as a consequence of the physical mixing process.  
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3.2.2. Solid state characterisation 
 

3.2.2.1. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) 
 

DSC and XRD were employed to investigate the crystal lattice of pure and processed 

fenofibrate with various mesoporous silica. Figures 3.7 and 3.8 depict the DSC thermograms 

for SBA-15 and Syloid AL-1 based physical mixtures and dry microwave formulations along 

with pure fenofibrate. Fenofibrate was characterised by a single sharp melting endothermic 

peak at 82.43 ºC. The peak onset temperature and heat of fusion (∆Hf) were 80.51 ºC and -

72.94 Jg-1, respectively. This characteristic peak appeared in the physical mix formulations at 

all silica/drug ratios with slight variations in terms of melting peak depression and broadening, 

indicating the transition from a crystalline to a semi-crystalline state. When the fenofibrate was 

formulated with SBA and SYL at a silica/drug ratio of 1:1 using dry microwave formulations, 

a melting peak with less intensity was detected. At this ratio, the pore volume of silica was 

insufficient for hosting the extra fenofibrate molecules, and the residual fenofibrate would 

instead reside on the external surface of silica. However, the melting peak was completely 

absent in SBA and SYL 1 based dry microwave assisted formulations at silica/drug ratios of 

3:1 and 5:1, confirming the amorphous state of fenofibrate within formulations. 
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Figure 3.7: DSC curves for fenofibrate (FF) along with SBA-15 (SBA) based physical mixture 
(PM) and dry microwave (DM) formulations all at silica / drug ratios of 1:1, 3:1 and 5:1. 
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Figure 3.8: DSC curves for fenofibrate (FF) along with Syloid AL-1 (SYL 1) based physical 
mixture (PM) and dry microwave (DM) formulations all at silica / drug ratios of 1:1, 3:1 and 
5:1. 
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Figures 3.9 and 3.10 display the XRD patterns of SBA and SYL 1 based physical mixes 

and dry microwave formulations at ratios of 1:1 and 3:1. The characteristic diffraction peaks 

observed at 11.99°, 14.3°, 16.2°, 16.8° and 22.4°, correspond to the powder diffraction pattern 

for pure fenofibrate while the absence of diffraction peaks in SBA and SYL 1 silica confirm 

their amorphous structure. The fenofibrate crystalline state in the physical mix of SBA and 

SYL 1 is evident with the existence of characteristic diffraction peaks. The less intense 

diffraction peak at a ratio of 1:1 using dry microwave formulation, indicates the partial 

crystalline state of fenofibrate, deposited between the pore walls as a result of the blockage of 

pores with viscous molten drug. However, the XRD pattern at a ratio of 3:1 using a dry 

microwave formulation technique suggests the amorphous structure of fenofibrate within the 

formulation. It also confirms that the fenofibrate was confined inside the pores of silica. The 

XRD results agree with the DSC observations previously discussed. For the crystallisation 

process to occur in confined spaces, it is reported that the diameter of pores must be twenty 

times larger than the molecular size of drug (Sliwinska-Bartkowiak et al., 2001).  The pore 

diameters for silicas used in this work were usually in the range of 3-5 nm which is about 3-5 

times of the dimension of the fenofibrate molecule (estimated to be 0.98-1.27 nm) (Cha et al., 

2012). Therefore, the restricted pore size of mesoporous silica may have inhibited the 

crystallisation of fenofibrate inside the pores.  

The melting peak depression and decreased intensities of XRD peaks were also 

observed with the Core Shell, Core Shell rehydrox and silica gel based dry microwave 

formulations (See Appendix 1 & 2, respectively), revealing the transition from a crystalline to 

semi-crystalline or amorphous state of fenofibrate. The findings based on DSC and XRD 

results are in good agreement with the exemplified SBA and SYL silica. However, the 

formulations developed with Stober silica exhibit a characteristic melting endothermic peak 
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and X-ray diffraction peaks which corresponds to fenofibrate, confirming the crystalline state 

of fenofibrate, even after processing with microwaves as a result of its non-porous nature. (See 

Appendix 3 & 4). In summary, the transformation of fenofibrate from crystalline to amorphous 

(or partially crystalline state) is highly dependent on the selection of an optimum silica/drug 

ratio and the input provided by the formulation method. 
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Figure 3.9: XRD patterns for fenofibrate (FF) and SBA-15 (SBA) along with physical mix 
(PM) and dry microwave (DM) formulations at silica / drug ratios of 1:1 and 3:1. 
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Figure 3.10: XRD pattern of fenofibrate (FF) and Syloid AL-1 (SYL 1) along with physical 
mix and dry microwave (DM) formulations at silica/drug ratios of 1:1 and 3:1. 
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3.2.2.2. Scanning electron microscopy (SEM) 
 

Figure 3.11 demonstrates the SEM images of Core Shell, Core Shell rehydox, SBA-15, 

silica gel, Syloid AL-1 and Stober silica material used in this work. The CS and CSR silica 

particles are smooth and globular in shape with an estimated particle diameter of 5 µm. Such 

particle surfaces provide a uniform distribution of drugs. SBA formulations were composed of 

agglomerated sub-micron particles, presenting a large surface area and pore volume. The silica 

gel and Syloid AL-1 consisted of irregular, non-ordered silica particles, having rough surfaces 

for drug adsorption. The images also revealed the non-porous nature of Stober.  

Figure 3.11: SEM images of (a) Core Shell, (b) Core Shell rehdrox, (c) SBA-15, (d) silica 
gel, (e) Syloid AL-1, (f) Stober. 

(a) (b) 

(c) (d) 

(e) (f) 
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Scanning electron microscopy (SEM) images were used to indicate any observable 

differences in the physical characteristics of the formulated products compared with the pure 

drug or a simple physical mixture of drug and silica. Figure 3.12 illustrates six SEM images to 

exemplify the general findings of this work. It can be clearly seen that the drug has distinct 

crystalline particles and on physical mixing with core shell silica, did not mix well and retained 

their crystalline structure. SEM images also confirmed the insignificant effect of the traditional 

and wet microwave formulation methods as recrystallised drug was present in the samples. 

However, there was an appropriate distribution of drug observed in the dry microwave 

formulations especially as the ratio of silica to drug increased, i.e. there was a more uniform 

appearance to the resultant formulation as the drug and excipient combined to a greater extent.  

 

 

Figure 3.12: SEM images of (a) fenofibrate, (b) a physical mix of CS and FF (1:1), (c) TH 
formulation of CS and FF (5:1), (d) WM formulation of CS and FF (5:1) and DM formulation 
CS/FF at ratios of (e) 1:1 and (f) 5:1. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 3.13 presents the SBA-15 and silica gel materials along with their dry 

microwave formulations (5:1). As both the silicas have a large surface area, molten drug 

possibly adsorbed in monolayers and evenly distributed in pores, hence cannot be identified as 

segregated drug particles. These images confirmed the DSC and XRD results where complete 

amorphous materials were detected at a high silica content, indicating a homogenised system. 

A similar relationship was observed for the remaining silicas investigated in this study. Overall, 

it would seem that subjecting the drug to a dry microwave formulation process can modify the 

extent of crystallinity in the sample and create a product that contains a uniform dispersion of 

drug within the silica matrix. 

 

 

 

Figure 3.13: SEM images of (a) SBA-15, (b) DM SBA-15/FF (5:1), (c) Silica gel, (d) DM 
Silica gel/FF (5:1). 

 

 

 

(a) (b) 

(c) (d) 
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3.2.2.3. Fourier transform infrared spectroscopy (FTIR) 
 

FTIR was used to investigate potential interactions between fenofibrate and different 

silica materials. Figure 3.14 displays the IR analysis of pure fenofibrate along with core shell 

and SBA-15 silica. Specific fenofibrate peaks were observed at 2983, 1722, 1650 and 1598 cm-

1 corresponding to an O-H stretching vibration, C-H vibration, ester stretching vibration and 

lactone carbonyl functional group respectively. The signal at 1243 cm-1 is assigned to CH2Cl 

stretching vibrations. The SBA-15 and Core Shell spectra show the typical silica bands 

associated with the main inorganic backbone. The strong and broad signals observed at 1070 

cm-1 (Core Shell) and 1054 cm-1 (SBA-15), correspond to the asymmetric stretching vibrations, 

υas (Si-O-Si), of the siliceous framework. The symmetric stretch, υs (Si-O-Si), and the bending 

vibration, δ (Si-O-Si), of the siliceous framework were observed at 798, 445 cm-1 (Core Shell) 

and 800, 439 cm-1 (SBA-15), respectively. The band at 954 cm-1 for core shell and 944 cm-1 

for SBA-15, was attributed to Si-OH bending. The broad signal that appeared at about 3400 

cm-1 in some silica materials can be assigned to the O-H stretching frequency of Si-O-H groups 

and / or water from the atmosphere and within the porous sample (Guo et al., 2013). The 

characteristic siliceous framework peaks as exemplified in Core Shell and SBA-15, were 

observed in the spectra of all mesoporous silica samples used in this work. 
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Figure 3.14: FTIR spectra of pure fenofibrate, Core Shell and SBA-15 silica. 

 

Figure 3.15 demonstrates the IR spectrum of dry microwave (DM) formulations of 

fenofibrate (FF) with various mesoporous silica materials. The IR spectrum of Core Shell, Core 

Shell rehydrox, SBA-15, Syloid AL-1, silica gel and Stober based formulations exhibit 

characteristic fenofibrate peaks. These typical signals give a direct demonstration of the loading 

of fenofibrate molecules into the mesoporous silica framework. A similar pattern was observed 

for the physically mixed, wet microwave processed and traditionally heated formulations. The 

absorption bands of fenofibrate were, however, weaker in formulations having a higher silica 

content. In addition, no extra signals in the FTIR spectra of silica formulations were observed 
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which indicates that the surface of the particle remained unchanged after loading and the drug 

retained its chemical structure. In summary, it is confirmed that formulating fenofibrate using 

this novel microwave method does not detrimentally alter the physicochemical properties of 

the drug under investigation, according to the IR data presented. 
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Figure 3.15: FTIR spectra of fenofibrate (FF) alongwith Core Shell (CS), Core Shell 
Rehydrox (CSR), SBA-15 (SBA), Syloid AL-1 (SYL 1), Silica gel (SG) and Stober (ST) 
based dry microwave (DM) formulations all at silica/drug ratio of 1:1. 
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3.3. Conclusions 
 

In summary, it has been confirmed that it is possible to formulate silica based products 

containing a model drug using microwave irradiation. Furthermore, the resultant product 

exhibits enhanced drug release compared with the non-formulated versions. Characterisation 

of the samples using DSC and XRD implies that there is a transformation of the drug from a 

crystalline to a semi-crystalline or amorphous form as a result of the formulation process. SEM 

images indicated that at the highest drug/silica ratio investigated, it is possible to achieve a 

uniformly mixed product. FTIR spectra demonstrated the drug chemical stability after loading. 

Furthermore, drug release data have confirmed that for five of the six silicas investigated, it is 

possible to dramatically enhance the extent of fenofibrate release over a 30 minute period. 

These findings could be applied to a far wider range of compounds that exhibit poor aqueous 

solubility, thus helping improve bioavailability through the use of bespoke mesoporous silicas. 
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Chapter 4: Microwave processed formulations of gemfibrozil using 
non-ordered mesoporous silica 

 

4.1. Introduction 
 

The critical element in enhancing the dissolution profile of a poorly soluble compound 

is a reduction of the lattice energy of well-defined crystals by generating amorphous or 

disordered structures. Various ordered and non-ordered forms of mesoporous silica are used as 

potential carriers for therapeutic molecules. The surface chemistry of ordered and non-ordered 

silica is similar, consisting of siloxane groups (-Si-O-Si-), with the oxygen on the surface, and 

three forms of silanol groups (-Si-OH) (Kinnari et al., 2011). The major difference is in the 

pore structure as ordered silica materials contain very uni-directional and uniform pore 

structures compared with the disordered pore structures of non-ordered silica materials 

(Kinnari et al., 2011). 

In previous work using a variety of mesoporous silicas (Chapter 3), successful inclusion 

of fenofibrate was made through the application of novel microwave heating methods. The 

results confirmed the remarkable enhancement in the extent of dissolution of silica 

incorporated fenofibrate. This approach worked well for fenofibrate but further investigation 

is required to make full use of the microwave technique to develop mesoporous silica based 

formulations. It is an established fact that various properties of mesoporous materials affect the 

loading and release rate of incorporated drugs, such as the particle size, surface area, pore size, 

pore volume and surface chemistry (Xu et al., 2013). Therefore, the aim of the present study 

was to evaluate the effect of the silicas properties along with the microwave method of 

formulation on the release rate of a poorly water soluble drug “gemfibrozil”. Gemfibrozil, 5-

(2, 5-dimethylphenoxy)-2, 2- dimethyl pentanoic acid, is a benzene derivative of valeric acid 

with lipophilic character and poor water solubility. It is a lipid regulating agent which is 
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effective in reducing serum cholesterol and triglyceride levels. It is beneficial in decreasing the 

incidence of coronary heart disease (Mart nez-Oh rriz et al., 2008, Molinari et al., 2009). 

Gemfibrozil was loaded in three non-ordered mesoporous silica materials, namely, Syloid AL-

1, Syloid 72 and Syloid 244 with different physical properties (Table 4.1). The release 

behaviour of the formulations was measured in a dissolution medium composed of 0.1 M HCl 

and 0.5 % w/v SDS (pH 1.2) under sink conditions at 37 °C. 

Table 4.1: Physical characteristics of mesoporous silica 

Mesoporous 
silica 

Particle size 
(µm) 

Surface area 
(m2/g) 

Pore volume 
(cm3/g) 

Pore diameter 
(nm) 

Syloid AL-1 
 

6.5-8.1 605 0.3 2.9 

  Syloid 72 
 

4.6-5.8 405 1.2 10 

  Syloid 244 2.5-3.7 379 1.6 16 
 

 

4.2. Results and discussion 
 

4.2.1. In vitro  dissolution 
 

Dissolution analysis was carried out to investigate the influence of the physical 

properties of Syloid silica along with the microwave loading method on the dissolution 

behaviour of gemfibrozil. The in vitro release profiles of gemfibrozil from three different 

Syloid grades (based on physical properties presented in Table 4.1) along with pure gemfibrozil 

in an acidic medium of pH 1.2 over a period of 30 minutes are presented in Figures 4.1- 4.3.  

4.2.1.1.Dissolution studies of Syloid AL-1 based formulations 
 

Figure 4.1 displays the dissolution profile of gemfibrozil (GF) along with Syloid AL-1 

formulations over a period of thirty minutes. Formulating gemfibrozil with Syloid AL-1 
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increased the extent of dissolution compared with the observed percentage release of pure 

gemfibrozil, i.e. 15.4 (± 8.7) % after 30 minutes (Figure 4.1). The microwave formulations of 

gemfibrozil at silica/drug ratios of 1:1 and 3:1 provided the greatest drug releases, i.e. 31.6 (± 

3.0), and 40.9 (± 1.8) % respectively, after 30 minutes (Figure 4.1). The physically mixed 

formulations of gemfibrozil with Syloid AL-1/drug ratios of 1:1 and 3:1 released only 17.7 (± 

2.9) % and 26.9 (± 1.2) %, respectively after 30 minutes (Figure 4.1). In this typical dissolution 

profile, only the physically mixed product (3:1) displayed a burst release of 20.1 (± 1.6) % in 

the fi rst five minutes and then slowed while the drug release profiles for the remaining 

formulations achieved a greater percentage release after 30 minutes.  
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Figure 4.1: Gemfibrozil release profiles for pure gemfibrozil (GF) along with Syloid AL-1 
based formulations using microwave irradiation (MW) and physical mixing (PM), at 
silica/drug ratios of 1:1 and 3:1. Each data point represents the mean of 3 results with SD error 
bars. 
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4.2.1.2.Dissolution studies of Syloid 72 based formulations 
 

The release behaviour of gemfibrozil from Syloid 72 is presented in Figure 4.2. For the 

Syloid 72, the microwave formulated products at silica/drug ratios of 1:1 and 3:1 provided the 

greatest drug release, i.e. 62.1 (± 1.9) % and 55.9 (± 1.3) %, respectively, after 30 minutes 

(Figure 4.2). The physically mixed formulations made little difference to the dissolution 

behaviour but were still significant compared with the pure gemfibrozil (Figure 4.2). Based on 

these findings, the physicochemical properties of Syloid 72 are best suited to load drug using 

the microwave technique as drug is then transported into the pores and distributed uniformly 

inside the pores. This process accelerates the transition of drug molecules from a crystalline to 

an amorphous state, confirmed by the results of XRD (See Section 4.2.2.1). This change in 

state of drug molecules facilitates the enhanced dissolution of drug (Figure 4.2). 
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Figure 4.2: Gemfibrozil release profiles for pure gemfibrozil (GF) along with Syloid 72 based 
formulations using microwave irradiation (MW) and physical mixing (PM), at silica/drug ratios 
of 1:1 and 3:1. Each data point represents the mean of 3 results with SD error bars. 
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4.2.1.3.Dissolution studies of Syloid 244 based formulations 
 

Figure 4.3 highlights results for physically mixed and microwave processed 

formulations of Syloid 244 at silica/drug ratios of 1:1 and 3:1. The greatest drug release, i.e. 

49.7 (± 6.9) % was achieved with a physically mixed formulation at a silica/drug ratio of 1:1 

(Figure 4.3). This was far greater than the release from the microwave product, i.e. 20 (± 2.9) 

%, after 30 minutes. However, comparable release profiles for gemfibrozil from microwave 

and physically mixed formulations at a silica/drug ratio of 3:1 were achieved, i.e. 42.8 (± 1.2) 

% and 36.9 (± 3.3) %, respectively, after 30 minutes (Figure 4.3). The small particle size of 

Syloid 244 could be the reason for rapid drug release from the physical mixture compared with 

the microwave processed formulations. However, the microwave loading method increased the 

release to some extent even after recrystallistion (during cooling) of drug.   
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Figure 4.3: Gemfibrozil release profiles for pure gemfibrozil (GF) along with Syloid 244 based 
formulations using microwave irradiation (MW) and physical mixing (PM), at silica/drug ratios 
of 1:1 and 3:1. Each data point represents the mean of 3 results with SD error bars. 

 

4.2.1.4.Summary 
 

The dissolution profile of gemfibrozil from all mesoporous silica formulations was 

significantly higher than from pure gemfibrozil. Based on previous research several factors 

enhance dissolution, such as the lack of a crystalline form, increased surface area of the drug, 

as well as the hydrophilic surface of the silica carriers (Wang et al., 2013). It is an established 

fact that nanosized drug crystals can increase the effective surface area available for dissolution 

according to the Noyes-Whitney equation (Merisko-Liversidge et al., 2003, Müller et al., 
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2001). The formation of a less ordered or semi-crystalline form could be the reason for the 

dramatically enhanced dissolution of gemfibrozil (Wang et al., 2013). 

Comparing the dissolution profile of microwave based formulations of gemfibrozil 

from Syloid AL-1, Syloid 72 and Syloid 244, the dissolution extent of gemfibrozil was greater 

from Syloid 72 compared with Syloid AL-1 and Syloid 244. The difference in the matrix 

architecture, including the pore size, pore volume and surface area may be mainly responsible 

for the difference in the drug dissolution profiles. Drug release from a carrier requires two main 

processes: dissolving of entrapped drug and diffusion of the dissolved drug through the pore 

channel into the dissolution media (Wang et al., 2013). These results indicate the use of 

mesoporous silica having optimal physical properties. Syloid silica 244 having a large pore 

diameter along with high pore volume can accommodate a large amount of drug. However, 

wider pores can furnish enough space for molten drug molecules to recrystallise on cooling 

which could subsequently limit  release of drug from pores. Similarly, for a silica material such 

as Syloid AL-1 having a small pore diameter and lower pore volume, non-uniform pore filling 

can be encountered. In such silica materials drug can reside in the pore walls and on the external 

large surface which are likely to be recrystallised. Therefore, the dissolution media faces steric 

hindrance to accessing drug molecules confined inside the pores, resulting in less drug release. 

However, these results indicate that Syloid 72 (having optimum physical characteristics) makes 

it a suitable carrier for loading of poorly soluble drugs using the microwave approach, which 

results in enhanced release profiles. 

In summary, an enhanced release profile of gemfibrozil was achieved with all 

mesoporous silica materials. Along with the selection of drug loading method, the difference 

in the extent of release from different silica materials was attributed to their diverse 

architectural properties. These results highlight the judicious selection of silica materials for 

the loading of model drug to achieve optimum release profiles. 
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4.2.2. Solid state characterisation 
 

Solid state characterisation was undertaken using DSC, XRD and SEM to investigate 

the melting transition, crystalline state and crystal morphology of pure and processed drug. 

 

4.2.2.1. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) 
 

Figures 4.4-4.6 depict the DSC thermograms for Syloid AL-1, Syloid 72 and Syloid 

244 based physical mixtures and microwave formulations along with pure gemfibrozil, 

respectively. Gemfibrozil was characterised by a sharp melting endothermic peak at 64.36 °C. 

The peak onset temperature and heat of fusion (∆Hf) were 61.3 °C and -77.5 Jg-1, respectively 

(Figure 4.4). The melting peak appeared in the physical mix formulations as well as in the 

microwave processed formulations at all silica/drug ratios under investigation with some 

variation in melting peak depression and broadening, indicating the transition from a crystalline 

to a semi-crystalline state. This depression became more apparent as the silica content was 

increased in the formulations.  

For gemfibrozil formulated with Syloid AL-1 at a silica/drug ratio of 1:1 using the 

microwave method or physical mixing, peak intensity was less affected compared with those 

formulations prepared at a silica/drug ratio of 3:1 (Figure 4.4). The small pore volume could 

be the reason why the host accepts drug molecules beyond its capacity and therefore, the drug 

molecule is likely to be deposited on the external silica surface. These drug molecules were 

scanned using DSC, providing peak intensities. At a 3:1 silica/drug ratio, the large surface area 

of Syloid AL-1 accommodated a major portion of loaded drug inside the pores while residual 

drug resided on the external surface as a consequence of the low pore volume, i.e. 0.3 cm3/g. 
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Figure 4.4: DSC profiles for gemfibrozil (GF) along with Syloid AL-1 based physical mixture 
(PM) and microwave (MW) formulations at silica / drug ratios of 1:1 and 3:1. 
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For Syloid 72, a marked melting peak shift was seen in the microwave formulations 

compared with the physically mixed product, confirming that drug was loaded inside the pores 

to full capacity. In addition, some residual drug was deposited on the external surface as Syloid 

72 has a medium pore volume, i.e. 1.2 cm3/g (Figure 4.5). However, the melting peak was 

absent in the Syloid 244 based microwave formulation at a silica/drug ratio of 3:1, confirming 

the amorphous state of gemfibrozil within the formulation (Figure 4.6). For Syloid 244 based 

physically mixed and microwave assisted formulations, the peak intensity was prominently 

decreased and even disappeared in the microwave formulation at a silica/drug ratio of 3:1, 

attributed to the large pore diameter and pore volume, i.e. 16 nm and 1.5 cm3/g, respectively. 

Syloid 244 can easily accommodate drug molecules deep inside its pores and the drug might 

even deposit in multilayers, hence during scanning, the drug cannot be detected, indicating the 

change in the physical state of the drug. 
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Figure 4.5: DSC profiles for gemfibrozil (GF) along with Syloid 72 based physical mixture 
(PM) and microwave (MW) formulations at silica / drug ratios of 1:1 and 3:1. 
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Figure 4.6: DSC profiles for gemfibrozil (GF) along with Syloid 244 based physical mixture 
(PM) and microwave (MW) formulations at silica / drug ratios of 1:1 and 3:1. 
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Figures 4.7-4.9 demonstrate the XRD patterns of Syloid AL-1, Syloid 72 and Syloid 

244 based physically mixed and microwave treated formulations at ratios of 1:1 and 3:1. The 

characteristic diffraction peaks observed at 11.57°, 12.74°, 13.88°, 17.98° and 24.07°, 

correspond to the powder diffraction pattern for pure gemfibrozil while the absence of 

diffraction peaks in Syloid AL-1, Syloid 72 and Syloid 244 silica confirm their amorphous 

structure. The gemfibrozil diffraction peaks with decreased intensities were present in 

physically mixed formulations along with the microwave product at a 1:1 ratio of Syloid AL-

1, demonstrating the partially crystalline state of drug (Figure 4.7). The diffraction peak 

absence in the microwave assisted formulation at a 3:1 ratio indicates the amorphous state of 

pore confined drug. 
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Figure 4.7: XRD pattern of gemfibrozil (GF) and Syloid AL-1 along with physical mix (PM) 
and microwave (MW) formulations at silica/drug ratios of 1:1 and 3:1. 
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The peaks corresponding to the crystalline state of gemfibrozil were observed in Syloid 

72 based physical mixtures while the amorphous state of drug after microwave treatment was 

confirmed (Figure 4.8). These findings confirm the appropriate pore diameter of Syloid 72 to 

entrap drug molecules inside its pores (estimated diameter of gemfibrozil is 1.5 nm) as the 

restricted pore space inhibited the recrystallistion process of drug molecules.  

Gemfibrozil, physically mixed with Syloid 244 at ratios of 1:1 and 3:1 displayed characteristic 

peaks with decreased intensities, confirming the semi-crystalline state of the drug. However, 

only a peak at 11.57° can be identified in the microwave assisted formulations, indicating that 

some of the drug molecules retained a crystalline structure i.e. there was enough pore space to 

facilitate the recrystallistion of molten drug. 
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Figure 4.8: XRD pattern of gemfibrozil (GF) and Syloid 72 along with physical mix (PM) 
and microwave (MW) formulations at silica/drug ratios of 1:1 and 3:1. 
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Figure 4.9: XRD pattern of gemfibrozil (GF) and Syloid 244 along with physical mix (PM) 
and microwave (MW) formulations at silica/drug ratios of 1:1 and 3:1. 
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4.2.2.2. Scanning electron microscopy (SEM) 
 

Scanning electron microscopy (SEM) images were used to identify any apparent 

changes in the physical characteristics of the formulated products compared with the pure drug 

or a simple physical mixture of drug and silica. The general findings of this work are 

exemplified in Figure 4.10. The drug crystalline state, along with the disordered irregular shape 

of Syloid AL-1 silica, was evident by SEM (Figure 4.10). SEM images also confirmed the 

insignificant effect of physical mixing as the drug retained a crystalline structure. However, 

there is a uniform distribution of gemfibrozil observed in microwave formulations. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 presents the SEM images for Syloid 72 and Syloid 244 along with their 

microwave formulation at a silica/drug ratio of 1:1. The molten drug molecules are adsorbed 

and evenly distributed in both silica pores while some portion of drug recrystallised in Syloid 

(b) (a) 

(c) (d) 

Figure 4.10: SEM images of (a) gemfibrozil, (b) Syloid AL-1, (c) a physical mix of Syloid 
AL-1 and gemfibrozil (1:1), (d) microwave formulation of Syloid AL-1 and gemfibrozil 
(1:1). 
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244 as it has a larger pore width, providing enough space for recrystallisation. Overall, it 

appears that the microwave formulation process can modify the crystallinity in the sample and 

create a product that contains a uniform dispersion of drug within the silica matrix. 

 

 

Figure 4.11: SEM images of (a) Syloid 72, (b) microwave formulation of Syloid 72 and 
gemfibrozil (1:1), (c) Syloid 244, (d) microwave formulation of Syloid 244 and gemfibrozil 
(1:1). 

  

4.2.2.3. Fourier transform infrared spectroscopy (FTIR) 
  

FTIR was used to investigate the possible interaction between gemfibrozil and silica 

materials. Figure 4.12 illustrates IR spectra of pure gemfibrozil and Syloid 244 silica. 

Characteristic gemfibrozil peaks were observed at 2919.83, 1704.84, 1587.21, 1265.13 and 

931.49 cm-1 corresponding to an O-H stretching vibration, C=O stretching vibration, C-C ring 

stretching, O-H deformation and C-H deformation, respectively. The Syloid 244 spectrum 

displays the typical silica band associated with the main inorganic backbone. The sharp IR 
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signal observed at 1070 cm-1 corresponds to the asymmetric stretching vibration, υas (Si-O-Si), 

of the siliceous framework. The symmetric stretch, υs (Si-O-Si), and the bending vibration,  

ᵟ (Si-O-Si), of the siliceous framework were observed at 794 and 447 cm-1, respectively. The 

band at 966.20 cm-1 corresponds to Si-OH bending. The characteristic siliceous peaks (as 

exemplified in Syloid 244) were observed in the spectra of Syloid 72 and Syloid AL-1 silica 

samples. 
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Figure 4.12: FTIR spectra of pure gemfibrozil and Syloid 244 silica. 
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Figure 4.13 displays the IR spectra of physically mixed and microwave processed 

formulations of gemfibrozil with Syloid AL-1, Syloid 244 and Syloid 72 at a ratio of 1:1. The 

loading of gemfibrozil was reflected by the appearance of characteristic bands in the IR spectra. 

The presence of specific peaks corresponds to silica and drug, suggesting the lack of interaction 

between drug and silica material. In summary, IR data highlights the successful loading of 

gemfibrozil within silica formulations. 
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Figure 4.13: FTIR spectra of Syloid 72, Syloid 244 and Syloid AL-1 based physical mix 
(PM) and microwave (MW) formulation, at a silica/drug ratio of 1:1. 
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4.3. Conclusions 
 

 In the present study, three non-ordered mesoporous silica materials with different 

physical properties were formulated with gemfibrozil and subsequently analysed. The most 

significant output in terms of dissolution enhancement was displayed by Syloid 72 microwave 

formulations, attributed to the optimal physical architecture (such as pore diameter and 

volume). However, an appreciable amount of drug was released from the other two silica 

materials, hence, non-ordered silica materials are promising for dissolution enhancement of 

drug formulations, which renders them a viable alternative for carriers of hydrophobic drugs. 

Characterisation tools such as DSC and XRD confirmed the transformation of the drug 

from a crystalline to a semi-crystalline or amorphous form as a result of the formulation 

process. SEM images indicate a uniformly mixed product of drug/silica sample after 

microwave processing. FTIR spectra demonstrated the drug stability after loading. 

Furthermore, these findings confirm the application of non-ordered silica along with 

microwave potential to resolve dissolution related issues for a wide range of compounds 

exhibiting poor aqueous solubility. 
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Chapter 5: Microwave assisted formulation in the presence of a 
hydrophilic carrier 
 

5.1. Introduction 
 

Drugs with a limited dissolution and absorption rate might benefit from a reduction in 

particle size, as well as from an increase in saturation solubility. Thereby, solid dispersions, 

having both these features, can be considered as a potential strategy that can result in increased 

solubility and dissolution (Moneghini et al., 2009, Six et al., 2004). The judicious choice of a 

carrier system along with the method of preparation presents a significant influence on the 

properties of the resultant solid dispersion. In previous work (Chapters 3 and 4), enhanced 

dissolution profiles of poorly soluble drugs were achieved using mesoporous silica as a carrier 

material and formulations were prepared using microwave processing.  

 

The successful utilisation of microwave energy in formulating silica based products 

encourages extension of this work from mesoporous silica to polymers for a thorough 

investigation regarding microwave potential in formulation development. Among hydrophilic 

polymers, polyethylene glycol (PEG) is extensively used for the preparation of solid 

dispersions. PEG is a semi-crystalline polymer with a low melting point and is also water-

soluble (Henning, 2001, Knop et al., 2010, Zhu et al., 2012). The relatively low melting point 

of PEG is advantageous to formulate solid dispersions as the molecular size favours the 

formation of interstitial solid solutions with APIs and the highly viscous nature of the melt 

tends to entrap drug in a molecular state (Ginés et al., 1996). However, there is only limited 

literature concerning the production of microwave-induced solid dispersions, particularly 

regarding formulations with PEG as the carrier material. For example, Papadimitriou 

(Papadimitriou et al., 2008) and Maurya (Maurya et al., 2010) used PEG to formulate solid 
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dispersions of tibolone and atorvastatin, respectively through microwave processing. The 

resultant enhancement in dissolution through microwave processing justified their claim that 

this technique is a better alternative than traditional heating. Microwave assisted formulation 

of glipizide (Biswal et al., 2008) with PEG 4000 displayed a significant enhancement in 

solubility and bioavailability in comparison with formulations prepared by conventional 

heating. Microwave energy has also been used to develop a formulation of the poorly water 

soluble drug repaglinide with PEG 6000 (Zawar and Bari, 2013). The resultant microwave 

fused solid dispersion demonstrated an increased in vitro dissolution rate, possibly as a 

consequence of the crystalline drug being converted to an amorphous state. Microwaves have 

also been used to formulate solid dispersions of poorly water soluble drugs with other 

excipients, for example, an inclusion complex of carvedilol (Wen et al., 2004), acelofenac 

(Ranpise et al., 2010) and loratidine (Nacsa et al., 2008) with cyclodextrins.  

 

The aforementioned microwave method involved irradiation of a sample with no power 

control, i.e. the sample was heated for a specified period of time regardless of the sample 

temperature during the experiment. This is known to be problematic as samples may heat 

uncontrollably with significant consequences for the stability of the drug concerned. Two 

recent publications highlight a novel method of heating samples with a feedback system to 

ensure the temperature of the sample can be controlled throughout the duration of the 

experiment (Waters et al., 2011, Waters et al., 2013). This method ensures that a sample does 

not exceed a specified temperature, helping avoid unwanted drug degradation reactions. A 

similar heating approach is used in this study with its first application for producing PEG  based 

drug delivery with poorly water soluble drugs, namely, fenofibrate (FF), ibuprofen (IBU), 

ibuprofen (+) S (IBU S) and phenylbutazone (PB). The formulation development method was 

previously discussed in Section 2.2.2. 
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5.2. Results and discussion 

 

5.2.1. In vitro  dissolution 
 

In vitro release of microwave assisted formulations was assessed by comparing the 

dissolution profiles for all formulations prepared using conventional heating or a physical 

mixture, alongside the pure drugs.  

5.2.1.1.Dissolution studies of ibuprofen 
 

Figure 5.1 displays the dissolution profile of ibuprofen (IBU) along with the PEG based 

formulations over a period of thirty minutes. Formulating ibuprofen with PEG increased the 

extent of dissolution compared with the observed percentage release of pure ibuprofen (Figure 

5.1). The microwave formulated products (MW* and MW represent excipient melted and 

excipient alongside drug melted formulations, previously discussed in Section 2.2.2.) of 

ibuprofen with PEG/drug at a 1:1 ratio provided the greatest drug release, i.e. 98 (± 0.9) % and 

94.6 (± 0.8) %, respectively, after 30 minutes (Figure 5.1a). At the same PEG/drug ratio, the 

physically mixed and conventionally heated formulations released 51.3 (± 3.0) % and 71.1 (± 

0.9) %, respectively, after 30 minutes (Figure 5.1a).  

5.2.1.2.Dissolution studies of ibuprofen (+) S 
 

The release behaviour of ibuprofen (+) S (enantiomer of ibuprofen) from PEG based 

formulations is presented in Figure 5.2. The microwave formulation (MW) of PEG/IBU S at a 

1:1 ratio demonstrated the greatest release, i.e. 90.5 (± 1.2) % compared with the pure ibuprofen 

(+) S release, i.e. 46.7 (± 1.2) % after 30 minutes (Figure 5.2a). Drug release from the physically 

mixed and conventionally heated formulations was slow and only 48.5 (± 0.6) % (Figure 5.2a) 

and 67.6 (± 0.7) % (Figure 5.2a), respectively, after 30 minutes.  
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For both IBU and IBU S, these results show an enhanced extent of dissolution after 

microwave processing compared with pure drugs. Along with this increase, the release profile 

for ibuprofen and ibuprofen (+) S formulated using microwave heating appeared to improve 

the dissolution of the drug to a greater extent than conventional heating and physical mixtures. 

However, there was no marked difference in the dissolution observed using various proportions 

of PEG/IBU or PEG/IBU S, indicating that the ibuprofen and ibuprofen (+) S release behaviour 

is independent of PEG fraction (Figures 5.1 and 5.2a, b & c).  
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Figure 5.1: Ibuprofen release profiles for pure ibuprofen (IBU) along with PEG based 
formulations using microwave irradiation (MW* and MW), conventional heating methods 
(CH) and physical mixing (PM), all at PEG/drug ratios of 1:1 (a), 3:1 (b) and 5:1 (c). Each data 
point represents the mean of 3 results with SD error bars. 
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Figure 5.2: Ibuprofen (+) S release profiles for pure ibuprofen (+) S (IBU S) along with PEG 
based formulations using microwave irradiation (MW), conventional heating methods (CH) 
and physical mixing (PM), all at PEG/drug ratios of 1:1 (a), 3:1 (b) and 5:1 (c). Each data point 
represents the mean of 3 results with SD error bars. 
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5.2.1.3.Dissolution studies of fenofibrate 
 

Figure 5.3 displays fenofibrate release from physically mixed, conventionally heated 

and microwave based formulations. The greatest drug releases, i.e. 91.0 (± 1.9) % and 86.7 

(±1.2) % were achieved with microwave formulation (MW* and MW, respectively) at 

PEG/drug ratios of 5:1 (Figure 5.3c). This was far greater than drug release from the physically 

mixed product, i.e. 52.6 (± 4.2) % and that conventionally heated, i.e. 46.6 (± 3.2) %, 

respectively, after 30 minutes (Figure 5.3c). The influence of polymer content on the extent of 

drug release was evident from the dissolution of PEG/drug ratio of 1:1 microwave formulations 

(MW* and MW), i.e. 45.0 (± 4.5) % and 25.7 (± 4.0) %, respectively (Figure 5.3a). There also 

appears to be little or no difference in the extent of dissolution of fenofibrate using conventional 

heating or standard physical mixing. However, the significantly enhanced dissolution for 

fenofibrate from formulations prepared using microwaves, can be explained on the basis of the 

uniformly distributed drug in the excipient under the influence of microwave energy. These 

results emphasise the importance of determining an optimum carrier to drug ratio and 

formulation approach on the effectiveness of the resultant product. 
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Figure 5.3: Fenofibrate release profiles for pure fenofibrate (FF) along with PEG based 
formulations using microwave irradiation (MW* and MW), conventional heating methods 
(CH) and physical mixing (PM), all at PEG/drug ratios of 1:1 (a), 3:1 (b) and 5:1 (c). Each data 
point represents the mean of 3 results with SD error bars. 
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5.2.1.4.Dissolution studies of phenylbutazone 
 

The dissolution profile of phenylbutazone (PB) along with PEG based formulations is 

shown in Figure 5.4. Phenylbutazone alone provided the most limited release, i.e. only 44.6 (± 

2.1) % after 30 minutes (Figure 5.4b). Percentage releases of 47.0 (± 0.7) % and 52.2 (± 1.6) 

% from the physically mixed and conventionally heated formulations, respectively, after 30 

minutes, indicate their insignificant effect on the extent of dissolution of phenylbutazone 

(Figure 5.4b). However, the percentage drug release from PEG/PB ratio of 5:1 was 80.6 (± 2.8) 

% and 70.7 (± 3.3) % for microwave formulations (MW* and MW, respectively), after 30 

minutes (Figure 5.4b). An increase in phenylbutazone concentration (i.e. 1:1 PEG/PB 

formulations) decreased the extent of dissolution to 54.1 (± 2.8) % and 36.5 (± 2.9) % for MW* 

and MW formulations, respectively, after 30 minutes (Figure 5.4a). These results suggest that 

an enhanced dissolution of hydrophobic drugs such as phenylbutazone, can be achieved using 

a higher carrier to drug content. 
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Figure 5.4: Phenylbutazone release profiles for pure phenylbutazone (PB) along with PEG 
based formulations using microwave irradiation (MW* and MW), conventional heating 
methods (CH) and physical mixing (PM), all at PEG/drug ratios of 1:1 (a) and 5:1 (b). Each 
data point represents the mean of 3 results with SD error bars. 
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5.2.1.5.Summary 
 

In summary, the preparation of solid dispersions using microwave formulation 

modified the dissolution of all drugs under investigation. The dissolution results of microwave 

formulations revealed that drug released rapidly at a 1:1 PEG/drug ratio for ibuprofen and 

ibuprofen (+) S whereas a 5:1 PEG/drug ratio provided the greatest dissolution for fenofibrate 

and phenylbutazone, depicted in Figures 5.1 - 5.4. It is well established that materials such as 

PEG may increase the solubility of a range of drugs, particularly at high concentrations (Al-

Angary et al., 1996, Lin and Cham, 1996). This could possibly be attributed to the wettability 

offered by the polymer and the conversion of crystalline drug into amorphous form. Possible 

mechanisms of increase in dissolution for solid dispersions have been proposed by Ford (1986), 

and include: reduction of particle size, a solubilisation property of the carrier, improved 

wettability and dispersibility of a drug in the solid dispersion and conversion of drug into an 

amorphous form. 

 

In summary the extent of drug release was greatest from the microwave formulated 

products followed by the conventionally heated formulations and then physically mixed 

products for all four drugs under investigation as shown in Figures 5.1 - 5.4. The drug released 

rapidly from physical mixtures compared with drug alone for all drugs. This might be the result 

of an increased wetting ability of PEG for the hydrophobic crystalline drug surface. A similar 

result was obtained by Tantishaiyakul et al. (1999). 

 

The modified dissolution profiles of ibuprofen, ibuprofen (+) S, fenofibrate and 

phenylbutazone formulated with PEG using both forms of microwave processing (either 

excipient melt or excipient/drug melt) confirmed its suitability. However, slight differences in 
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the dissolution profiles were observed between these two methods but overall the application 

of microwaves proved to be effective, rapid and devoid of detrimental effects.  

 

5.2.2. Solid state characterisation 
 

Solid state characterisation was undertaken to determine the melting transition, 

crystalline state and crystal morphology of pure and processed drug, using XRD, DSC and 

SEM. 

5.2.2.1.X-ray diffraction (XRD) 
 

Figure 5.5 displays the X-ray diffractogram for ibuprofen (IBU) and PEG based 

formulations, i.e. physically mixed, conventionally heated and microwave processed 

formulations at PEG/drug ratios of 1:1 and 5:1. The diffraction pattern of ibuprofen confirmed 

the drug to be crystalline as demonstrated by characteristic peaks observed at 2θ of 12.06°, 

16.55°, 20.06° and 22.29°. PEG displayed two peaks with highest intensity at 2θ of 19.38° and 

23.48°. The characteristic peaks for ibuprofen and PEG were clearly seen with decreased 

intensities at a PEG/IBU ratio of 1:1 for all formulations (Figure 5.5a). Further decreased 

intensities were observed for ibuprofen peaks in the physically mixed product along with the 

absence of certain peaks in the microwave and conventionally heated formulations at a 

PEG/drug ratio of 5:1 (Figure 5.5b). These observations indicate a transition from a crystalline 

to a semi-crystalline state, attributed to a reduction in particle size of ibuprofen. However, the 

PEG diffraction peaks retained their position indicating the dispersed state of ibuprofen in the 

molten polymer and confirmed the fine miscibility of PEG and ibuprofen.  
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Figure 5.5: XRD patterns for ibuprofen (IBU) and physically mixed (PM), conventionally 
heated (CH) and dry microwave (MW) based formulations at PEG / drug ratios of 1:1 (a) and 
5:1 (b). 

 

The XRD patterns of microwave based formulations of PEG with ibuprofen (+) S, 

fenofibrate and phenylbutazone are presented in Figure 5.6 (a, b & c respectively). The 

characteristic diffraction peaks that correspond to ibuprofen (+) S were similar to ibuprofen as 

mentioned above (Figure 5.5a). The characteristic diffraction peaks observed at 11.99°, 14.3°, 

16.2°, 16.8° and 22.4°, correspond to the powder diffraction pattern for pure fenofibrate (Figure 

5.6b) while phenylbutazone is identified by characteristic peaks observed at 2θ of 7.28°, 
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15.05°, 20.31° and 20.97° (Figure 5.6c). From XRD results, it is clear that all the principal 

diffraction peaks corresponding to PEG, ibuprofen (+) S, fenofibrate and phenylbutazone were 

present in the microwave based formulations, although with lower intensity. However, no new 

peaks were observed, suggesting the absence of a chemical interaction between drugs and the 

carrier. Upon increasing the concentration of PEG in the formulations, the diffraction intensity 

decreased to a level at which the main drug peaks became difficult to detect, i.e. at a ratio of 

5:1 (Figure 5.6). These observations suggest the micro-crystalline state of drugs within PEG 

based formulations. The diffraction pattern for the physically mixed and conventionally heated 

formulations of ibuprofen (+) S, fenofibrate and phenylbutazone follow the same trend as 

observed for ibuprofen (See Appendix 5, 6 and 7, respectively). 
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Figure 5.6: XRD patterns for PEG with microwave (MW) formulations of ibuprofen (+) S 
(a), fenofibrate (FF) (b) and phenylbutazone (PB) (c) at 5:1 and 1:1 ratios along with each 
pure drug. 
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5.2.2.2.Differential scanning calorimetry (DSC) 
 

Figure 5.7 shows the DSC thermogram of PEG and ibuprofen, physically mixed and 

formulations prepared using microwave (MW* and MW) and conventional heating at 

PEG/drug ratios of 1:1 and 5:1.  The DSC thermogram of ibuprofen and PEG showed an 

apparent endothermic peak at 78.9 °C and 65.3 °C with an enthalpy of fusion (∆Hf) - 100.3 J/g 

and - 160.6 J/g, respectively (Figure 5.7).  However, the physically mixed product along with 

the conventionally heated and microwave processed formulations demonstrated a single 

transition, corresponding to the melting of PEG (Figure 5.7).  The absence of the drug melting 

peak has been attributed to the solubilisation of the drug within the molten carrier during the 

heating scan. 

The DSC thermogram for PEG based formulations of ibuprofen (+) S at PEG/drug 

ratios of 1:1 and 5:1 is presented in Figure 5.8. The ibuprofen (+) S melting endothermic peak 

appeared at 55.1 °C with an enthalpy of fusion (∆Hf) of - 77.8 J/g (Figure 5.8). The physical 

mixture of IBU (+) S indicated two transitions: the first corresponding to the melting of the 

drug and the second to the melting of PEG. DSC scans for the conventionally produced and 

microwave formulations revealed an interesting profile. Microwave based formulations at a 

PEG/drug ratio of 5:1 exhibited peaks corresponding to the melting of drug at 53.13 °C and the 

melting of PEG at 58.8 °C. However, formulations at a ratio of 1:1 displayed a single 

endothermic peak at 52.3 °C, corresponding to the melting of PEG with an enthalpy of fusion 

(∆Hf) of - 176.2 J/g. These results indicate that a polymer/drug ratio of 1:1 is a prerequisite to 

form a eutectic system for formulations based on those drugs and polymers having a similar 

melting range.  The DSC results for both IBU and IBU S at a PEG/drug ratio of 3:1 were similar 

to formulations developed at a PEG/drug ratio of 5:1. 
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Figure 5.7: DSC profiles for ibuprofen (IBU) and PEG along with PEG based physical mixtures 
(PM), conventionally heated (CH) products and microwave (MW* and MW) formulations all 
at PEG / drug ratios of 1:1 and 5:1. 
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Figure 5.8: DSC profiles for ibuprofen (+) S (IBU S) and PEG along with PEG based physical 
mixtures (PM), conventionally heated (CH) products and microwave (MW) formulations all at 
PEG / drug ratios of 1:1 and 5:1. 
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Figure 5.9 exemplifies the thermogram of fenofibrate and phenylbutazone formulated 

together with PEG using microwave irradiation at a PEG/drug ratio of 1:1 and 5:1. The 

characteristic melting endothermic peak corresponded to those expected for fenofibrate and 

phenylbutazone, at 82.4 °C and 108.7 °C with an enthalpy of fusion (∆Hf) of - 72.9 J/g and - 

94.7 J/g, respectively. The melting peak broadened and shifted towards the lower temperature 

observed in microwave formulations for fenofibrate and phenylbutazone at a PEG/drug ratio 

of 1:1 (Figure 5.9). The DSC thermogram of fenofibrate and phenylbutazone demonstrated the 

appearance of two peaks, corresponding to the melting of PEG and respective drugs. The 

characteristic sharpness of drug melting peaks was lost, attributed to the dissolved crystals in 

the molten polymer (Figure 5.9). However, the endothermic peak corresponding to drug 

melting disappeared in the microwave formulations having a higher ratio of PEG to drug (as 

exemplified for fenofibrate and phenylbutazone at a ratio of 5:1). These results suggest that 

there is enhanced solubility of drugs in the molten polymer, forming a eutectic system. Further 

analysis of the thermograms also confirmed the slight shift in the melting temperature of the 

PEG endothermic peak but it still appeared indicating the inappreciable effect of fenofibrate 

and phenylbutazone on the crystalline state of PEG.  
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Figure 5.9: DSC profiles for PEG, fenofibrate (FF) and phenylbutazone (PB) along with PEG 
based microwave (MW) formulations all at PEG / drug ratios of 1:1 and 5:1.  
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5.2.2.3.Scanning electron microscopy (SEM) 
 

  Figure 5.10 illustrates six SEM images to exemplify the general findings of this work. 

PEG appeared to be large, irregular crystalline particles whereas pure ibuprofen has distinct 

crystalline structures. Figure 5.10 demonstrates the existence of ibuprofen in a crystalline state 

in the physical mix yet a non-uniform product from the conventionally heated ibuprofen in 

which it exists in a crystalline and dispersed state with PEG. The disappearance of the original 

crystalline form of drug and PEG confirmed a homogenised system was prepared using the 

microwave based technique (Figure 5.10). 

Figure 5.11 depicts SEM images for ibuprofen (+) S (IBU S), fenofibrate (FF) and 

phenylbutazone (PB) along with their microwave processed (MW* and MW) formulations. In 

scanning electron micrographs, ibuprofen (+) S, fenofibrate and phenylbutazone appeared as 

smooth-surfaced rectangular crystalline structures, a distinct crystalline structure and the 

needle like crystalline structure, respectively (Figure 5.11.a, d and g respectively). SEM images 

suggest that surface properties of IBU S, FF and PB along with PEG were lost during the 

formation of solid dispersions from the microwave method, resulting in dispersion of the drug 

molecules within the carrier system. Moreover, these results also substantiate an enhancement 

in the dissolution profile of the drug candidates, possibly due to dispersion of the drug 

molecules and the absence of any crystalline particles.  

In summary it appears that the microwave formulation process can modify the extent 

of crystallinity in the sample and create a product that contains a uniform dispersion of drug 

within the PEG matrix. 
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Figure 5.10: SEM images of (a) PEG, (b) pure ibuprofen (IBU), (c) a physical mix of PEG and 
IBU (5:1), (d) conventionally heated formulation of PEG and IBU (5:1), (e) microwave 
processed (MW*) product of PEG and IBU (5:1), (f) microwave processed (MW) product of  
PEG and IBU (5:1). 
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5.2.2.4. Fourier transform infrared spectroscopy (FTIR) 
 

The FTIR spectra of pure PEG, ibuprofen, ibuprofen (+) S, phenylbutazone and 

fenofibrate are shown in Figure 5.12. In the FTIR analysis, the spectrum of PEG showed the 

Figure 5.11: SEM images of (a) pure ibuprofen (+) S (IBU S), (b) microwave processed (MW*) 
formulation of PEG and IBU S (5:1), (c) microwave processed (MW) formulation of PEG and IBU S 
(5:1), (d) pure fenofibrate (FF), (e) microwave processed (MW*) formulation of PEG and FF, (f) 
microwave processed (MW) formulation of PEG and FF, (g) pure phenylbutazone (PB), (h) microwave 
processed (MW*) formulation of PEG and PB and (i) microwave processed (MW) formulation of PEG 
and PB. 

(a) 

(d) 

(g) 

(b) (c) 

(e) (f) 

(h) (i) 
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C-H of OC2H5 and C-O stretching at 2871.62 and 1087.70 cm-1, respectively. Ibuprofen and 

ibuprofen (+) S showed an intense, well defined infrared band at 1708.70 cm-1 (carbonyl-

stretching of isopropionic acid group) and another band at around 2952.62 cm-1 (hydroxyl 

group of carboxylic acid). Analysis of spectra for phenylbutazone displayed absorption bands 

at wave numbers 2921.77, 1712.56 and 1292.13 cm−1 corresponding to the presence of C-H, 

C=O and C- N aromatic amine, respectively. Specific fenofibrate peaks were observed at 2983, 

1722, 1650 and 1598 cm-1 corresponding to an O-H stretching vibration, C-H vibration, ester 

stretching vibration and lactone carbonyl functional group respectively. The signals appeared 

at 1243 cm-1 were assigned to CH2Cl stretching vibrations. 

 

The FTIR spectrum of ibuprofen, ibuprofen (+) S, phenylbutazone and fenofibrate 

microwave formulations at a PEG/drug ratio of 1:1 are presented in Figure 5.13. IR analysis of 

the microwave formulations did not reveal any changes in the specific absorption bands for 

PEG as well as the respective drugs, suggesting a lack of interaction between the two moieties.  

 

Moreover, the absorption bands of all drugs under investigation were weaker in 

formulations having a higher PEG content. Comparing FTIR spectra for all drugs and their 

solid dispersions, no extra signal was observed which confirmed the stable state of drug within 

the carrier after formulation. In summary, it is confirmed that formulation development using 

this novel microwave method does not detrimentally alter the physicochemical properties of 

the drugs under investigation. 
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Figure 5.12: FTIR spectrum of pure PEG, ibuprofen (IBU), ibuprofen (+) S (IBU S), 
phenylbutazone (PB) and fenofibrate (FF). 
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Figure 5.13: FTIR spectra of microwave formulations (MW) of ibuprofen (IBU), ibuprofen (+) 
S (IBU S), phenylbutazone (PB) and fenofibrate (FF) at PEG/drug ratio of 1:1. 
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5.3. Conclusions 
 

In summary, it has been confirmed that it is possible to formulate PEG based solid 

dispersions with poorly soluble model drugs using microwave irradiation. Furthermore, 

microwave formulation successfully modified drug release compared with conventionally 

heated and the physically mixed products. PEG miscibility with drugs and transformation of 

the drug from crystalline to a semi-crystalline or amorphous state was confirmed by the DSC 

and XRD results. Surface morphology (using SEM) indicated the dispersed state of drugs with 

PEG after formulation. FTIR spectra revealed the chemical stability of drugs after microwave 

treatment. The dramatically enhanced release (yet maintained stability) for ibuprofen, 

ibuprofen (+) S, fenofibrate and phenylbutazone formulations with PEG confirmed the 

potential and effectiveness of microwave processing to develop a solid dispersion of 

compounds exhibiting poor aqueous solubility 
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Chapter 6: Drug-excipient interactions: Saturation and 
micellisation studies of surfactant using isothermal titration 
calorimetry (ITC)  
 

6.1. Introduction  
 

The proportion of drug candidates with poor dissolution currently under development 

has grown significantly. To mitigate solubility challenges, “enabling formulations”, i.e. 

formulations which enhance bioavailability, have increasingly gained attention. Enabling 

formulation approaches include the use of co-solvents, complexing agents, surfactant systems, 

self-(micro- or nano-) emulsifying drug delivery systems, solid dispersions and mesoporous 

carriers (Buckley et al., 2013). Irrespective of the formulation approach employed, in vivo 

enhanced dissolution rarely matches that observed in in vitro dissolution testing of poorly 

soluble drugs. This can be a result of drug-excipient interactions through which drugs are 

loaded and released. Therefore, it is useful to investigate the underlying mechanism of 

enhancement and release of drugs from carrier systems (Buckley et al., 2013). To explore this, 

surfactants are ideal candidates as these are extensively used in formulation development along 

with being used as an integral part of many dissolution testing media, such as simulated fluids 

(gastric and intestinal). 

Surfactants are amphiphilic molecules, that is, they contain a polar moiety and a 

hydrophobic moiety, typically an alkyl chain (Choudhary and Kishore, 2014). At high aqueous 

concentrations (i.e. above the critical micelle concentration, CMC), it becomes favourable for 

the surfactant molecules to associate via their hydrophobic chains to form micelles with a 

generally hydrophobic interior and a hydrophilic water-exposed exterior (Choudhary and 

Kishore, 2014, Otzen, 2011). Surfactants are generally classified by the charge of the 

hydrophobic head group i.e. anionic, cationic, nonionic, amphoteric or zwitterionic. Anionic 
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surfactants are most commonly used because of their low cost and commercial availability at 

high levels of purity. An anionic surfactant dissociates in aqueous solution to give a negatively 

charged surface and an inactive cation, commonly Na+ or K+ (Otzen, 2011).   

Micelles exist in dynamic equilibrium with monomers in solution. The structure of a 

micelle is dependent on the concentration of monomers in the solution. At a concentration 

equal to, or above, the CMC, the monomers tend to aggregate to acquire a spherical shape. 

Generally, a certain number of monomers aggregate to form a micelle known as the aggregation 

number (AN). Different surfactants have different CMCs and ANs depending upon their 

physicochemical properties. Almost all surfactants will form spherical micelles at a 

concentration close to the CMC, however, ionic surfactants at higher concentrations will 

transform into elongated cylindrical, rod like, large lamellar and vesicular structures as shown 

in Figure 6.1. In the case of non-ionic surfactants, spherical micelles directly change into 

lamellar structures at higher concentrations (Moroi, 1992). 

 

Figure 6.1: Transformation of micelles into different shapes on increasing surfactant (Moroi, 
1992). 

Commonly used techniques to measure the critical micelle concentration include, 

surface tension (Rosen et al., 1999), conductivity (Felippe et al., 2007), dynamic light scattering 

(Majhi and Blume, 2002) and florescence spectroscopy (Matsuoka and Moroi, 2002). In recent 
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years, more sophisticated techniques such as NMR (Pérez et al., 2007) and calorimetry (Paula 

et al., 1995) have been used to investigate the CMC of surfactants.  

 

ITC was employed in this study to investigate drug-surfactant interactions, i.e. to 

determine the saturation of SDS by model drugs, namely, caffeine, diprophylline, etofylline, 

paracetamol and theophylline. This was undertaken along with the CMC determination of two 

surfactants, i.e. sodium dodecyl sulfate (SDS) and sodium deoxycholate (NaDC), both of which 

have reported values for their CMC and thermodynamic profiles (Paula et al., 1995). The 

chemical structure of NaDC is quite different from SDS which has a distinct hydrophilic head 

and hydrophobic tail (Garidel and Hildebrand, 2005). The convex side of the rigid steroid 

nucleus of NaDC has a hydrophobic surface and the concave side (making it a polar surface) 

consists of hydroxyl groups (Das et al., 2011) (Figure 6.2). The polarity of NaDC induces its 

amphiphilic character and molecules tend to self-assemble in aqueous media (Moroi, 1992). 

The micellisation of bile salts is a complex mechanism, therefore, various models for the 

micellar structure have been proposed over the last five decades. The widely accepted model 

is a stepwise formation of micelles, given by Small and Carey (1972). In this model, the 

primary micelles consist of two to nine monomers, held together by a hydrophobic interaction 

between the steroid nuclei. These primary micelles further aggregate to form large aggregates, 

held together by hydrogen bonding between the hydroxyl groups of the primary micelles.  

Sodium deoxycholate is used in pharmaceutical formulations to solubilise poorly 

soluble molecules and is known to form micelles and mixed micelle systems such as with 

Tweens (Ćirin et al., 2012). The aggregation behaviour of NaDC has been reported with CMC 

values in the range 5.3 to 10.5 mM (Coello et al., 1996, Matsuoka and Moroi, 2002, Garidel et 

al., 2000, Hildebrand et al., 2004) with a clear temperature dependence. From a thermodynamic 

perspective, several values have been reported for the enthalpy of micellisation, for example, 
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from -0.5 kJ/mol at 298 K to -3.0 kJ/mol at 308 K (Bai et al., 2010). No such studies have been 

conducted prior to this work regarding the effect of additional compounds on the values 

obtained for these two particular micelles, with respect to their CMC values and 

thermodynamic profiles. 

 

Figure 6.2: Chemical structure of NaDC, R1 = H and R2 = OH with hydrophobic and 
hydrophilic surfaces (Hildebrand et al., 2004). 

 

Limited previous work has investigated isothermal titration calorimetric studies on the 

interaction between SDS and polyethylene glycols (PEGs) and the consequences on the 

micellar properties of such binding events. Unusual profiles have been attributed to the 

structural reorganisation of SDS/PEG aggregates with the effect observed at a critical PEG 

molecular weight observed through influences on the binding isotherms (Dai and Tam, 2006). 

This ‘peculiar’ behaviour includes endothermic and exothermic effects, including the binding 

of multiple micellar clusters on single polymeric chains (Bernazzani et al., 2004). Furthermore, 

increasing the polymeric concentrations can cause the polymer saturation concentration, C2, 

and CMC to increase although the concentration of those bound to polymer does not vary (Dai 

and Tam, 2001a). 
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In summary, little scientific data has been reported concerning the effects of the 

presence of both PEG and model drugs on the micellisation of either SDS or NaDC. This is of 

particular value if such systems are to be employed to help solubilise pharmaceutical 

compounds. 

 

6.2. Results and discussion 
 

6.2.1. Saturation limit of SDS 
 

With an average aggregation number of 62 surfactant molecules per micelle of SDS 

(Mutelet et al., 2003), it was possible to calculate the concentration of drug required to saturate 

a micellar solution using ITC. This was witnessed as a sharp change in the measure of the 

power signal (cell feedback) upon reaching the saturation limit, as exemplified in Figure 6.3.  
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Figure 6.3: Raw ITC data for the saturation of 20 mM SDS micelles with 100 mM caffeine at 
T = 298 K. 

A summary of thermodynamic data for the saturation of micelles with several model 

drugs can be seen in Table 6.1. Error limits represent standard deviation from the mean where 

n = 3. Five drugs were studied with the maximum number of molecules of drug per micelle, 

i.e. the occurrence of saturation, ranging from 17 molecules per micelle for theophylline at T 

= 298 K up to 63 molecules per micelle for caffeine at T = 310 K. At both temperatures, the 

five drugs followed the same general trend in the ratio of drug molecules to surfactant 

molecules with caffeine the greatest, followed by paracetamol, then diprophylline and 

etofylline equally favoured and theophylline with the lowest ratio of all. With respect to the 

changes in enthalpies of drug–micelle partitioning until the point at which saturation was 

attained, it is interesting to note that the values observed at T = 298 K (∆Hsaturation) are 

significantly different from those at T = 310 K (∆Hsaturation). Most notable is the dramatic shift 

in the change in enthalpy for paracetamol and theophylline (∆∆Hsaturation) from T = 298 K to 

310 K. As the change in enthalpy is closely linked to the driving force behind the partitioning 

process, it is significant that for paracetamol an exothermic partitioning phenomenon becomes 
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endothermic upon increasing the temperature. In addition to this, the enthalpy change 

associated with the partitioning and subsequent saturation of theophylline drops dramatically 

from -68.3 kJ. mol-1 to -7.6 kJ. mol-1 upon increasing the temperature to T = 310 K. For all five 

drugs, the enthalpy change associated with the process is less exothermic at the higher 

temperature as partitioning into the micellar phase becomes less favourable. 

 

Table 6.1: Molecular ratios and associated enthalpic values for the micellar saturation 
of SDS in the presence of five drugs at T = 298 K and 310 K 

Temperature/ K Drug Molecules of 
drug per 
micelle 

Drug: 
surfactant   

ratio 

∆H saturation/ 
(KJ.mol-1 of 

drug) 

298 Caffeine 58 ± 2 0.93 : 1 -21.5 ± 0.9 

Diprophylline 42 ± 3 0.68 : 1 -26.0 ± 1.2 

Etofylline 42 ± 4 0.68 : 1 -15.6 ± 0.7 

Paracetamol 53 ± 3 0.85 : 1 -21.9 ± 0.5 

Theophylline 17 ± 1 0.27 : 1 -68.3 ± 2.4 

310 Caffeine 63 ± 1 1.01 : 1 -2.6 ± 0.3 

Diprophylline 46 ± 2 0.73 : 1 -2.6 ± 0.6 

Etofylline 46 ± 3 0.73 : 1 -2.8 ± 0.1 

Paracetamol 55 ± 4 0.89 : 1 18.6 ± 1.4 

Theophylline 18 ± 2 0.28 : 1 -7.6 ± 0.8 
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With respect to variations in the behaviour amongst the five compounds, two can be 

considered to behave in a very similar manner, namely diprophylline and etofylline. This is 

because both compounds are substituted imidazole based structures with similar negative 

partition coefficient (LogP) values at the pH investigated (-1.2 and -0.9, respectively) and 

comparatively high aqueous solubilities. This results in similar affinities for migration into the 

micellar phase. Caffeine, also a substituted imidazole based structure, displays a similar 

energetic profile to diprophylline and etofylline although the concentration required to saturate 

the micelles is higher which can be explained by the greater lipophilicity, as reflected in the 

greater LogP value (-0.6). Paracetamol is structurally dissimilar to the other compounds and 

has an even greater LogP value at the pH under investigation (0.5), yet surprisingly, this shows 

a reduced ability to be incorporated in each micelle. Theophylline is an unsubstituted imidazole 

based structure and the least soluble of all the drugs with a calculated LogP of -0.2. At present, 

the mechanism of interaction between theophylline and SDS is not fully understood. However, 

ion pairing of the drug with surfactant would offer an alternative mechanism for incorporation 

which may explain this anomaly. 

 

In summary, while the number of drug molecules per micelle is largely unchanged from 

298 to 310 K for each drug, the change in the enthalpy of saturation is less favourable at the 

higher temperature in all cases. In particular, for paracetamol, the shift to a positive enthalpy 

change indicates the process must be entropically driven for the overall reaction to be a 

favourable one. 

 

6.2.2. Micellisation protocol for surfactants using ITC 
 

Each micellisation experiment was performed whereby the sample cell was filled with 

deionised water and the titration syringe filled with a concentrated micellar solution, i.e. (Csyr 
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> CMC), as illustrated in Figure 6.4. Each experiment involved injecting a series of injections 

of the micellar solution in small aliquots into the solution in the sample cell, each injection 

induces a heat flow as a function of time (Gregoriadis, 2006).  

 

The first few injections represent dilution of the micellar solution in the cell as shown 

in Figure 6.4 (a) since the concentration of surfactant in the cell (Ccell) is less than the surfactant 

CMC. With further addition of surfactant solution, the monomer concentration in the sample 

cell increases to a concentration (Ccell = CMC), where micelles start developing (Figure 6.4.b). 

After the CMC, the surfactant concentration in micellar form increases to a stage (Ccell > CMC) 

where the heat of each injection represents simply the increase in quantity of micelles (Figure 

6.4.c) (Garti, 2000). 
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The heat of reaction was obtained by integration of each heat flow peak and plotted as 

a function of concentration from which the űMű and ∆Hmic were obtained. The standard free 

energy of micelle formation per mole of monomer (∆Gmic) can be calculated using Equation 

6.1 where m/n is a fraction of the charge of the surfactant ions, also known as the counter ion 

Titration
 

(a)  űcell << űMű (b) űcell = űMű 

  
(c) űcell >> űMű 

  

Syringe 

űell 

Figure 6.4: Schematic representation of a typical demicellisation experiment (Gregoriadis, 2006). 
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binding constant and Xcmc the critical micelle concentration expressed in mole fraction (Volpe, 

1995; Laidler, 1995). 

���ܩ∆ = ܴܶ ሺ1 + ݉⁄݊ ሻ ln ��ெ�                                                                                   (Eq. 6.1) 

From this, the change in entropy upon micellisation (∆Smic) can be calculated for any 

temperature under investigation using Equation 6.2. 

���ܩ∆ = ���ܪ∆  − ܶ∆ܵ���                                                                                            (Eq. 6.2) 

Thus, a complete thermodynamic profile of the micellisation system can be determined using 

ITC. 

6.2.3. Sodium dodecyl sulfate (SDS) micellisation in the presence of model drugs and 
PEG 
 

The CMC of SDS was measured using ITC in the sequential presence of the same five 

model drugs at a concentration corresponding to that used in the saturation determination 

experiments. ITC experiments was carried out by titrating a concentrated solution of SDS in a 

micellar state into the sample cell containing deionised water and/or model drug in solution. 

The raw heat signals were recorded in µcal/sec. A clear end point corresponding to the CMC 

of SDS was calculated by plotting the differential of heat versus the concentration of surfactant 

solution in the sample cell after each injection, as exemplified in Figure 6.5. The endothermic 

process of initial demicellisation changed to an exothermic process above the CMC as 

exemplified in Figure 6.6. The enthalpy of micellisation was obtained by integrating the area 

of each raw ITC signal up to the point of micelle formation and normalised by the molar 

concentration of SDS added.  
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Figure 6.5: Raw ITC data and subsequent data analysis to determine the CMC of SDS in 
aqueous solution at T = 298 K. 
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Figure 6.6: Raw ITC data and subsequent data analysis to determine the CMC of SDS in the 
presence of 60 mM Paracetamol at T = 298 K. 
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  Using ITC, it was possible to determine the CMC, and corresponding change in 

enthalpy, of SDS in the presence of five drugs as summarised in Table 6.2. Values presented 

in Table 6.2 for the CMC and change in enthalpy are quoted as the mean where the error limits 

represent standard deviation from the mean and n = 3. 

 

Table 6.2: Critical micellar concentrations and thermodynamic values associated with 
the micellisation of SDS in the presence of five model compounds at 298, 304 and 310 K 

Temp. 
/ (K)  CMC/mM 

∆H˚mic 

/(KJ.mol -1) 
∆G˚mic 

/(KJ.mol -1) 
T∆S̊ mic 

/(KJ.mol -1) 

298.2 
 
 
 
 
 

water 7.9 (± 0.34) -20.4 (± 1.30) -38.0 (± 0.34) 17.6 (± 0.2) 

caffeine 7.9 (± 0.02) -29.7 (± 1.80) -38.0 (± 0.02) 8.3 (± 0.1) 

diprophylline 8.3 (± 0.01) -12.1 (± 0.60) -37.8 (± 0.01) 25.7 (± 0.4) 

etofylline 8.3 (± 0.02) -11.9 (± 0.80) -37.8 (± 0.02) 25.9 (± 0.1) 

paracetamol 7.6 (± 0.01) -40.9 (± 0.50) -42.2 (± 0.04) 1.3 (± 0.2) 

theophylline 7.9 (± 0.01) -7.8 (± 0.20) -38.0 (± 0.01) 30.2 (± 0.4) 

304.2 
 
 
 
 
 

water 8.3 (± 0.001) -10.1 (± 0.01) -38.6 (± 0.001) 28.5 (± 0.3) 

caffeine 7.3 (± 0.001) -10.5 (± 0.24) -39.1 (± 0.001) 28.6 (± 0.2) 

diprophylline 8.4 (± 0.24) -11.1 (± 1.54) -38.5 (± 0.24) 27.5 (± 0.3) 

etofylline 8.4 (± 0.24) -10.3 (± 0.40) -38.5 (± 0.24) 28.2 (± 0.2) 

paracetamol 6.9 (± 0.001) -10.6 (± 0.30) -39.3 (± 0.001) 28.7 (± 0.3) 

theophylline 7.6 (± 0.001) -10.6 (± 0.20) -38.9 (± 0.001) 28.4 (± 0.5) 

310.2 
 
 
 
 
 

water 8.9 (± 0.20) -20.7 (± 1.10) -39.0 (± 0.20) 18.3 (± 0.1) 

caffeine 7.9 (± 0.01) -29.1 (± 1.60) -39.5 (± 0.01) 10.4 (± 0.1) 

diprophylline 8.3 (± 0.20) -12.3 (± 0.90) -39.3 (± 0.20) 27.0 (± 0.1) 

etofylline 7.8 (± 0.20) -12.6 (± 0.50) -39.6 (± 0.20) 26.3 (± 0.6) 

paracetamol 8.2 (± 0.20) -16.6 (± 1.40) -39.4 (± 0.20) 22.7 (± 0.4) 

theophylline 8.3 (± 0.01) -28.4 (± 0.70) -39.3 (± 0.01) 10.9 (± 0.1) 

 

 

As expected, for SDS alone, an increase in temperature from T = 298 K to 310 K 

resulted in a small increase in CMC from (7.9 to 8.9) mM (Majhi and Blume, 2001), while the 

change in enthalpy for the process was largely unchanged at T = 298 K and 310 K, yet a drop 

in enthalpy was observed at T = 304 K, as expected (Chatterjee et al., 2001). The presence of 
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all five drugs did not significantly modify the CMC compared with the value obtained when 

no drug was present at T = 298 K. However, the presence of caffeine, paracetamol and 

theophylline lowered the CMC at T = 304 K while at T = 310 K, all drugs lowered the CMC 

as the micelles formed more favourably (possibly as a result of complimentary drug–surfactant 

interactions). For the most structurally similar compounds, i.e. the substituted imidazole 

moieties, namely caffeine, diprophylline, and etofylline, there is little change in the CMC or 

enthalpy of micellisation with respect to temperature. For both paracetamol and theophylline, 

the CMC of SDS slightly decreased from T = 298 K to T = 304 K and then increased at T = 

310 K yet the changes in enthalpy dramatically differed. In the case of paracetamol, 

micellisation is enthalpically less favourable at the higher temperature yet for theophylline the 

inverse is observed. From an entropic perspective, the relationship between temperature and 

enthalpy change is a reflection of the causation of micelle formation, i.e. demonstrating a shift 

in the driving force from an enthalpy controlled process to an entropy-driven process (or vice 

versa). In this study, as previously mentioned, only two of the drugs exhibited a noticeable (yet 

contrasting) change in enthalpy with increasing temperature implying the presence of an 

enthalpy–entropy compensation event and the importance of the hydrophobic effect in micelle 

formation (Chen et al., 1998).  

If the process of micellisation is separated into the desolvation and aggregation stages, 

then hydrophobic effects are usually reduced with increasing temperature as a loss of solvent 

structure occurs (influencing desolvation), this would appear to be the case for paracetamol 

while the converse is true for theophylline (in agreement with the fact that paracetamol is a far 

more hydrophobic drug than theophylline based on calculated LogP values). The 

physicochemical properties of such drug–surfactant interactions can be explained by 

considering electrostatic effects with a strong interaction observed between charged surfactants 

and hydrophilic drugs. Conversely, drugs that exhibit an appreciable hydrophobic surface area 
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in the presence of surfactants will have an interaction dominated by the hydrophobic effect, 

with the electrostatic effect playing only a minor role (Khossravi, 1997). Paracetamol is more 

hydrophobic than theophylline, thus the former will have a drug–surfactant interaction more 

strongly dominated by the hydrophobic effect rather than electrostatic effects, compared with 

the latter which is dominated by electrostatic interactions. This is in agreement with similar 

studies, for example the existence of surfactant interactions has been reported between polymer 

aggregates and SDS as a result of favourable hydrophobic and electrostatic effects (Bai et al., 

2004).  

Table 6.2 shows aggregation data with the incorporation of thermodynamic data for 

SDS. At all three temperatures and in the absence, or presence of all five model drugs, there is 

little influence on the change in Gibbs free energy observed. The negative values for ∆Gmic 

indicates that the micelles along with the drug-micelles system has less free energy as 

compared with monomers or free drug molecules. These negative values of enthalpy and Gibbs 

free energy, consequently promote micellisation and drug micelle interaction. These findings 

imply that the overall energetics behind the aggregation phenomenon are not significantly 

altered by temperature or drugs, in agreement with the lack of change in the concentration at 

which it occurs. Interestingly, more substantial changes in the change in enthalpy and entropy 

for the micellisation event were observed implying an entropy-enthalpy compensation 

phenomenon. Micellisation is an entropically driven process and results of this study are in 

good agreement with the previous reported studies. The gain in entropy was observed at all 

temperatures under investigation, however, T = 304 K favours a more entropically driven 

micellisation (Table 6.2). This gain in entropy is a result of the transfer of bound water into the 

bulk phase during the demicellisation phenomenon. The trend of micellisation entropy in the 

presence of all drugs (except theophylline) is similar to the entropy of SDS/H2O micellisation. 

For theophylline, the change in entropy decreased from 298 K to 310 K while enthalpy 
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increased, indicating that enthalpy-entropy together facilitate micelle formation at T = 310 K 

in the presence of theophylline, (Table 6.2).  

To further investigate the effects additional compounds may have on the micellisation 

event, a second compound was added to the system in the presence of each model drug in turn, 

namely PEG. Previous work has implied that the interaction between SDS and PEG is 

dependent upon the molecular weight of the PEG and known to be thermodynamically 

‘peculiar’ exhibiting both endothermic and exothermic effects (Dai and Tam, 2001b). 

Calorimetry results appeared to follow this expectation, as exemplified in Figure 6.7, for the 

micellisation of SDS in the presence of PEG. The first derivative peak of the titration curve 

corresponds to the CMC of SDS while the second broad inflection can be attributed to the PEG-

SDS interaction (Figure 6.7). 
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Figure 6.7: Raw ITC data and subsequent data analysis to determine the CMC of SDS in the 
presence of 0.2 mM PEG-6000 at T = 298 K. 
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A summary of the CMC values and associated thermodynamic behaviour for SDS in 

the presence of PEG for all five systems studied at the three temperatures can be seen in Table 

6.3.  

 

Table 6.3: Critical micellar concentrations and thermodynamic values associated with 
the micellisation of SDS in the presence of PEG and five model compounds at 298, 304 
and    310 K 

Temp. 
/(K)   CMC/mM 

∆˚Hmic 

/(KJ.mol -1) 
∆˚Gmic 

/(KJ.mol -1) 
T∆˚Smic 

/ (KJ.mol -1) 

298.2 
 
 
 
 
 

water 5.2 (± 0.20) -11.3 (± 0.20) -39.6 (± 0.10) 28.4 (± 0.1) 

caffeine 5.5 (± 0.01) -10.8 (± 0.40) -39.5 (± 0.001) 28.7 (± 0.4) 

diprophylline 5.5 (± 0.01) -10.0 (± 0.90) -39.5 (± 0.08) 29.5 (± 0.9) 

etofylline 5.3 (± 0.40) -11.0 (± 0.20) -39.7 (± 0.42) 28.7 (± 0.6) 

paracetamol 4.5 (± 0.12) -11.7 (± 0.04) -40.5 (± 0.12) 28.7 (± 0.1) 

theophylline 5.4 (± 0.26) -11.0 (± 0.10) -39.6 (± 0.22) 28.6 (± 0.2) 

304.2 
 
 
 
 
 

water 4.7 (± 0.30) -7.9 (± 0.20) -41.0 (± 0.30) 33.1 (± 0.4) 

caffeine 4.9 (± 0.20) -8.5 (± 0.10) -40.8 (± 0.06) 32.3 (± 0.1) 

diprophylline 5.1 (± 0.17) -8.1 (± 0.20) -40.6 (± 0.15) 32.6 (± 0.2) 

etofylline 5.1 (± 0.20) -8.3 (± 0.01) -40.7 (± 0.20) 32.4 (± 0.2) 

paracetamol 4.0 (± 0.12) -8.6 (± 0.04) -41.8 (± 0.47) 32.3 (± 0.4) 

theophylline 4.7 (± 0.27) -8.5 (± 0.10) -40.7 (± 0.32) 32.1 (± 0.3) 

310.2 
 
 
 
 
 

water 4.3 (± 0.20) -10.3 (± 0.20) -42.2 (± 0.20) 31.9 (± 0.1) 

caffeine 4.4 (± 0.40) -10.7 (± 0.10) -42.1 (± 0.40) 31.4 (± 0.5) 

diprophylline 4.7 (± 0.27) -10.7 (± 0.01) -41.8 (± 0.27) 31.2 (± 0.3) 

etofylline 4.4 (± 0.24) -10.7 (± 0.10) -42.2 (± 0.25) 31.5 (± 0.3) 

paracetamol 3.1 (± 0.01) -11.0 (± 0.01) -43.6 (± 0.15) 32.6 (± 0.2) 

theophylline 4.4 (± 0.20) -10.4 (± 0.30) -42.1 (± 0.20) 31.8 (± 0.2) 

 

 

For SDS and PEG based systems, the addition of PEG reduced the CMC in all cases 

with this phenomenon becoming more apparent as the temperature increased (highlighted in 

Figure 6.8). 
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Figure 6.8: The effect upon micellisation of SDS in the presence of PEG and five model 
compounds. 
 

Figure 6.8 exemplifies how the presence of PEG encourages the micellisation process 

at lower concentrations with values for the CMC with PEG/without PEG all below 1. Although 

PEG is known to self-aggregate under certain conditions (Azri et al., 2012), it is not believed 

to be the process being observed in these studies with the use of low concentrations (0.2mM) 

and a high molecular weight PEG. A more plausible explanation is the observance of 

hydrophobic interactions between SDS and PEG leading to the formation of a stable complex, 

similar to that previously reported in literature (Ballerat-Busserolles et al., 1997). 

 

The decreasing trend in the enthalpy of micellisation was observed in the presence of 

PEG, for example, ∆Hmic (-20.4 ± 1.30 KJ/mol) of SDS into water (Table 6.2) decreased to -

11.3 (± 0.20) KJ/mol for SDS into PEG solution (Table 6.3). A similar trend was observed in 

the presence of model drugs with PEG whereby a negative enthalpy (along with a large 

negative free energy) promoted aggregation of SDS.  
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The demicellisation curve of SDS into water or PEG solution was divided into three 

regions (Figure 6.9). In region I, the enthalpy curves for SDS/PEG and that for the SDS/H2O 

are parallel up to the point of the critical aggregation point (cac) (Yan et al., 2007), suggesting 

that there is no interaction between PEG and SDS. In region II, a large endothermic deviation 

was followed by an exothermic event which appeared in the SDS/PEG curve while only an 

endothermic event was apparent in the SDS/H2O curve 

 

The SDS-PEG interaction suggests that SDS monomers interact with the ethylene 

segment of PEG exothermically, presumably by polar - polar attraction after reaching the CMC 

point. This process completes at the intersection point (Figure 6.9). Hence polymer induced 

surfactant micellisation can be considered one explanation for the observed reduction in CMC 

of SDS.  Region III is past the CMC for SDS/H2O, indicating that SDS micelles have become 

the dominant species. From the concentrations of SDS and PEG used in this experiment, the 

ratio of SDS micelles to a PEG molecule obtained is 2:1, implying that each PEG molecule can 

wrap around two micelles (Figure 6.9).  
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Figure 6.9: Enthalpy change for the titration of 200 mM SDS into deionised water (open circle) 
or 0.2 mM PEG (red circle) at 298 K. 

 

Table 6.3 shows that ∆Gmic is large and negative yet ∆Hmic is small and negative, 

indicating that the process is marginally exothermic. In addition, T˚∆Smic is large and positive 

implying a net increase in entropy during the micellisation process. The experimental results 

have clearly shown that micelle formation involves only a small enthalpy change while the 

negative free energy is the result of a large positive entropy. This can lead to the possible 

conclusion that micelle formation is predominantly an entropy driven process. The change in 

entropy is partially related to the “hydrophobic effect” encountered in the transfer process and 

partially from the transfer of monomers to micelles. An additional entropy contribution is 

associated with the partial neutralisation of the ionic charge by the counter ions during the 

aggregation process which will add to the entropy increase resulting from the above effects 

(Laidler, 1995). 
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6.2.4. Sodium deoxycholate (NaDC) micellisation in the presence of model drugs and 
PEG 

 

Sodium deoxycholate (NaDC) is a more complex surfactant than SDS, with published 

data often referring to a second micellisation event, similar in concentration to that for the main 

micellisation (Garidel et al., 2000). The ITC thermogram for NaDC, (especially in the presence 

of PEG or drugs) cannot be exploited directly as no clear break point in the heat (Q) versus 

concentration was observed. In such cases, curve analysis was used to determine the 

concentrations corresponding to the start (ST: start of transition) and to the end (ET: end of 

transition) of the micellisation process (Raju et al., 2001; Roques et al., 2009). This 

phenomenon is explained in Figure 6.10, the linear fitting of the data in the lower and the upper 

concentration domains provided the inflection point, corresponding to the CMC of NaDC alone 

and in the presence of PEG. The data points for the determination of the ST and the ET, 

remained approximate using this method.  A systematic thermodynamic study was undertaken 

for NaDC with the same five compounds as SDS, presented in Table 6.4.  
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Figure 6.10: Integrated ITC heat data indicating the micellisation point of (a) NaDC alone 
(CMC 1 and 2) and (b) in the presence of PEG at 298 K. 
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Table 6.4: Critical micellar concentrations and thermodynamic values associated with 
the micellisation of NaDC in the presence of five model compounds at 298, 304 and 310 
K 

Temp. 
/(K)   CMC/mM ∆˚Hmic /(KJ.mol -1) 

∆˚Gmic 

/(KJ.mol -1) 
T∆˚Smic 

/(KJ.mol -1) 

298.2 
 
 
 
 
 

water 
2.1 (± 0.23),   
6.4 (± 0.17) -1.6 (± 0.05), 1.7 (± 0.01) 

-33.0 (± 0.39), 
29.2 (± 0.08) 

31.5 (± 0.3), 
27.5 (± 0.1) 

caffeine 5.4 (± 0.17) -1.6 (± 0.04) -30.1 (± 0.63) 28.1 (± 0.1) 

diprophylline 6.0 (± 0.17) -1.6 (± 0.01) -29.4 (± 0.08) 27.8 (± 0.1) 

etofylline 6.0 (± 0.18) -1.5 (± 0.12) -29.0 (± 0.09) 27.9 (± 0.1) 

paracetamol 3.9 (± 0.20) 1.8 (± 0.02) -30.8 (± 0.14) 32.6 (± 0.2) 

theophylline 6.2 (± 0.52) -1.7 (± 0.01) -29.3 (± 0.26) 27.7 (± 0.3) 

304.2 
 
 
 
 
 

water 
1.6 (± 0.17),   
5.1 (± 0.17) -1.1 (± 0.12), 1.4 (± 0.02) 

-34.4 (± 0.37), 
-30.6 (± 0.11) 

33.3 (± 0.2) 
29.2 (± 0.1) 

caffeine 4.5 (± 0.40) -1.3 (± 0.06) -31.2 (± 0.33) 29.7 (± 0.4) 

diprophylline 4.6 (± 0.17) -1.0 (± 0.05) -30.9 (± 0.12) 29.9 (± 0.1) 

etofylline 4.4 (± 0.19) -1.1 (± 0.25) -30.8 (± 0.12) 30.0 (± 0.2) 

paracetamol 3.5 (± 0.35) -1.3 (± 0.02) -31.8 (± 0.32) 30.5 (± 0.3) 

theophylline 4.8 (± 0.35) -1.4 (± 0.02) -30.8 (± 0.24) 29.4 (± 0.2) 

310.2 
 
 
 
 
 

water 4.3 (± 0.23) -1.3 (± 0.01) -31.8 (± 0.17) 30.5 (± 0.2) 

caffeine 4.1 (± 0.51) -1.1 (± 0.02) -31.2 (± 1.22) 30.7 (± 0.4) 

diprophylline 4.2 (± 0.40) -1.0 (± 0.05) -31.9 (± 0.33) 30.8 (± 0.4) 

etofylline 4.0 (± 0.35) -1.1 (± 0.17) -32.0 (± 0.29) 30.9 (± 0.5) 

paracetamol 3.4 (± 0.57) -1.2 (± 0.02) -32.6 (± 0.60) 31.4 (± 0.6) 

theophylline 4.2 (± 0.51) -1.2 (± 0.02) -31.5 (± 0.38) 30.3 (± 0.4) 

 

 

 

 

The CMC results of NaDC using ITC are in agreement with the reported studies as two 

inflection points indicating CMC 1 and CMC 2 were observed (Table 6.4). Micellisation of 

NaDC completely changed at T = 310 K where only one CMC point was identified, i.e. 4.3 ± 

0.2 mM, indicating the temperature dependent behaviour of NaDC. The observed CMC for 

NaDC was affected by the presence of the drugs. Most notably, of the five drugs considered, 

paracetamol dramatically reduced the CMC to 3.4 mM at T = 310 K (Table 6.4). Micellisation 

of NaDC in the presence of paracetamol changed from a positive change in enthalpy at T = 298 
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K, to a more negative change in enthalpy at T = 304 and 310 K (Table 6.4) indicating an 

entropically driven process. This agrees with the raw ITC signals that are exothermic at 298 K 

and endothermic at 304 and 310 K (Figure 6.11). From these results, it is evident that 

paracetamol, being a slightly hydrophobic drug, induced rapid aggregation of monomers 

compared with the other drugs. The overall findings suggest that drugs encourage the formation 

of micelles as in all cases the CMC in the presence of drugs was less than that in water alone. 

This finding can be seen at all three temperatures studied. Unlike SDS, little variation in the 

change in enthalpy and entropy can be seen in Table 6.4 and a consistent value for the change 

in Gibbs free energy was also found. Such consistency implies that although the CMC may 

have decreased to varying extents the thermodynamics of the process has not altered. A 

comparison of Table 6.2 with Table 6.4 highlights the change in enthalpy change between the 

two surfactants, with a smaller modification to the remaining thermodynamic parameters.  
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Figure 6.11: Raw ITC data for the titration of 50 mM NaDC into a 60 mM paracetamol 
solution at (a) 298 K, (b) 304 K and (c) 310 K. 
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As with SDS, the effect of the presence of PEG on the micellisation event was 

monitored for NaDC, as shown in Table 6.5. The complete disappearance of the first CMC 

along with the little variation in the second CMC of NaDC was observed with the additional 

presence of PEG and the five model compounds. Similarly, the thermodynamics of the 

micellisation process did not dramatically alter with the addition of PEG. This finding is in 

contrast to that for SDS where PEG was found to be influential in the micellisation 

concentration and change in enthalpy associated with the process. This finding implies there is 

little, or no, interaction between NaDC and PEG to encourage the formation of micelles as was 

previously seen for SDS. Non cooperative binding between PEG and NaDC was also revealed 

which could be the possible explanation of the unaffected CMC in the presence of PEG (Figure 

6.12). 
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Figure 6.12: Enthalpy change for titration of 50 mM NaDC into deionised water (open circle) 
and 0.2 mM PEG (red circle) at 298 K. 
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Table 6.5: Critical micellar concentrations and thermodynamic values associated with 
the micellisation of NaDC in the presence of PEG and five model compounds at 298, 304 
and 310 K 

Temp. 
/(K)   CMC/mM 

∆˚Hmic 

/(KJ.mol -1) 
∆˚Gmic 

/(KJ.mol -1) 
T∆˚Smic 

/(KJ.mol -1) 

298.2 
 
 
 
 
 

water 6.2 (± 0.30) -1.8 (± 0.05) -29.3 (± 0.15) 27.6 (± 0.2) 

caffeine 5.1 (± 0.17) -1.6 (± 0.02) -30.3 (± 0.46) 28.3 (± 0.1) 

diprophylline 5.8 (± 0.17) -1.6 (± 0.02) -29.5 (± 0.10) 27.9 (± 0.1) 

etofylline 5.8 (± 0.17) -1.5 (± 0.11) -29.5 (± 0.98) 28.0 (± 0.2) 

paracetamol 3.7 (± 0.30) 1.7 (± 0.55) -31.0 (± 0.26) 32.8 (± 0.3) 

theophylline 6.1 (± 0.34) -1.7 (± 0.02) -29.4 (± 0.17) 27.7 (± 0.2) 

304.2 
 
 
 
 
 

water 4.9 (± 0.17) -1.3 (± 0.02) -30.7 (± 0.11) 29.4 (± 0.1) 

caffeine 4.4 (± 0.35) -1.3 (± 0.04) -31.4 (± 0.31) 29.8 (± 0.3) 

diprophylline 4.4 (± 0.35) -1.0 (± 0.08) -30.7 (± 0.34) 30.1 (± 0.3) 

etofylline 4.3 (± 0.23) -1.1 (± 0.83) -31.1 (± 0.18) 30.1 (± 0.1) 

paracetamol 3.4 (± 0.57) -1.3 (± 0.01) -32.0 (± 0.59) 30.6 (± 0.6) 

theophylline 4.7 (± 0.57) -1.4 (± 0.10) -30.5 (± 0.16) 29.5 (± 0.4) 

310.2 
 
 
 
 
 

water 4.2 (± 0.35) -1.2 (± 0.04) -31.3 (± 1.32) 30.8 (± 0.3) 

caffeine 3.8 (± 0.51) -1.2 (± 0.08) -31.4 (± 1.70) 31.0 (± 0.5) 

diprophylline 4.1 (± 0.57) -0.9 (± 0.06) -31.9 (± 0.49) 31.0 (± 0.5) 

etofylline 3.9 (± 0.50) -1.0 (± 0.13) -32.1 (± 0.43) 31.0 (± 0.6) 

paracetamol 3.3 (± 0.75) -1.2 (± 0.02) -32.7 (± 0.84) 31.5 (± 0.85) 

theophylline 4.1 (± 0.40) -1.2 (± 0.40) -31.6 (± 0.31) 30.4 (± 0.3) 

 

 

The unchanged thermodynamic data of NaDC micellisation in the presence of PEG 

confirms the absence of PEG/NaDC interaction. Table 6.4 and 6.5 have clearly shown that 

micelle formation involves only a small enthalpy change while negative free energy is the result 

of a large positive entropy. Therefore, micelle formation involving hydrophobic interactions is 

predominantly an entropy driven process.     
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6.3. Conclusions 
 

 Isothermal titration calorimetry was successfully used to determine the drug-excipient 

interaction through saturation and micellisation studies. Table 6.1 shows a relationship between 

the behaviour of the five compounds and their ability to saturate micelles. A common 

interaction appeared to occur between the imidazole based compounds and SDS resulting in 

similar saturation limits and changes in enthalpy at the two temperatures studied. Paracetamol 

behaved in a slightly different manner, as expected, as it has a different chemical structure to 

the other compounds, where the significant change in enthalpy upon an increase in temperature 

implied a large entropic effect. Paracetamol, being a hydrophobic drug, favoured the 

entropically driven interaction. 

The possible effect of drugs on excipients was evaluated by investigating micellisation 

of SDS and NaDC in the presence of drugs and PEG. In summary, the influence of five model 

drugs on the micellisation phenomenon indicates there is little interaction between the drugs 

and SDS yet there is a more favourable interaction between the drugs and NaDC. In contrast, 

the presence of PEG appeared to encourage micellisation for SDS yet not for NaDC. These 

differences can be attributed to their subtle differing functionality as they are generally similar 

in that they are both anionic surfactants containing hydrophobic and hydrophilic sections. This 

work highlights the impact such small differences can have on their behaviour in solution. 

 

The findings of this work based on thermodynamic data confirmed the potential of ITC 

and provided an opportunity to use ITC for the evaluation of other complex systems involving 

drugs and excipients. 
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Chapter 7: Conclusions and future work 
 

Recent drug discovery has led to an increasing number of poorly water soluble drug candidates, 

especially those administered orally. Such drug candidates tend to pass through the 

gastrointestinal tract, producing insufficient bioavailability because of their decreased 

dissolution. Therefore, it is a great challenge to develop effective techniques which can enhance 

dissolution and bioavailability of pharmaceutical formulations containing water insoluble 

APIs. Various approaches have been used to circumvent such issues utilising excipients that 

can enhance the solubility of an API, such as the successful formulations developed in this 

study. This thesis proposed a potential alternative novel microwave technique to replace 

conventional heating for the formulation of poorly soluble drugs. 

The objectives of the thesis, as stated in Chapter 1, were successfully achieved and are 

summarised as follows: 

1. To develop bespoke mesoporous silica based solid dispersions using a novel 

microwave system. 

Chapter 3 discussed the inclusion of fenofibrate using mesoporous silica as a carrier 

material through traditional and novel microwave methods. The resultant enhanced drug 

release of dry microwave formulations compared with the non-formulated (alongside 

traditionally heated formulations) confirmed the possibility of successful formulation 

development using a microwave irradiation method. The characterising tools such as DSC and 

XRD suggest the transformation of a crystalline to a semi-crystalline or amorphous form as a 

result of the formulation process. The uniform distribution of drug within formulations and 

drug stability was confirmed by SEM and FTIR. Furthermore, the dramatically enhanced 

release profiles of fenofibrate from five out of six silicas used in the study, confirmed the 
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suitability of silica as a carrier material and their compatibility with the microwave formulation 

method. 

2. To develop Syloid® silica based solid dispersions using a novel microwave system. 

Chapter 4 discussed the Syloid® silica based formulation development of gemfibrozil 

using a novel microwave technique. Three Syloid® silica grades, namely, Syloid AL -1, Syloid 

72 and Syloid 244 (different physical properties) were used to investigate their influence along 

with the microwave processing method on the performance of the resultant products. The in 

vitro dissolution results confirmed the effect of physical properties of silica such as surface 

area, pore diameter and pore volume on the release behaviour of drug. The greatest extent of 

gemfibrozil release from Syloid 72, confirmed that its properties are well suited to formulate 

the product using the microwave method. Overall, an appreciable extent of dissolution resulted 

from all Syloid silica used in this study. The results of characterisation techniques are in 

agreement with the findings of dissolution. 

3. To develop a hydrophilic carrier based solid dispersion using a novel microwave 

system. 

In Chapter 5, the potential of microwave formulation was further investigated by 

extending that work from mesoporous silica to a hydrophilic polymer, namely, polyethylene 

glycol (PEG). PEG based formulations of four poorly soluble drugs, namely ibuprofen, 

ibuprofen (+) S, fenofibrate and phenylbutazone, were prepared through a novel microwave 

method and compared with physically mixed and traditionally heated formulations. Results 

confirmed the successful application of the microwave technique in PEG based formulation 

development. Furthermore, microwave formulations displayed enhanced drug release 

compared with conventional heating and the physically mixed products. DSC and XRD 

confirmed the miscibility and transition from a crystalline to amorphous state of drugs. The 
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molecularly dispersed state of drugs within formulations was indicated by SEM images. FTIR 

spectra suggested the chemical stability of drugs after microwave treatment. 

4. To investigate drug-excipient interactions based on surfactant saturation limits and 

micellisation studies. 

In Chapter 6, the potential of isothermal titration calorimetry (ITC) was evaluated to 

determine drug-excipient interactions through saturation and micellisation studies. These 

particular studies were conducted using five model drugs, namely, caffeine, diprophylline, 

etofylline, paracetamol and paracetamol along with three excipients. The interaction between 

the imidazole based compounds and SDS resulted in similar saturation limits and changes in 

enthalpy at the two temperatures studied. Paracetamol, being a hydrophobic drug, behaved 

slightly differently. It favoured the entropically driven interactions. From the micellisation 

results of SDS and NaDC in the presence of drugs and PEG, it was confirmed that there is little 

interaction between the drugs and SDS yet there was a more favourable interaction between 

the drugs and NaDC. In contrast the presence of PEG appeared to encourage micellisation for 

SDS yet not for NaDC. These findings suggest that drug excipient interactions can be evaluated 

using thermodynamic data obtained from ITC. 

In summary, it can be concluded that the results based on drug-excipient interactions 

confirmed the potential of ITC to determine interactions involving complex systems. 

Future work 

This work can be expanded further in many areas of potential opportunity including: 

(i) Optimisation of the microwave technique 

The temperature controlled novel microwave method to produce pharmaceutical 

formulations can be applied by varying certain parameters such as processing temperature and 



 
192 

time, which may help to investigate further the optimum conditions for the microwave method. 

Drugs with a variable melting range could be processed to evaluate possible heating effects on 

the resultant formulations. Rather than using mesoporous silica or PEG, the research could be 

expanded further using other synthetic and natural polymers such as soluplus, gelucire, 

chitosan or pectin. This could ultimately lead to a large range of tailored formulation 

possibilities. 

(ii)  Expansion of analytical techniques  

Analytical techniques such as DSC, XRD, SEM and FTIR were used to evaluate 

crystallinity, surface morphology and the stability of resultant products. However, other 

analytical techniques such as hot stage microscopy and transmission electron microscopy 

(TEM) may help to demonstrate the physical state of a drug within a formulation. Furthermore, 

X-ray photoelectron spectroscopy (XPS), along with standard BET nitrogen adsorption-

desorption apparatus, may help to illustrate the degree of drug loading. 

ITC work could be extended further to investigate drug-excipient interactions using a 

variety of drugs having different physicochemical properties, for example those that have a 

different ionisation state in aqueous solution, along with diverse Log P values. In addition, 

detailed thermodynamic data can be generated for comparison. It may also be possible to use 

a wider range of excipients, hence reliable data regarding drug-excipient interactions could be 

obtained. Anionic surfactants were used throughout this study, therefore, cationic and 

zwitteronic surfactants could also be used for comparison.  

In summary, the research work of this thesis has confirmed the potential of the novel 

microwave method for formulation enhancement and ITC for an investigation of drug-

excipient interactions. However, there is far more that could be conducted to fully explore the 
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potential application of the microwave formulation method alongside ITC analysis for drug-

excipient interactions.  
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Appendix 1: DSC curves of Core Shell (CS), Core Shell rehydrox (CSR) and 
silica gel (SG) based dry microwave formulations all at silica / drug ratios of 1:1, 
3:1 and 5:1 
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Appendix 2: XRD Patterns for fenofibrate along with Core shell (CS), Core Shell 
rehydrox (CSR) and silica gel (SG) based dry microwave formulations all at silica 
/ drug ratios of 1:1 and 3:1 
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Appendix 3: DSC curves of fenofibrate (FF) along with Stober (ST) based 
physical mixtures and dry microwave (DM) formulations all at silica / drug ratios 
of 1:1, 3:1 and 5:1 
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Appendix 4: XRD Patterns for fenofibrate along with Stober (ST) based physical 
mixtures (PM) and dry microwave (DM) formulations all at silica / drug ratios of 
1:1, 3:1 and 5:1 
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Appendix 5: XRD Patterns for ibuprofen IBU (+) S along with PEG based 
physical mixtures (PM) and conventionally heated (CH) formulations all at PEG 
/ drug ratios of 1:1 and 5:1 
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Appendix 6: XRD Patterns for fenofibrate (FF) along with PEG based physically 
mixtures (PM) and conventionally heated (CH) formulations all at PEG / drug 
ratios of 1:1 and 5:1 
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Appendix 7: XRD Patterns for phenylbutazone (PB) along with PEG based 
physically mixtures (PM) and conventionally heated (CH) formulations all at 
PEG / drug ratios of 1:1 and 5:1 
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Appendix 8 
 

Peer reviewed Publications 

1. Titration calorimetry of surfactant-drug interactions : Micelle formation and 
saturation studies 

      LJ Waters, T Hussain, G.M.B Parkes 
Journal of Chemical Thermodynamics, Vol. 53, 36-41, 2012 

 
2. Inclusion of fenofibrate in a series of mesoporous silica using microwave irradiation 

LJ Waters, T Hussain, G.M.B Parkes, J P Hanrahan, J.M Tobin 
European Journal of Pharmaceutics and Biopharmaceutics, Vol. 85 (3-B), 936-941, 
2013 

 
3. Thermodynamics of micellisation: Sodium dodecyl sulfate/sodium deoxycholate with 

polyethylene glycol and model drugs 
LJ Waters, T Hussain, G.M.B Parkes 
Journal of Chemical Thermodynamics, Vol. 77, 77-81, 2014 
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