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Abstract

This work examines and attempts to overcome issues caused by the lack of formal standardisation
when defining text categorisation techniques and detailing how they might be appropriately integrated
with each other. Despite text categorisation’s long history the concept of automation is relatively new,
coinciding with the evolution of computing technology and subsequent increase in quantity and
availability of electronic textual data. Nevertheless insufficient descriptions of the diverse algorithms
discovered have lead to an acknowledged ambiguity when trying to accurately replicate methods,
which has made reliable comparative evaluations impossible.

Existing interpretations of general data mining and text categorisation methodologies are analysed in
the first half of the thesis and common elements are extracted to create a distinct set of significant
stages. Their possible interactions are logically determined and a unique universal architecture is
generated that encapsulates all complexities and highlights the critical components. A variety of text
related algorithms are also comprehensively surveyed and grouped according to which stage they
belong in order to demonstrate how they can be mapped.

The second part reviews several open-source data mining applications, placing an emphasis on their
ability to handle the proposed architecture, potential for expansion and text processing capabilities.
Finding these inflexible and too elaborate to be readily adapted, designs for a novel framework are
introduced that focus on rapid prototyping through lightweight customisations and reusable atomic
components.

Being a consequence of inadequacies with existing options, a rudimentary implementation is realised
along with a selection of text categorisation modules. Finally a series of experiments are conducted
that validate the feasibility of the outlined methodology and importance of its composition, whilst also
establishing the practicality of the framework for research purposes. The simplicity of experiments and
results gathered clearly indicate the potential benefits that can be gained when a formalised approach
is utilised.
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1 Introduction

1.1 Problem Concepts and Characteristics

The problem of text categorisation is well known with a long history dating back to the creation of
organised text documents, while the first automated systems were produced as far back as 1960 [1].
However it was not until the late 1980’s that research began to favour machine learning techniques
over knowledge engineering approaches, as they permitted a greater degree of automation. Prior to
this change documents were processed in a predominantly manual way, requiring experts with
sufficient domain knowledge to either categorise the individual texts or devise specialised rules that
others could follow.

These traditional methods were time consuming and resource intensive, frequently involving the
creation of applications that were difficult to modify and near impossible to develop beyond their
original intended area. This made them highly impractical and limited, especially as advances in
technology and electronic communication increased the capacity for information generation and
sharing on a global scale [2]. As a result the advent of techniques that allowed superior automation
and improved flexibility became a necessity.

Many different versions of the text categorisation problem definition are available [1][2][3][4], though
each expresses the same common meaning; that it is the assignment of previously unseen text
documents to one or more predefined categories based on their content. Although this generalised
definition may appear simplistic it is not trivial and forms the basis of multiple real world tasks, a
number of which influence events over a diverse collection of important subjects. There are also a
variety of complex concepts and characteristics associated with the majority of textual data, which
pose a challenge when trying to attain adequate performance from automated machine learning
approaches.

1.1.1 Types of Text Classification

Though all forms of text categorisation essentially involve grouping documents according to the
assignment of categories based on their content, there are a variety of criteria that can be used to
determine how this is achieved. Different combinations of these criteria are often referred to as sub
types of the general categorisation task, each having intricacies that can make them better suited to
particular classification techniques. While some problems have traits that overlap several sub types
and make them difficult to explicitly describe, for example language identification [5], sentiment
analysis [6] or cause of death determination [7], many belong to one of the three predominant types

regularly encountered.
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Topic classification or topic spotting is the most common type and involves determination of the
subject or category of text, normally being based on the information related to context or content
meaning. It is the primary focus for a substantial amount of research into the investigation of novel

algorithms and their comparative evaluation against existing approaches.

Genre classification is the correlation of documents according to theme or type rather than subject
matter and grew in demand as datasets became available that were not homogenous in type, such as
those derived from various Internet repositories [8]. It is often employed to compliment topical
classification [9] but is also important in its own right, distinguishing features about the creation of a
text, its vocabulary and the intended audience [8].

Authorship classification collates manuscripts that are produced by the same author, or are otherwise
from an equivalent originating source, and is exploited in a range of noteworthy applications [10]. It
tends to concentrate more on literary style, linguistic analysis and semantic relationship occurrence

statistics rather than depending on actual content or context and precise semantic meaning [11].

1.1.2 Classification and Categorisation

Frequently and indiscriminately intermixed throughout the field of generalised and text categorisation
[12][13], there is in fact a subtle distinction between the two terms ‘classification’ and ‘categorisation’
[14][15]. Classification is the concept of a machine processing the data, with elements grouped purely
by logical assumptions founded on related derived characteristics as opposed to an exact knowledge
of the content’s contextual meaning. In contrast categorisation is the notion of correlations made by a
human, where associations are established because elements share similar semantic traits and
connotations. This is the form of information that is generally most useful, but is difficult for machines
to accomplish as the subjective nature requires a certain degree of domain knowledge and even

humans may disagree on the results.

1.1.3 Category and Document Pivoted

There two possible perspectives when performing text categorisation and both are beneficial in
different circumstances with each having its own advantages and drawbacks. It is also a practical
concern as to which should be employed, depending primarily on how data becomes available rather
that the techniques that a solution is comprised of, as the majority can be applied regardless with only

a few specific exceptions [4].
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Document-pivoted categorisation, referred to as ‘DPC’ and also known as ‘category-ranking’ or ‘on-
line’ classification [1]', assigns categories to documents and is the most common as it occurs more
often in realistic situations. It involves ranking all categories by relevance against each document and
is essential for any system where the data is not entirely available at the moment of classification, for
example in continually ongoing processes. Obviously those methods that require calculations reliant
on statistics extracted from a global overview cannot be used in this type of categorisation if the

information is not wholly present.

Category pivoted categorisation, denoted as ‘CPC’ or ‘document-ranking’ classification [1]1, assigns
documents to categories and entails ordering every document against each separate category. For
this to be effective all test data must be available simultaneously, though it is possible for any method
to be accommodated and it offers the benefit of being able to cope with the addition or removal of

categories without the need to repeat the full categorisation procedure.

1.1.4 Decision Matrix

If D; represents a particular document from the overall set of documents D, which is of size |D|, and if
C; represents a particular category from the total set of categories C, of size |C|, then the confidence
value for a specific document and category pair can be described by v;j. Where I <i<|C|and / <j <

|D| and either v; = {0, 1} or 0 <v; <1, when v is normalised.

Dl D2 e Dj e D|D|
(o8 Vi1 V1o Vij Vip|
C2 Vo1 Voo Va; V2|p|
Ci Viz Vi2 Vij Vilp|
Ciey Vicia Vicl2 Vicij Viciip|

Table 1.1 : Text Categorisation Decision Matrix Example

A decision matrix is used to analyse the relationship between a set of criteria and values, which in text
categorisation is a mapping of the document and category pairings with the associated relevance of
each [1]. The information relating to every pair takes the form of either a binary or scored value that

denotes the estimated confidence that making that particular assignment is correct. With higher

' Note there is a slight error in the referenced publication where the terms have been confused but is
corrected here.
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values signifying a connection is more likely and lower values indicating it is less appropriate, while
zero shows a complete lack of association.

In the case of ‘binary’ or ‘hard’ categorisation the correlation of a particular document and category
pairing can either be valid or invalid, which creates a matrix containing only true or false to represent
whether specific assignments should be made or not. Whereas in ‘soft’ categorisation a variable
measure of suitability is generated instead, allowing assignments to be ranked in order of priority so
another mechanism can be applied to produce the final binary decisions [12]. This is favourable when
an application requires a list of potential candidates, for example in a partially automated system
where the options are first narrowed before a human expert manually selects the final choices [4].

1.1.5 Dimensionality

Typically problem dimensions refer to the features extracted from the textual data, which are the basis
for determining the similarity between documents that contain them and their relevance to categories
associated with them. Text categorisation inherently has a very high dimensional feature space due to
tokenisation, which splits each document into fundamental semantic or syntactic components that can
be consumed more easily by machines. Though necessary for automated systems this process
frequently gives rise to a considerable number of features, often in the order of thousands or tens of
thousands even for a relatively small dataset [16][17][18], which can prove a hindrance to many

approaches.

Reduction of the dimensional space is highly desirable where possible, as it not only makes tasks
more practical but has been shown to sometimes improve performance in terms of accuracy [16][18].
This is because noise is removed from the dataset, which takes the form of irrelevant, redundant or
misleading features that have a tendency to cause a bias toward associations that should not be so
prominent. While a few datasets do retain a significant proportion of redundant features [16] there are
also those where the majority of extracted aspects hold useful information [17], so it is essential that

appropriate reduction techniques are employed.

It should further be noted that while dimensions normally denote the text features this may not always
be the case, for instance a subtype of text categorisation involves category structures with each tier
being identified as a dimension [19]. This is known as ‘hierarchical’ text categorisation and unlike the
more common ‘flat’ version does not treat each category independently, instead taking category tree
or directed acyclic graph formations into account [20]. Research has shown that this approach can
lead to superior performance when a problem has a natural inclination to organise data into groups
with distinct layers [21][22].

Page 25 of 292



1.1.6 Multi-Lingual

Research in text categorisation and information retrieval generally only consider datasets that each
contains a single language, though this language may vary between applications. However there are
many real world situations where documents within the same collection are based on a range of
separate dialects or have individual texts which include sections composed in multiple different
languages [23]. Despite this and a growing number of linguistic utilities that handle a diverse mix of
vocabularies [24][25][26], these issues pose an increased level of relative hardness and are rarely
investigated. Most current tools also tend to focus on just one language as several have overlapping
terms that give rise to a substantial degree of ambiguity, which often makes language detection the

principal component of multi-lingual solutions.

1.1.7 Single and Multi-Class

Categories are regularly referred to as topics, labels or classes, which are all acknowledged
expressions but may also be used to describe certain dataset characteristics. For example the term
‘single-class’ signifies what is sometimes known as a ‘one-class’ or ‘binary’ problem [2], which
contains only a solitary predefined category that every document either does or does not belong to.
Whereas the phrase ‘multi-class’ denotes there are multiple possible categories that each document

might be related to, though not necessarily that they should be assigned to more than one [2].

Single-class problems are conventionally believed to be easier to handle than multi-class and the bulk
of traditional machine learning algorithms are actually unable to deal with a choice of several
categories at once. Instead they break the selection down into a distinct task for each category using
an approach called ‘one-vs-all’, which determines a relevancy score before compiling all of the results
to obtain a ranked list of candidate assignments [13]. This can be extremely resource intensive and is
incapable of exploiting correlations between the categories [27], such as those typically present in
hierarchical categorisation.

1.1.8 Single and Multi-Label

Often the class and label expressions are arbitrarily interchanged [3], though there is a recognised
consensus that they stipulate markedly different characteristics [2][16][28]. Whilst the use of ‘class’
concerns the total distinct categories within a problem, the ‘label’ terminology relates to the number of
potential assignments that can be applied to each document. Therefore ‘single-label’ means that only
a solitary category can be explicitly assigned per document and likewise ‘multi-label’ indicates that at

least one of them has zero or more associations.
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Obviously if a problem is multi-label it is inferred as being multi-class with category associations that
are not considered mutually exclusive, however the opposite assumption is not necessarily true.
These varied overlapping collections are substantially harder to correctly resolve and require
advanced evaluation metrics that account for both the accuracy and completeness of results,
regardless of whether hard or soft categorisation is performed. Traditional methods still necessarily
employ the same divide and conquer strategy of splitting the task into several discrete single-class,
and consequently single-label, ‘binary classifiers’ [13][28].

1.1.9 Structured and Unstructured

Individual document content can be structured, unstructured or semi-structured, which is a mixture of
both organised and disordered information [15]. These different compositions can have a significant
effect on the performance of a system and processes should be chosen that maximise the potential
benefits gained from any standardised features. This is especially important in structured data, such
as official reports or articles, as the controlled formatting, styles or available metadata commonly
provide an intuitive direction for methods that generally makes them easier to categorise. Conversely
unstructured data is nearly always more challenging, frequently being random or chaotic in nature, as
is often encountered when dealing with manuscripts that depict personal thoughts or emotions.

1.1.10 Supervised and Unsupervised

Text categorisation is inherently a supervised problem, where a set of previously labelled historic or
purposely generated data is available for the creation of a solution, and this is typically manually
classified to the highest possible level of correctness. If it is unsupervised, with no pre-labelled data,
the task becomes that of grouping similar content together without any explicit points of reference,
which is analogous to a clustering issue [12]. However cross over between these areas of knowledge
discovery does occur, as dedicated clustering techniques are regularly used to aid in the filtering and
removal of irrelevant noise or for combining multiple similar terms. This collaboration also arises in
semi-supervised situations, where a small set of labelled documents guide the clustering and

categorisation of a much larger unlabelled set [29].

1.1.11 Training and Testing

There are two core functions involved in text categorisation; the first being the training of a predictive
model by means of a supervised learning procedure, while the second is the use of such a model for
the assignment of categories to unseen or validation testing data. Each uses a different collection of

documents and in the case of research a single labelled dataset is usually divided into separate
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training and testing subsets, occasionally with the training set further segmented to provide a means

of solution optimisation.

Both tasks normally require a number of distinct stages, which in turn may entail several steps that
have a similar purpose, but while some are dedicated to either training or testing operations there are
many that need to be implemented by both. Typically any specific text processing prior to actual
construction or application of the classification model must be repeated, ensuring that identical
features are extracted and filtered.

1.1.12 Word Sense Disambiguation

Perhaps the most difficult characteristic to deal with is that of word sense disambiguation where a
particular feature can relate to multiple dissimilar meanings, giving it the potential to significantly alter
the underlying semantics of the text that contains it [30]. It is generally a very difficult trait for
machines to deal with as contextual information must be taken into account, sometimes necessitating

specialist domain knowledge that might even make it challenging for humans.

This poses a couple of problems in text categorisation largely because of the widespread use of
individual words as features and the common assumption that all extracted features are independent
entities [31]. For instance elements subject to polysemy, where the same word has several
connotations, will generate identical features and always be treated the same regardless of specific
context, lowering their discriminative capability. Likewise those elements displaying synonymy also
suffer, as though they embody an equivalent inherent meaning each produces a discrete feature,
which are consequently treated as being unrelated. Synonymy is easier to resolve, as relatively
simple thesaurus and dictionaries can be utilised, however polysemy is notably harder and demands
complex methods such as named entity extraction [32] and part of speech tagging [33].
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1.2 Research Motives

Text categorisation dates back to the first text manuscripts, but the concept of automation only rose in
popularity during the late 1980’s inline with the evolution of computing technology and subsequent
increase and improved availability of electronic text mediums and databases [12]. This discovered
enthusiasm and vigour for the research area lead to the discovery and refinement of various solution
approaches, until the subject seems to turn stale again in early 2000 with an apparent reduction in the
frequency of novel publications [34]. However, due to the continued progression of technology and
the ever present desire to create and consume information, the volume of textual data is expanding

exponentially and the current pace of research is unlikely to meet demands.

Persistent growth combined with the increasing diversity of text categorisation applications, such as
hypertext tagging, email filtering, manuscript authorship, survey encoding, speech recognition and
many more, means that existing ‘state-of-the-art’ solutions are not as useful as they once were. While
this has resulted in an assortment of new and refined categorisation solutions over the past decade,
no standardised structure has been defined for their accurate reproduction or evaluation. Due to this
some systems deliberately or unintentionally employ biased datasets specifically designed for that
particular approach [10][35] or are compared exclusively against algorithms not considered state-of-
the-art for the problem under investigation [36]. Furthermore, in the majority of cases there is simply
not enough information supplied to exactly duplicate the described system or confirm the results
claimed [37][38]. In combination these issues severely hinder the advancement of research in text
categorisation, with the many debatable contributions leading to an uncertain and chaotic direction.

Adding to the concern is a generally low level of innovation in some publications, with many surveys
[4][13][39][35] reiterating the same basic information found in previous reports originally composed
several years earlier [40][1][41]. There are also more specialised articles reporting results that are
impossible to verify or that differ substantially from other findings [42]. Even literature specifically
aimed at presenting effective comparisons between approaches does not contain particularly decisive
information, often being composed from an assortment of second hand data that was evaluated under
varying criteria [35]. It has now reached a point where a few authors have acknowledged how severe
the situation has become, with some commenting on the incompatibility of datasets or assessment

criteria and the lack of critical information presented for the systems being reported [35][43][1][42][44].

Further compounding this issue is a growing requirement to investigate problems that relate more
closely to real world scenarios, such as those consisting of complex datasets exhibiting multi-class or
multi-label characteristics. These tend to give rise to solutions that require elevated levels of intricacy
and normally mean an increase in the number of variables and steps involved in the categorisation
process. As a result there are more individual components that, if not properly explained, may be
misinterpreted or neglected under a misconception that they are inconsequential. Examples of this

are ‘Associative Classification’ (AC) algorithms [45], a relatively new addition to the domain, which are
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composed of several phases that each require a set of finely tuned parameters in addition to those
usually needed for processing textual data. The reported findings for AC based systems initially seem
promising [3][36], but a lack of result analysis and detail regarding basic construction and data

processing makes assessing their true capability unfeasible without performing further investigation.

Performance evaluation criteria pose yet another issue with many different techniques available, each
with its own particular strengths and weaknesses, causing researchers to differ in opinion as to which
is superior. While accepted that at present no single measure adequately illustrates all of the potential
benefits, drawbacks or intricacies of a complex solution, the inability to exactly reproduce systems
and thus re-evaluate them using different performance criteria greatly limits comparisons that can be
made. Fortunately, one appraisal method known as the ‘Break-Even Point’ (BEP), which is based on
precision and recall values and accounts for multi-label problems, has taken precedence over others.
However, this has several major limitations, especially considering its feasibility outside of a research
environment due to assumptions made in respect to parameter tuning, but as enhanced performance

measures are discovered these comparison issues will continue to become more evident.

Many applications that utilise text categorisation use it in a time critical manner, either to prevent
backlog of high volume data or provide instantaneous real-time results, yet the notion of observing
time statistics for input processing or classification is almost unprecedented at current. The main
reasons for this are a general assumption that hardware advances fast enough to meet requirements
and a common acceptance that effectiveness is more important than efficiency. Another reason may
be due to the rapid prototyping approach typically used in research, as creation of inflexible and
disposable solutions with as little resource and effort consumption as possible will often lead to
inefficient systems that make the value of time tracking questionable.

Indeed, with the rate technology evolves and the ability to scale applications through parallel, cloud or
grid computing, the idea of time scrutiny might seem irrelevant until it is balanced against the
associated economic and environmental impact. Some applications might also just favour a trade of
speed over accuracy, particularly those dealing with multi-class or multi-label problems, as very few
algorithms can process these without a divide-and-conquer strategy that requires multiple iterations
over the classification process.
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1.3 Thesis Overview

1.3.1 Statement

Analysis of available text classification solutions and their performance comparisons reveal major
issues that significantly hinder advancement of research in the text categorisation domain:
widespread use of inconsistent definitions and terminology, conflicting or incomplete evaluations and

inadequate explanation and standardisation of the exact methodologies being employed.

1.3.2 Specific Terminology

Aside from the terminology previously outlined and any others that are commonly associated with
general text categorisation or data mining, there are also a number of additional expressions present
that have a specific meaning within the context of this thesis. Some are explained on a case-by-case
basis as they are introduced, such as those that name explicit parts of the framework described in
chapter five, while others are encountered more commonly throughout the entire document.

The term ‘solution’ is used to refer to one or more algorithms that have been grouped together for the
purpose of achieving a single overall task. As such a ‘text categorisation solution’ relates to a set of
components that have been intentionally combined in order to undertake the process of text
categorisation. Note that publications tend to apply the phrase ‘algorithm’ for this concept, but this has
purposely not been adopted to emphasise that multiple distinct algorithms are required to solve each
individual aspect of a text categorisation problem, as demonstrated in chapters two and three.

In the context of this thesis ‘architecture’ corresponds to the generalised structure or blueprint of a
solution, therefore representing the variety of possible or necessary stages and interactions that are
involved in its construction. For the problem of text categorisation this notion is examined in further
detail during chapter two, where existing processes and methodologies are considered and utilised to

produce a comprehensive universal architecture.

Where the word ‘framework’ is employed it denotes a reusable software platform or selection of code
libraries, which enable the production of software applications with a standardised structure or defined
arrangement of several discrete components. A number of current data mining frameworks are
investigated in chapter four, whilst a high-level design for a new framework is introduced in chapter

five, followed by the description of a practical working implementation.

1.3.3 Contributions

Page 31 of 292



Several key issues within the domain of text categorisation have their primary causes identified and
investigated, while innovative ways to remedy them and advance the general research area are
proposed. As part of the process intuitive naming conventions are recommended for a number of
aspects commonly referred to by disparate aliases, encouraging the standardisation of many labels
and expressions. Guideline definitions are also specified for distinct concepts to reduce the confusion
from inconsistent and ambiguous terminology, which is easily misinterpreted by researchers of every
experience level. Details of principle text resources are given as well, highlighting critical problems
with the way they are currently used and outlining basic information that assists in the creation of

practical experiments.

The full complexity of the text categorisation process is revealed in a manner not previously achieved
with the independence and intricacy of its distinct stages being established, while the necessity and
benefit of segmenting solutions into atomic components is demonstrated. A suitable methodology for
the structuring of complete and partial categorisation solutions is also proposed, comprising of the
individual stages they might contain and details of how these could potentially be configured and

interact.

A survey of popular algorithms that regularly form the foundation of most complete solutions has been
produced, intentionally organised according to the proposed stages to emphasise their purpose and
show how they correspond to existing components. While the validity and clarity of all descriptions
has been cross examined over multiple sources, ensuring clear and accurate explanations are
provided for every concept with any disparities or areas of possible confusion being noted where
appropriate. Equations have also been defined throughout using consistent mathematical notation
and are supplied in their most commonly acknowledged format along with information regarding

prominent equivalent or specialised alternatives.

Desired attributes have been determined for applications that are built to investigate novel text
categorisation approaches, with a focus on the requirements needed to cope with the complexity and
modularisation of the individual stages proposed. Based on these attributes a selection of prevalent
data mining frameworks and utilities have been reviewed, with particular regard to their aptitude for
handling the categorisation process and capacity for modification or integration of new components.
The notable benefits and concerns encountered during this analysis have been assessed and
employed to generate an idealistic combination of features that offer rapid prototyping within a stable
framework, permitting unprecedented control over solution composition and duplication.

Unable to find an adequate means to produce solutions comprised of the previously outlined stages, a
new framework has been designed that is highly adaptable, having the flexibility to deal with fully
modularised systems and the capacity for infinite expansion to accommodate further content. A

preliminary implementation of the design is also introduced, in addition to basic reusable components

Page 32 of 292



for the generation of trials to reinforce assertions made about the categorisation process, providing a

proof of concept to confirm its feasibility and reveal any unexpected limitations.

Using this new framework a series of experiments have been devised to test the potential impact of
the individual stages, with each directly based on a central benchmark that allows an impartial and fair
comparison of both effectiveness and efficiency. Results obtained from these trials demonstrate the
importance of every stage and highlight the benefits to be gained by modular solution architectures. In
order to facilitate swift generation of solution components a new independent library of text processing
utilities has also been created, retaining complete separation of the individual algorithms to ensure
their accurate portrayal.

1.3.4 Structure

This initial chapter provides a synopsis of the thesis and a brief overview of the text categorisation
problem, summarising its fundamental aspects and dominant concepts, whilst establishing a standard
set of terminology and explicit descriptions based on those found in existing literature. It also outlines
motives for undertaking the research, stating the poor availability of comparative results and a general
deficiency in the descriptions and standardisation of published solutions.

Chapter two analyses the constitution of a text categorisation solution, dividing it into atomic elements
and examining the different types of essential components and how they might interact. It considers
the various combination possibilities and how they could be applied in a practical and meaningful way

to maximise research options and productivity.

An assortment of algorithms and techniques are surveyed in chapter three, with each being organised
according to the particular stage they are part of. They have been chosen due to being regularly cited
or employed in related publications and are carefully described to resolve any confusing issues and
show how they might fit into the proposed solution architecture. Popular text document resources are

also detailed, along with considerations that should be made when selecting a dataset to investigate.

The fourth chapter appraises current applications that have a minimum level of text processing
capability against a predefined list of desired traits, attempting to match them to the various stages
and determining their value in a research based environment. Several leading open source data
mining frameworks are also reviewed, focusing on their current text related functionality and capacity

for expansion, with the overall positive and negative findings being compiled and analysed.
The previous discoveries are utilised to guide design of a novel framework in chapter five, which is

specifically aimed at the rapid generation of modular prototype solutions that can be easily adapted

and exactly replicated. It then describes an implementation of these designs, including details of the
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key elements forming its core and a brief summary of the programming concepts they involve. A list of
perceived limitations is also given, along with recommendations on how they might be resolved if the
implementation were to be taken beyond the trial stage.

Chapter six introduces several text categorisation related components that are compatible with the
trial framework and employs them to construct 