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Self-Management in Urban Traffic Control – an

Automated Planning Perspective
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{Falilat.Jimoh,t.l.mccluskey}@hud.ac.uk

Abstract. Advanced urban traffic control systems are often based on
feed-back algorithms. They use road traffic data which has been gathered
from a couple of minutes to several years. For instance, current traffic
control systems often operate on the basis of adaptive green phases and
flexible co-ordination in road (sub) networks based on measured traffic
conditions. However, these approaches are still not very efficient during
unforeseen situations such as road incidents when changes in traffic are
requested in a short time interval. For such anomalies, we argue that
systems are needed that can sense, interpret and deliberate with their
actions and goals to be achieved, taking into consideration continuous
changes in state, required service level and environmental constraints.
The requirement of such systems is that they can plan and act effectively
after such deliberation, so that behaviourally they appear self-aware.
This chapter focuses on the design of a generic architecture for auto-
nomic urban traffic control, to enable the network to manage itself both
in normal operation and in unexpected scenarios. The reasoning and self-
management aspects are implemented using automated planning tech-
niques inspired by both the symbolic artificial intelligence and traditional
control engineering.Preliminary test results of the plan generation phase
of the architecture are considered and evaluated.

Keywords: automated planning, urban traffic control, autonomic sys-
tems

1 Introduction

The need for planning and execution frameworks has increased interest in de-
signing and developing system architectures which use state-of-the-art plan gen-
eration techniques, plan execution, monitoring and recovery in order to address
complex tasks in real-world environments [1]. An example of such an architec-
ture is T-Rex (Teleo-Reactive EXecutive): a goal oriented system architecture
with embedded automated planning for on-board planning and execution for
autonomous underwater vehicles to enhance ocean science [2, 3]. Another recent
planning architecture, PELEA (Planning and Execution LEarning Architecture),
is a flexible modular architecture that incorporates sensing, planning, executing,
monitoring, replanning and even learning from past experiences [4].
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This means that advanced control systems should be able to reason with
their surrounding environment and take decisions with respect to their current
situation and their desired service level. This could be achieved by embedding
situational awareness into them, giving them the ability to generate necessary
plans to solve problems themselves with little or no human intervention. We
believe this is the key to embody autonomic properties in systems.

Self-managed systems (SM) are required to have an ability to learn process
patterns from the past and adopt, discard or generate new plans to improve
control systems. The ability to identify the task is the most important aspect of
any SM element, this enables SM to select the appropriate action when healing,
optimising, configuring or protecting itself.

Our self-managed system architecture is inspired by the functionality of the
Human Autonomic Nervous System (HANS) that handles complexity and un-
certainty with the aim to realise computing systems and applications capable of
managing themselves with minimum human intervention.

2 Urban Traffic Control

There are several applications of artificial intelligence to urban traffic control
with the aim of creating intelligent systems that will optimise the flow of traffic
in urban centers [5–7]. Yet, the existing urban traffic control (UTC) approaches
are not generally optimal during unforeseen situations such as road incidents, car
breakdown or when traffic demand changes rapidly within a short time interval
[8, 9]. This increases the need for autonomy in UTC. Such an autonomic system
(AS) would need to be able to consider the factors affecting the situation at hand:
the road network, the state of traffic flows, the road capacity limit, accessibility
or availability of roads within the network etc. All these factors will be peculiar
to the particular set of circumstances causing the problem [10]. Hence, there is a
need for a system that can reason with the capabilities of the control assets, and
the situation parameters as sensed by road sensors and generate a set of actions
or decisions that can be taken to alleviate the situation. Therefore, we need
systems that can plan and act effectively in order to restore an unexpected road
traffic situation into a normal order. A significant step towards this is exploiting
Automated Planning techniques which can reason about unforeseen situations
in the road network and come up with plans (sequences of actions) achieving a
desired traffic situation.

2.1 Role of AI Planning in Urban Traffic Control

The field of Artificial Intelligence Planning, or AI Planning, has evidenced a
significant advancement in planning techniques, which has led to development
of efficient planning systems [11–14] that can input declarative representation
of models of applications. The existence of these general planning tools has
motivated engineers in designing and developing complex application models
which closely approximate real world problems. Thus, it is now possible to deploy
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deliberative reasoning to real-time control applications [15, 16]. Consequently, AI
Planning now has a growing role in realisation of autonomy in control systems
and this architecture is a leap towards the realisation of such goal. The main
difference between traditional and our autonomic control architecture is depicted
in Figure 1. Traditionally, a control loop consists of three steps: sense, interpret
and act [17]. In other words, data are gathered from the environment with the use
of sensors, the system interprets information from these sensors as the state of
the environment. The system acts by taking necessary actions which is feedback
into the system in other to keep the environment in desirable state. Introducing
deliberation in the control loop allows the system to reason and generate effective
plans in order to achieve desirable goals. Enabling deliberative reasoning in UTC
systems is important because of its ability to handle unforeseen situations which
has not been previously learnt nor hard-coded into a UTC. Ultimately, this
would help to reduce traffic congestion and carbon emissions.

Fig. 1. Comparison of traditional and deliberative controls in Urban Transport Sys-
tems.

3 Automated Planning

AI Planning deals with the problem of finding a totally or partially ordered
sequence of actions whose execution leads from a particular initial state to a
state in which a goal condition is satisfied [18]. Actions in plans are ordered in
such a way that executability of every action is guaranteed. Hence, an agent
is able to transform the environment from an initial state into a desired goal
state [19]. A planning problem thus involves deciding “what” actions to do, and
“when” to do them [20].

In general, state space of AI planning tasks can be defined as a state-
transition system specified by 4-tuple (S,A,E, γ) where:

– S is a set of states
– A is a set of actions
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– γ : S ×A → 2S is a transition function.

Actions can modify the environment (a state is changed after an action is trig-
gered). Application of an action a in some state s results in a state in γ(s, a)
(γ(s, a) contains a set of states). It refers to non-deterministic effects of actions.

Classical planning is the simplest form of AI planning in which the transition
function γ is deterministic (i.e. γ : S × A → S). Hence, the environment is
assumed to be static and fully observable. Also, in classical planning actions
have instantaneous effects.

Temporal planning extends classical planning by considering time. Actions
have durative effects which means that executing an action takes some time and
effects of the action are not instantaneous. Temporal planning, in fact, combines
classical planning and scheduling.

Conformant planning considers partially observable environments and ac-
tions with non-deterministic effects. Therefore, the transition function γ is non-
deterministic (i.e. γ : S ×A → 2S).

For describing classical and temporal planning domain and problem models,
we can use PDDL [21], a language which is supported by the most of planning
engines. For describing conformant planning domain and problem models, we can
use PPDDL [22] (an extension of PDDL) or RDDL [23], languages which are
supported by many conformant planning engines. Our architecture can generally
support all the above kinds of planning.

4 Autonomic Computing Paradigm

We use the term “autonomic system”(AS) rather than autonomic computing to
emphasise the idea that we are dealing with a heterogeneous system containing
hardware and software. Sensors and effectors are the main component of this
type of autonomic system architecture [24]. AS needs sensors to sense the envi-
ronment and executes actions through effectors. In most cases, a control loop is
created: the system processes information retrieved from the sensors in order to
be aware of its effect and its environment; it takes necessary decisions using its
existing knowledge from its domain, generates effective plans and executes those
plans using effectors. Autonomic systems typically execute a cycle of monitoring,
analysing, planning and execution [25].

System architecture elements are self-managed by monitoring, behaviour
analysing and the response is used to plan and execute actions that move or
keep the system in a desired state. Overall self-management of a system is about
doing self-assessment, protection, healing, optimisation, maintenance and other
overlapping terms [24]. It is important to stress that these properties are interwo-
ven. The existence of one might require the existence of the others to effectively
operate. For instance, a self-optimisation process might not be complete until
the system is able to self-configure itself. Likewise, an aspect of a proactive self-
healing is an ability of the system to self-protect itself. A system that is meant
to satisfy the above objectives will need to have the following attributes:
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– Self-awareness of both internal and external features, process resources, and
constraints

– Self-monitoring of its existing state and processes
– Self-adjustment and control of itself to the desirable/required state
– Heterogeneity across numerous hardware and software architectures.

In a quest to embed these autonomic attributes into an urban traffic control
system, we explore the feasibility of embedding a automated planning component
into an urban traffic control system. The next section gives an overview of the
architectural design of our approach.

5 A Self-Managing System Architecture using

Automated Planning

We describe the system’s modules in the section below, using the diagram in
Figure 2.

Key to the contents of the architecture is a declarative description of the
system itself: the individual components that make up such a system; the dy-
namic environment that can influence the performance of such system; and its
sensing and controlling capabilities. A novel feature is its ability to reason and
deliberate using a combination of model predictive control (MPC) approach [26]
and AI planning paradigm.

5.1 Road Traffic Network

A real traffic network contains information about the state of a road traffic
environment at any time of the day.

Where historic data is available, or where behaviour is caused by antici-
pated circumstances, a road network will continue to flow normally using its
programmed or adaptive intelligence. This means that signal heads will be able
to control traffic as long as the traffic pattern is closed to the programmed or
learned pattern [27]. Changes to the state of a traffic network are under the
influence of various disturbances. For example, a sudden increase in volume of
traffic because of the end of a football game in a nearby arena becomes a distur-
bance to a road network, if the network has not been previously programmed or
adapted to such a traffic change.

Thus, our perception of the traffic situation within a network of roads is
that a network of traffic will continue to operate as planned until a disturbance
makes it act otherwise. In this work, a network of roads, as shown in Figure 3,
within Huddersfield town center area of United Kingdom, was considered for our
experimental analysis [28, 29].

5.2 Disturbances

These are the factors that affect the normal functioning of a road network. This
includes planned and unplanned disturbances. An example of planned distur-
bance is a set of road works. This disrupts the normal flow of traffic for the
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Fig. 2. Diagram of a Self-Managing System Architecture using Automated Planning

Fig. 3. Map showing the network entry and exit points and the blocked roads in a part
of town centre of Huddersfield, West Yorkshire, United Kingdom. It is used for our
empirical analysis.
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entire duration of its construction. During such road works, the adjoining route
and intersection signal need to be optimised in other to minimise the effect of
road or lane blockage during the period of the maintenance or upgrade. There
are several examples of unplanned disturbances. This includes but is not limited
to road incident; unexpected change in traffic demand and severe weather condi-
tions. Whenever a road incident occurs, the portion of the road would be blocked
to allow comprehensive investigation for a period of time. During this period,
the signal head should be aware of the status of the vehicles on the road through
the use of road sensors and existing surveillance. Necessary alerts should be sent
to the operator for medical emergency and security staff. Also the signal heads
in adjoining routes should also be optimised to allow outflow of vehicles from
the incident point to connected roads and the inflow of vehicle to the effected
roads. This would be achieved automatically by a self-managed system by the
use of message boards and switching all signal heads appropriately.

5.3 System Description Block (SD)

To create a self-aware property in a system, the system needs both to be situa-
tionaly aware, and have a knowledge model of its components, its environment
and the relationship between them. The latter is achieved by extracting opera-
tional knowledge of a road traffic domain and representing that knowledge in a
language that can be understood by the system. In the implementation of this
work, much of the domain knowledge is represented in PDDL [21]. PDDL gives
a formal representation of all the entities and operation policy of a road network
in a language that is understood by an automated planning function.

The system description block comprises of the model of the road network
domain. It is the storage for the declarative description of all the system compo-
nents, the system environments and their components. It also gives a declarative
description of the relationship between those components.

Formally, the system description block is a triple 〈D,X, S〉 where

– D is a finite set of system components
– X is a finite set of artefacts
– S is a set of states, where each state si ∈ S is a set of assignments fk(yl) = vm

where yl ∈ D ∪X and vm is a value of yl.

The components are all the objects that can be controlled by the system, for
example, traffic control signal heads, variable message signs(VMS) and traffic
cameras.

In the UTC domain, for instance, SD consists of a declarative description
of the road network of an area that needs to be controlled while optimising the
traffic flow patterns. This includes the representation of the road map as, for
example, a directed graphs. Below is a snippet of the the connections between
individual roads in our regional example:
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. . .

(:objects

markStr //there exist a road in the network called mark street

....

((:init

(:init

(conn JWInts north brookStr)//north of Brook street is connected

to south of John William’s intersection.

(link lordStr south brookStr) //south of Brook street is

linked with Lord street

. . . .

The system components are the available objects in the system that can be
manipulated and optimised for smooth traffic flow. This includes the signal heads
and message boards. These objects have a set of properties and relations which
record information, and changes to the objects are recorded through changes to
these properties and relations. For example, an object called road has a name
property called ”byramStr” and a road capacity limit of 20 cars. Capacity limit
is the maximum number of vehicle the road can contain at any giving period of
time.

....

(= (capacity brookStr) 11)//the maximum capacity of Brook street

is 20 cars

(= (capacity byramStr) 20) //the maximum capacity for Byram

Street is 11 cars

...

This implies that whenever the road sensor shows a total of 20 vehicles on Byram
street for a period of time without a dynamic change in the state of the vehicle(i.e
not moving) - then such road is blocked and vehicles should be diverted from
using it until the number of vehicles in such road is reduced.

5.4 Sensor and Effector Block (SE)

This is the sensory nerves of the system. It serves as the information interchange
between the high level reasoning component of the system and the road network.
It has an input mode and an output mode.

The Input Mode Surveillance and sensing devises are embedded into almost
every road network. Road traffic monitoring agencies make use of surveillance
and sensing devices for retrieving the status of road networks. These devices
upload the real time data in a format that can be retrieved and understood by
the system. The raw sensor data is then the start of an information processing
pipeline which ends up as values that describe the properties and relationships
of objects that are defined in the SD described in the section above.
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For example, in the UTC domain, sensing can be done by road sensors and
CCTV cameras. After information processing, this would result in a state file
for urban traffic, for example:

. . .

(operational brookStr)// Brook street is operational with no

disruption

(operational byramStr)// Byram Street is operational with no

disruption

. . .

(= (val north brookStr) 3)// number of vehicles on Brook Street

(= (val south byramStr) 12)// number of vehicles on Byram Street

. . .

An excellent example of recovering information from an array of sensors, and
extracting PDDL-like states and activities from them via information processing,
is given in Laguna’s recent thesis [30]. Here the sensors were RFID and camera,
and the activity being sensed was cooking in a kitchen, but the parallel between
this and the UTC domain is clear.

The Output Mode Control devices are called actuators in classical control
terminology. They are embedded into systems to change their performance to
a desirable state. Control devices play vital role in UTC environment, from the
simple traffic light to the complex controller box for signal heads. They all help
to control and maintain smooth traffic operation in road network. SE is re-
sponsible for executing control plans (sequences of actions) retrieved from the
Planning and Action block. Generated control plans are received from this block,
formatted and passed as system instructions to appropriate control devices for
execution. The control devices change the state of the road network to desires
state. An excerpt from the generated control file is:

. . .

25.010: (enable v2 north brookStr) [50.000] //release vehicles on

Mark Street for 50 seconds

26.007: (disAble v1 south JW) [30.000] //stop vehicles on south of

John Williams for 30 seconds

27.009: (divert-through-intersection y2 JWInts north brookStr)[60.000]

//divert vehicles through south of john William’s intersection

. . .

Executing actions is done by system components via the control devices.
Since we have to consider uncertainty, after executing a sequence of actions, the
sensors sense the current state, and if the current state is different from the
expected one, the information is propagated to the Planning and Action block
which provides a new plan.
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5.5 Planning and Action (PA) Block

PA can be understood as a core of deliberative reasoning and decision making
in the system. This is ‘the brain’ of our architecture. It has several components:

– an estimated current state
– a description of desired states or service levels[18]
– the model of the domain
– the planning problem file
– the planner program
– heuristics, such as ways of estimating how far a goal is away from a state.

The PA block receives an update to the estimated current state of the system
from SE, and system goals (desired states or service levels input from the Service
Level Checker, explained below). It produces a plan which aims to meet the
system goals from the current state. The default planning technology to carry
out this technique is AI Planning [18]. The plan produced is passed to the SE
block for execution. However, it is well known from planning and execution
systems [31] that producing a plan given a planning problem does not guarantee
its successful execution. The SE block, which is responsible for plan execution,
verifies whether executing an action provides the desired outcome. If the outcome
is different (for whatever reason), then this outcome and current estimated state
is passed back to the PA which is requested to re-plan.

In the UTC domain, if some road is congested, then the traffic is navigated
through alternative routes. Hence, PA is responsible for producing a plan which
may consist of showing information about such alternative routes on variable
message signs and optimising signal heads towards such route. There are theoret-
ical limits to the success of automated planning (even simple planning problems
are intractable in general), however, and hence PA might not guarantee generat-
ing plans in a reasonable time. In a dynamic environment, where a system must
be able to react quickly to avoid imminent danger, this may be a significant
problem.

Real time processes require fast response times to deal with exogenous events.
In order to cope with this we need to be able to satisfy two situations where:

– no valid plan can be found to meet the system goals
– the environment has changed prior to the generation and execution of a

control plan.

These two planning problems can be minimised by utilising a Model Predic-
tive Control(MPC) approach [26] to supplement an automated planner.

MPC techniques help to reduce the situation whereby the environment has
changed prior to generation and execution of plans. Rather than using only the
system model, the generating of the problem file takes all possible disturbances
into consideration. It also sends the planning problem to the planner in a receding
horizon approach. This means that the problem represents what is likely to
happen in few seconds ahead. This allows the planner to generate plans with
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consideration for future timing, and reduces the possibility of a totally changed
environment prior to plan execution.

The MPC approach also helps to reduce the likelihood of situations where
no valid plan can be found for given system goals.

This is achieved by breaking search exploration in to horizons such that
the best node at every horizon is explored further if planner time limit is not
exceeded. This is because exploring more search space will delay output time
for a real time system, and the output time might not be predictable since the
time taken to generate valid plans depends on the complexity of the task. This
complexity varies at different stages of the entire process life span. The planner
searches, considering all the possible combinations of the input constraints over
a period of time and/or node counts and returns a sequence of steps that will
take the road network from its current state to a partial or goal state. We use
the phrase partial or goal state, because the planner will return a plan from its
current state irrespective of whether the goals are met or not. This will make sure
a plan is available to follow at every instance of time. Thus, allowing the planner
to search for a limited resource count and returning the partial or complete goal
plan at every time stamp, means that the planner will always generate a plan
that will take the system closer to the goal trajectory provided that the fixed
searching time and the node count are well guided.

Specifically, after searching for a fix time and/or node count, the planner
communicates the partial or completely generated control plan to the network
control devices through the sensor and effectors block, aiming to effect a change
in state from an initial state to a fully or partially desirable state. The SE takes
new samples from the reaction of the network to the effect of these sequences of
control action. The network’s new state with the corresponding dynamic input
parameters from the environment is fed back into the planner to generate another
sequence of steps that will take the network traffic from its current state to
another partial/goal state for another sampling time, and so on.

This generates a control loop, which when continued over a period of time,
will generate a continuous curve like that of an MPC as shown in Figure 4.
This process takes the road network from its initial state to a goal state and
maintains that goal state as long as the process is still active. The ability of the
system to take the current state of the dynamic changing input parameters into
consideration during planning process increases the robustness to unexpected
events in the environments or system itself. This feedback loop also compensate
for the few deviations in the production of sub-optimal plans. In fact, the smooth
series of state changes, can only be achieved if the heuristics for the planner are
sound. This means that the planner must always produce a correct (but not
necessarily optimal) partial plan in the time allotted for plan generation.
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Fig. 4. Illustration of a well guided real-time process curve.

5.6 Learning Block

The inputs to the learning component are the generated plans and the associated
problem files within the domain.

Generated plans and associated problems are mapped and stored for adap-
tation purposes.

The most common learning technique in UTC research systems is reinforce-
ment learning: this learns appropriate actions for traffic patterns over a period
of time, utilising the idea of assigning blame or positive feedback over repeated
trials [27, 32]. Learning has also been implemented in several planning applica-
tions. The most common is the use of decision tree classifier to combine the
generated plans with problem instances and learn a policy for the MDP(Markov
decision process) from which the problem were drawn [33]. Thus, our emphasis
in this part of the architecture is not in learning the pattern alone, but in gener-
ating new heuristics from the learning component to improve the performance of
the planning engine. These heuristics includes macro actions for specific goals;
the best horizon limit set for similar problems and the goal distance heuristics
common to that environment at certain period of time. One clear advantage of
the use of AI Planning in UTC is that the actions, goals and states are all de-
fined in a declarative fashion. This means that why plans achieve a certain set of
goals can be explained logically, using the operational semantics of the actions.
Through this explanation we can derive the weakest precondition of a plan, in
other words the smallest set of features on a state such that, if those features
are seen again, the same plan can be re-used to achieve the same goals.

5.7 Service Level Checker (SLC)

The service level checker, as the name implies, repeatedly checks the service
level of the entire system to see if the system is in a ‘good condition’. It gets
the current state of the system from SE and compares it with the ‘ideal’ service
level. If the current state is far from being ‘ideal’, then the system should act in
order to recover its state to a ‘good condition’.
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Prob.no. Blockages
Crikey Optic

runtime makespan runtime makespan

1 No 0.16 156 0.19 53

1 Yes 0.14 156 0.16 64

2 No 1.22 122 0.35 43

2 Yes 1.28 170 0.40 52

3 No 36.84 299 1.79 57

3 Yes 51.52 446 1.54 70

Table 1. Our experimental results showing planners’ performance in given settings.
Runtime (in seconds) stands for a time needed by a planner to produce a plan.
Makespan stands for a duration in which the plan can be executed.

Formally, we can define an error function ǫ : S → R
+
0 which determines

how far the current state of the system is from being ‘ideal’. ǫ(s) = 0 means
that s is an ‘ideal’ state. If a value of the error function in the current state
is greater than a given threshold, then SLC generates goals (desired states of
a given components and/or artefacts) and passes them to the problem file to
generate new goals and metrics.

An example of this in UTC domain can be seen in an accident scene at a
junction. The ‘ideal’ service level for such a junction is to maximise traffic flow
from the junction to neighbouring routes. The present state of the system shows
that the traffic at that junction is now static with road sensors indicating static
vehicles(i.e. vehicles are no longer moving). Such a situation is not ‘ideal’, the
error function in such a state is high, hence, new goals are generated by SLC to
re-route incoming traffic flowing towards such junction as well as divert existing
traffic in such locations to a different route through connected roads.
It is also possible to alter the error function by an external system controller.
For instance, a self-managed UTC system can also accept inputs from the traffic
controller (Motoring Agencies). This means that the system behaviour can be
altered by the user if needed.

6 Preliminary Evaluation

We have created a prototype architecture along the lines described in the sec-
tions above, integrating a UTC scenario, environmental knowledge etc with AI
Planning engines, but in a simulated rather than real environment. The exper-
imental setting consists of several ‘specific’ problems which are defined on the
top of the road network as depicted in Figure 3.

Uncertainty is not considered in this experiment, due to the limitation of AI
planning approaches to reason with uncertainty in a complex domain. Problem
1 addresses the problem of navigating five cars from Lord Street (bottom right
corner of the map) to Wood Street (upper part of the map). Problem 2 addresses
the problem navigating cars (two at each entry point) through the network such
that they are evenly distributed at south, north and east exit points (individual
vehicles are not distinguished). Problem 3 has the same settings but has five
cars at each entry point. Problems 1-3 are considered in two different variants,
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i.e., without blockages and with blockages. Experiments were run on Intel Core
i7 2.9GHz, 5GB RAM, Ubuntu 12.04.1 LTS.

For evaluation purposes we selected known planning engines Crikey [12],
Optic [34] and LPG-td [11] which are capable to handle PDDL 2.1 features
(including timed initial literals). LPG-td, however, is not very useful for our
problem by two reasons. Firstly, it does not successfully complete preprocessing
when the problem has more than a few objects (e.g. roads). Secondly, it cannot
handle well concurrency from actions sharing some fluent(s), i.e., actions having
the same fluent in their descriptions are never considered as concurrent.

Table 1 shows the results of our preliminary experimental settings using the
Crikey and Optic planners. We can see that Optic clearly outperforms Crikey
in both criteria - makespan (a time needed for executing the plan) and runtime
(a time needed by a planner to provide a plan). Moreover, Optic is an incre-
mental planner, i.e., after finding a plan it searches for a better one (with lower
makespan) until a given time limit is reached.

The results of Optic are very promising given the fact that plans have been
retrieved in a very reasonable time (at worst slightly above one second) and their
quality (makespan) is satisfactory. Cars can be therefore navigated reasonably
through the road network even in case of some unexpected event which could
lead to road blockage. Also, given the fact that in the real-world environment
cars are entering the road network continuously, good quality plans (in terms
of makespan) can somehow ensure that the traffic flow remains continuous and
roads will not become congested.

A sample plan shows a solution of Problem 1 (no blockage) given by the
Optic planner, shows some interesting aspects. Firstly, despite going from the
same entry point to the same exit point cars are split along the way such that
some cars are navigated through Northumberland Street (e1) and some cars
are navigated through St. Peter Street (v2). This might be useful when some
unexpected event occurs (e.g. an accident on St. Peter Street) and there is no
time to redirect traffic. Secondly, the Optic planner is not very able to consider
more than one car in a single action (nn1) even though it is possible. This
is a shortcoming because it does not lead to optimal (or very nearly optimal)
solutions. Basically, such a plan when executed allows one car to go through
the junction, then the other cars have to wait until that car drives through the
following road. This is quite counter-intuitive and consequently these plans are
not optimal.

In summary, embedding planning components into the UTC might be benefi-
cial since it enables (centralised) reasoning in the given area which, for instance,
can more easily overcome non-standard situations (e.g. road blockage after an
accident). Our results showed that the makespan of the plans (given by the Optic
planner) did not increase much even though some roads were blocked. Minimis-
ing makespan, which is a goal of any UTC system, will help to reduce road con-
gestion and pollution in the environment. However, as we demonstrated,using
state-of-the-art domain-independent planning engines does not lead to optimal
solutions even in quite simple cases. Also, it is questionable whether a plan-
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ner’s performance will not significantly decrease on larger road networks. On
the other hand, developing a domain-dependent planner specifically tailored to
RTDM might overcome (some of) these issues.

7 Challenges

This architecture is presently implementable in systems that have time delay. It
cannot be implemented with real time processes that require continuous changes
in nanoseconds/microseconds. This is due to the fact that prediction can be
computationally demanding, so posing a challenge to implement it in real time.
However with technology advancement on CPU processing speed and the in-
troduction of High Performance Computing (HPC), future implementation are
possible. It is also important to know that the controller might anticipate set-
point changes which may not be desirable. This could be as a result of a grossly
inaccurate model which will yield poor control decisions, although the method is
surprisingly robust. To achieve a highly tuned controller, a very accurate model
is needed, because one can only control as precisely as one can model. The
sampling of the environment at every period of time(state selection) for control
plan generation should also encompass all significant dynamics and disturbances,
otherwise performance may be poor and important events may be unobserved.

The most important lesson learnt through our experiments with this delib-
erative architecture is that the heuristics that the planners use must be well
guided. This is directing our research into developing specialised planners which
are tuned for UTC use. This will allow us to take advantage of the peculiarities
of the application area, and result in operationally successful planners.

8 Conclusion

This chapter describes our vision of self-management at the architectural level
within a UTC management system, where autonomy is the ability of the sys-
tem components to configure their interaction in order for the entire system
to achieve a set service level. We created an autonomic architecture made of
several blocks which are discussed in the context of the Urban Traffic Control
Domain. We described the functionality of each block, highlighting their relation-
ship with one another. We also highlighted the role of AI planning in enabling
a self-management property in an autonomic systems architecture. We believe
that, creating a generic architecture that enables control systems to automati-
cally reason with knowledge of their environment and their controls, in order to
generate plans and schedules to manage themselves, would be a significant step
forward in the field of autonomic systems.

In a real-world scenario where data such as road queues are uploaded in real-
time from road sensors with traffic signals connected to a planner, we believe
that our approach can optimise and re-store road traffic disruption with little or
no human intervention. To that end, the development of specialised, deliberative
AI planners, tuned to UTC applications, is necessary.
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