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A direct method for analyzing the vertical vehicle-structure interaction 

S.G.M. Neves*, A.F.M. Azevedo, R. Calçada 

Centro de Estudos da Construção, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 

4200-465 Porto, Portugal 

ABSTRACT 

A new method for the dynamic analysis of the vertical vehicle-structure interaction is presented. The 

vehicle and structure systems can be discretized with various types of finite elements and may have any 

degree of complexity. The equations of both systems are complemented with additional compatibility 

equations to ensure contact between the vehicles and the structure. The equations of motion and the 

compatibility equations form a single system that is solved directly, thus avoiding the iterative procedure 

used by other authors to satisfy the compatibility between the vehicle and structure. For large structural 

systems the proposed method is usually more efficient than those that frequently update and factorize the 

system matrix. Some numerical examples have shown that the proposed formulation is accurate and 

efficient. 
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1. Introduction 

Research on the dynamic analysis of the vehicle-structure interaction is an important issue in 

civil engineering. A state-of-the-art review on the analysis of the vehicle-structure interaction is 

briefly presented here. Additional information on this subject can be found in Diana and 

Cheli [1], Knothe and Grassie [2] and Popp et al. [3]. 

The dynamic analysis of the vehicle-structure interaction can be performed in the frequency 

domain or in the time domain. The frequency domain methods require less computational effort 

but may impose some restrictions when dealing with non-periodic effects and nonlinear structural 

 



 

Nomenclature  Y contact forces acting on the structure 
   z absolute displacement of the mass 
a0 amplitude of the irregularity function  λ wavelength of the irregularity function 
C viscous damping matrix  ν Poisson’s ratio 
E Young’s modulus  ξ sprung mass distance from the left end 
F load vector   of the beam 
g acceleration of gravity  φn mode shape of the nth mode 
I moment of inertia of the cross section  ωn natural frequency of the nth mode 
kv spring stiffness   
K stiffness matrix  Subscripts 
L beam length   
m mass per unit length  F includes I and X type d.o.f. 
M mass matrix  I unconstrained nodal d.o.f. 
Mn generalized mass of the nth mode  P prescribed nodal d.o.f. 
Mv suspended mass  X contact nodal d.o.f. of the vehicle 
P external load vector  Y contact d.o.f. in a non-nodal point of 
qn normal coordinate of the nth mode   the surface of the structure 
r irregularities between vehicle and   
 structure  Superscripts 
R support reactions   
u displacement vector  c current time step (t + ∆t) 
v speed of the vehicle  p previous time step (t) 
X contact forces acting on the vehicle    

 

models [3]. There are several nonlinearities in the vehicle-structure system that should be 

considered, such as the nonlinear contact, the state-dependent rail pads and ballast/subgrade 

properties, and the loss of contact between sleepers and ballast [4, 5]. In these cases, the time 

domain methods are more appropriate. 

There are several studies that emphasize the importance of considering vertical 

vehicle-structure interaction. Zhai and Cai [6] concluded that the irregularities on the surfaces of 

wheel and rail induce severe dynamic disturbances. As a consequence, large impact forces occur, 

being the principal cause of damage to the wheels, rails and other vehicle and track components. 

The formation and development of wheel and rail irregularities and the increase of the dynamic 

interaction forces are interrelated. Yau et al. [7] pointed out that the riding comfort of rail cars 

moving over simple beams can be considerably affected by the rail irregularity, ballast stiffness, 

suspension stiffness and suspension damping. Therefore, the design of high-speed railway 



 

bridges may be governed by serviceability limit states, such as the riding comfort, rather than by 

ultimate limit states. 

The simulation of the vehicle-structure system requires the coupling of two independent 

meshes. The dynamic equilibrium is defined by two sets of equations of motion, one for the 

vehicle and the other for the structure. Both sets of equations can be solved by an iterative 

procedure to ensure the coupling of the two subsystems [8-10]. These methods may require a 

considerable computational effort when dealing with a large number of contact points due to a 

probable slow rate of convergence. 

Other approaches for solving the two sets of equations of motion are based on condensation 

techniques that eliminate the degrees of freedom of the vehicle at the element level. Yang and 

Yau [11] used the Newmark method to reduce the vehicle equations to equivalent stiffness 

equations, which are then condensed to those of the bridge elements in contact. The derived 

element ignores the pitching effect of the vehicle, which may significantly affect its response. 

Yang et al. [12] presented an improved vehicle-bridge interaction element to overcome this 

drawback. Yang and Wu [13] developed a procedure capable of simulating vehicles of varying 

complexity. Since the position of each contact point changes over time, the system matrix used 

by these methods [11-13] is usually time-dependent and must be updated and factorized at each 

time step. This procedure may demand a considerable computational effort. 

The main objective of this paper is to present an accurate, efficient and simple method for 

problems in two or three dimensions, which is capable of analyzing the vertical dynamic 

interaction between vehicles and structures, especially at low frequencies. In the developed 

procedure the subsystems that model the structure and the vehicles may have any degree of 

complexity and can be discretized with various types of finite elements, such as beams, shells and 

solids. 



 

The proposed method is used to analyze the contact between nodes of the vehicles and the 

surface of the structure. At each instant, the equations of motion of the structure and vehicles are 

complemented with additional compatibility equations that relate nodal displacements of the 

vehicles to the displacements of the corresponding points on the surface of the structure, with no 

sliding or separation being allowed. The irregularities at the contact interface can be considered 

in the compatibility equations. The equations of motion and the compatibility equations form a 

single system with displacements and contact forces as unknowns. This system is solved directly, 

thus avoiding the iterative procedure used by other authors to satisfy the compatibility equations 

[8-10]. The proposed formulation is referred to as the direct method and has been implemented in 

FEMIX, which is a general purpose finite element computer program [14]. 

2. Vehicle-structure interaction 

A general vehicle model moving at speed v(t) over a simple structure is represented in Fig. 1. 

The vehicle and structure subsystems can be modeled with various types of finite elements, such 

as beams, shells and solids. 
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Fig. 1. Vehicle-structure system: (a) schematic illustration and (b) free body diagram. 



 

Figure 1 shows the contact forces acting on the vehicle (Xi), the contact forces acting on the 

structure (Yi) and the irregularities between the contact points of the vehicle and the structure (ri). 

The degrees of freedom (d.o.f.) are grouped according to the classification presented in Table 1. 

Table 1 
Classification of the degrees of freedom (d.o.f.). 

I unconstrained nodal d.o.f. (nI = number of I type d.o.f.) 
X contact nodal d.o.f. of the vehicle (nX = number of X type d.o.f.) 
F includes I and X type d.o.f. (nF = nI + nX) 
Y contact d.o.f. in a non-nodal point of the surface of the structure (nY = nX) 
P prescribed nodal d.o.f. (nP = number of P type d.o.f.) 

2.1. Formulation of the equations of motion 

Based on the α method [15], the equations of motion of the vehicle-structure system can be 

expressed as 

 ( ) ( ) ( ) pcpcpcc αααααα FFuKuKuCuCuM −+=−++−++ 111 &&&&  (1) 

where M is the mass matrix, C is the viscous damping matrix, K is the stiffness matrix, F is the 

load vector, u are the displacements and α is the parameter of the α method. Adopting α = 0, this 

algorithm reduces to the Newmark method and, for other values, numerical dissipation is 

introduced in the higher modes. The superscript c indicates the current time step (t + ∆t) and the 

superscript p indicates the previous one (t). 

According to the adopted d.o.f. classification (see Table 1), the matrices and vectors of Eq. (1) 

are partitioned into the form 
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In the present paper, the implementation of the contact between nodes of the vehicles and 

points on the surface of the structure is described. Each Y type d.o.f. corresponds to a d.o.f. at a 

point located on the surface of the structure and is not associated with any node. For this reason, 

this type of d.o.f. is not included in Eq. (2). 

According to the adopted d.o.f. classification (see Table 1), the load vector can be expressed as 

 YIYII YDPF +=  (3) 

 XXXXX XIPF +=  (4) 

 PYPYPP RYDPF ++=  (5) 

where PI, PX and PP are the external load vectors, RP are the support reactions, and IXX is the 

identity matrix. Each element Dij of the matrices DIY and DPY corresponds to the equivalent nodal 

load in d.o.f. i due to a unit load applied in d.o.f. j. The X type d.o.f. are located in nodal points of 

the vehicle and the Y type d.o.f. are located in non-nodal points of the surface of the structure (see 

Fig. 1). 

According to Fig. 1, 

 0=+ YX YX  (6) 

being the number of Y type d.o.f. equal to the number of X type d.o.f. Substituting Eq. (6) into 

Eqs. (3) and (5) and replacing the subscript Y with X yields 

 XIXII XDPF −=  (7) 

 PXPXPP RXDPF +−=  (8) 

Equations (4) and (7) can be written in the form 

 XFXFF XGPF +=  (9) 

where 
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Substituting Eqs. (8) and (9) into Eq. (2), and rearranging, the following equations are obtained 
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The support reactions c
PR  given by Eq. (13) can be calculated after solving the system of linear 

equations defined by Eq. (12). 

Equation (12) can be written in the form 

 ( ) ( ) ( ) F
c
XFX

c
FFF
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c
FFF ααα FXGuKuCuM =+−++++ 111 &&&  (14) 

where 
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In the Newmark method [16] the velocity and displacement at the current time step (t + ∆t) are 

approximated with 
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These equations are also valid for the α method. The parameters γ and β influence the stability 

and accuracy of the Newmark and α methods. Solving Eq. (17) for cFu&&  gives 
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Substituting c
Fu&&  given by Eq. (18) into Eq. (16) yields 
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This equation can be written in the form 
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Substituting Eqs. (18) and (20) into Eq. (14), and rearranging the terms, yields 
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In matrix notation, Eq. (21) may be expressed as 
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where 

 ( ) FXFX α GG +−= 1  (26) 

2.2. Formulation of the compatibility equations 

At each instant, the equations of motion of the structure and vehicles are complemented with 

additional compatibility equations to ensure the contact between the nodes of the vehicles and the 



 

surface of the structure. The subtraction between a displacement of a node of the vehicle and the 

corresponding displacement of the surface of the structure must be equal to the irregularity at the 

contact interface, with no sliding or separation being allowed (see Fig. 1). The compatibility 

equations for the current time step (t+∆t) can be expressed as 

 c
X

c
Y

c
X ruu =−  (27) 

where 
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c
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In this equation each element Eij of the matrices EYI and EYP corresponds to the displacement at 

an internal d.o.f. i due to a unit displacement at nodal d.o.f. j. Since the number of Y type d.o.f. is 

equal to the number of X type d.o.f., in Eq. (28) the subscript Y is replaced with the subscript X, 

yielding 
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Substituting Eq. (29) into Eq. (27) and rearranging leads to 
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According to the adopted classification of d.o.f. (see Table 1), Eq. (30) can be written in the 

form 
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Premultiplying Eq. (31) by ( )α+− 1  gives 
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2.3. Complete system of equations 

Equations (25) and (34) can be expressed in matrix form leading to the following complete 

system of linear equations 
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in which 

 ( ) XFXF α HH +−= 1   (36) 

 ( ) ( ) c
PXP

c
XX αα uErr +−+−= 11   (37) 

The symmetry of the coefficient matrix (35) can be demonstrated using the Betti’s theorem. 

Since the time required to solve the system of linear equations (35) may represent a large 

percentage of the total solution time [17], the efficiency of the solver is very important. The 

present method uses an efficient and stable block factorization algorithm (see Appendix A) that 

takes into account the specific properties of each block, namely, symmetry, positive definiteness 

and bandwidth. 

In Eq. (35) the coefficient matrix is composed of the stiffness matrix FFK  and three additional 

blocks ( FXG , XFH  and 0). When compared with other procedures [11-13], the solution of the 

system requires the additional matrix operations (A.5), (A.6), (A.7), (A.11), (A.12) and part of 

(A.13) (see Appendix A). For large structural systems, where nF and nX are usually of the order of 

tens of thousands and tens, respectively, of all the additional operations only the time required 

by (A.5) is significant when compared with the total solution time. 

In general, the effective stiffness matrix FFK  remains constant during a linear analysis or has 

to be updated and factorized only at certain times during a nonlinear analysis. Since in the direct 

method only the additional blocks of the coefficient matrix (35) are modified, further 

factorizations (A.4) are avoided. Since, for large structural systems, the additional forward 



 

substitutions (A.5) require less computational effort than the additional factorizations (A.4), the 

direct method can be considerably more efficient than those that need to factorize the stiffness 

matrix at every time step [11-13]. 

3. Numerical examples and verification 

In this section, two numerical examples are used to verify the accuracy and efficiency of the 

direct method and the associated computer program. The first example consists of a simply 

supported beam subjected to a single moving sprung mass and the second consists of the same 

beam subjected to 50 moving sprung masses. In both examples, the results obtained with the 

direct method are compared with semi-analytical solutions. 

3.1. Simply supported beam subjected to one moving sprung mass 

A simply supported beam subjected to a moving sprung mass is illustrated in Fig. 2, where ξ is 

the sprung mass distance from the left end and z is the absolute displacement of the mass. The 

properties of the system correspond to those adopted by Yang and Yau [11], being the beam 

length L = 25.0 m and the geometrical and mechanical properties the following: Young’s 

modulus E = 2.87 GPa, Poisson’s ratio ν = 0.2, moment of inertia I = 2.90 m4, mass per unit 

length m = 2,303 kg m-1, suspended mass Mv = 5,750 kg and spring stiffness kv = 1,595 kN m-1. 

The first natural frequency of the beam is ω1 = 30.02 rad s-1, the natural frequency of the 

spring-mass system is ωv = 16.66 rad s-1 and the mass ratio is Mv/(mL) = 0.1. The sprung mass 

moves at a constant speed v = 100 km h-1. 
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Fig. 2. Simply supported beam subjected to a moving sprung mass. 

By neglecting the damping effect, the shear deformation and the rotary inertia, the nth modal 

equation of motion governing the transverse vibration of a simply supported beam can be 

expressed as [18] 
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In this equation qn(t) is the normal coordinate of the nth mode, being ωn the natural frequency, 

φn the mode shape and Mn the generalized mass. The parameter δ assumes the value one if 

L≤≤ ξ0 , and zero otherwise (see Fig. 2), and g is the acceleration of gravity. Since z is 

measured from the neutral spring position, the term Mv g must be included. 

The governing equation of motion of the sprung mass is given by 
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The computer program FEMIX 4.0 [14] was used to perform the dynamic finite element 

analysis. The following parameters for the α method are considered: ∆t = 0.001 s, β = 0.25, 

γ = 0.5 and α = 0. The structure is discretized with 50 beam elements and the total number of time 

steps is 900. The semi-analytical solution of Eqs. (38) and (39) is obtained considering the 

contribution of the first twenty modes of vibration, using the same integration method and 

parameters. 



 

The semi-analytical solutions for the vertical displacement and acceleration at the midpoint of 

the beam and the corresponding finite element approximations based on the direct method are 

plotted in Figs. 3 and 4. 
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Fig. 3. Vertical displacement at the midpoint of the beam. 
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Fig. 4. Vertical acceleration at the midpoint of the beam. 

The dynamic responses of the sprung mass, in terms of vertical displacement and acceleration, 

are shown in Figs. 5 and 6. 
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Fig. 5. Vertical displacement of the sprung mass. 
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Fig. 6. Vertical acceleration of the sprung mass. 

The results obtained with the proposed formulation perfectly match the corresponding 

semi-analytical solutions. The comparison between the results obtained and those published by 

Yang and Yau [11] shows that the present inclusion of additional modes of vibration leads to a 

better agreement, especially for the case of the sprung mass response. 



 

3.2. Simply supported beam subjected to 50 moving sprung masses 

The beam described in Section 3.1 is now subjected to 50 sprung masses moving at a constant 

speed v = 47.7 km h-1. The distance between masses is 3.0 m, being Mv and kv unaltered. A 

simple sinusoidal function defined by Eq. (40) is considered for the validation of the effects of 

irregularities at the contact interface. 
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In Eq. (40), a0 is the amplitude (0.5 mm) and λ is the wavelength (5.0 m) of the irregularity. 

The wavelength chosen is one fifth of the span length. The speed of the sprung masses and the 

wavelength of the irregularity are such that the frequency of excitation is equal to the natural 

frequency of the spring-mass system. 

For the case of several moving sprung masses, Eqs. (38) and (39) become 
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being Nv the number of sprung masses. 

The parameters used in the dynamic finite element analysis and in the semi-analytical solution 

of Eqs. (41) and (42) are the same as those used in the previous example. The total number of 

time steps is now 14,000. 

The semi-analytical solutions for the vertical displacement and acceleration of the first sprung 

mass over the time interval [0, 3](s) and the corresponding finite element approximations based 

on the direct method are plotted in Figs. 7 and 8. 
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Fig. 7. Vertical displacement of the first sprung mass. 
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Fig. 8. Vertical acceleration of the first sprung mass. 

The vertical displacement and acceleration of the last sprung mass over the time interval 

[11, 14](s) are shown in Figs. 9 and 10. 
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Fig. 9. Vertical displacement of the last sprung mass. 
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Fig. 10. Vertical acceleration of the last sprung mass. 

The results obtained with the direct method show a very good agreement with the 

corresponding semi-analytical solutions. 

In order to test the efficiency of the direct method, the beam analyzed in this section is now 

discretized with 10,000 8-node solid elements (10×10×100) and has 36597 unconstrained d.o.f. 

This beam has a rectangular cross section of width b = 2.2272 m and height h = 2.5 m (see 

Fig. 11). The parameters used in the previous analysis remain unchanged. 



 

 

Fig. 11. Simply supported beam modeled with three-dimensional solid elements. 

The vertical displacement of the first sprung mass over the time interval [0, 3](s) is shown in 

Fig. 12. 
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Fig. 12. Vertical displacement of the first sprung mass. 

The vertical displacement of the last sprung mass over the time interval [11, 14](s) is plotted in 

Fig. 13. 
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Fig. 13. Vertical displacement of the last sprung mass. 

The results obtained with the proposed method show a good agreement with the corresponding 

semi-analytical solution. The slight differences are due to the fact that the semi-analytical 

solution neglects the shear deformation and rotary inertia whereas the finite element model 

accounts for such effects. 

A workstation with an Intel Core i7-860 processor running at 2.80 GHz was used to perform 

the calculations. Using a single core, the execution time is 10572 seconds. According to the 

authors’ experience this result is very satisfactory. 

4. Conclusions 

An accurate, efficient and simple method for analyzing the vertical interaction between 

vehicles and structure has been developed. The vehicles and structures can be discretized with 

complex meshes composed of various types of finite elements. 

The equations of motion of the vehicles and structure are combined into a single system that is 

solved directly, thus avoiding the iterative procedure used by other methods to satisfy the 

compatibility of displacements. Generally, iterative methods are less accurate and may even 

diverge. For the case of large structural systems the proposed method is usually more efficient 



 

than those that need to frequently update and factorize the system matrix. The implementation of 

the direct method in a finite element computer program is straightforward for the reason that only 

the contact algorithm needs to be implemented and no additional finite elements have to be 

developed. 

The accuracy and efficiency of the direct method has been confirmed using two numerical 

examples. An excellent agreement between the results obtained with the proposed method and 

the corresponding semi-analytical solutions is observed. 

The step-by-step integration procedure presented in this paper can be generalized to the case of 

a nonlinear analysis by modifying the equation of motion into an incremental form. 

Appendix A. Block factorization 

The block factorization of the system of linear equations (35) is presented below using the 

following notation 
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and 
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It is assumed that A11 is a symmetric and positive definite submatrix and T
21A  has full rank. 

With these assumptions matrix A admits the following TLDL  factorization without pivoting [19] 
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where L11 and L22 are unit lower triangular submatrices, D11 is a positive definite diagonal 

submatrix, and D22 is a negative definite diagonal submatrix. By equating the corresponding 

blocks in Eq. (A.3) the following relations are obtained 



 

 T
11111111 LDLA =  (A.4) 

 T
11112121 LDLA =  (A.5) 

 T
22222222 LDLA =  (A.6) 

where 

 T
21112122 LDLA −=  (A.7) 

Therefore, the components of the right hand side of Eq. (A.3) can be obtained by factorization 

of A11, formation of L21 by forward substitution and factorization of 22A . 

The solution of the system of linear equations can be obtained by the following two steps 
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The vectors y1 and y2 are obtained by forward substitution 

 1111 byL =  (A.10) 

 1212222 yLbyL −=  (A.11) 

and the solution of the system (x1 and x2) is obtained by back-substitution 

 2
1

22222 yDxL −=T  (A.12) 

 2211
1

11111 xLyDxL TT −= −  (A.13) 
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