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A direct method for analyzing the vertical vehiskedcture interaction

S.G.M. Neves*, A.F.M. Azevedo, R. Calcada

Centro de Estudos da Construgdo, Faculdade de Eagen Universidade do Porto, Rua Dr. Roberto Frias

4200-465 Porto, Portugal

ABSTRACT

A new method for the dynamic analysis of the vaitieehicle-structure interaction is presented. The
vehicle and structure systems can be discretizéd wairious types of finite elements and may hawe an
degree of complexity. The equations of both systemescomplemented with additional compatibility
equations to ensure contact between the vehicldstlan structure. The equations of motion and the
compatibility equations form a single system tlsasdlved directly, thus avoiding the iterative @dgre
used by other authors to satisfy the compatibiigyween the vehicle and structure. For large stratt
systems the proposed method is usually more efficiean those that frequently update and factdhize
system matrix. Some numerical examples have shtwanhthe proposed formulation is accurate and

efficient.

Keywords: vehicle-structure interaction, contaaghkspeed train, bridge, dynamic analysis

1. Introduction

Research on the dynamic analysis of the vehiclesitre interaction is an important issue in
civil engineering. A state-of-the-art review on tealysis of the vehicle-structure interaction is
briefly presented here. Additional information omist subject can be found in Diana and
Cheli [1], Knothe and Grassie [2] and Popp et3l. [

The dynamic analysis of the vehicle-structure exd@on can be performed in the frequency
domain or in the time domain. The frequency donméthods require less computational effort

but may impose some restrictions when dealing nath-periodic effects and nonlinear structural
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Nomenclature Y contact forces acting on the structure
2 absolute displacement of the
& amplitude of the irregularity function A wavelength of the irregularity function
C viscous damping matr v Poisson'’s rati
E Young's modulu é sprung mass distance from the left
F load vecto of the bear
g acceleration of gravity th mode shape of theth mode
I moment of inerticof the cross sectit Wn natural frequency of thnth mode
k, spring stiffnes
K stiffness matri Subscripts
L beam lengt
m mass per unit leng F includesl andX type d.o.t
M mass matri I unconstrained nodal d.c
M, generalized mass the nth modt P prescribed nodal d.ao
M, suspended mass X contact nodal d.o.f. of the vehicle
P external load vect Y contact d.o.f. in a n-nodal point o
On normal coordinate of thnth modie the surface of the structi
r irregularities betwen vehicle an
structure Superscripts
R support reactior
u displacement vect c current time steft + At)
Y speed of the vehic p previous time steft)
X contact forces acting on the veh

models [3]. There are several nonlinearities in Yehicle-structure system that should be
considered, such as the nonlinear contact, the-dggiendent rail pads and ballast/subgrade
properties, and the loss of contact between sleeqad ballast [4, 5]. In these cases, the time
domain methods are more appropriate.

There are several studies that emphasize the iempm@t of considering vertical
vehicle-structure interaction. Zhai and Cai [6] clowed that the irregularities on the surfaces of
wheel and rail induce severe dynamic disturbankes consequence, large impact forces occur,
being the principal cause of damage to the wheails, and other vehicle and track components.
The formation and development of wheel and radgtiarities and the increase of the dynamic
interaction forces are interrelated. Yau et al.g@jnted out that the riding comfort of rail cars
moving over simple beams can be considerably &tkby the rail irregularity, ballast stiffness,

suspension stiffness and suspension damping. Tnerethe design of high-speed railway



bridges may be governed by serviceability limitetsasuch as the riding comfort, rather than by
ultimate limit states.

The simulation of the vehicle-structure system nexguthe coupling of two independent
meshes. The dynamic equilibrium is defined by twts 9of equations of motion, one for the
vehicle and the other for the structure. Both sdt®quations can be solved by an iterative
procedure to ensure the coupling of the two subsyst[8-10]. These methods may require a
considerable computational effort when dealing vétkarge number of contact points due to a
probable slow rate of convergence.

Other approaches for solving the two sets of eqoatof motion are based on condensation
techniques that eliminate the degrees of freedoitnefvehicle at the element level. Yang and
Yau [11] used the Newmark method to reduce theclkehequations to equivalent stiffness
equations, which are then condensed to those obtidge elements in contact. The derived
element ignores the pitching effect of the vehielajch may significantly affect its response.
Yang et al. [12] presented an improved vehicleg®idnteraction element to overcome this
drawback. Yang and Wu [13] developed a procedupalda of simulating vehicles of varying
complexity. Since the position of each contact palmnges over time, the system matrix used
by these methods [11-13] is usually time-dependedt must be updated and factorized at each
time step. This procedure may demand a considecab@utational effort.

The main objective of this paper is to present ecugte, efficient and simple method for
problems in two or three dimensions, which is cépatif analyzing the vertical dynamic
interaction between vehicles and structures, ealhgcit low frequencies. In the developed
procedure the subsystems that model the strucnadetlze vehicles may have any degree of
complexity and can be discretized with various $ypEfinite elements, such as beams, shells and

solids.



The proposed method is used to analyze the cohteteen nodes of the vehicles and the
surface of the structure. At each instant, the gogs of motion of the structure and vehicles are
complemented with additional compatibility equasothat relate nodal displacements of the
vehicles to the displacements of the corresponpoigts on the surface of the structure, with no
sliding or separation being allowed. The irregutiesi at the contact interface can be considered
in the compatibility equations. The equations oftioo and the compatibility equations form a
single system with displacements and contact faasasnknowns. This system is solved directly,
thus avoiding the iterative procedure used by olughors to satisfy the compatibility equations
[8-10]. The proposed formulation is referred tdtes direct method and has been implemented in

FEMIX, which is a general purpose finite elemennpoter program [14].

2. Vehicle-structureinteraction

A general vehicle model moving at spegt) over a simple structure is represented in Fig. 1.
The vehicle and structure subsystems can be modéllked/arious types of finite elements, such

as beams, shells and solids.

Vehicle

Fig. 1. Vehicle-structure system: (a) schematic illustratand (b) free body diagram.



Figure 1 shows the contact forces acting on thecleslfX;), the contact forces acting on the
structure Y;) and the irregularities between the contact pahthe vehicle and the structumg) (

The degrees of freedom (d.o.f.) are grouped acegridi the classification presented in Table 1.

Tablel
Classification of the degrees of freedom (d.o.f.).

unconstrained nodal d.o.fi & number of type d.o.f.)

contact nodal d.o.f. of the vehicleE number ofX type d.o.f.)
includesl andX type d.o.f. G = n, + ny)

contact d.o.f. in a non-nodal point of the surfatthe structurerf = ny)
prescribed nodal d.o.fn{ = number of type d.o.f.)

T <T X~

2.1. Formulation of the equations of motion

Based on thex method [15], the equations of motion of the vedsiructure system can be

expressed as
M +(1+a)CU-aCuP+(1+a)K U —aK uP=(1+a)Fe-aFP (1)

whereM is the mass matrixXC is the viscous damping matriK, is the stiffness matrix is the
load vectoryu are the displacements ands the parameter of themethod. Adopting: = 0O, this
algorithm reduces to the Newmark method and, fdremwotvalues, numerical dissipation is
introduced in the higher modes. The superscripdicates the current time step+At) and the
superscripp indicates the previous ong. (

According to the adopted d.o.f. classification ($ablel), the matrices and vectors of Eq. (1)
are partitioned into the form

|:MFF MFP}[?E}_F(]__’_&)[CFF CFP:||:L:IE:|_0C|:CFF CFP:||:FIFZ
Mp Mg || U5 Cor Cro]|Up Cor CeelU @)



In the present paper, the implementation of thetamirbetween nodes of the vehicles and
points on the surface of the structure is describeghY type d.o.f. corresponds to a d.o.f. at a
point located on the surface of the structure anmabt associated with any node. For this reason,
this type of d.o.f. is not included in Eq. (2).

According to the adopted d.o.f. classification ($aélel), the load vector can be expressed as

F =P +DyY, (3)
Fy =Py +1 4 Xy (4)
Fo =P +Dgy Yy +Rp (5)

whereP,, Px andPp are the external load vectoRRp are the support reactions, ahg is the
identity matrix. Each elemeil; of the matrice®,y andDpy corresponds to the equivalent nodal
load in d.o.fi due to a unit load applied in d.gfTheX type d.o.f. are located in nodal points of
the vehicle and th¥ type d.o.f. are located in non-nodal points ofshgace of the structure (see
Fig. 1).

According to Fig. 1,

X +Y,=0 (6)
being the number of type d.o.f. equal to the number Xftype d.o.f. Substituting Eq. (6) into
Egs. (3) and (5) and replacing the subsc¥iptith X yields

F =P -Dy X4 (7)
Fo =P, —Dp X, +R; (8)
Equations (4) and (7) can be written in the form

Fe =P +Ggy Xy 9)

I:I — I:)I
e S

where



and

Gex :[_Dlx} (11)

IXX

Substituting Egs. (8) and (9) into Eq. (2), andnaaging, the following equations are obtained

M U¢ +(1+a)CFF Ug +(1+a)KFF Ur _(1+a)GFX Xx =(1+0‘) P -aP?
—a G X3 ~M, U5 _(1+a)CFP Us+aCp Uf +aCpp ulf_(l"'a)KFP Up (12)

taKguf+aKgug

c o c o c o 1 .. C 1 0y C
Re :_1+a Rf-P; +_1+0c P2 +Dpy X _m Dex X% +mM pr Up +Ta Mee Up

. C “C _ a P _ a « P c c _ p
+CPF uF+CPPuP ECPF Ug ECPPUP-'-KPF uF+KPPuP mKPF Ug (13)

(44
— p
1+aKPPuP

The support reaction®; given by Eq. (13) can be calculated after solthegsystem of linear
equations defined by Eq. (12).

Equation (12) can be written in the form

M UF +(1+a)CFF ug +(1+a)KFF ug _(1+a)GFX Xx =Fr (14)

where

Fr=(+a)P-aPP-aG o X ~M o US—(1+a)Cpp U +a Cpp U +a Cpp UF

(15)
_(1+a)KFP Up+ta K uf +aKgug

In the Newmark method [16] the velocity and displaent at the current time stdpt(At) are

approximated with
ag =uf+[@-y)up +yue] at (16)
c : 1 N A
ug =ul +ul At+ E_'B ar+pu;c |At (17)
These equations are also valid for theethod. The parametersandg influence the stability

and accuracy of the Newmark amahethods. Solving Eq. (17) farg gives



=2 ue-—t yr- L ogro| L_g)up (18)
BAt Bt BAt

Substitutingti; given by Eg. (18) into Eq. (16) yields

1 1 1 1
uf =up +(1-y)Atuf +y At ug - up-———uf - —=-1|up 19
F F ( V) FTY [,BA'[Z F ﬁAtz F Bt F (2,5 jF:| (19)
This equation can be written in the form
wc— 7 c Y p Y |p Y e
U =——Uu;, ———ul+|1-=|uP +At|1-— |0 20
F,BAtF,BAtF(ﬁjF (2ﬁ]F (20)

Substituting Egs. (18) and (20) into Eq. (14), ematranging the terms, yields
Ko UE—(1+a) Gy XS =Fe (21)
where

Kee =AM + (1+(x) A Cee +(1+(x) K ee (22)

Fe=Fre+Mp [Aul+A, 02 +A 02]+(1+a)Crr [A uZ +A, 02+ A UZ]  (23)

_ 1 7 1

o= BAL A= BAL A BAL

_1 _Y _ Y

==-1 A =L-1 =Nt L -1| (24
2 p & (2/3 j &4

In matrix notation, Eq. (21) may be expressed as

_ _ ug [=
<o Gl 3 |-[7] @5
where
G = _(1+a)GFX (26)

2.2. Formulation of the compatibility equations

At each instant, the equations of motion of theditire and vehicles are complemented with

additional compatibility equations to ensure thataot between the nodes of the vehicles and the



surface of the structure. The subtraction betwedis@acement of a node of the vehicle and the
corresponding displacement of the surface of theestre must be equal to the irregularity at the
contact interface, with no sliding or separatioringeallowed (see Fig. 1). The compatibility
equations for the current time stepAt) can be expressed as
ug —ug =ry (27)
where
ué=E, uf+Eg, ug (28)

In this equation each elemdsf of the matrice€y, andEyp corresponds to the displacement at
an internal d.o.fi due to a unit displacement at nodal djo.Eince the number of type d.o.f. is
equal to the number of type d.o.f., in Eq. (28) the subscriptis replaced with the subscrif
yielding

US=E, Uut+E, ug (29)

Substituting Eq. (29) into Eq. (27) and rearrandesagls to

—E, utug =rg+Euf (30)

According to the adopted classification of d.osed Tabld), Eq. (30) can be written in the

form
Hye UF =Ty +Eyp Up (31)
where
u
u; :{ | } (32
uX
and
HXF :[_EXI |xx] (33)

Premultiplying Eq. (31) by-(1+a) gives

_(1"'0‘) Hye Uf :_(1+0‘)r>f _(1+0‘)Exp Ug (34)



2.3. Complete system of equations

Equations (25) and (34) can be expressed in méirir leading to the following complete

5 S
Hye 0 X>c< %

Hye = _(1+ (x) H e (36)

system of linear equations

in which

Ty ==(+a)r{-(1+a)Ep uf (37)
The symmetry of the coefficient matrix (35) candeenonstrated using the Betti’'s theorem.
Since the time required to solve the system ofalinequations (35) may represent a large
percentage of the total solution time [17], thecgfhcy of the solver is very important. The
present method uses an efficient and stable blactofization algorithm (see Appendix A) that
takes into account the specific properties of daobk, namely, symmetry, positive definiteness

and bandwidth.

In Eq. (35) the coefficient matrix is composed lué tiffness matrixK .. and three additional

blocks (G, H, and0). When compared with other procedures [11-13], dbietion of the

system requires the additional matrix operation®YA(A.6), (A.7), (A.11), (A.12) and part of
(A.13) (see Appendix A). For large structural sgstewherens andny are usually of the order of
tens of thousands and tens, respectively, of allatiditional operations only the time required
by (A.5) is significant when compared with the taalution time.

In general, the effective stiffness mat#x.. remains constant during a linear analysis or has

to be updated and factorized only at certain tich@eng a nonlinear analysis. Since in the direct
method only the additional blocks of the coeffitiematrix (35) are modified, further

factorizations (A.4) are avoided. Since, for largfeuctural systems, the additional forward



substitutions (A.5) require less computational gftban the additional factorizations (A.4), the
direct method can be considerably more efficieantthose that need to factorize the stiffness

matrix at every time step [11-13].

3. Numerical examplesand verification

In this section, two numerical examples are usedetdy the accuracy and efficiency of the
direct method and the associated computer progfdre. first example consists of a simply
supported beam subjected to a single moving spmags and the second consists of the same
beam subjected to 50 moving sprung masses. In é@amples, the results obtained with the

direct method are compared with semi-analyticaltsahs.

3.1. Smply supported beam subjected to one moving sprung mass

A simply supported beam subjected to a moving gpraass is illustrated in Fig. 2, whefés
the sprung mass distance from the left end aisdthe absolute displacement of the mass. The
properties of the system correspond to those addpyeYang and Yau [11], being the beam
length L =25.0 m and the geometrical and mechanical ptiegeithe following: Young's
modulus E = 2.87 GPa, Poisson’s ratio= 0.2, moment of inertid = 2.90 nf, mass per unit
length m = 2,303 kg rit, suspended madd, = 5,750 kg and spring stiffnegs= 1,595 kN n.
The first natural frequency of the beam ds = 30.02 rad, the natural frequency of the
spring-mass system is, = 16.66 rad’s and the mass ratio M./(mL) = 0.1. The sprung mass

moves at a constant speed 100 km H.



Fig. 2. Simply supported beam subjected to a moving spnuass.

By neglecting the damping effect, the shear deftionaand the rotary inertia, thgh modal
equation of motion governing the transverse vibratof a simply supported beam can be

expressed as [18]

5K, 26 2(8) gt
6, (1) + P g, (1) + e -2 @)z SM IR (38)

n n n

In this equatiorgn(t) is the normal coordinate of tmth mode, being, the natural frequency,
@ the mode shape and, the generalized mass. The parameétessumes the value one if
0< & <L, and zero otherwise (see Fig. 2), amds the acceleration of gravity. Sineeis

measured from the neutral spring position, the &g must be included.

The governing equation of motion of the sprung maswendoy

M, 2+k{z-i¢{n(é) qm(t)}o (39)

The computer program FEMIX 4.0 [14] was used to perfahe dynamic finite element
analysis. The following parameters for theanethod are consideredt = 0.001 s, = 0.25,
y = 0.5 andx = 0. The structure is discretized with 50 beam elemeuwtsrentotal number of time
steps is 900. The semi-analytical solution of Egs. (38) €9) is obtained considering the
contribution of the first twenty modes of vibration, usitie same integration method and

parameters.



The semi-analytical solutions for the vertical displacemnagi acceleration at the midpoint of

the beam and the corresponding finite element approxingabased on the direct method are

plotted in Figs. 3 and 4.

1.0

— Direct method

------ Semi—analytical solution

Displacement (mm)

0.0 0.1 02 03 04 05 06 0.7 08 09
Time (s)

Fig. 3. Vertical displacement at the midpoint of the beam.

0.8 T T T T
— Direct method
0.6r ----- Semi—analytical solution
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0.2}

00 I il' . ,1‘ { l‘ i | it
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|
o
(S}

00 01 02 03 04 05 06 07 08 09
Time (s)

Fig. 4. Vertical acceleration at the midpoint of the beam.

The dynamic responses of the sprung mass, in termartiéal displacement and acceleration,

are shown in Figs. 5 and 6.
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— Direct method
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Fig. 5. Vertical displacement of the sprung mass.
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— Direct method
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q
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=
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Fig. 6. Vertical acceleration of the sprung mass.
The results obtained with the proposed formulation peyfenthtch the corresponding
semi-analytical solutions. The comparison between the reshiiésned and those published by
Yang and Yau [11] shows that the present inclusion of additimodes of vibration leads to a

better agreement, especially for the case of the sprasg mesponse.



3.2. Smply supported beam subjected to 50 moving sprung masses

The beam described in Section 3.1 is now subjected gpfMhg masses moving at a constant
speedv = 47.7 km /. The distance between masses is 3.0 m, belpgnd k, unaltered. A
simple sinusoidal function defined by Eq. (40) is congddor the validation of the effects of

irregularities at the contact interface.

r) = a, sin(zTﬂgj (40)

In EqQ. (40),a is the amplitude (0.5 mm) anidis the wavelength (5.0 m) of the irregularity.
The wavelength chosen is one fifth of the span lengtb. siieed of the sprung masses and the
wavelength of the irregularity are such that the frequesfcgxcitation is equal to the natural
frequency of the spring-mass system.

For the case of several moving sprung masses(88jsand (39) become

K AE) Y AE) WO

6,0+ 0,0+, i -y Akl )
zgd(ng_k«/i ri)(”n(fi)
M, Z +k, |:Zi - -i%(f.) qm(t):| =0 (42)

beingN, the number of sprung masses.

The parameters used in the dynamic finite element analgsdisn the semi-analytical solution
of Egs. (41) and (42) are the same as those usee iprédvious example. The total number of
time steps is now 14,000.

The semi-analytical solutions for the vertical displacemnagr acceleration of the first sprung
mass over the time interval [0, 3](s) and the cowrdmg finite element approximations based

on the direct method are plotted in Figs. 7 and 8.
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— Direct method
10p  ---eee Semi—analytical solution

Displacement (mm)
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Time (s)

Fig. 7. Vertical displacement of the first sprung mass.
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201
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Fig. 8. Vertical acceleration of the first sprung mass.

The vertical displacement and acceleration of the last spmaxgs over the time interval

[11, 14](s) are shown in Figs. 9 and 10.
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Fig. 9. Vertical displacement of the last sprung mass.
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Fig. 10. Vertical acceleration of the last sprung mass.
The results obtained with the direct method show a wgogd agreement with the
corresponding semi-analytical solutions.
In order to test the efficiency of the direct method, teanb analyzed in this section is now
discretized with 10,000 8-node solid elements (10x10x&0d)has 36597 unconstrained d.o.f.
This beam has a rectangular cross section of widthi2.2272 m and height=2.5m (see

Fig. 11). The parameters used in the previous asalgsiain unchanged.
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Fig. 11. Simply supported beam modeled with three-dimeraisalid elements.

The vertical displacement of the first sprung mass tweitime interval [0, 3](s) is shown in

Fig. 12.

— Direct method

—analytical solution
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Fig. 12. Vertical displacement of the first sprung mass.

nterval [11, 14](s) is plotted in

The vertical displacement of the last sprung mass oveintlee

Fig. 13.
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Fig. 13. Vertical displacement of the last sprung mass.

The results obtained with the proposed method show aagre@ment with the corresponding
semi-analytical solution. The slight differences are dudhto fact that the semi-analytical
solution neglects the shear deformation and rotary ineriareas the finite element model
accounts for such effects.

A workstation with an Intel Core i7-860 processor runran@.80 GHz was used to perform
the calculations. Using a single core, the execution ten®0572 seconds. According to the

authors’ experience this result is very satisfactory.

4. Conclusions

An accurate, efficient and simple method for analyzing tkeical interaction between
vehicles and structure has been developed. The veliotestructures can be discretized with
complex meshes composed of various types of finite axiésn

The equations of motion of the vehicles and structureardined into a single system that is
solved directly, thus avoiding the iterative procedure usedthgr methods to satisfy the
compatibility of displacements. Generally, iterative methods lass accurate and may even

diverge. For the case of large structural systems thgopea method is usually more efficient



than those that need to frequently update and factibrizeystem matrix. The implementation of
the direct method in a finite element computer prograstrésghtforward for the reason that only
the contact algorithm needs to be implemented and ndiaddi finite elements have to be
developed.

The accuracy and efficiency of the direct method ha# lweafirmed using two numerical
examples. An excellent agreement between the resultsettevith the proposed method and
the corresponding semi-analytical solutions is observed.

The step-by-step integration procedure presented indpisrzan be generalized to the case of

a nonlinear analysis by modifying the equation of motido an incremental form.

Appendix A. Block factorization

The block factorization of the system of linear equati®3 {s presented below using the

s
Ax 0 JIX b,

}
A= {2“ Aoﬂ} (A.2)
21

following notation

and

It is assumed thaA; is a symmetric and positive definite submatrix akf has full rank.
With these assumptions matéxadmits the following. DL" factorization without pivoting [19]
|:A11 A-|2—1:| :|:Lll 0 :||:D11 0 :||:L-|]—.l L11:21i| (AS)
A, O L,, L]l O Dyl 0 LY,

where L1; and L, are unit lower triangular submatrice3;; is a positive definite diagonal
submatrix, andD,; is a negative definite diagonal submatrix. By equating threesponding

blocks in Eq. (A.3) the following relations are obtained



Anu=L,Dyy LT11 (A.4)

Ayn=L, D11LT11 (A5)
Kzz =L,,D,, LTzz (A.6)

where
Kzz =-L, Dy LT21 (A7)

Therefore, the components of the right hand side of&£8) can be obtained by factorization
of A3, formation ofL »; by forward substitution and factorization Af,, .

The solution of the system of linear equations can bendatdy the following two steps
e RN
L21 L22 y2 b2
5 Gl Al
0 LL,|[X% 0 DL|lY.

The vectorg/; andy, are obtained by forward substitution
L.y, =D, (A.10)
L,,y,=b,-L,Yy, (A.11)
and the solution of the system @ndx,) is obtained by back-substitution
L, x, =D Y, (A.12)

LT11 X, = DH Y.~ LT21X2 (A.13)
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