
University of Huddersfield Repository

Jilani, Rabia, Crampton, Andrew, Kitchin, Diane E. and Vallati, Mauro

ASCoL: Automated Acquisition of Domain Specific Static Constraints from Plan Traces

Original Citation

Jilani, Rabia, Crampton, Andrew, Kitchin, Diane E. and Vallati, Mauro (2014) ASCoL: Automated 

Acquisition of Domain Specific Static Constraints from Plan Traces. In: The UK Planning and 

Scheduling Special Interest Group (UK PlanSIG) 2014, 15th December 2014, Teeside, UK. 

This version is available at http://eprints.hud.ac.uk/22802/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Huddersfield Repository

https://core.ac.uk/display/30730928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ASCoL: Automated Acquisition of Domain Specific Static Constraints from Plan
Traces

Rabia Jilani and Andrew Crampton and Diane Kitchin and Mauro Vallati
School of Computing and Engineering

University of Huddersfield
United Kingdom

{U1270695, a.crampton, d.kitchin, m.vallati}@hud.ac.uk

Abstract

Domain-independent planning systems require that do-
main constraints and invariants are specified as part of
the input domain model. In AI Planning, the generated
plan is correct provided the constraints of the world
in which the agent is operating are satisfied. Specify-
ing operator descriptions by hand for planning domain
models that also require domain specific constraints is
time consuming, error prone and still a challenge for the
AI planning community.

The LOCM (Cresswell, McCluskey, and West 2013)
system carries out automated generation of the dynamic
aspects of a planning domain model from a set of ex-
ample training plans. We enhance the output domain
model of the LOCM system to capture static domain
constraints from the same set of input training plans as
used by LOCM to learn dynamic aspects of the world.

In this paper we propose a new framework ASCoL (Au-
tomated Static Constraint Learner), to make constraint
acquisition more efficient, by observing a set of training
plan traces. Most systems that learn constraints auto-
matically do so by analysing the operators of the plan-
ning world. Out proposed system will discover static
constraints by analysing plan traces for correlations in
the data. To do this an algorithm is in the process of
development for graph discovery from the collection of
ground action instances used in the input plan traces.
The proposed algorithm will analyse the complete set of
plan traces, based on a predefined set of constraints, and
deduces facts from it. We then augment components of
the LOCM generated domain with enriched constraints.

Introduction
In AI planning, designing the knowledge base and gathering
application knowledge is crucial for the efficiency of plan-
ning systems, and for the correctness of resulting plans. It
requires substantial effort as well as skillful experts to en-
code and maintain an error free and correct domain model
and action constraints.

A constraint is an entity that restricts the values of vari-
ables in domain modelling (Nareyek et al. 2005). These can
also be seen as static relationships between variables that
help planning systems in quick and efficient pruning of the
search tree. Existing domain-independent planning systems
require domain constraints or invariants to be explicitly pro-
vided as part of the input domain model. In the operator

schema, static constraints are often hand-coded in the form
of predicates which restrict the values of variables in the pre-
conditions of actions and define certain relationships that
never change in the definition of a complete action model.
Our work is aimed at automating the acquisition of such con-
straints by using sequences of plans as input training data.
Each plan is a sequence of actions, where each action in the
plan is stated as a name and a list of objects that are affected
or are needed during the action’s execution.

Learning domain knowledge from plan traces as input
training data has attracted much interest in research from
early work in (Benson 1996) to work in the recent past. (Ji-
lani et al. 2014) present a brief overview of knowledge en-
gineering tools in planning and compare these systems on a
set of criteria.

This paper proposes ASCoL, a framework for learning
static constraints. ASCoL is still in development, an initial
part is already implemented and we are still working to ex-
tend it. It will be distinct from other systems in that it will
learn domain model constraints from examples plans. It re-
quires only plan traces and the type information from the
domain model (the one that needs enhancement), without
requiring any other information about partial domain model,
initial, goal or intermediate states. Beside plan traces, we
require the knowledge about the types of objects in input
plan traces, and to get this type information we also input
LOCM generated domain model. It works on the assump-
tion that plan traces implicitly contain tacit knowledge about
constraints acquisition/validation/satisfaction and, based on
that assumption, we can draw correlations in the data by pat-
tern discovery in the training input. Other systems require
more input assistance. ARMS (Yang, Wu, and Jiang 2007),
for example, is a system that learns the domain model in ad-
dition to domain constraints and invariants. It makes use of
background information as input e.g. predicate definitions
of initial and goal states. Similarly SLAF (Shahaf and Amir
2006) learns action schema but also requires definitions of
fluents and a partial observation of intermediate states as in-
put.

The main difference to earlier work is that the technique
performs pattern discovery in the plan traces given by the
user as input, with no additional knowledge about initial,
goal or intermediate states. The developed part of the system
learns the expected constraints when compared with bench-



mark domains.

To the best of our knowledge, our system will be the
only system that can learn domain-independent general con-
straints as well as domain-specific constraints from the sim-
plest inputs available.

The Constraint Acquisition Problem

The overall working of automated planning engines can be
logically described around three components.

(a) The domain model (referred to as a domain descrip-
tion or action model in this paper) is the specification of the
objects, states (predicates), and dynamics of the domain of
planning. The main language used for the description of do-
main models is PDDL (McDermott D. et al. 1998). A do-
main model has two major components:

1. Dynamic Knowledge: a set of parametrised operator
schema representing generic actions and resulting change
in the domain under study.

2. Static Knowledge: relationships/constraints that are im-
plicit in the set of operators and are not directly expressed
but essentially are present while defining a domain model.
These can be seen as predicates that appear in the precon-
ditions of operators only and not in the effects. In simple
words static facts never change in the world. According to
Wickler (Wickler 2011), let O = {O1, O2, . . . , On} be a
set of operators and let P = {P1, P2, . . . , Pn} be a set of
all the predicate symbols that occur in these operators. A
predicate Pi ∈ P is fluent iff there is an operator Oj ∈ O
that has an effect that changes the truth of the predicate
Pi. Otherwise the predicate is static.

(b) The problem: to solve a specific problem, automated
planners takes problem specifications with domain knowl-
edge as inputs. The problem file indicates the initial condi-
tions and the required goal conditions for the output solution
plan. The planning engine then reasons with the knowledge
in (a) to solve (b).

(c) The plan: given a description of the possible initial
state of the world, a description of the desired goal in (b),
and a description of a set of possible actions in (a), the plan-
ning problem is to find a plan that is guaranteed to have a
sequence of actions that leads to one of the goal conditions.

The constraint acquisition problem that this paper ad-
dresses is: given the knowledge of object types from
(a.1)(generated by LOCM) and knowledge of (c)(input of
LOCM), can we design a framework to automatically learn
knowledge of (a.2)(to enhance output of LOCM)? We base
our methodology on the assumption that plan traces contain
tacit knowledge about constraints validation/acquisition.

Providing domain constraints to the planning engine may
help the planning system in the quick and efficient pruning
of the search tree.

ASCoL - The Proposed System

This paper proposes ASCoL, a framework for learning static
constraints and embedding them into the output domain gen-
erated by LOCM. LOCM is a knowledge acquisition tool

Figure 1: Input Output structure of ASCol

that carries out the automated generation of a planning do-
main model from example training plans. The uniqueness of
LOCM is that it can learn action schema without requiring
any information about predicates or initial, goal or interme-
diate state descriptions for the example action sequences.

The LOCM process can induce a representation for the
dynamic aspects of objects but not the static aspects. As
LOCM point out that in many domains, there are static facts
or constraints, such as the layout of roads in driverlog, the
level of floors in miconic domain or the fixed relationships
between specific cards in freecell, that never change with the
execution of actions. This information is not explicitly cap-
tured in the plan traces and is a big challenge to learn such
static constraints from them.

LOCM does not generate static preconditions in fully au-
tomatic way. It has an option for users to declare manu-
ally which arguments of which perticular actions need to be
made static constraints. LOCM manually declares this infor-
mation in the following form:

Static(not-equal(L1, L2), sail(L1, L2)).

The above mentioned Prolog code line is added manually to
the input training data file to make it a part of the output do-
main model manually. The fact in the first argument of static
is added as a precondition of the action in the second opera-
tor argument of static, where shared variable names provide
the binding between the action and its precondition.

ASCoL works as a separate unit from LOCM in that
LOCM first produces a domain model using a set of plan
traces as input. The same LOCM generated domain model,
along with the same set of input plan traces, will then be fed
to ASCoL to first anticipate the required set of constraints,
analyse plan traces and then learn constraints. Finally, it
embeds these constraints into the correct operators in the
LOCM-learnt output to enrich the domain with this addi-
tional static knowledge. Figure 1 shows the general structure
of ASCoL in terms of its inputs and outputs.

We aim to capture two major kinds of constraints: do-
main specific and domain independent constraints. By do-
main specific we mean the static knowledge that is strictly
associated with a domain and is not found as a general ex-
ample e.g. the fixed relationships between specific cards in
freecell. Domain independent constraints, by this we mean
the static knowledge that is generally associated with almost
all domains in one way or the other e.g. non-equality con-
straints and mutual exclusion constraints. We are also ex-



Figure 2: Internal Architecture of ASCoL

ploring more constraints for adding in our system to extend
it further.

The steps shown below indicate how the new system will
work. First we develop potential constraints, that could in-
clude:

1. Non-equality constraints: between object instances from
the same object types e.g. ferry domain;

2. Cardinality constraints: relationships between objects of
different actions can be one-to-one, one-to-many, many-
to-one, or many-to-many;

3. Constraints between object instances from different ob-
ject types e.g. mutual exclusion;

4. Domain specific constraints: partially ordered, linearly or-
dered or unordered graph detection e.g. The layout of
roads in the driverlog domain, the fixed relationships be-
tween specific cards in the freecell domain.

After developing the potential constraints, we then parse
the input plan traces and input domain file generated by
LOCM, into different components; which can then be auto-
matically processed. As a next step, the system then analyses
the complete set of plans to discover whether the potential

constraint is being satisfied or not. After that, it checks to
see if Qualifying Conditions (QCs) are satisfied. QCs are
different for each type of constraint and used in the algo-
rithm of that particular type of constraint acquisition. For
example, for domain independent, non-equality constraints,
where constraint acquisition only requires the equality check
between action parameters that belong to the same type, re-
quires the following two QCs:

i. The arity of the action must be greater than one.

ii. The Action must contain a pair or more instances of same
typed parameters.

As a final step the system generates static predicates/con-
straints and names them (but only for domain specific con-
straints) and adds the static predicates into the appropriate
operators in the parsed LOCM generated domain file

Data Set for Experimentation
In this section we discuss the test data set and the experi-
mentation that we did with the developed part of the sys-
tem. We demonstrate how it can form an effective solution
to the knowledge acquisition problem introduced in the last
section. We will use two domain models from past IPCs as
illustrative examples and use their plan traces throughout the
rest of the paper. The first test candidate is the ferry domain
model, used in the AIPS-2000 competition, where a num-
ber of cars have to be moved from their start to their goal-
locations, using a ferry. Each location is accessible from
each other location, cars can be debarked or boarded, and
the ferry can only carry one car at any time. The static con-
straint in this benchmark ferry domain is the fact that for the
sail action, the two locations between which the ferry has to
sail must be unique.

The second domain model we used for experimentation
purposes is a freecell domain, used in the AIPS-2000 com-
petition, and is a STRIPS encoding of a card game (simi-
lar to Solitaire) that comes free with Microsoft Windows.
Starting from an initial state, with a random configuration
of cards across eight columns, the user can move cards in a
specified order onto four home cells, following typical card
stacking rules, and using a number of free cells as a re-
source. The domain specific static constraints of the freecell
domain is the allowed sequential arrangement of cards in the
free cells, the home cells and among the card columns us-
ing actions such as colfromfreecell, sendtohomecell etc. We
assume that the plan traces implicitly contain tacit knowl-
edge about constraints acquisition/validation/satisfaction –
extracting the needed information from traces obtained from
an instructor, a planner, or control system execution require
a separate algorithm for each.

In ASCoL, the domain model, generated by LOCM, con-
taining (a.1) knowledge is referred to as the input domain
model. The input of the knowledge (c) is referred to as the
input plan traces. Therefore, there are two inputs to ASCoL:
the domain model and a set of plan traces.

The Input domain model is in standard PDDL format and
it consists of:

Type names: this denotes types used in the domain world.
There are a number of types (or classes) each containing a



set of objects such that each object belongs to one type only
(called a sort in LOCM terminology). For example in the
ferry domain:

(:types car loc)

Dynamic predicate definitions: these are facts represent-
ing relationships between objects of different types and all
the possible values of an objects state. For ferry domain, the
predicate definition induced by LOCM is shown below. Here
the first three predicates indicate three different states of a
car e.g. car boarded on ferry, car debarked from ferry and car
available before boarding the ferry. The last two predicates
are two different location states for ferry e.g. ferry location
before the sail action and after the sail action.In LOCM, the
following PDDL representation of these states include pred-
icates with automatically generated unique labels which ac-
tually represent finite state machine (FSM) states, and makes
more sense to reader with FSM in front.

(:predicates

(car_state_1_1 ?v1 - car)

(car_state_1_2 ?v1 - car)

(car_state_1_3 ?v1 - car)

(loc_state_1_1 ?v1 - loc)

(loc_state_1_2 ?v1 - loc)

)

Action definitions: each action contains an action name,
a list of parameters that will be affected in the action’s execu-
tion and the number of predicates that collectively describe
the changes in an object’s state before and after the action
executes. In the ferry domain description, sail is an operator
where the ferry, after boarding a car, sails from one location
to the next unique location before debarking the car. The fact
that ensures this functionality is a predicate (not-equal ?L1,
?L2), where L1 and L2 are two different locations. Below
is an example of the sail action generated by LOCM for the
ferry domain, without static facts in the precondition.

(:action sail

:parameters (?L1 - loc ?L2 - loc)

:precondition

and

(loc_state_1_2 ?L2)

(loc_state_1_1 ?L1))

:effect

and

(loc_state_1_1 ?L2)

(not (loc_state_1_2 ?L2))

(loc_state_1_2 ?L1)

(not (loc_state_1_1 ?L1)))

)

At the moment ASCoL completely learns non-equality con-
straints in all the test domains including ferry and freecell
domain. We have already implemented the base structure of
the frame work and next we are working on domain specific
constraints now. ASCoL learns the set of static constraints
and outputs it in standard PDDL format - we refer to it as
static knowledge. It not only learns the required static con-
straints but also embeds them into the appropriate operators
in the domain model; enhancing it with static facts. Domain

constraints are learnt in the form of predicates, for example:
for non-equality constraint, two locations cannot be the same
in the sail operator of the ferry domain and this is expressed
as (not-equal ?L1 ?L2).

To generate static facts for the ferry domain, we identify
two object types, Car and Location. The relevant instances
are multiple numbers of locations: L1, L2, L3, . . . and mul-
tiple numbers of cars: c1, c2, c3, . . .

After applying the ASCoL algorithm, the output is an
enhanced version of the sail operator for the ferry domain
which was previously generated by LOCM. The introduc-
tion of the static constraint (not-equal ?L1 ?L2) ensures that
a ferry can only sail between unique locations, which is con-
sistent with the AIPS 2000 ferry domain. Below we show the
PDDL code for the sail action generated by ASCoL.

sail

:parameters

(?L1 - loc ?L2 - loc)

:precondition

(and

(not_equal ?L1 ?L2)

(loc_state_1_2 ?L2)

(loc_state_1_1 ?L1))

:effect

(and

(loc_state_1_1 ?L2)

(not (loc_state_1_2 ?L2))

(loc_state_1_2 ?L1)

(not (loc_state_1_1 ?L1)))

)

For domain independent constraints, we name them ac-
cording to their respective function in the operator precon-
ditions. For example, for domain independent, non-equality
constraints, where constraint acquisition only requires an
equality check between action parameters that belong to the
same type, we have hard coded the name of the predicate
in the relevant algorithm as (not-equal ?para1 ?para2). In
the case where learning the static facts of a domain strictly
depends on the specific functioning of the domain (i.e., do-
main dependent/specific constraints), we leave it for the user
to name them appropriately after the learning process. For
example in the freecell domain the required static predicate
(can-stack ?card ?card1) and (face-val ?card) totally depends
upon the objects of actions in the input plan traces.

Conclusion

The ASCoL algorithm is limited by the correctness and com-
pleteness of the input information it is given. By correctness
we mean that plans should be noise free. Noise is inevitably
introduced into plan traces when some sensors are occasion-
ally damaged or with unintentional mistakes in the recording
of the action sequence. By completeness we mean that plan
traces should cover all the possible actions of the world. We
assume that input plan sequences are noise free while the
input domain file at least contains type information for all
those operators that the algorithm aims to enhance.



Grant, in (Grant 2010), discusses the limitations of us-
ing plan traces as the source of input information. ASCoL
faces similar difficulties as the only input source to verify
constraints are sequences of plans. To overcome some of
the known issues related to plan observations, we tested two
different sets of plans, namely plans generated by random
walks and goal-oriented plans:

i) Random-walk generators can be used to artificially pro-
duce large sequences of plan traces from the underlying do-
main model. Operators are generally chosen in a random but
uniform way to ensure a good spread of ground actions for
the knowledge acquisition system. However, problems can
arise from this approach as it can fail to capture relationships
between objects in other actions, this leads to not learning or
missing predicates for those particular actions.

ii) Goal-oriented plans can provide useful information
on effective actions combination and interaction. However,
goal-oriented data can not capture all possible actions per-
mutations, unlike randomly generated data. Hence a random
generator can show more action transitions when compared
to goal-oriented data.

We see several avenues for future work. We are work-
ing to include more algorithms in the ASCoL framework for
learning a larger number of domain specific constraints e.g.
to learn the complete map of locations from Truck domain
plan traces.

References

Benson, S. S. 1996. Learning action models for reactive
autonomous agents. Ph.D. Dissertation, stanford university.

Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using locm. The Knowl-
edge Engineering Review 28(02):195–213.

Grant, T. 2010. Identifying domain invariants from an
object-relationship model. PlanSIG2010 57.

Jilani, R.; Crampton, A.; Kitchin, D. E.; and Vallati, M.
2014. Automated knowledge engineering tools in planning:
State-of-the-art and future challenges.

McDermott D. et al. 1998. PDDL–the planning do-
main definition language. Technical report, Available at:
www.cs.yale.edu/homes/dvm.

Nareyek, A.; Freuder, E. C.; Fourer, R.; Giunchiglia, E.;
Goldman, R. P.; Kautz, H.; Rintanen, J.; and Tate, A. 2005.
Constraints and ai planning. Intelligent Systems, IEEE
20(2):62–72.

Shahaf, D., and Amir, E. 2006. Learning partially observ-
able action schemas. In Proceedings of the national confer-
ence on artificial intelligence (AAAI).

Wickler, G. 2011. Using planning domain features to facili-
tate knowledge engineering. KEPS 2011.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted max-sat. Artificial
Intelligence 171(2):107–143.


