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Introduction

‘Binge drinking’ is becoming an increasing medical and social 

problem, particularly amongst adolescents. Intermittent alcohol abuse 

or ‘binge drinking’, is deined as a period of excessive drinking, (5 

or more alcoholic drinks consecutively over a 4-6 h period), which 

is then followed by a period of abstinence. he corticolimbic brain 

regions appear to be susceptible to binge-induced degeneration and 

induced relearning deicits, [1], particularly during adolescence 

when neurogenesis is occurring. Over the past few years some of the 

underlying biochemical and neurochemical processes involved in the 

cognitive [2] and electrophysiological abnormalities [3] have been 

identiied in various animal models of binge drinking. 

Clinical studies have clearly shown that chronic alcohol abuse 

is associated with increases in infections [4,5], which are caused by 

alcohol-induced changes in the innate and adaptive immune systems. 

here is an inability of white cells to migrate to the site of infection or 

inlammation, as well as functional changes in lymphocytes, [6] natural 

killer cells, monocytes and macrophages [7] . In addition, alcohol will 

increase the permeability of the gut; such that gut derived endotoxins 

will be transported to the liver via the portal vein to stimulate toll-

like receptors to induce inlammation and the release of damaging 

pro-inlammatory cytokines [8]. he release of pro-inlammatory 

cytokines will activate phagocytic cells, such as macrophages and 

microglia and induce inlammation in both the liver [9] and speciic 

brain regions [10]. It is noteworthy that as the excessive alcohol intake 

continues, there is adaptation by these cells, particularly in the brain, 

to reduce the inlammatory response by altering the gene expression 

of various transcription factors, e.g. NFkappaB, [11] which is referred 

to as neuro-adaptation. Over the period of chronic alcohol abuse, >10 

years, there will be progressive loss of behavioural control, caused 

by decreased frontal cortical regulation of attention and cognitive 

lexibility, combined with increased limbic negative feelings [12]. In 

addition the hippocampus will be adversely afected by chronic ethanol 

abuse, and shows decreased hippocampal volume as well as deicits in 

hippocampal-dependent learning and memory [13]. 

In contrast, binge drinking will rapidly induce inlammation in the 

periphery [14] and hippocampus and prefrontal cortex brain regions 

in a rat model of binge drinking [14,15], as well as altering the ratio 

of pro-inlammatory cytokines to anti-inlammatory cytokines in the 

blood of University binge drinkers [16]. he explanation for such 
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Abstract

Intermittent ethanol abuse or ‘binge drinking’ during adolescence induces neuronal damage, which may be 
associated with cognitive dysfunction. To investigate the neurochemical processes involved, rats were administered 

either 1 g/kg or 2 g/kg ethanol in a ‘binge drinking’ regime. After only 3 weeks, signiicant activation of phagocytic 
cells in the peripheral (alveolar macrophages) and the hippocampal brain region (microglia cells) was present, 

as exempliied by increases in the release of pro-inlammatory cytokines in the macrophages and of iNOS in the 
microglia. This was associated with neuronal loss in the hippocampus CA1 region. Daily supplementation with a 

taurine prodrug, ethane-β-sultam, 0.028 g/kg, during the intermittent ethanol loading regime, supressed the release 
of the pro-inlammatory cytokines and of reactive nitrogen species, as well as neuronal loss, particularly in the rats 
administered the lower dose of ethanol, 1 g/kg. Plasma, macrophage and hippocampal taurine levels increased 
marginally after ethane-β-sultam supplementation. The ‘binge drinking’ ethanol rats administered 1 g/kg ethanol 
showed increased latencies to those of the control rats in their acquisition of spacial navigation in the Morris Water 

Maze, which was normalised to that of the controls values after ethane-β-sultam administration. 

Such results conirm that the administration of ethane-β-sultam to binge drinking rats reduces neuroinlammation 
in both the periphery and the brain, suppresses neuronal loss, and improved working memory of rats in a water maze 
study.
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vulnerability in young binge drinkers is related to the fact that there 

is ine-tuning of speciic neuronal connections, via synaptic pruning, 

during this adolescent period [17]. Two brain regions show particularly 

marked ontogenetic alterations during adolescence, the prefrontal 

cortex, where considerable remodeling occurs within regions which 

form an interconnecting network of circuitry and the hippocampus, 

where hippocampal stem cells are present in the subgranular zone, 

inside the dentate gyrus granule cell layer. hese neural stem cells are 

linked to hippocampal function, which include learning, memory and 

mood [18]. It is in these two regions where binge drinking has its most 

profound neurotoxic efect, inducing adverse changes in structural 

integrity which could result in a variety of cognitive deicits [3]. 

Furthermore such vulnerability occurs within a relatively short time, 

e.g. approximately 2 years, of commencing a binge drinking regime in 

susceptible adolescents.

he excitatory amino acid glutamate plays an important role 

in alcoholism. Glutamate mediates approximately 70% of synaptic 

transmission, reaching concentration in the low millimolar range. 

Once released into the synaptic clet it can bind to one of the three 

types of ionotrophic glutamate receptors, the N-methyl-D-aspartate 

receptor, NMDA, the α-amino-3-hydroxy-5-methylisoxazole-4-

propionic acid receptor and the kainite receptor. In addition glutamate 

can bind to metabotrophic glutamate receptors in the perisynaptic 

regions or on the presynaptic terminal. Glutamate is cleared from the 

extracellular environment by sodium dependent excitatory amino 

acids, EAAT, which include GLT1, EAAT2 and EAAT5. In addition, 

EAAT1 and EAAT2 are expressed in glial cells and can remove excess 

glutamate [19]. Chronic alcohol abuse will inhibit neuronal NMDA 

receptor function, the NR2B containing NMDA receptors being 

particular sensitive to inhibition by ethanol. Microdialysis studies 

have shown that there are no changes in extracellular glutamate in 

various brain regions in an animal model of chronic alcohol abuse, 

although during detoxiication there is a rapid increase in glutamate 

release [20]. In contrast, microdialysis studies in a rat model of a binge 

drinking revealed signiicantly increased extracellular glutamate in the 

hippocampus ater only 3 weeks of a binge drinking regime [14]. he 

precise mechanisms as to how ethanol alters extracellular glutamate 

are unknown, although it may be due to ethanol-induced changes in 

glutamate uptake by glial cells [21-23].

he sulphonated amino acid taurine is widely distributed in 

human tissue, being present at high concentrations, 50mM in 

leucocytes, microglia and macrophages, where it plays an important 

anti-inlammatory role [24]. In our recent studies [25], we clearly 

showed that the anti-inlammatory property of taurine was mediated 

via stabilisation of IkaBa, thus preventing activation of NFkappaB. 

Although taurine can be synthesised intracellularly from cysteine and 

methionine, the diet is the main source for human nutrition. Taurine 

uptake from the plasma is tightly controlled by the taurine transporter, 

TauT, such that supplementation with taurine will only transiently 

increase taurine levels within the liver and to a lesser extent in the brain 

[25]. 

Since TauT activity is decreased by inlammation [26-28], this 

might indicate that the ability of such cells to protect themselves from 

inlammation will be decreased. herefore taurine analogues which 

are able to traverse cellular membranes independently of TauT may 

enhance intracellular taurine levels and promote anti-inlammatory 

pathways

Beta sultam is an analogue of β-lactams, a group of compounds 

which are able to inactivate serine enzymes, i,e, elastase, which is 

released in response to inlammatory stimuli and plays a major role in 

protein digestion following phagocytosis [29]. he parent substituted 

β -sultam does not inhibit serine enzymes but is slowly hydrolysed 

to taurine. It therefore has the potential to difuse across cellular 

membranes independent of TauT and increase intracellular taurine 

content. In addition, it has also been shown that cetriaxone, an 

FDA approved β -lactam antibiotic, reduced ethanol consumption in 

alcohol preferring rats [30] which in part is due to the up regulation 

of glutamate transporter 1 [31]. herefore ethane-β-sultam may also 

diminish extracellular glutamate levels by a comparable mechanism, 

and diminish the neurotoxicity of binge drinking. 

Since we had shown the anti-inlammatory action of ethane-β-

sultam in vitro in macrophages and microglia in our earlier cell culture 

studies [25], it was of interest to ascertain whether it would have an 

anti-inlammatory action in an animal model of binge drinking. 

In addition, since β-lactams antibiotics alter glutamate transporter 

1, it was of interest to ascertain whether extracellular glutamate 

content might be inluenced by ethane- β-sultam. Lastly, since pro-

inlammatory cytokines play an important role in the modulation of 

learning, memory, neural plasticity and neurogenesis [32], the binge 

drinking rats were assessed in a water maze trial to investigate whether 

their learning, possibly impaired by binge drinking, could be rectiied 

by ethane- β-sultam administration.

Methods

Animals

Adolescent Wistar female rats (Harlan-Nossan, Milan, Italy) at 

puberty (6 weeks of age), with average body weights of approximately 

125-155 g, were housed under controlled humidity and temperature 

with 12h dark/light cycles and a free supply of food and water within 

a polypropylene cage. All animals were treated in accordance with 

the Italian Guidelines for Animal Care (D. L. 116/92) and European 

Communities Council Directives (86/609/ECC).

Animal treatment and binge drinking regime

he rats were randomly assigned to various binge treatment 

groups, each with n=4, repeating the binge treatment on at least 

two diferent occasions (total number of rats in each experimental 

group=8). A minimum number of 3 rats in each group completed 

the various analysis/tests at the end of each binge treatment. Animals 

were administered by gavage 1 g/kg ethanol or 2 g/kg ethanol +/- 

ethane-β -sultam. Ethanol doses (20%) were administered 3x /day 

with 3 h intervals on 2 consecutive days by gavage, followed by 5 days 

abstinence. his was repeated for a total of three weeks. he control rats 

were administered either ethane- β-sultam or water alone at the same 

time points as the binge drinking ethanol rats (Figure 1).

he synthesis of ethane- β-sultam has been previously 

described [25]. Ethane- β-sultam was freshly prepared before each 

administration (2.86 mg/ml) and given by gavage at a dose of 28 mg/

kg. he administration of ethane-β-sultam was initiated one week 

before commencing the binge drinking regime, this compound being 

administered by gavage, each morning at 0900 h. It was then continued 

daily for the subsequent 3 weeks of the binge drinking regime, at 09.00 

h or 30 min before the irst daily dose of ethanol.
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Microdialysis

he rats underwent surgical procedures at the end of the second 

week of the binge drinking regime, ive days before the administration 

of the last ethanol dose, as previously described [14]. Rats were 

anaesthetised with chloral hydrate (400 mg/kg i.p), mounted onto a 

stereotaxic frame (Stellar, Stoelting Co., Wood Dale, IL, USA) and a 

guide cannula (concentric design, CMA Microdialysis AB, Stockholm, 

Sweden) was implanted vertically into the right ventral hippocampus, 

using the following coordinates, relative to Bregma and skull surface: 

AP -4.8, L -5.2, V-4.0 at the ventral extent of the guide cannula. he 

rats were allowed to recover for 5 days ater the surgery, ater which 

time microdialysis was commenced on the last day of the three 

weeks binge drinking regime, when a vertical microdialysis probe (2 

mm exposed surface, CMA 12, CMA Microdialysis AB, Stockholm, 

Sweden) was inserted into the guide cannula. he inlet of the probe was 

connected to a microdialysis pump (CMA/100, CMA Microdialysis 

AB, Stockholm, Sweden) and the ventral hippocampus perfused with 

artiicial cerebrospinal luid (aCSF) consisting of, 3.0 mM KCl, 1.0 

mM MgCl
2
, 140 mM NaCl, 1.2 mM CaCl

2
, 0.27 mM NaH

2
PO

4
, 7.2 

mM glucose and 1.2 mM Na
2
HPO4 at pH 7.4 at a rate of 2µl/min [14]. 

Ater a stabilisation period of 1 h, the perfusion fractions were collected 

every 30 minutes. he fractions collected at -90, -60 and -30 min were 

taken as representative of the basal extracellular concentrations for 

glutamate and taurine. Ater the collection of the -30 min microdialysis 

fraction, rats were administered ethanol or water, i.e. during the irst 

30 min collection of the stimulated period, which lasted a further 5 h 

duration (10 fractions of 30 min. he correct positioning of the probe 

was conirmed at a later time (see below). 

To measure the extracellular concentrations of glutamate and 

taurine, the microdialysis samples were treated with OPA-reagent for 

pre-column derivatisation, which consisted of mercaptoethanol and 

O-phthalaldehyde (OPA). he amino acid derivatives were separated 

with 5µm reverse-phase Nucleosil C18 column (250 × 4 mm; Machery-

Nagel, Duren, Germany), maintained at room temperature. he mobile 

phase consisted of 0.1 M potassium acetate (pH adjusted to 5.48 with 

glacial acetic acid) and methanol with a 3 linear step gradient from 

25% to 90% methanol (low rate of 1.0 ml/min). Column eluent was 

analysed using a High-Performance Liquid Chromatography (HPLC) 

reverse-phase Shimadzu spectroluorimeter system (Shimadzu Italia 

S.r.l., Milan, Italy) set to an excitation wavelength of 340nm and 

emission wavelength of 455nm (controlled by Class-VPTM 7.2.1 SP1 

Client/Server Chromatography Data System) [14].

Alveolar macrophage isolation and blood collection

Alveolar macrophages were isolated from rats within 24 h of 

completing microdialysis. Rats were anaesthetised with Nembutal, 

prior to a small incision in the trachea, to allow a small tube to 

be inserted into the lungs. A phosphate bufer solution (pH 7.4), 

approximately 40 ml, was used to lavage the alveolar macrophages 

from the lungs, which were recovered ater centrifugation at 1,500 rpm 

for 10 min. Cells at densities of 1 × 105 or 2 × 105 were pipetted into 

wells (Corning Inc. USA) containing culture medium Dulbecco media, 

10% foetal calf serum, streptomycin (100 µg/ml) and penicillin (100 µg/

ml). he alveolar macrophages were let for 24 h to adhere to the wells. 

he supernatant was then removed and the cells resuspended in culture 

medium and stimulated with LPS (1 µg/ml) for 24 h. he supernatants 

were removed and stored at –20oC prior to further analysis for NO and 

the two cytokines, IL6 and TNFα. he rats were then decapitated, the 

brains removed, and blood collected. he blood was spun at 3000 rpm 

for 15 minutes to collect serum, which was then stored at -20°C prior 

to taurine analysis.

In a separate experiment, blood was removed from the tail vein of 

adolescent binge drinking rats +/- ethane- β-sultam rats, n=8, at timed 

intervals ater the irst, second and third ethanol administration. he 

blood alcohol concentrations were estimated by an enzymatic method, 

where the conversion of NAD+ to NADH results in an increase in 

absorbance at 340 nm that is proportional to the ethanol concentration

Nitrite analysis

he levels of nitrites in the cell supernatants were evaluated by 

combining 100 µl aliquots with an equal volume of Greiss reagent 

(2.5% phosphoric acid, 1% sulphanilamide and 0.1% naphthalene 

diamine dihydrochloride). he mixture was incubated for 10 min at 

room temperature and optical density measured at 540 nm. Standards 

were prepared in the range 1-50 µM. 

Cytokine analyses

IL6 and TNFα were assayed in the supernatants by ELISA (R & D 

System, Inc. UK)

Serum taurine analysis

Trichloroacetic acid (2%) was added to the serum to precipitate 

proteins and the supernatant recovered ater centrifugation at 3000 

r.p.m. for 15 minutes. he supernatant was diluted 1:500, ater which 

its taurine content was assayed by HPLC with luorescence detection of 

the o-phthalaldehyde derivative.

Brain preparation for histological investigation

he brains were removed from each rat at the completion of 

the pulmonary lavage. he brains were initially preserved in 4% 

formaledehyde in bufer solution and then cryopreserved in 30% 

sucrose solution prior to being frozen in isopentane at -80oC prior to 

analysis. For cutting, the frozen brains were mounted in the cryostat 

(Bright Instruments, UK) and coronal sections, 20 microns, cut 
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Figure 1: Diagrammatic scheme of ethane β Sultam and ethanol administration 
during the experimental procedures.
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through the hippocampus, approximately 40 slides/rat, and transferred 

onto slides (2 per slide). Slides were kept at -80oC ater cutting to avoid 

degradation and only defrosted when required for staining. 

Cresyl fast violet staining (CFV)

CFV staining was used to stain the neurons in the hippocampus, 

8-10 sections for each rat. he neurons are substantially larger than 

microglia cells and are clearly distinguishable from these phagocytic 

cells by their morphology. he correct positioning of the probe in the 

CA1 hippocampal region was conirmed by this stain.

Immunohistochemisty

OX-6 and iNOS immunohistochemical staining: Every 7th slide 

was stained for presence of MHC-II [14] and iNOS, which constituted 

approximately 8-10 brain sections for each rat. Slides were rehydrated 

in changes of ethanol, circled with a pap pen (Daido Sangyo Co. Ltd., 

Tokyo, Japan) and then let in phosphate bufer saline (PBS; 16 g NaCl, 

2.3 g Na
2
PO

4
, 0.4 g KH

2
PO

4
, in 400 ml adjusted to pH 7.4). Endogenous 

peroxide activity was blocked by 1% H
2
O

2
 in 100% methanol (45 min). 

Slides were washed and incubated (1 h) irst in 5% normal horse serum 

(Vector Laboratories, UK) with PBS/Triton X (PBS, 0.1% Triton X-100; 

Sigma-Aldrich, UK) then in the same solution with the OX-6 antibody 

(Serotec Ltd., Oxford, UK), 1:500 dilution or the iNOS antibody 1:200 

dilution, and refrigerated for 20 h. he slides were washed in PBS/TX 

prior to incubation with 5% normal horse serum and 0.5% anti-mouse 

IgG (2nd antibody) in PBS/TX (90min). he slides were washed and 

the ABC mix applied (Vector stain Elite Kit, Vector Laboratories, UK) 

and slides covered (1 h). ABC mix was washed of with PBS and the 

chromogen, 3,3’-diaminobenzidine (DAB; 5 ml H
2
O, 2 drops bufer, 

4 drops DAB, 2 drops H
2
O

2
; Vector Laboratories, UK) added and let 

(5-15 min) until the brain sections had turned pale brown. Slides were 

then dehydrated and mounted, as described earlier.

Stereological cell quantiication

Neuronal cell counts were made on the CFV stained slides 

(approximately 8 slides per brain) from within the dentate gyrus 

regions region from -4.3mm to -4.52mm bregma (Figure 2a). he 

hippocampal regions were maintained in the same position in both 

hemispheres, within the “fork” of the hippocampus, encompassing 

the polymorph layer of the dentate gyrus and CA1 neurons. Microglia 

counts encompassed the entire region of the CA1 hippocampal region 

from -4.30mm to -4.5mm bregma (number of rats =8) (Figure 2a). 

A computer based stereology sotware system (Image Pro, Media 

Cybernetics, PA, USA) attached to a Nikon Eclipse E8—microscope 

(Nikon Instruments, Surrey, UK) and JVC (London, UK) 3CCD 

camera was used. Briely, for each section, an area of interest was 

delineated manually with relation to previously published boundaries, 

to create an Area of Interest (AOI) (Figure 2b). he sotware system 

then created counting frames (100 × 60µm) which fell within the 

AOI using the uniform random sampling method. he total area of 

the counting frames relative to the area of the AOI gives the Area 

Sampling Fraction (ASF). he height of the optical dissector, which was 

measured by taking an average of 3 random points across the section 

using a Heidenhain microcator (Hedenhain, Traunreut, Germany), 

relative to the section thickness gives the Height Sampling Fraction 

(HSF). he Section Sampling Fraction (SSF) was 1/7 as every 7th 

section in either the dendate gyrus or total hippocampus was analysed. 

To avoid edge efects, when counting microglia or neurons, within the 

counting frames, “acceptance” and “forbidden” lines were used (Figure 

2c). Total cell estimates were calculated as follows, where n equal the 

number of cells counted: 

N = n (1/SSF) (1/ASF) (1/HSF)

Cognitive function

In order to minimise stress, the rats were handled daily throughout 

their period in the animal house and during the treatment phase 

preceding the water maze experiment. Twenty four hours ater the 

conclusion of the binge drinking regime +/- ethane-β-sultam, the rats 

commenced training in the spatial version of the Morris water maze 

test. he water maze apparatus consisted of a circular pool (169 cm 

width, and 50 cm depth) made of white plastic. he pool was illed 

to a depth of 30-35 cm with water maintained at room temperature 

(20 + 1oC) and made opaque by the addition of a non-toxic black ink. 

A hidden platform (30 cm high, 12 cm diameter) was placed under 

the water in the centre of one quadrant of the pool. Extra-maze 

visual cues (i.e. coloured paper in diferent forms was placed on the 

edge of the wall) and two lights as well as an auditory cue, (a radio) 

remained in ixed positions throughout the experiments. Training in 

the Morris Water Maze Task consisted of 4 trials/day for 4 days during 

which the rat learned to navigate to a submerged platform located in 

a constant spatial position. he rat was released into the water in one 

quadrant of the tank and the latency (time in seconds) to climb onto 

the platform was recorded. he starting point for each trial was in a 

diferent quadrant for three trial runs while the fourth trial run reverted 

to the original quadrant. If the rat had not found the platform ater 60 

seconds it was placed on the platform by the experimenter, and let 

there for 20 seconds to collect visual spatial information. 

Five hours ater the last training test, a probe test was carried out in 

which each rat was placed in the water in the 1st  quadrant, and given 30 

A 

B 
C 

Figure 2a: Serological counting. Left hand side Neuronal cell counts. 

The boxes show the areas where the neurons were counted. Figure 2b 

shows counting area for the microglia. Only regions in the left hemisphere 
were counted, due to potential damage induced by probe insertion in the 

right hemisphere. (Adapted from Paxinos & Watson, 1998). Figure 2c: The 

counting frames used for stereology. A randomising algorithm was used to 

locate counting frames within the areas of interest. Neurons marked with a 
crosshair are those, which have been counted. Neurons within the box were 

counted except those, which were touching the red lines. Cells, which make up 
capillaries and blood vessels, were not included, such as the two cells shown 

in the centre.
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seconds to ind the position of the platform in the pool, which had been 

removed. he time that the rat spent in the 1st quadrant, (dial entry), 

was recorded as well as the time in the quadrant where the platform 

had been, (target dial). Ater 30 seconds, the rat was removed from the 

tank. 

Statistical evaluation

he data are presented as mean ± standard error, SEM or mean ± standard deviation, SD. Statistical analysis was carried out using 

one-way or two-way ANOVA as appropriate, followed by the post hoc 

Fisher LSD (protected t test), when GB-Stat 5.3 for windows (Dynamic 

Microsystems, MD USA) was the sotware used, or Bonferroni multiple 

comparison test, when Prism 5.0d for Max (Graph Pad Sotware Inc., 

San Diego CA) was used. Diferences were considered signiicant at a 

p value, <0.05. Morris water maze data was irst analysed by General 

Linear Model ANOVA (SPAA for Windows, SPSS Inc, Chiago, IL). 

Details of the statistical analyses are shown in the Figure legends.

Results

Body weight of rats

he body weight of all rats, measured at the beginning and the end 

of the binge drinking regime, indicated comparable weight gains in 

all of the treatment groups, when administered water or ethanol +/- 

ethane-β-sultam (Figure 3). 

Blood ethanol levels

Blood ethanol levels increased during the period of the binge 

drinking regime. Ater the 2 g/kg dose, administered 3x during one 

day at 3 hourly intervals, the peak blood ethanol level was 0.5 g/l at 30 

minutes ater the irst binge, while the blood ethanol peak concentration 

was at 1h, 0.88 g/l and 1.32 g/l ater the second and third dose, 

respectively. However the rate of clearance was similar for each dose. 

he dose of 1 g/kg ethanol induced blood ethanol levels 50% lower. he 

administration of ethane- β-sultam did not signiicantly alter either the 

blood ethanol concentrations or the ethanol clearance rates.

Serum and macrophage taurine levels

Serum taurine levels assayed in each treatment group are shown in 

(Figure 4) Ethanol treatment induced a statistically signiicant decrease 

in the concentration of serum taurine in the rats administered 2 g/kg 

EtOH (two way Anova, post hoc test: p<0.01 versus control), but not 

at the lower dose of 1 g/kg. When ethanol treatment was associated 

with ethane-β-sultam, the serum concentration of taurine showed 

a statistically signiicant increase, in both, 1 and 2 mg/kg ethanol-

administered groups, as compared to those not administered ethane-

β-sultam (p<0.05, 1 and 2 g/kg EtOH + ethane-β-sultam, versus EtOH 

alone). he treatment with ethane-β-sultam alone, however, did not 

modify the serum levels of taurine in the control group.

he mean concentration of taurine assayed in the macrophages 

isolated from the ethanol-treated rats +/- ethane- β-sultam 

supplementation did not show any statistically signiicant diference. 

Pro-inlammatory markers released from alveolar 
macrophages before and ater stimulation with 
lipopolysaccharide, LPS 

Parallel release of each of these pro-inlammatory markers from 

the alveolar macrophages in diferent treatment conditions can be 

observed in (Figure 5). he LPS-induced release of TNFα is shown in 

(Figure 5a) and the release of NO and IL-6, before and 24 h ater LPS 

stimulation, in (Figure 5b) and (Figure 5c), respectively. Following 

LPS stimulation, there were statistically signiicant increases in each 

of these markers in the binge drinking rats administered either 1 g/

kg or 2 g/kg, by comparison to the control group administered water 

alone (p<0.05 or p<0.01 by two way Anova followed by post hoc 

test, see (Figure 5) legend for details). In both ‘binge drinking’ EtOH 

groups, where ethane-β-sultam was co-administered during the binge 

drinking regime, there were signiicant decreases in the release of the 

pro-inlammatory markers from the alveolar macrophages, to almost 

control values. 

Hippocampal taurine and glutamate microdialysate content 
ater binge drinking +/- ethane-β-sultam supplementation

 he extracellular concentrations of taurine and glutamate were 

measured by microdialysis in the ventral hippocampus, under basal 

conditions and following the last EtOH dose of the binge drinking 

Figure 3: Body weight gain (g) of the different treatment groups at the 

conclusion of the 3 weeks of “Binge Drinking” regime. Columns represent mean 
s.e.m. obtained from a total of 6-15 rats. No statistically signiicant differences 
in weight gain were apparent. 

Figure 4: Plasma concentration of taurine in the different experimental groups at 

the conclusion of the “Binge Drinking” regime. Columns represent mean + s.e.m. 

(µM) obtained from 3-6 rats per group. Data analysed by a two way ANOVA, 
where the two factors were Binge regime and β-sultam supplementation, 
respectively, followed by the post hoc Fisher’s LSD (Protected t-Test) for 
multiple comparisons. Binge, F

2,24
=9.557, p<001; ethane-β-sultam F

1,24
=5.054, 

p<0.034; Fisher’s LSD test: *p<0.05, **p<0.01 versus control, #p<0.5, ##p<0.01 

versus Binge alone.
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regime. he basal extracellular levels of taurine were not afected 

by ethanol treatment, either 1 g/kg or 2 g/kg. Overall, ethane-β-

sultam administration induced a statistically signiicant increase in 

the basal extracellular concentration of taurine in the hippocampal 

microdialysate, as compared to the non-supplemented rats (two way 

ANOVA, +/- ethane-β-sultam F
1.37

=7.29, p<0.01) (Figure 6a). In the 

post hoc group comparison, however, presence versus absence of 

ethane-β-sultam was statistically signiicant only for the control group. 

he basal extracellular concentration of glutamate showed a statistically 

signiicant increase in the rats administered 2 g/kg ethanol as compared 

to the control group (two way ANOVA post hoc comparison p<0.05). 

Such increases were abolished in rats administered 2 g/kg ethanol 

+ethane-β-sultam, (two way Anova post hoc comparison versus 2 

g/kg, p<0.05), (Figure 6b). No further signiicant changes in taurine 

or glutamate extracellular concentrations were evident, ater the last 

ethanol dose, during the 5 h of microdialysis, in any of the animal 

groups.

Activation of microglia in the hippocampus ater binge 
drinking +/- ethane-β-sultam

Representative microphotographs of the region within the 

hippocampus where OX-6-immunopositive microglia were present, 

in binge drinking +/- ethane-β-sultam supplemented rats, are shown 

in the two upper panels of (Figure 7a). Stereological cell counts of the 

activated microglia in the CA1 region of the hippocampus, showed 

(a)

(b)

(c)

Figure 5: Release of pro-inlammatory cytokines and NO from alveolar 
macrophages before and after stimulation with LPS, 1mg/ml, for 24h. Panel 

a, shows stimulated TNFα release; panel b, NO release without stimulation 
(left columns) and after LPS stimulation (right columns); panel c, IL-6 release 
without stimulation (left columns) and after LPS stimulation (right columns). 

Columns represent mean + s.e.m. (µM) obtained from 3-10 rats per group. 

Data analysed by a two way ANOVA, where the two factors were Binge regime 
and β-sultam supplementation, respectively, followed by the post hoc Fisher’s 
LSD (Protected t-Test) for multiple comparisons. TNFα + LPS: Binge F

2,20
=6.5, 

p<0.0067; ethane-β-sultam F
1,20

=9.5, p<0.0064; Interaction Binge X ethane-β-
sultam, F

2,20
=9.5, p<0.01; NO basal, NS; NO + LPS: Binge, F

2,27
=7.22, p<0.031;, 

ethane-β-sultam F
1,27

=14.74, p<0.0007; Interaction Binge X ethane-β-sultam, 
F

2,27
=26.52, p<0.0001; IL-6 basal: Binge, F

2,11
=4.31, p<0.041;ethaneβ-sultam, 

F
1,11

=8.91, p<0.012; Interaction Binge X ethane-β-sultam F
2,11

=7.42, p<0.0091; 

IL-6 + LPS: Binge, F
2,10

=60.73, p<0.0001; ethane-β-sultam, F
1,10

=14.18, 

p<0.0037; Interaction Binge X ethane-β-sultam, F
2,10

=68.21, p<0.0001; post 

hoc Fisher’s LSD test: *p<0.05, **p<0.01 versus control, #p<0.5, ##p<0.01 

versus Binge alone. 

(a)

(b)

Figure 6: Basal extracellular concentrations of hippocampal taurine and 

glutamate in binge-treated rats +/- β-sultam supplementation. Columns 
represent mean concentration (µM) + s.e.m. from 5-9 rats per group. Data 

analysed by a two way ANOVA, where the two factors were Binge regime 
and β-sultam supplementation, respectively, followed by the post hoc Fisher’s 
LSD (Protected t-Test) for multiple comparisons. Ethane-β-sultam: F

1,34
=8.60, 

p<0.006, post hoc comparisons *p<0.05, **p<0.01 versus control, #p<0.05, 

##p<0.01 versus Binge treatment alone.
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that, contrary to the absence of OX-6 positive cells in the control 

group +/- ethane-β-sultam, there was a highly signiicant increase in 

these phagocytic cells in the binge drinking rats which received either 

1 g/kg or 2 g/kg ethanol (Two way ANOVA, post hoc p<0.0001 versus 

controls). Supplementation with ethane-β-sultam signiicantly reduced 

the number of activated microglia in the 1g/kg ethanol administered 

rats, by approximately 50% (Two way ANOVA, post hoc p>0.01 versus 

control), but did not reduce the numbers of these inlammatory cells in 

the 2 g/kg ethanol administered rats (Figure 7b).

Further immunohistochemical studies with then iNOS antibody 

conirmed that there was co- localisation of iNOS with the activated 

microglia, (Figure 7a), thereby conirming that such microglia were 

releasing pro-inlammatory cytokines as well as NO.

Cell counts of neurons in the dendate gyrus brain region ater 
binge drinking +/- ethane-β-sultam

Stereological cell counts of the neurons in the dendate gyrus 

region identiied statistically signiicant losses of neurons in the areas 

where the activated microglia had been observed, (Figure 8), in both 
1 and 2 g/kg EtOH-treated groups (two way ANOVA, post hoc group 
comparisons versus control, p<0.01 and p<0.05, respectively) which 
were not signiicantly diferent from each other. Ethane-β-sultam 
restored the neuronal number to almost that of the control group in 
the binge drinking rats which had been administered 1 g/kg ethanol 
(post hoc group comparison, p<0.01). However, no protection against 
neuronal loss was evident in the rats administered 2 g/kg + ethane-β-

sultam. 

Morris water maze studies

Spatial learning and memory was assessed in the rats at the 
conclusion of the binge drinking regime. It was of interest to note 
that the rats administered ethanol showed no fear of the water and 
immediately started to swim when placed in the pool. In contrast, 
control rats as well as the rats, which had received ethanol + ethane-
β-sultam were timid and slow to commence the task. Task acquisition 
along the 4 days is shown in Figure 9, where mean values of the escape 
latency time (seconds) are plotted against number of days. Global 
statistical analysis (Figure legend for details) was performed using the 
General Linear Model (GLM) for repeated measures, which indicated 
a diference of the escape latency for the factor binge treatment only at 
the end of the acquisition period, day 4. hus for multiple comparisons, 
a two way ANOVA applied to escape latency values obtained on day 4, 
showed that the ethanol-fed adolescent female rats, both 1 and 2 g/kg, 
had performed with signiicantly higher latencies to ind the hidden 
platform than the control group (post hoc comparison versus control, 
p<0.05), (Figure 9). In the 1 g/kg rats administered ethane-β-sultam, 
there were signiicantly lower latencies (post hoc comparison versus 
ethanol alone, p<0.05), similar to those of the controls, (Figure 9). In 
contrast, the 2 g/kg rats administered the pro-taurine drug showed 
identical higher latencies as compared to those administered ethanol 

(a)

(b)

Figure 7: a: Microglial activation in response to the “Binge Drinking” regime and 
β-sultam supplementation. Representative microphotographs of OX-6 positive 
microglia in the hippocampus of binge-treated rats without (upper panels) and 

with β-sultam supplementation (lower panels). The micrograph shows co-
localisation of OX-6 and iNOS immunoreactivities. Black arrows indicate iNOS, 
red arrows indicate activated microglia. b: Quantitation of microglial activation 

is presented. Number of OX-6 immunopositive cells (3-4 rats per group) 
analysed by two way ANOVA, where the two factors were Binge regime and 
β-sultam supplementation, followed by the post hoc Fisher’s LSD (Protected 
t-Test) for multiple comparisons. Binge F

2,14
=66.24, p<0.0001; ethane-β-

sultam: F
1,14

=14.50, p<0.0019; Interaction binge x ethane-β-sultam: F
2,14

=6.12, 

p<0.0123; post hoc Bonferroni multiple comparison test: *p<0.05, **p<0.01, 
***p<0.001 versus control, #p<0.5, ##p<0.01, ###p<0.001 versus Binge alone.

Figure 8: Neuronal counts at the hippocampal fork in rats after “Binge Drinking” 
regime +/- ethane-β-sultam supplementation. Columns represent mean 
value of neuronal counts +/- s.e.m. from 3 rats per group. Data analysed by 

a two way ANOVA, where the two factors were Binge regime and β-sultam 
supplementation, respectively, followed by the post hoc Bonferroni multiple 

correction test; Binge: F
2,12

=12.53, p<0.0012; ethane-βsultam: F
1,12

= 5.23, 

p<0.0412; Interaction Binge x ethane-β-sultam F
2,12

=7.46.p<0.0078; post hoc 

comparisons *p<0.05, **p<0.01 *** p<0.001 versus control, #p<0.05, ##p<0.01 

versus Binge treatment alone.
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alone. here were no signiicant diferences between the controls or the 

binge drinking rats +/- ethane-β-sultam in the dial entry or probe trials. 

Discussion

In these present studies the activation of the innate immune system 

by intermittent alcohol administration was modiied in both the 

periphery and the brain hippocampal region ater the administration 

of ethane-β-sultam, as exempliied by decreases in both the activation 

of phagocytic cells, (macrophages and microglia) and the associated 

release of pro-inlammatory markers. It was predicted that ethane-

β-sultam would increase cellular levels of taurine, as a result of 

its slow hydrolysis to taurine; however only marginal changes in 

plasma and macrophage taurine levels were analysed ater ethane-β-

sultam in these present studies. Increasing taurine status (by taurine 

supplementation) inluences ethanol metabolism [25], as exempliied 

by increased ethanol clearance from the blood, which was associated 

with altered brain activities of aldehyde dehydrogenase and catalase. 

Beta-lactam antibiotics, such as cetriaxone also inluence ethanol 

elimination rates, [33] as a result of inhibition of liver ALDH activity 

by the N-methyltetrazolethiomethyl group on the 3-position of 

the cephem nucleus [33]. However since ethane-β-sultam has no 

methyltetrazolethiomethyl group on the 3-position of the ethane-β-

sultam molecule it would not be expected to alter enzymes involved 

in ethanol metabolism. No changes in ethanol metabolism occurred in 

these present studies, which might have been a factor in the induction 

of a pro-inlammatory state in the brain. 

he pro-inlammatory state induced by a binge drinking regime 

has been previously reported by many investigators, signiicant damage 

being reported in limbic association regions, including the cortex and 

the hippocampus, in particular the ventral dentate gyrus. he extent 

of such inlammatory changes is possibly associated with the ethanol 

dose, duration of ethanol intoxication and the number of periods 

of ethanol cessation. he biochemical and neurochemical changes 

induced remain unclear. It is reported that binge drinking does not 

induce changes in N-methyl-D-aspartate (NMDA) sensitivity or in 

the brain density of voltage-gated calcium channels [1]. Furthermore 

the levels of blood ethanol achieved in these present studies ater 

3 successive ethanol administration was not excessively high. he 

increased glutamate concentrations may therefore be an important 

factor in the neurotoxicity observed in the binge drinking model.

he binge drinking regime induced a signiicant increase in 

hippocampal glutamate ater 1 g/kg and 2 g/kg ethanol, which could be 

due to the multiple withdrawal episodes occurring between the ethanol 

drinking periods [20]. In our previous studies of chronic alcohol 

loading in experimental animals, there was a cumulative efect of 

several withdrawal episodes where basal glutamate content increased in 

speciic brain regions [20]. Glutamate can stimulate glial cells towards 

an inlammatory phenotype. Supplementation with ethane-β-sultam 

reduced hippocampal glutamate levels, which returned towards control 

values. he mode of action involved in this diminution is unclear 

although it is reported that β-lactam antibiotics are potent stimulators 

of GLT1 expression and protein content in the hippocampal CA1 

astrocytes and mixed neuron/glial cortical cultures [34]. Up regulation 

of these speciic glutamate transporters may decrease extracellular 

glutamate content. Interestingly, when administered to animal models 

of motor neuron degeneration, there was a delayed loss of neurons and 

muscle cells as well as a reduction of hypercellular gliosis, [34] which 

was associated with decreased extracellular glutamate levels [31,35]. 

he pathway involved in the activation of the promoter region of the 

GLT1 gene is unknown. It was of note that there was a reduction in 

extracellular glutamate content in the hippocampus region ater 

ethane- β-sultam supplementation, in the controls as well as the binge 

drinking rats possibly indicating an increased GLT1 expression. Clearly 

this would need to be analysed in future studies.

he release of cytokines by peripheral cells, as identiied in the 

alveolar macrophages, may readily compromise the endothelial 

function and permeability of the blood brain barrier [36], thereby 

facilitating the migration of inlammatory cells into the brain to further 

promote neuro-inlammation [37]. In addition it is of interest that 

the hippocampus highly expresses the pro-inlammatory cytokine 

receptors, e.g TNFα receptors, which may account for its vulnerability 

to systemic proinlammatory cytokines [38]. Glial cells play important 

roles in the nurturing of the neurons, as well as important roles in 

the immune and inlammatory response. In preliminary studies, 

acute ethanol doses (20mM-100mM) were shown to induce limited 

activation of an immortilised cell line, N9, (Unpublished data Ward 

and Nayak). Similarly, primary microglia, incubated between 7 and 

24h with ethanol, 50mM, also showed only a marginal activation 

with increased NO release [39]. However in another study of murine 

macrophages, low to moderate levels of ethanol, (10-50mM) did 

stimulate TLR4, which triggered MAPKs pathways, translocation of 

NFkB to the nucleus and the release of pro-inlammatory cytokines and 

NO. However higher doses, 100mM were inhibitory [39]. An ethanol-

induced priming stimulus of the microglia may certainly be an initial 

event in binge drinkers, when high circulating levels of ethanol may be 

achieved. Other factors may further potentiate the pro-inlammatory 

phenotype. 

In these present studies OX-6 was used to stain and measure 

activated microglia in the dentate gyrus region of the hippocampus 

Figure 9: Morris Water Maze. Spatial learning assessed 24 h after the 

conclusion of the binge drinking regime. Latency times (s), mean + s.e.m., 

from 3-8 rats per group, are plotted as a function of the 4 successive days 

of training (mean of 4 trials/day). Data analysed across the 4 days of testing, 

using the commercial software SAS (version 9.2 for Windows, SAS Institute 
Inc., Cary, NC) with General Linear Model (GLM) ANOVA. When factors 
represented treatment, Days, Rats, with Model with signiicant F

29,90
, p<0.0013 

and p<0.0001 for day 2 and day 3,4, respectively A signiicant treatment factor 
(F

4.90
=2.5. p<0.0001 was found only for Day 4. Day 4 escape latency times were 

then analysed by two ways ANOVA, where the two factors were binge regime 
and ethane-β-supplementation, respectively, followed by post hoc Fisher’s LSD 
(Protected t-test) for multiple comparisons. Binge: F

2,29
=3.39, p<0.047, post hoc 

comparisons *p<0.05, **p,0.01 versus control, #P<0.05, ##P<0.01, versus Binge 

treatment alone. 
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ater 3 weeks, which induced the release of pro-inlammatory cytokines 

as well as NO, the latter being conirmed by immunohistochemical 

staining. Higher ethanol doses, 5 g/kg, administered in a single 4-day 

binge study, elicited a more widespread microglia iniltration in all 

regions of the hippocampus [40], which were associated with a range of 

central mediators of inlammation, e.g. pro-inlammatory cytokines, as 

well as COX2 and iNOS. However, this model of binge drinking had no 

prolonged period of abstinence from ethanol. In another study when 5 

g/kg, was administered intra-gastrically for a shorter time period, every 

8 h for 4 days, [41] there was no evidence of increased cytokine release 

in various brain regions. However there are no reported studies of the 

efect of β-lactam antibiotics on pro- and anti-inlammatory cytokines 

in the brain. A decrease in the number of inlammatory microglia was 

evident ater ethane-β-sultam supplementation, as well as a decrease 

in NO expression (as assayed by immunohistochemical techniques), 

which might be related to the decrease in glutamate content or some 

other unknown biochemical efect of β-lactams.

he neuro-inlammatory changes induced by binge drinking in 

this present study were paralleled by hippocampal neuronal loss. 

Neuronal loss has also been reported in other studies [1,42] although 

the ethanol concentrations used were much higher, 4-9 g/kg. he 

dentate gyrus region is particularly vulnerable since it contains neural 

progenitor cells, which will proliferate throughout life, but particularly 

during adolescence, to form neurons, astrocytes and oligodendrocytes. 

High doses of ethanol were shown to decrease the survival of these 

neural progenitor cells [43]. In another study of marque monkeys, 

where a binge type regime was administered for varying time periods, 

there were signiicantly decreased numbers of actively dividing type 1, 

2a, and 2b cell types without signiicantly altering the early neuronal 

type 3 cells. Such results, as concluded by the authors, were caused by 

alcohol interfering with the division and migration of hippocampal 

pre-neuronal progenitors [44]. 

Pharmaceutical agents may prevent the neurotoxicity of binge 

drinking. For example, the anti-oxidant butylated hydroxytoluene 

reversed binge induced brain damage, possibly via NFκb inhibition, 

and blocked ethanol inhibition of neurogenesis in several brain regions 

ater the administration of very high doses of ethanol (8-12g/kg/day) 

3 x /day for 4 days with no abstinence period [45]. Administration 

of indomethacin to adolescent rats, exposed to ethanol 3g/kg for 2 

consecutive days at 48h intervals, abolished both COX-2 and iNOS 

expression, as well as cell death and behavioural deicits [46]. 

Another approach would be to prevent the activation of 

transcription factors, which mediate inlammation, i.e. NFκB. Taurine 

a sulphonated amino acid will prevent NFκB activation by stabilising 

IκBα and preventing its phosphorylation [25]. Although ethane- 

β-sultam diminished the activation of the innate immune system in 

both the alveolar macrophages in the periphery and the glial cells in 

the hippocampus, its exact mode of action awaits detailed investigation 

since its administration was not associated with signiicant increases in 

taurine cellular levels. 

he immune system plays an important role in both brain 

function and behavioural processes [32]. Peripheral inlammation 

can profoundly afect the functioning of the brain with respect to 

memory and cognition. In early studies, ethanol was shown to disrupt 

acquisition of a spatial task in adolescent rats in the Morris Water 

Maze [47] although Rajendran and Spear [48] indicated that this was 

a stressful technique which was not substantiated in the less stressful 

test- the sand box maze. Chronic binge-type ethanol exposure, 5 g/

kg every 48 h for 20 days, showed evidence of tolerance to ethanol-

induced spatial deicits, when tested immediately. In mice, which were 

chronically alcoholised by administration of 10% alcohol for 5 months 

followed by withdrawal, there were glia cell activations in frontal 

cortex and striatum, which were associated with cognitive and anxiety-

related behavioural impairment [49]. In our present study it was shown 

that spatial learning and memory was impaired in rats administered 

intermittent alcohol for 3 days, which was corrected by the pro-drug in 

the 1g/kg ethanol administered rats. 

hese present studies have shown that administration of ethane-

β-sultam signiicantly reduced the inlammatory response both in the 

periphery and in the brain [50,51]. Although increased taurine levels 

were not discernible in some of the tissues, possibly due to homeostatic 

controls, a reduction in neuro-inlammation and neuronal cell loss 

occurred as well as an improvement in ethanol-associated cognitive 

impairment. hese studies have identiied the importance of the innate 

immune system in the toxicity of binge drinking. 
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