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Introduction 

High wheel-rail contact stress is related to rail damage mechanisms such as gross plastic flow. Such high 
contact stresses are often generated by freight vehicles which have comparatively high axleloads. On 
railways in Great Britain (GB) a limit is placed on the ratio of static wheel load (Q) to wheel diameter (D) 
as a proxy to control contact stress related damage. However, there is increasing interest in the use of 
smaller diameter wheels on freight vehicles, in order to prolong wheelset life (smaller scrap diameter) and 
increase capacity within the GB’s constrained structure gauge.  

GB Railway Group Standards [1] limit Q/D to 0.13 kN/mm. However it is known that a number of freight 
wagons already operate above this limit, either due to derogations granted against the standard, or as a 
result of being introduced prior to the standard’s universal application (‘Grandfather Rights’). At least one 
vehicle type is known to operate with a Q/D ratio of up to 0.165 kN/mm. 

This paper presents the results of an investigation into the contact stress state of the GB network. This 
formed part of a larger study [2] undertaken with a view to allowing a reduction in wheel diameters for 
freight vehicles.  The research was conducted as part of the industry’s R&D programme managed by the 
Rail Safety and Standards Board (RSSB). 

Use of Hertzian Contact Stress 

Hertzian theory is widely used to approximate rolling contacts for wheel and rail applications due to its 
computational efficiency. However, the speed of the calculations comes at a cost to accuracy, through a 
number of simplifying assumptions. Two of the most significant approximations are:  

 The simplification of the contacting geometry as constant radius curves: one for each of the wheel 
and the rail in the longitudinal direction; and one for each in the lateral direction. As a consequence 
of the approximations the resulting contact patch will always be elliptical. 

 The wheel and rail material will always deform elastically – irrespective of the stress (or strain) to 
which they are subjected. 

Contact stress is not uniform across the contact patch, due to the geometry of the wheel and rail. Hertzian 
theory finds that the contact stress distribution is elliptical where the peak contact stress is 1.5 times the 

mean (          ̅). 

The high loads and comparatively small contact areas of wheel rail contacts often lead to peak stresses 
beyond the yield stress of the material. Consequently plastic deformation occurs, which results in greater 
deformation of the bodies within the contact patch, a larger contact area and reduced peak contact stress. 
In these circumstances the Hertzian theory over predicts the peak contact stress and in some cases the 
difference has been shown to be in the order of 30% [3]. 

The calculation of the more accurate elastic-plastic contact stress is a computationally demanding task, 
and a finite element model may take a number of hours to solve a single contact case. Hertzian elastic 
stress is relied on in the work presented in this paper for a number of reasons: 

 Speed of calculation – millions of wheel-rail contacts have been evaluated in this study. 

 Many rail damage models have been developed using Hertzian contact parameters and peak or mean 
Hertzian contact stress. 



 While the accuracy of Hertzian stress is limited under certain circumstances, it provides a consistent 
means for comparisons. 

Other parts of the work considered elastic-plastic contact stress, but these are beyond the scope of this 
paper. 

Results in this paper sometimes show unrealistically high Hertzian contact stress values (> 3 GPa). 
These values have been included as they offer a means for comparison between data sets. It should be 
noted that plastic deformation is likely to prevent such high contact stresses occurring in reality.  

Q/D Distribution – GB Freight Fleet 

A key premise of the argument for reducing wheel diameters was that as vehicles currently operate at  
Q/D > 0.13kN/mm without apparently causing excessive rail damage, evidence already exists to support 
a change to standards. An important element in testing this assertion was to understand the operating 
distribution of Q/D values in the freight vehicle fleet. 

Initially Q/D ratios were calculated for new and scrap wheel diameters under each vehicle in the laden 
condition and the distribution calculated according to fleet size. This distribution was further weighted by 
annual wheelset mileage for each vehicle type. This initially suggested that, in theory, nearly 50% of the 
annual wheelset miles for freight wagons could occur at Q/D ratios in excess of the 0.13 kN/mm limit. In 
practice vehicles do not operate at maximum axle load all the time, indeed some vehicles may rarely be 
loaded to their maximum. 

In order to provide a more realistic Q/D distribution, a further weighting was applied to represent the load 
condition of the various wagon types. It was assumed that bulk wagons operate 50% of their annual 
mileage laden and 50% tare. For container wagons, which can operate in many different load states, data 
was obtained for seven trains (a total of 175 vehicles carrying over 300 containers) and the resulting load 
distribution assumed to be typical for all container wagons in the fleet. The modified Q/D distribution is 
shown in Figure 1. In addition to the new and scrap diameter distributions, a ‘Q/D Distributed’ line is 
shown, which assumes that the wheels in service are evenly distributed between the new and scrap 
diameters. In reality the balance would be shifted slightly towards new diameters as some wheelsets are 
taken out of service for reasons other than reaching a minimum diameter, such as tread damage. 

 

 

Figure 1: Current Q/D Distribution Weighted by Annual Wheelset Mileage and Operating Load Distribution 



 

It can be seen that at the time the study was undertaken, 20% of GB freight vehicle wheelset miles were 
operated at a Q/D ratio greater than 0.13 kN/mm. Values above the limit were primarily attributable to 
bulk carriers (coal, aggregates etc). A small number of container vehicles have maximum Q/D ratios 
above 0.13 kN/mm, although the distribution of axle payloads for these vehicles indicates that these 
higher Q/D ratios occur infrequently. 

Contact Stress State – Freight Fleet on the GB Network 

Understanding the current contact stress state of the network was considered essential in order to define 
representative input parameters for subsequent investigations of contact stress related damage and to 
ensure that observations made in the subsequent analyses are relevant to, and in the context of, the GB 
mixed traffic railway. 

In order to determine how the contact stress distributions for worn wheel profiles differ from those for new 
profiles more than 2000 wheel profiles were measured. The profiles came from vehicles which represent 
around 80% of the total GB wagon fleet, on an annual mileage basis, including all major wagon types. 
Three representative worn rail profile pairs were selected and the VAMPIRE

®
 contact data pre-processor 

was used to generate the Hertzian contact patch area for a range of lateral wheelset positions. This in 
turn allowed the Hertzian peak contact stress to be calculated for each contact. The analysis resulted in 
over 5 million individual contact patches. Flange contacts were excluded from the analysis. 

 

 

Figure 2: Hertzian Peak Contact Stress Distribution (Left) and Cumulative Distribution (Right) for Ranges of 

Q/D Ratio for Maximum Axleload and Minimum Wheel Diameter 

Figure 2 shows the results of this analysis, sorted into five Q/D ratio ‘bins’, in this case presenting the 
Hertzian elastic contact stresses for each vehicle type at its maximum laden axleload and minimum 
(scrap) wheel diameter. The majority of the Hertzian contact stress populations approximate a bell curve 
with a range from 1 to 3 GPa, and a secondary peak appears between 3 and 4 GPa. The secondary peak 
was found to be a consequence of the wheel and rail profiles analysed and could not be attributed to 
specific profiles or contact conditions. From these static cases it was observed that 95% of contact 
stresses were less than 3 GPa, and 85% of contact stresses were less than 2.25 GPa. Various limiting 
values of contact stress have been quoted historically in GB [4,5,6], all within the range 1 GPa – 1.5 GPa. 
It is clear from these results that many freight vehicle wheel-rail contacts occur at much higher values of 
contact stress than the quoted limits. 



A trend was observed between the contact stress distribution and ranges of Q/D ratios, with the primary 
distribution peak shifting towards higher contact stresses with increasing Q/D. 

A number of dynamic simulation cases were carried out to investigate how the static contact stress 
distribution changes when weighted by the time spent at a given contact stress range. The analyses 
featured four real track cases which carry a significant volume of freight traffic. 

The resulting contact stress distributions showed that the higher ranges of contact stresses calculated in 
the static analysis (between 3 GPa and 4 GPa) seldom occurred in the dynamic simulations. For a 
container flat wagon with Y33 bogies having a static Q/D = 0.131 kN/mm, the contact stress range was 
effectively reduced to between 0.8 GPa to 2.9 GPa, with the 95th percentile at approximately 2.4 GPa. 
The secondary high contact stress peak noted in the static analyses (between 3 and 4 GPa) was far less 
apparent. 

Influence of Vehicle Type and Wheel Profile on Contact Stress 

Having determined that many freight vehicle wheel-rail contacts occur at higher contact stress than the 
previously quoted limiting values, further analysis was carried out to determine which factors had the 
greatest influence on the contact stress distribution. It was found that two factors, the vehicle type and the 
amount of wheel wear had a much greater influence on the contact stress distribution than the Q/D ratio. 

Figure 3 shows the cumulative distribution of contact stress by vehicle type (the actual vehicle types have 
been deliberately omitted from the plot). Figure 4 shows the same information for ranges of wheel tread 
wear calculated from the increase in flange height from the appropriate unworn wheel profile. Tread wear 
can also be considered a reasonable proxy for wheelset mileage since turning (which was not known for 
the measured wheels), although there are other influencing factors such as tread or disc braking. In both 
plots the contact data is based on a single fixed load and wheel diameter (the differences in stress are 
due solely to the wheel profile shape). 

 

 

Figure 3: Contact Stress Distribution by Vehicle Type – Fixed Load and Diameter Case 

(Each Line Represents One Vehicle Type) 

 



 

Figure 4: Contact Stress Distribution by Profile Tread Wear – Fixed Load and Diameter Case 

 

The results in Figures 3 and 4 are not independent as the vehicle type (suspension characteristics, 
operating conditions, operating axle loads, braking type, etc.) influences the worn wheel profile shape. 
However, it appears that for some vehicle types, wheel profiles wear to a significantly less ‘contact 
friendly’ state than for others. Similarly, a clear trend can be seen between the distribution of contact 
stress and increasing wear, with more heavily worn profiles tending to be less contact stress friendly. The 
number of wheelsets included in each range is shown in brackets in the legend. Whilst these results 
appear to show clear trends, it should be noted that whilst the study was based on a large number of 
wheel profiles, it only utilised three rail profiles. Although these were chosen with care, it would be 
interesting to investigate the effect that a wider range of rail profiles would have on these results. 

Overall, it was concluded that, whilst higher Q/D ratios lead to higher contact stresses, a much greater 
variation in contact stress arises from different vehicle/suspension types and from wheel profile wear. 
Although the wagons in this study used several different designs of new wheel profile, this was found to 
have comparatively no influence on the contact stress ‘friendliness’ of the worn wheel profiles,  

Effect of Contact Stress on Damage Mechanisms 

Contact stresses are considered to be a significant factor in damage mechanisms such as squats, 
surface and subsurface crack initiation, Phase II crack growth, and plastic flow. However, the effect of 
incremental changes in contact stress, such as might be considered for GB national standards, are rarely 
dealt with explicitly by the available research which tends to concentrate on the fundamental damage 
mechanisms rather than the system level effects. 

The influence of wheel diameter (as proxy for contact stress) on a number of rail damage mechanisms / 
models was investigated for a range of diameters from 1100 mm to 600 mm. It was found that 

 The Whole Life Rail Model (a Tγ based Rolling Contact Fatigue damage model [7]) and Archard wear 
model predicted no increase in RCF damage or wear as a consequence of reducing wheel diameter. 

 A finite element based analysis of plastic work predicted that reducing wheel diameter will lead to 
increased plastic work and reduced rail life for sites currently experiencing high levels of plastic work. 
These typically include the low rail of small radius curves. The relationship between plastic work and 
rail life is not yet mature and requires further development. 

 Shakedown analysis predicted an increase in subsurface fatigue initiation as a result of reducing 
wheel diameter. However there is limited confidence in relating shakedown predictions to observed 
track damage. 



 The propensity for squat damage was found to increase marginally with reducing wheel diameter 
However there is low confidence in the existing damage model. 

 

There was not found to be a limiting Hertzian contact stress (or Q/D ratio), beyond which a step change in 
rail damage would occur. Current understanding of the engineering science alone does not therefore 
provide a clear limit to contact stress or Q/D ratio. It is likely that the effective limit is the point at which the 
contact stress driven damage becomes unsustainable from the point of view of track maintenance (costs 
of inspection, maintenance and renewals). 

Conclusions 

Approximately 20% of freight vehicles on the GB network (on an annual wheelset mileage basis) operate 
with Q/D ratios in excess of the current limit of 0.13 kN/mm. 

The shape of the worn wheel profile (a function of the vehicle type, bogie type, operating conditions etc.) 
has a greater influence on contact stress than Q/D ratio. A similar result was found when considering the 
influence of wheel wear (measured as tread loss). The best available evidence suggests modest 
increases in contact stress (as a result of increased Q/D from smaller wheels) would not lead to a step 
change in contact stress related damage. 

The work reported in this paper formed part of a larger investigation into the potential for reducing the 
minimum wheel diameter of freight vehicles operating on GB railways. From the investigative work the 
research project concluded that, despite some shortcomings, Q/D ratio is the best available (most 
practical) proxy for Hertzian contact stress and contact stress driven damage, within the scope of a 
national standard. Including the effects of the lateral wheel profile shape would provide a more accurate 
estimation of Hertzian contact stress and potentially provide a closer control of contact stress. However 
the means to do so are considered too complex for practical implementation within the standards. 

As current engineering science does not predict a step change in contact stress driven damage (within 
the range of conditions investigated), an access charge which includes a contact stress based weighting 
for freight vehicles could be envisaged in the long term. This would both incentivise reduced contact 
stress and provide an economic balance to the effects of increased contact stress. The control parameter 
could be Q/D ratio (accepting the limitations of this measure) or a more sophisticated, and therefore 
complex, approach based on wheel profile shape. However, a stronger evidence base, linking contact 
stress related damage to costs on a system-wide basis, would be required before such a regime could be 
implemented. 

Based on the investigation, a proposal for change to the GB standard [1], increasing the permitted Q/D 
ratio and providing greater clarity on the assessment method, is now being progressed. This will improve 
the efficiency of freight operations by permitting smaller diameter wheels without compromising 
infrastructure performance or maintenance.  
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