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Abstract—A practical user guidance of Runge-Kutta (R -K) 

integration method with the context of non-linear time dependent 
finite element analysis (FEA) was proposed in this paper. 
Following the literature review of different integration method 
within the finite element analysis framework, detailed numerical 
experiments were conducted to find out the right balance 
between computing accuracy and efficiency. It contributes to 
knowledge to the numerical analysis software development in 
general and specific to computational creep damage mechanics. 
 

Key words—integration method, creep damage, finite element 
analysis 
 

I. INTRODUCTION 

In general finite element analysis software, the complete 
processing progress can be divided into three stages. The first 
stage is pre-processing where topology of a FEA model, 
boundary condition, and type of problem (where the solution 
method need to be specified) is defined. The second stage is a 
numerical problem solving, for example, the stress and strain 
will be calculated and other field variables will be updated. 
The third stage is post-processing where the numerical results 
obtained in second stage will be presented and analysed by 
users, typically with interaction with graphic presentation. 
There is readily available commercial software for the pre- 
and post- processing now, such as FEMSYS or GID [1, 2]. 

Creep damage problem is complicated and dynamically 
developing, and there is not readily available analysis 
capability in most of the commercial analysis software. There 
is still a need, to certain degree, to develop and then use in-
house software in research community. Tan et al. [3] reviewed 
the current situation of computational tools in 2012 and 
reported, for example, 1) DAMAGE XX [4] is an early creep 
damage analysis solver, for 2D problem, developed at and 
used by the researchers at UMIST, and DAMAGE XXX [5] is 
 

 

a new advanced version for 3D problem; 2) FE-DAMAGE is 
another in-house code developed at University of Nottingham; 
3) HTΣ is a Chinese package used for creep damage analysis 
which proposed by Tu [6]; 4) A Japanese in-house code was 
mentioned by Haigihara [7]. 

The nature of creep damage analysis is of time dependant 
and the field variables such as stress, strain, and creep damage 
variables need to be updated where an integration scheme 
needs to be implemented. Liu et al. [8] proposed some detailed 
algorithms to build an in-house FE package.   

From literature review [6, 9], it seems that the fourth-order 
R-K method is a good choice due to its computing efficiency 
and accuracy. This paper reports an investigation about the 
balance between accuracy and efficiency in its use to integrate 
creep damage constitutive equations. It contributes to 
knowledge to the numerical analysis software development in 
general and specific to computational creep damage 
mechanics.  

II. INTEGRATION METHOD 

A. Euler’s method 

The Euler method is a first-order numerical procedure for 
solving ordinary differential equations with a given initial 
value [10]. The Euler method required extremely small time 
steps to ensure the convergence of iterations and accuracy of 
calculations in creep fracture problem [11]. The method has 
advantages of brevity and simplicity in concept and 
programming. Unfortunately, this scheme is only 
conditionally stable and the stability condition is rather 
stringent. In creep fracture problem, high concentration of 
creep strain exists near the crack tip; the use of Euler method 
for creep damage simulation is quite uneconomic.  

It can be found from literature that this method was adopted 
by an in-house code was developed by Tsing Hua University 
[11]. It is understood that DAMAGE XX has incorporated it  
as one of the integration methods while the user has to make 
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decision on which one to use.  

B. Runge-Kutta method 

Actually, in order to improve the efficiency of Euler’s 
method, a new numerical method was suggested. A standard 
way to determine whether the Runge–Kutta values are 
sufficiently accurate is to re-compute the value at the end of 
each interval with the step size cut in half. The method is also 
called “step doubling” [5]. If this makes a change of negligible 
magnitude, the results are accepted; if not, the step is halved 
again until the results are satisfactory.  

It is generally understood that R-K method is more accurate 
and efficient in comparison with forward Euler method, and 
thus its application has been reported. For instance, DAMAGE 
XX [6] incorporated fourth order R-K integration method.  
HT∑ is a Chinese package used for creep damage analysis. 
The core of this code is an advanced integration method 
subroutine within Runge-Kutta-Merson algorithm which 
developed by Ling et al. [6]. As an in-house code, the 
accuracy and efficiency of this programme had been proved 
by the solution of a thick cylinder problem.  

III.  THE OVERALL EQUILIBRIUM EQUATIONS IN FINITE 

ELEMENT METHOD 

The creep deformation and damage can be calculated from 
creep damage constitutive equations; however, in FE area, 
constitutive equation cannot be used immediately [6]. It is not 
only a mathematical problem but also a boundary balance 
need to be considered in FE simulation. In order to achieve 
this goal, assumed total strain increment as: ∆�= ∆�� + ∆��         (3.1) 

 Where ∆� , ∆�� , ∆�� total strains, elastic strain, and creep 
are strain respectively; Then ensure the relation between stress 
increment and total strain increment: ∆�= � × (∆� − ∆��)     (3.2) 

Where D is elastic modulus,  ∆� is stress increment; to 
relate to the displacement vector, equation (3.2) will be 
expressed: ∆�= � × �� × ∆� − ∆���     (3.3)  
Where B is strain matrix, ∆� is displacement vector; the 
equilibrium equation can be addressed as: ��� × ∆� × �� = ∆� 

�      (3.4) 

Where ∆� is nodal mechanical load increment, V is element 
volume; Combine equations (3.3) and (3.4): ��� × � × �� × ∆� − ∆���× �� = ∆� 

�      (3.5)  

The integration of creep damage constitutive equations 
occurs on the determination of ∆��. Such constitutive 
equations also need to be normalised because they are stiff in 
nature [9]. The normalisation of variables is based on the 
selection of an appropriate normalising stress. This is in order 
to remain the values of stress close to unity during the 
computation because the constitutive equations raise stresses 
to a power, which may be quite large for some materials. If 
absolute values of stress are used, very large or very small 
values are obtained; the algebraic manipulation of these 

numbers leads to numerical rounding errors. 

IV.  SPECIFIC CONSTITUTIVE EQUATIONS 

The KRH uni-axial constitutive equations [12] were used in 
the test: �̇ = ����ℎ � ��(1 − �)

(1 − �)(1 − �)
�   (4.1) �̇ =

ℎ� �1 − ��∗� � ̇      (4.2) �̇ =
��3 (1 − �)4       (4.3) �̇ = ��̇∗          (4.4) 

The KRH multi-axial constitutive equations can be expressed: ���̇ =
3���2�� ����ℎ � ���(1−�)

(1−�)(1−�)
�     (4.5) �̇ =

ℎ�� �1 − ��∗� ��̇          (4.6) �̇ =
��3 (1 − �)4          (4.7)  �̇ = ��̇∗ ��1����           (4.8) 

Where A=2.1618×10-9MPah-1, B=0.20524MPa-1, 
C=1.8537, h=2.4326×105MPa, H*=0.5929, Kc=9.2273×10-
5MPa-3h-1, v=2.8. 

V. NAG ROUTINE 

D02BHF (NAG) [13] integrates a system of first-order 
ordinary differential equations solution using Runge-Kutta-
Merson method. This subroutine can be adopted in the FEA 
software of creep damage analysis development, and a 
detailed instruction on how to use it was published by the 
company [13]. Basically, this routine can be written as: 

SUBROUTINE  D02BHF  (X, XEND, N, Y, TOL, 
IRELAB, HMAX, FCN, G, W, IFAIL) 

INTEGER    N, IRELAB, IFAIL  
REAL    X, XEND, Y(N), TOL, HMAX, G, W(N, 7) 
EXTEERNAL       FCN, G 
D02BHF aims to solve ordinary differential equation using 

Runge-Kutta-Merson method, until a user-specified function 
of the solution is zero; therefore, it cannot be adopted 
completely. The variables which mentioned above should be 
re-identified in creep damage analysis application area. 

1. X – real 
The X means the start moment t1 
2. XEND – real 
The XEND means the finish moment t2 
3. N – integer 
The N means the number of constitutive equations 
4. Y(N) - real array 
The Y(N) means the arrays which store the data of strain, 

damage, hardness….. respectively 
5. TOL – real 
The TOL means the tolerance for controlling the time steps 
6. IRELAB – integer 
The IRELAB means the type of error control, in here, 

normally set as 1. 
7. HMAX – real 
HMAX means the original user-defined time step 
8. FCN – subroutine 



 
 

The FCN means the constitutive equations statement 
9. G – real function 
The G was originally developed for terminate this 

programme when the specific function equal to zero. This 
function would not be used in creep damage analysis because 
all constitutive equations should not be expected to appear a 
solution equal to zero. The G was suggested to set as the 
default G=Y(1). 

10. W(N,7) – real array 
11. IFAIL – integer 
IFAIL means the routine error feedback, and must be set to 

0, -1 or 1.  

VI.  NUMERICAL EXPERIMENT  

This case is uni-axial creep under stress of 40 MPa. The 
component is deemed failed if the damage parameter reaches 
0.33 which is the criterion used here. To solve this set of 
constitutive equations within NAG routine, the terminated 
time should be predicted for prepared this numerical 
experiment because this routine was suggested from one 
specific time to another specific time. 

A. Result based on Euler’s method 

In order to make sense the most exactly lifetime, a simple 
Euler’s method programme had been coded. And the code was 
tested using different time increment such as 1, 0.1, 0.01, 
0.001, 0.0001 hour respectively.  

Three Tables were listed to show the detail of the results. 
The Table I shows the terminated time and omega depending 
on the size of time interval. The time interval 0.0001 is the 
most accurate between the five different intervals. Table II  and 
Table III displayed the specific creep strain value, H which is 
the primary creep state variable (strain hardening), and φ 
which is the precipitate coarsening state variable. 

Even from mathematic aspect, the interval 0.0001 is the 
best selection; however, from the physics aspect, 0.0001 hours 
equal to 0.36 second, and this is a too short time interval. 
Therefore, the author selects the time interval 0.01 hour as the 
master accuracy control parameter. Following that, the 
lifetime value can be observed from table 1 is 104032.27 
hours. 

TABLE I 
Time 

interval (s) 
Terminated time (h) ω 

1 104034.0000 0.333435236633273 
0.1 104032.4000 0.333339889351067 
0.01 104032.2700 0.333333868058920 
0.001 104032.2580 0.333333386466599 
0.0001 104032.2577 0.333333316847831 

 
TABLE II  

Time interval (s) εf 

1 0.179875512020971 
0.1 0.179824075821904 
0.01 0.179820827565906 
0.001 0.179820567765346 

0.0001 0.179820530208621 
 

TABLE III  
Time 

interval (s) 
H φ 

1 0.592900000000000 0.544764812531457 
0.1 0.592899999999999 0.544760827698831 
0.01 0.592899999999992 0.544760468843807 
0.001 0.592899999999917 0.544760434279127 
0.0001 0.592899999999174 0.544760430559092 

B. Result based on Runge-Kutta method 

Because of the nature of NAG subroutine, the variable TOL 
was designed as the accuracy control parameter. Give the 
duration from t=0 to t=104032.27 to NAG routine, and record 
the results of seven different TOL value ranging from 0.1E-01 
to 0.1E-07 as shown in the following Table IV. 

Tables IV and V show the detailed results. And a 
comparison will be processed with previous results which 
based on Euler’s method to looking for the most accurate 
value of TOL, strain and damage value. 

TABLE IV  
TOL εf ω 

0.1E-01 0.136548062074 0.253119148370 
0.1E-02 0.178172199475 0.330277813609 
0.1E-03 0.179803968745 0.333302624373 
0.1E-04 0.179819797001 0.333331965213 
0.1E-05 0.179820066343 0.333332464492 
0.1E-06 0.179820072754 0.333332476375 
0.1E-07 0.179820072807 0.333332476473 
 

TABLE V 
TOL H φ 

0.1E-01 0.597028574423 0.544760420284 
0.1E-02 0.593389925900 0.544760420697 
0.1E-03 0.592883124271 0.544760420959 
0.1E-04 0.592873878039 0.544760421042 
0.1E-05 0.592899874301 0.544760421049 
0.1E-06 0.592900018328 0.544760421049 
0.1E-07 0.592899978356 0.544760421050 
 

C. Errors Analysis (ACCURACY) 

The elastic strain under 40 MPA is � =
�� =

40���200��� = 2 ×

10−4, and an error in the calculated creep strain will 
eventually affect the stress updating. The master curve 
(assuming accurate enough) creep strain at failure is 
0.179820827565906 obtained with Euler’s method at interval 
0.01h; 

1. When TOL=0.1×10-3, strain at failure is 
0.179803968745 

The error in creep strain at is  ����� = |0.179803968745 − 0.179820827565906|

= 1.6858820906 × 10−5 ����� ���� =
1.6858820906 × 10−5

2 × 10−4 = 8.42% 



 
 

 
2. When TOL=0.1×10-7, strain at failure is 

0.179820072807 

The error in creep strain at failure is  ����� = |0.179820072807 − 0.179820827565906|

= 7.54758906 × 10−7 ����� ���� =
7.54758906 × 10−7

2 × 10−4 = 0.37% 

Similarly, the error rate in creep strain was calculated and 
all the results were shown in Table VI.  

From this table, the TOL=0.1×10-7 is obviously satisfied 
the accuracy requirement, and the TOL=0.1×10-3 is too big 
than the expected value, say 1%, due to the high exponential 
or power law relationship between stress level and creep strain 
rate. It can be seen that when TOL value is 0.1E-05 is a very 
good choice.  

TABLE VI  
TOL Percentage errors of strain at failure 

0.1E-01 21636% 
0.1E-02 824% 
0.1E-03 8.43% 
0.1E-04 0.51% 
0.1E-05 0.38% 
0.1E-06 0.37% 
0.1E-07 0.37% 

 

D. Efficiency Analysis  

This constitutive equations subroutine offered the solutions 
of strain and damage value in each given durations. Once the 
subroutine running, an integration point would be solved in 
the finite element analysis processing. Basic that, a complete 
finite element analysis will call this subroutine over all the 
integration points and time iterations, typically in the order of 
thousands times thousands. 

A problem occurred here is running this subroutine once, 
and the running time cannot be present by computer because 
the value is too small.  In order to test the efficiency of this 
subroutine, 10,000 times calling was supposed, and the total 
calculation times following different TOL value were recorded 
and used for comparison.  

The Euler’s method was also tested for efficiency following 
the same experimental setting. The results are shown in Table 
VII  and Table VIII.  

It can be seen that, from Table VII, when TOL = 0.1×10-5, 
the programme running time is 16.1149s. From Table VIII , 
when time interval is 0.001h, the programme running time is 
17.6593132s. It can be defined a speed percentage like: ���������� =

17.6593132 − 16.1149

16.1149
= 9.58% 

As mentioned before, the accuracy of Euler’s method at 
interval 0.001h can be derived as 0.13%; however, the 
absolute error is similar with R-K method at TOL of 0.1E-05. 

From the above discussion, it is clear that, based on the 
balance of accuracy and efficiency, the Euler method should 
not be used and the TOL of 0.1E--04 or 0.1E-05 is a good 

choice for R-K method on the balance of accuracy and 
computing efficiency. It is also further noted that further 
reducing the value of TOL does increase the accuracy 
significantly, nor costs that much more time.  

TABLE VII  
Runge-Kutta Method Test 

TOL Programme Running Time (s) 

0.1 NONE 

0.1×10-1 10.2649 

0.1×10-2 15.2569 

0.1×10-3 15.7717 

0.1×10-4 15.8653 

0.1×10-5 16.1149 

0.1×10-6 16.4113 
0.1×10-7 17.0665 

0.1×10-8 (Over Load) 1.56×10-2 

 
TABLE VIII  

Euler’s method test 
Time interval Programme running time (s) 

1 1.5600100E-02 
0.1 0.1716011 
0.01 1.7628113 
0.001 17.6593132 
0.0001 175.64153 

 

VII.  CONCLUSION 

This paper reviewed the position which the creep constitutive 
equations in the finite element analysis method. An advance 
numerical method, Runge-Kutta method was suggested by 
Hyhurst, and a Chinese scholar also follows this approach. 
The more efficient NAG routine was adopted in this research 
to help the creep FE software development. A specific 
computational experiment was been written detailed, and 
highlight the way to find a satisfied TOL value. 
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