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Abstract

The haplotype association analysis has been proposed to capture the collective behavior of

sets of variants by testing the association of each set instead of individual variants with the

disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with

potentially sparse frequencies in cases and controls. It starts with inferring haplotypes from

genotypes followed by a haplotype co-classification and marginal screening for disease-associated

haplotypes. Unfortunately, phasing uncertainty may have a strong effects on the haplotype co-

classification and therefore on the accuracy of predicting risk haplotypes. Here, to address

the issue, we propose an alternative approach: In Stage 1, we select potential risk genotypes

instead of co-classification of the inferred haplotypes. In Stage 2, we infer risk haplotypes from

the genotypes inferred from the previous stage. The performance of the proposed procedure

is assessed by simulation studies and a real data analysis. Compared to the existing multiple

Z-test procedure, we find that the power of genome-wide association studies can be increased

by using the proposed procedure.

Some key words: Region-based association analysis; genotype mixture models; odds ratios; genome

wide association studies; expectation-maximization algorithm.

Short title: Search for Disease Risk Haplotype Segments

1 Introduction

Advances in genotyping and sequencing technologies, coupled with the development of high-dimensional

statistical methods, have provided investigators opportunities to reveal the role of sequence varia-
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tion in the development of complex diseases. At the forefront of these investigations is genome-wide

association studies (GWAS) by the use of dense maps of single-nucleotide polymorphisms (SNPs)

and the haplotypes derived from these polymorphisms (Stranger et al., 2011). The early landmark

study using the GWAS was the Wellcome Trust Case Control Consortium (WTCCC), which re-

ported genetic association results for over 500,000 single nucleotide polymorphisms (SNPs) in seven

disease sample sets of 2000 individuals each and 3000 control individuals (WTCCC, 2007). Most

of these studies were based on the so-called common-disease-common-variant hypothesis that the

variants being sought are common to many individuals with the disease. In these studies, peo-

ple identified variants that predispose to a disease by conducting association tests (i.e., marginal

screening tests) on SNPs, one at a time. For the majority of complex diseases, it was found that

single-SNP variants might explain only < 10% of disease variations as many variants showed only

weak effects on the risk of disease and, therefore, a joint analysis of multiple SNPs might be neces-

sary for understanding the etiology of complex diseases (Manolio et al., 2009). A popular strategy

in the GWAS analysis, suggested by the block-like structure of the human genome, is to segment

each chromosome into a list of genetically meaningful SNP regions. The multilocus haplotype,

the ordered allele sequences on a chromosome, provides a unit of analysis for capturing linear and

non-linear correlations among variants (Schaid et al., 2002; Zhang et al., 2003; van Greevenbroek et

al., 2008; Li et al., 2011). A haplotype may affect phenotype directly through influencing promoter

activity and protein formulation or indirectly through tagging nearby untyped causal variants. In

general, if a particular haplotype of a pre-specified group of SNPs is unevenly distributed between

the case and control samples, this haplotype is highlighted as a risk haplotype. Haplotype segments

hold the promise of reducing the complexity of analyzing the human genome for association with

disease. Identifying risk haplotype segments is an important but hard task in genetics, because

haplotypes are often unknown and sparsely distributed. In practice, what we can observe are geno-

types not haplotypes. As each genotype is made up by two unknown haplotypes, the underlying

haplotypes have to be inferred. Inferring haplotypes from observed genotypes by using the com-

putational software such as PHASE is a popular strategy to overcome the uncertainty of genotype

phases (Stephens et al., 2001; Scheet et al., 2006). In the PHASE, a coalescent model-based Gibbs

sampling was employed to infer the most probable hyplotype pair for each individual in the sample,

given all the possible haplotype pairs that are consistent with the observed genotypes. Existing

haplotype methods improve the power of the association testing by grouping haplotypes before

testing (Zöllner and Pritchard, 2005; Browning and Browning, 2007, and references therein). Zhu
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et. al (2010) developed a two-stage screening procedure for GWAS data, which requires phasing

to obtain haplotypes followed by grouping. Unfortunately, grouping inferred haplotypes may be

affected by phasing uncertainty.

This paper aims to improve the above two-stage procedure by grouping genotypes (instead of

haplotypes) before the association testing. For this purpose, we combine a genotype permutation

technique with the PHASE procedure to form a basis for testing risk haplotypes. Our method

relies on the observation that if a set of SNPs is not associated with disease (which is the null

hypothesis), the permutated genotype frequencies can be employed to generate the null distributions

of genotypes. Then, in Stage 1, for each genotype, we test its association with disease by checking

whether the observed case-frequency is located in the tail areas of its null distribution. This provides

a list of selected genotypes for further investigation in the next stage. In Stage 2, we calculate

the corresponding PHASE-inferred haplotypes and their frequencies in cases and controls for the

selected genotypes. The odds ratios (ORs) are calculated for these haplotypes. These haplotypes

are further screened by the OR test. We conduct simulation studies on the proposed method

in both prospective and retrospective design settings, showing that our method can outperform

the approach of Zhu et al. (2010) in most cases. We apply the proposed method to the Coronary

Artery Disease (CAD) and Hypertension (HT) data in the Wellcome Trust Case Control Consortium

(WTCCC), identifying potential risk haplotypes for these diseases.

The rest of the paper is organized as follows. The proposed methodology is introduced in

Section 2. The simulation studies and real data applications are presented in Sections 3 and 4.

Discussions and conclusion are made in Section 5. The details on the haplotype reconstruction

software PHASE are given in the Appendix.

2 Methodology

Consider a case-control sample with N0 controls and N1 cases, typed at m SNP markers in a

candidate region, yielding unphased genotype set G. Suppose that G contains distinct genotypes

Gj , 1 ≤ j ≤ J with counts N0j , N1j in controls and cases respectively. Let N0 =
∑J

j=1N0j and

N1 =
∑J

j=1N1j . We perform the PHASE on genotypes in controls and cases. Let (hj1, hj2) be the

inferred haplotype pair for Gj . We also let H = {hk, 1 ≤ k ≤ K} denote the distinct haplotypes

inferred from G, where G = {Gj , 1 ≤ j ≤ J} with haplotype counts n0k, n1k, 1 ≤ k ≤ K in controls

and cases respectively and with total counts n0, n1. Then, the respective frequencies of the genotype
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Gj in the controls and cases can be estimated by q0j = N0j/N0, q1j = N1j/N1, respectively. The

proposed method contains two stages, where we screen genotypes and halotypes respectively.

Stage 1 (Genotype screening based on permutation):

To perform the permutation on individual disease statuses between cases and controls, we ran-

domly swap a half of cases with the same number of controls. We then calculate the corresponding

frequencies of the resulting permuted cases, denoted by q∗i1j = N∗

1j/N1, where i = 1, 2, 3, ..., I with

I being the total number of permutations we conducted, and N∗

i1j , 1 ≤ i ≤ I represent the counts

of the genotype j in the permuted cases for the permutation i. In the later simulation and real data

analyses, we choose I = 1000. Let q∗1j = (
∑I

i=1 q
∗

i1j)/I denote the average frequencies of genotype

Gj over I permutations. Consider the following statistic for genotype Gj :

Tj =
q1j − q∗1j

δj
,

where

δj =

√

∑I
i=1(q1j − q∗i1j)

2

I − 1
.

Under the null hypothesis that Gj is not associated with disease, the statistic Tj is asymptotically

distributed as a standard normal. Therefore, {Tj} can be used to test for disease associated

genotypes, finding a set of potential risk haplotyes as follows:

Sr = {h : h ∈ {h0j , h1j}, 1 ≤ j ≤ J, Tj > γ},

where γ is a pre-defined critical value after adjusting multiple testing effects.

Stage 2 (Haplotype screening based on OR testing):

We examine the frequency differences of the haplotypes in the set S in controls and cases to

find the potential risk group. Let |S| be the number of all different haplotypes in Sr. To calculate

their OR values, we let n0r =
∑

hk /∈S
n0k, n1r =

∑

hk /∈S
n1k, 1 ≤ k ≤ K denote the cumulative

frequencies of the haplotypes not in S for controls and cases respectively. Then, the corrected OR

values for the haplotype hν , 1 ≤ ν ≤ |S| is calculated by

ORν =
(n1ν + 0.5)(n0r + 0.5)

(n0ν + 0.5)(n1r + 0.5)
.

Then, the set of risk haplotypes Sr is updated by

Hr = {hν ∈ S : ORν ≥ exp(c1φ(n0ν , n1ν , n0r, n1r))} ,
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where

φ(n0ν , n1ν , n0r, n1r) =
√

1/(n0ν + 0.5) + 1/(n1ν + 0.5) + 1/(n0r + 0.5) + 1/(n1r + 0.5),

adding 0.5 to the OR for the continuity correction was suggested by Agresti (1999) and c1 is a

pre-specified critical value after adjusting multiple testing effects.

2.1 Multiple testing method

To compare the proposed method to the multiple testing procedure of Zhu et al. (2010), we briefly

describe their procedure as follows. In their procedure, a subsample A containing N
(a)
0 and N

(a)
1

individuals are randomly chosen from the controls and cases respectively. These individuals are used

in the screening stage and the remaining forms a validation subsample B to be used in the validation

stage. Suppose that there are K different haplotypes inferred from A by using the PHASE. Let

(r
(a)
0k , r

(a)
1k ), 1 ≤ k ≤ K be their retrospective frequencies in controls and cases respectively.

Screening stage: We perform a respective frequencies-based screening by calculating an esti-

mated risk haplotype set as follows:

S(a) = {hk : z
(a)
k > c0, 1 ≤ k ≤ K},

where c0 is a pre-specified constant (c0 = 1 in our later simulations) and

z
(a)
k =

r
(a)
1k − r

(a)
0k

√

r
(a)
0k (1− r

(a)
0k )/(2N

(a)
1 )

.

Validation stage: The S(a) is refined by performing Fisher’s exact test based on subsample

B for each haplotype in S(a). This gives a final risk haplotype set denoted by S(b).

3 Simulation studies

In this section, via simulations we will examine the performance of the proposed methods in terms

of the average of sensitivity and specificity under various scenarios. Here, we suppose that the

disease-penetrance of a genotype depends only on the number of risk haplotypes contained in that

genotype. As each genotype consists of two haplotypes, we have three types of penetrance:

f0 = P (disease|Hr̄Hr̄), f1 = P (disease|HrHr̄), f2 = P (disease|HrHr),

where Hr and Hr̄ stand for risk and non-risk haplotypes respectively. Denote the relative risk

measures by λ1 = f1/f0 and λ = f2/f0. Let Hr and Hr̄ the estimated true risk and non-risk
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haplotype sets respectively. Let Tr and Tr̄ be the true risk and non-risk haplotype sets. Then, by

the sensitivity and specificity of Hr and Hr̄, we mean the positive discovery rate and the negative

discovery rate:

sen =
|Hr ∩Tr|

|Tr|
and spe =

|Hr̄ ∩Tr̄|
|Tr̄|

.

We take the average AVSS = (sen + spe)/2 to assess the performance of a haplotype classification

procedure.

Setting 1 (cohort design): We generated 30 datasets, each with N1 case-genotypes and N0

control-genotypes. They were obtained by the following steps. We used the software MS (Hudson,

2002) to simulate 2(N0 + N1) haplotypes with a mutation rate of 2. We randomly chose mr of

these haplotypes and labeled them as risk haplotypes. We then randomly paired 2(N0 + N1)

haplotypes, producing N0 + N1 genotype which contained mr risk haplotypes. In the third step,

we simulated the disease status of each genotype by sampling from a Bernoulli distribution. The

Bernoulli distribution took q0, or λ1q0, or λq0 as a success probability according to whether the

genotype contained zero, one or two risk haplotypes, where the relative risk measure λ1 is specified

as follows. For the recessive inheritance mode, λ1 = 1. For the multiplicative inheritance mode,

λ1 =
√
λ. For the dominant inheritance mode, λ1 = λ. We coded the inheritance modes by

IM = 1, 2, 3 respectively for the multiplicative, the dominant, and the recessive. Note that the

values of (N0, N1) may vary across different datasets. We considered various combinations of

(N0 + N1,mr, IM, q0, λ), where N0 + N1 = 3000, 5000, mr = 5, 10, 20, IM = 1, 2, 3, q0 = 0.1,

λ = 1, 1.4, 1.8, 2.2, 2.6, 3, 3.4, and 3.8 respectively.

For each scenario, we applied both the proposed method and the multiple testing method to 30

datasets and calculated their AVSS values respectively. For each of the three inheritance modes, we

plotted the means of these AVSS values over 30 datasets against λ. The results displayed in figures

1 and 2 show that on the cohort data, the proposed two stage method performed substantially

better than the multiple testing method in all the scenarios defined above. The improvement was

achieved by using permutation-based genotype screening.
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Figure 1: Performances of the proposed permutation method and the multiple testing method on the

cohort-design data with multiplicative or dominant or recessive inheritance models based on sample sizes of

5000.
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Figure 2: Performances of the proposed permutation method and the multiple testing method on the

cohort-design data with multiplicative or dominant or recessive inheritance models based on sample sizes of

3000.

Setting 2 (case-control design): We generated 30 datasets, each of which were simulated

by the following two steps. In Step 1, to generate N1 case-genotypes, we first drew 2N1 haplotypes

by using the software MS with mutation rate of 2, of which mr haplotypes were labeled as risk
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haplotypes. We then randomly paired these haplotypes to form N1 case-genotypes. Let Gj , 1 ≤ j ≤
J be all the different genotypes contained in the N1 cases and r1j , 1 ≤ j ≤ J be the retrospective

frequencies. These case-genotypes formed three groups according to the number of risk haplotypes

which each genotype contained: Each genotype in Groups 0, 1 and 2 contained two non-risk

haplotypes, only one risk-haplotype, and two risk haplotypes respectively. In Step 2, we generated

N0 control-genotypes, which also had genotypes Gj , 1 ≤ j ≤ J but with population retrospective

frequencies q0j , 1 ≤ j ≤ J . We first let q0j , 1 ≤ j ≤ J depend on the pre-specified constant d by

q0j =



















r1j(1− d/r1g2), Gj belongs to Group 2

r1j(1− 0.5d/r1g1), Gj belongs to Group 1

r1j(1 + 1.5d/r1g0), Gj belongs to Group 0

where r1gk =
∑

Gj∈ Groupk
r1j for k = 0, 1, 2,, and d is a parameter to reflect the effects of risk

haplotypes on genotype frequencies. We simulated N0 control-genotype counts from the multi-

nomial model MN(N0, (q01, ..., q0J)
T ) and calculated the corresponding retrospective frequencies

r0j , 1 ≤ j ≤ J . We considered the cases where d = 0, 0.05, 0.1, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35

respectively.

For each dataset, the cumulative frequencies of Groups 0, 1, and 2 in controls are rg0 + 1.5d,

rg1 − 0.5d, and rg2 − d respectively, whereas the corresponding frequencies in cases are rg0 , rg1 and

rg2 respectively. It can be proved that the odds ratios of Groups 1 and 2 to Group 0 are increasing

in the value of d.

We applied the proposed two-stage method and the multiple testing method to these case-

control data. The mean curves of the AVSS values with one standard error up and down were

plotted against the d values in Figure 3. The results again demonstrate that the proposed two-

stage method can be more powerful than the multiple testing method in detecting risk haplotypes.

However, the AVSS gain was decreasing in the number of risk haplotypes, mr, as well as the

underlying odds ratios in Groups 1 and 2.
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Figure 3: Performances of the proposed permutation method and the multiple testing method on the

case-control data.

4 Real data analysis

We applied the proposed two-stage procedure to the GWAS genotype datasets on coronary artery

disease (CAD) and hypertension (HT) obtained by Affymetrix 500K SNP chips in the WTCCC

study (WTCCC, 2007). The data were downloaded from the European Genotype Archive (EGA)

with formal data access permission of the WTCCC Data Access Committee. Each dataset contained

2000 unrelated cases as well as 3000 unrelated controls. The controls came from two sources: 1500

from the 1958 British Birth Cohort (58C) and 1500 from the three National UK Blood Services

(NBS). There were about 500600 SNPs across the human genome, which are genotyped. We first

pre-processed the data by excluding the SNPs which meet one of the following criteria: (1) the

p-value of Fisher test for Hardy-Weinberg equilibrium is less than 10−8 in controls; (2) the p-value

of the chi-square test between 58C and NBS is less than 10−8; (3) the minor allele frequency is
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less than 1%; (4) the calling score is less than 95%. After the exclusion, around 4897746 SNPs

remained for the analysis. To reduce the dimension of the genotypes, we segmented the genome

into regions of 8 SNPs according to their positions on the chromosomes, obtaining 61218 regions

and the corresponding genotype datasets Gk, k = 1, 2, ..., 61218. Note that the long region will

dilute the effects of risk SNPs and can result in many rare genotypes, whereas the short region

will miss interactions between SNPs. The region length of 8 was chosen to achieve a compromise

between the above aspects by using a pilot study. Also note that as we excluded the SNPs with

bad callings, the numbers of cases and controls are varying across the different regions.

Note that {Gk : k = 1, ..., 61218} contained 1983537 genotypes in total for the CAD data and

2097111 genotypes in total for the HT data respectively. The proposed procedure includes two

stages. In Stage 1, we obtained the estimated risk genotypes, while in Stage 2, we further inferred

haplotype pairs from the estimated risk genotypes. We used the total number of the genotypes to set

the Bonferroni correction to the critical value in the permutation test. To achieve a significance level

of 0.05 for all genotypes, the adjusted significance level was set to be 0.05/1983537 = 2.52× 10−8

and 0.05/2097111 = 2.38×10−8 for the CAD data and the HT data respectively. This resulted in an

approximate critical value of 5.5 for both the CAD and HT data. The genotype screening in Stage

1 resulted in 1433 potential risk haplotypes in the CAD data and 430 potential risk haplotypes in

the HT data.

Note that there were two sub-populations in controls. We applied further filtering on the regions

to exclude the ones that have significant differences in the haplotypes frequencies within the two

sub-control samples. The exclusion criterion was based on calculating chi-square p-value. Any

region resulted in p-value less than 0.30 was excluded from the suspicious regions. This criterion

was concluded from the simulated case-control samples when the risk factor d is less than 0.15 as we

found out that the p-values for most of the 30 datasets are greater than 0.30. The numerical details

were omitted. We applied the above criterion on the above potential risk haplotypes and eliminated

these haplotypes with the chi-square p-value being less than 0.30. In Stage 2, we calculated the OR

values of the selected haplotypes and thresholded them by using the bounds

exp(c1
√

1/(n0H + 0.5) + 1/(n1H + 0.5) + 1/(n0r̄ + 0.5) + 1/(n1r̄ + 0.5)),

defined in the methodology section with c1 = 4 and 3.6 for the CAD data and the HT data

respectively. Note that the values of c1 were determined by the Bonferroni correction according to

the corrected significance levels of 0.05/1433 and 0.05/430 for the CAD and the HT respectively.
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This gave the final risk-haplotype sets as displayed in Tables 1, 2, and 3 below. In these tables, each

haplotype has been assigned to a physically closest gene on the basis of the information provided

in the GWAS catalog (Welter et al., 2014) and the genetic information from the British 1958 Birth

cohort http://www2.le.ac.uk/projects /birthcohort/1958bc. In the CAD case, we did rediscover

the CAD risk gene CDKN2B and the risk haplotype GGTGCCAG found by the previous study

(WTCCC, 2007; Zhu et al., 2010). Note that by use of the multiple testing method, Zhu et al.

(2010) identified the following genes (ZFAT1 and MACROD2 for HT; EIF4H, CDKN2B, HFE2,

ZBTB43 and LDHA for CAD) reaching genome-wide significance. Therefore, the proposed method

can be much more powerful than the multiple testing method in the identification significant genes

(and SNPs) for association studies.
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Table 1: The risk haplotypes for coronary artery disease of WTCCC data detected by permutation

method.

CAD

Chr Region SNP range Haplotype P (Hi|case) P (Hi|control) OR P-Value Gene

1 3910010− 3932838 rs4654522− rs10915469 CGACGGCC 0.04238 0.01861 3.09933 4.5× 10−16 hCG2036596

1 1902751− 37450147 rs6673253− SNPA CAACGGAT 0.05116 0.03019 2.33902 3.0× 10−14 LOC728431

1 202166400− 202187685 rs6692041− rs1041311 AAATGGGA 0.07815 0.05083 1.72409 4.3× 10−09 LOC284577

1 225406446− 225425470 rs4654697− rs10916399 TTGTAAAA 0.06155 0.03524 1.85056 8.1× 10−10 RHOU

1 227569611− 227620956 rs7514972− rs9431663 CGCGTAGG 0.05807 0.0297 2.06768 2.2× 10−12 TRIM67

1 239380743− 239454253 rs2491826− rs7533316 AGCTCACG 0.09857 0.07858 1.63864 7.4× 10−08 CEP170

1 240360846− 240438647 rs12083813− rs472276 CAACATAG 0.01905 0.00712 2.94026 2.1× 10−08 AKT3

2 3789586− 3821960 rs7576476− rs12618184 GCTTACAG 0.03451 0.01119 3.14706 3.1× 10−15 LOC442006

2 rs2314703− 3942429 SNPA − 1841609 CACGCCGT 0.02055 0.00552 3.78775 3.3× 10−11 LOC442006

2 49934439− 50000082 rs6736617− rs17039375 CCAAAGGT 0.02347 0.00757 3.09136 2.7× 10−10 NRXN1

2 81525887− 81577090 rs1011364− rs17020239 GGATGTGC 0.03758 0.0202 1.96428 1.3× 10−07 LOC442021

3 2557255− 2599938 rs6787604− rs2619566 AAGGACGA 0.07666 0.04763 1.64989 3.1× 10−08 CNTN4

3 14422977− 14471151 rs4684216− rs9834629 GATGATGC 0.01815 0.00509 3.67773 8.7× 10−10 SLC6A6

3 73461569− 73510299 rs7647311− rs3845868 AGGCGCGG 0.03876 0.01161 3.98169 6.9× 10−23 PDZRN3

3 197256495− 197339533 rs6583286− rs9834962 TAGACTTA 0.0498 0.02364 2.17213 2.5× 10−11 TFRC

4 3636361− 3700212 rs10025237− rs16844722 GGGGAGGG 0.22491 0.15492 1.62473 6.4× 10−15 FLJ35424

4 167440772− 167457521 rs9995087− rs17047336 GGACGCAG 0.03434 0.01139 3.12327 8.2× 10−14 TLL1

5 124765522− 124843518 rs4836190− rs13187198 TGAAGGCA 0.04275 0.02795 2.02205 2.0× 10−09 LOC644659

5 157267571− 157303032 rs10071157− rs17055168 GTGAGCAA 0.02135 0.00701 3.09771 9.0× 10−10 CLINT1

5 166764561− 166801933 rs6863935− rs7724862 CTATGTGT 0.09145 0.05448 1.63602 8.8× 10−09 ODZ2

7 77695246− 77717237 rs2215379− rs4515471 TCTAAAAA 0.03291 0.01786 2.04961 1.7× 10−07 MAGI2

CTTGGAAA 0.03609 0.01061 3.77003 7.3× 10−19

7 153371858− 153449397 rs6464391− rs1861139 CGGGTAGA 0.04119 0.02159 2.31998 1.7× 10−11 LOC653748

8 71022178− 71086937 rs7836791− rs388511 TACAGAAG 0.02204 0.00555 3.68611 4.1× 10−11 SLCO5A1

9 22088619− 22120515 rs2891168− rs10965245 GGTGCCAG 0.34939 0.29298 1.40724 3.2× 10−13 CDKN2B

9 74180343− 74241329 rs10114124− rs17081046 GTATTTAT 0.21608 0.13046 1.66562 4.0× 10−17 RORB

9 77341767− 77366988 rs2889774− rs3780296 ATGGAAAT 0.06672 0.042 1.69537 1.2× 10−07 GNA14

9 119506057− 119537035 rs2191675− rs10984648 GTTGGCTA 0.08762 0.03361 2.8056 1.8× 10−28 CDK5RAP2

9 135269746− 135320703 rs731533− rs7870302 TGTCTCCC 0.03175 0.01296 2.57076 9.3× 10−11 OLFM1

10 11879196− 11924252 rs6602535− rs11257355 TCTGCCGG 0.1694 0.12811 1.57916 1.3× 10−12 C10orf47

10 14795325− 14817082 rs2688827− rs12246518 ATGACCGC 0.34815 0.32333 1.71018 4.1× 10−09 FAM107B

11 8165969− 8200374 rs4758310− rs11041816 ATAATGGG 0.36298 0.3164 1.34831 2.8× 10−08 LOC644497

GCTGTAGA 0.05243 0.02741 2.24619 7.5× 10−12

11 36361306− 36410807 rs330255− rs331485 GCGATTAA 0.0309 0.00779 4.20172 5.6× 10−18 FLJ14213

11 69213458− 69295251 rs1192923− rs3168175 TCGTGGCA 0.10225 0.05587 2.24141 5.7× 10−21 FGF4

11 83230307− 83256927 rs1878266− rs1878264 TATATTCA 0.03571 0.01807 2.24283 6.3× 10−09 CCDC90B

11 99383206− 99391536 rs3911286− rs10501939 TTAGATAT 0.03303 0.01472 2.21561 9.3× 10−09 CNTN5

11 112952870− 113015533 rs4936278− rs12577253 CCTCGTGC 0.05824 0.03474 1.75496 1.9× 10−08 DRD2

11 129102667− 129124330 rs532427− rs691197 ACCGCGGA 0.08519 0.05612 1.73953 2.1× 10−11 TMEM45B

11 133079508− 133113640 rs4937817− rs4937826 CCGGCCCG 0.05747 0.04018 1.89429 5.6× 10−10 LOC646522

GTAGCCCG 0.04001 0.02779 1.90705 9.3× 10−08

GTAGTGCC 0.04216 0.02425 2.30133 8.2× 10−12

12 5619429− 5628923 rs11063791− rs454704 TACATAAA 0.02897 0.0124 2.50152 8.0× 10−10 TMEM16B

12 112703139− 112738033 rs11066758− rs7137339 ACGGTCAC 0.02681 0.01286 3.14709 1.5× 10−12 RBM19

12 116500495− 116514298 rs10850852− rs1400593 CTCTCTTT 0.14523 0.12089 3.21401 8.3× 10−21 NOS1
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Table 2: Continuation of Table 1.

CAD

Chr Region SNP range Haplotype P (Hi|case) P (Hi|control) OR P-Value Gene

CTCTCTTC 0.28034 0.26232 2.85847 1.5× 10−19

13 108372995− 108432811 rs4773010− rs3842945 AGAGACCC 0.27486 0.19222 1.59282 1.3× 10−21 MYO16

14 25140850− 25159405 rs8020556− rs1951062 AGTAAACT 0.09084 0.02999 3.36068 1.2× 10−37 LOC401767

14 53221435− 53244046 rs1563719− rs210351 AGATAGGT 0.15385 0.10566 1.56278 1.2× 10−12 BMP4

14 65343491− 65401760 rs3924222− rs12896836 TATAACTC 0.0462 0.01904 2.70766 1.1× 10−16 FUT8

15 20624103− 21246055 rs7166056− rs8024346 GTGACGTG 0.08093 0.04109 1.90364 2.7× 10−12 NIPA1

15 21729952− 21760003 rs4778264− rs9796712 TGATAGGG 0.03064 0.00783 3.91789 2.2× 10−16 MAGEL2

15 37962389− 38014169 rs11633436− rs534757 TTACAACC 0.07798 0.03763 2.31448 1.1× 10−18 GPR176

16 55207138− 55253047 rs8055724− rs12447986 TTCTCCTC 0.03044 0.01113 2.89551 1.5× 10−09 MT1L

16 79852394− 79892297 rs6564863− rs11639552 TTCGTTAT 0.02663 0.01053 3.15992 2.7× 10−10 BCMO1

17 27921023− 27963104 rs225215− rs17780520 GGGTTAAC 0.0205 0.00465 4.05617 2.7× 10−11 MYO1D

17 74629176− 74682195 rs2612793− rs8072667 CGAGGTTG 0.06276 0.03471 1.82966 4.4× 10−09 FLJ21865

18 8212591− 8279839 rs10468776− rs11876033 GGGACAAG 0.02689 0.00982 2.94852 1.7× 10−11 PTPRM

18 2291328− 22715430 rs3974646− SNPA TGCGGAGT 0.05382 0.02751 1.98739 2.3× 10−10 AQP4

18 32033296− 32083366 rs8095718− rs8082899 CAAAACCA 0.0592 0.04484 1.65827 1.7× 10−07 MOCOS

19 6641966− 6717213 rs3745566− rs7248911 TAAGCTAC 0.02312 0.00521 4.97801 1.0× 10−14 C3

19 15365766− 15477256 rs7257156− rs6512039 AAGCGCGG 0.08169 0.05278 1.69741 1.1× 10−09 AKAP8L

19 17595848− 17649789 rs10419511− rs7252308 TTGGTATG 0.04657 0.01971 2.8095 1.1× 10−17 UNC13A

19 18225800− 18277972 rs10417536− rs4808781 CTCCGCAA 0.04034 0.02211 1.94095 6.7× 10−08 LOC729966

19 52946204− 53026777 rs10402957− rs4427918 CATTCAGC 0.0741 0.04321 1.81613 4.1× 10−10 GLTSCR2

20 5604763− 5643174 rs8118780− rs805726 CCGTAGTA 0.05455 0.03836 1.76976 1.3× 10−08 C20orf196

CTTTAGTA 0.01801 0.00794 2.81211 2.7× 10−08

CTTTAGTG 0.01698 0.00777 2.7096 1.6× 10−07

20 6055964− 6078025 rs6117090− rs3897509 AGGCCGCA 0.09945 0.05857 1.89101 9.9× 10−13 C20orf42

AAGCCGAA 0.03039 0.01269 2.66015 1.2× 10−09

20 51996013− 52017348 rs12480336− rs6013853 CACCGATC 0.02844 0.01511 2.17303 1.5× 10−07 BCAS1

20 55607831− 55637003 rs17498081− rs17414380 CAATGTCC 0.02768 0.01127 2.6821 1.2× 10−09 TMEPAI

22 16871076− 16895136 rs8142200− rs975826 TCGGGAGG 0.03219 0.00253 12.43113 5.4× 10−28 LOC729269

22 35324014− 35335429 rs7410412− rs12160203 GCCTAGGG 0.1967 0.14314 1.46774 4.7× 10−11 CACNG2

Table 3: The risk haplotypes for hypertension of WTCCC data detected by permutation method.

HT

Chr Region SNP range Haplotype P (Hi|case) P (Hi|control) OR P-Value Gene

2 39199834− 39248354 rs6758330− rs10184046 CGCCAAAA 0.03665 0.00147 26.83195 1.3× 10−31 SOS1

4 17856580− 17878437 rs11941617− rs1503880 GTATTTGT 0.0584 0.00019 236.45945 1.2× 10−73 LCORL

6 107236669− 107248636 rs3121432− rs2354550 TGATTGTC 0.07759 0.00247 35.82646 6.5× 10−82 QRSL1

10 30990752− 31024312 rs16931828− rs7078126 AGTGTTGC 0.47318 0.47676 1.45455 1.0× 10−08 LOC645954

AACGTTGT 0.06589 0.00314 29.93248 3.1× 10−79

AGCTCTGC 0.24167 0.24983 1.41785 1.2× 10−06

GGCGCCGC 0.10573 0.10377 1.49364 4.1× 10−06

11 55290776− 55324792 rs11825590− rs17501618 GCCTGTGT 0.04351 0.00947 4.47895 4.1× 10−22 OR5D14

11 121093256− 121139818 rs92061− rs4936651 AATGCTGG 0.86672 0.79508 2.49843 1.4× 10−30 SORL1

18 73486971− 73493301 rs1553419− rs4890980 TTGGGTTC 0.03825 0.00893 4.49948 2.9× 10−21 LOC728864
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5 Discussion and conclusion

In this paper, we have adopted the region-based strategy that segments the genome into 61218

regions with around 8 SNPs each. For each region, a list of distinct genotypes with their frequencies

in cases and controls have been worked out. The problem facing us is of the sparse distribution

of these genotypes. To circumvent it, people often first infer haplotypes from the genotypes and

then cluster the haplotypes into a number of groups. The association analysis is conducted on

the basis of the inferred groups, for example, by using multiple Z-tests (Zhu et al., 2010). There

is a drawback of the above approach: The in-silico reconstruction of haplotypes can generate a

proportion of false haplotypes which may hamper the finding of rare but true haplotypes. We have

proposed an alternative two-stage approach to the association analysis with GWAS data. Our major

contribution is to develop a method for co-classifying genotypes by use of permutation. In Stage 1,

we selected the potential risk genotypes through a permutation technique, followed by estimating

the potential risk haplotypes by using the software PHASE. In Stage 2, we refine the above selected

risk haplotypes from the estimated risk genotypes by using the odds ratio thresholding.

We have conducted a wide range of simulations to compare our method to the multiple Z-

test approach, demonstrating a substantial improvement can be achieved by use of the proposed

method in terms of average sensitivity and specificity. We have also examined the performance of

the proposed procedure by applying it to the CAD data and HT data in the WTCCC. Compared

to the standard multiple Z-testing method, the proposed procedure has been shown to be more

powerful in terms of sensitivity and specificity for detecting the true risk haplotypes. In the real

data analysis, we have rediscovered some existing risk gene and haplotypes and identifying many

more risk haplotypes than did the multiple Z-test based approach. This is not surprising as the

simulations have already demonstrated that the the proposed method can perform better than the

multiple Z-test. The Bonferroni adjustment for multiple testing has been applied when multiple

tests or thresholding are involved. We note that the results may be further improved if we use

advanced multiple testing adjustment methods.

Appendix: PHASE

PHASE is a Bayesian haplotype reconstruction method developed by Stephens et al. (2001) to

tackle the problem of statistically inferring haplotypes from unphased genotype data for a sam-

ple of unrelated individuals from a population. Based on the so-called coalescent model, it treats
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the unknown haplotypes as random quantities and combine prior information on haplotypes with

the data likelihood to calculate the posterior distribution of the unobserved haplotypes (or hap-

lotype frequencies) given the observed genotype data. The haplotypes themselves can then be

reconstructed from this posterior distribution: for example, by choosing the most likely haplotype

reconstruction for each individual.
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