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INSURANCE LOSS COVERAGE AND SOCIAL WELFARE
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abstract

Loss coverage, defined as expected losses compensated by insurance, has recently been suggested
as a metric for evaluation of different insurance risk classification schemes. This paper makes
connections between this approach and utility-based approaches, in two main areas. First,
previous work on loss coverage has used an aggregate insurance demand function; we provide
a micro-foundation in variations across individuals in utility of wealth. Second, we reconcile
loss coverage to a utilitarian concept of social welfare, defined as the sum of individuals’ ex-
pected utilities over the entire population. Specifically, we show that if insurance premiums are
negligible relative to wealth, maximising loss coverage maximises social welfare. From a policy
perspective, this may be a useful result because maximising loss coverage does not require knowl-
edge of individuals’ (unobservable) utility functions; loss coverage is based solely on observable
quantities.
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1. Introduction

Regulatory restrictions on insurance risk classification are pervasive in life insurance
and other personal insurance markets. For example, gender classification in insurance pric-
ing has been banned in the European Union since 2012; Obamacare allows classification
only by age, location, family size and smoking status; and many countries have restricted
insurers’ use of genetic test results. Such restrictions are usually seen by economists as
potentially increasing equity, but also reducing efficiency.

A simple version of the usual efficiency argument is as follows. If insurers are not
permitted to charge risk-differentiated prices, they have to pool different risks at a common
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pooled price.1 This pooled price is cheap for higher risks and expensive for lower risks;
so more insurance is bought by higher risks, and less insurance is bought by lower risks.
The equilbirum pooled price of insurance is higher than a population-weighted average
of true risk premiums. Also, in most markets the number of higher risks is smaller
than the number of lower risks, so the total number of risks insured falls. The usual
efficiency argument focuses on this reduction in coverage, e.g. “This reduced pool of
insured individuals reflects a decrease in the efficiency of the insurance market” (Dionne
and Rothschild, 2014, p185).

However, in some scenarios there is a counter-argument to this perception of reduced
efficiency. Thomas (2008) pointed out that the rise in equilibrium price under pooling
reflects a shift in coverage towards higher risks. If the shift in coverage is large enough, it
can more than outweigh the fall in numbers insured. In this scenario, despite fewer risks
being insured under pooling, expected losses compensated by insurance (‘loss coverage’)
can be higher. It is not obvious that a risk classification regime under which more risks
are voluntarily transferred and more losses are compensated should be regarded as less
efficient.

Another perspective on this argument is that a public policymaker designing risk
classification policies normally faces a trade-off between insurance of the ‘right’ risks
(those more likely to suffer loss), and insurance of a larger number of risks. The optimal
trade-off depends on demand elasticity in higher and lower risk-groups. The concept of
loss coverage quantifies this trade-off, and provides a metric for comparing the effects of
different risk classification schemes.

1.1 Motivating example
The argument just given can be illustrated by heuristic examples of insurance market

equilbria under two alternative risk classification regimes: risk-differentiated premiums
and pooled premiums.

Suppose that in a population of 2,000 risks, 32 losses are expected every year. There
are two risk-groups. Each person in the high risk-group of 400 individuals has a probability
of loss 4 times higher than each person in the low risk-group of 1,600 individuals. This is
summarised in Table 1.

We assume that probability of loss is not altered by the purchase of insurance, i.e.
there is no moral hazard. An individual’s risk-group is fully observable to insurers and all
insurers are required to use the same risk classification regime. In a competitive market,
the equilibrium price of insurance is determined as the price at which insurers make zero

1In this paper we ignore the possibility that insurers banned from classifying risks induce separation
of risk-groups by alternative contracts offering different levels of cover priced at different rates (e.g.
Rothschild and Stiglitz, 1976). This approach is not feasible in markets with non-exclusive contracting,
such as life insurance; and as far as we are aware, it is not common in practice in other markets where
some restrictions on risk classification apply, for example in auto insurance in the European Union.
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profit.
Under our first risk classification regime, insurers charge risk-differentiated premiums,

which are actuarially fair to members of each risk-group. We assume that the proportion
of each risk-group which buys insurance under these conditions, i.e. the ‘fair-premium
proportional demand’, is 50%.2 Table 1 shows the outcome. Half the losses in the popula-
tion are compensated by insurance. We heuristically characterise this as a ‘loss coverage’
of 0.5.

Table 1: Equilibrium under risk-differentiated premiums: lower loss coverage.

Low risk-group High risk-group Aggregate

Risk 0.01 0.04 0.016
Total population 1600 400 2,000
Expected population losses 16 16 32

Break-even premiums (differentiated) 0.01 0.04 0.016
Numbers insured 800 200 1,000
Insured losses 8 8 16

Loss coverage 0.5

Now suppose that a new risk classification regime is introduced, where insurers have
to charge a single ‘pooled’ price to members of both the low and high risk-groups. One
possible outcome is shown in Table 2, which can be summarised as follows:
(a) The pooled premium of 0.0194 at which insurers make zero profits is calculated as

the demand-weighted average of the risk premiums: (600 x 0.01 + 275 x 0.04)/875 =
0.0194).

(b) The pooled premium is expensive for low risks, so fewer of them buy insurance (600,
compared with 800 before). The pooled premium is cheap for high risks, so more of
them buy insurance (275, compared with 200 before). Because there are 4 times as
many low risks as high risks in the population, the total number of policies sold falls
(875, compared with 1,000 before).

(c) The resulting loss coverage is 0.53125. The shift in coverage towards high risks more
than outweighs the fall in number of policies sold: 17 of the 32 losses (53%) in the
population as a whole are now compensated by insurance (compared with 16 of 32
before).

2This figure is representative for life insurance. The Life Insurance Market Research Organisation
(LIMRA) states that 44% of US households have some individual life insurance (LIMRA (2013)). The
American Council of Life Insurers states that 144m individual policies were in force in 2013 (ACLI, 2014,
p72); the US adult population (aged 18 years and over) at 1 July 2013 as estimated by the US Census
Bureau was 244m.
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Table 2: Equilibrium under pooled premiums: higher loss coverage.

Low risk-group High risk-group Aggregate

Risk 0.01 0.04 0.016
Total population 1600 400 2000
Expected population losses 16 16 32

Break-even premiums (pooled) 0.0194 0.0194 0.0194
Numbers insured 600 275 875
Insured losses 6 11 17

Loss coverage 0.53125

The occurence of the favourable outcome (higher loss coverage) under pooling in Table
2 depends on the demand elasticities for insurance in high and low risk groups. Later in
this paper, we shall show that the required demand elasticities are plausible.

1.2 Literature Review
Previous papers on loss coverage (Hao et al (2016), Thomas (2008, 2009)) modelled

an insurance market with two risk-groups with higher and lower probabilities of loss.
Individuals’ probabilities of loss were observable by insurers. Insurers were assumed to
compete only on price (not on risk classification regimes or contract offers) and made zero
profits in equilibrium. The outcomes of permitting or banning risk classification were
then evaluated by loss coverage in equilibrium, with higher loss coverage being preferred
on the rationale stated above. Insurance demand from each risk-group was expressed as
a proportion between 0 and 1, to reflect the empirical observation that many individuals
do not buy insurance. Variation in purchasing decisions across persons with the same
probabilities of loss was characterised as stochastic; there was no micro-foundation in
individual decision-making. In particular, no reference was made to individual utilities.

This approach contrasts with other literature on insurance risk classification, as sum-
marised in surveys such as Hoy (2006), Einav & Finkelstein (2011) and Dionne & Roth-
schild (2014). Other literature typically takes a utility-based approach: individuals make
purchasing decisions which maximise their expected utilities, and the outcomes of differ-
ent risk classification schemes are then evaluated by a social welfare function which is a
(possibly weighted) sum of expected utilities over the whole population. For example Hoy
(2006) uses a utilitarian social welfare function which assigns equal weights to the util-
ities of all individuals. Einav & Finklestein (2011) use a deadweight-loss concept which
appears equivalent to a social welfare function with utilities cardinalized so as to weight
willingness-to-pay equally across all individuals.

The present paper connects the loss coverage approach with utility-based approaches
in two ways. First, we provide micro-foundations for the aggregate proportional demand
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function, based on variations between individuals in their utility functions, which explain
why only a proportion of the population buys insurance at each price. Second, we reconcile
loss coverage to the utilitarian concept of social welfare described above. Specifically,
we show that if insurance premiums are negligible relative to wealth, maximising loss
coverage maximises social welfare. From a policy perspective, this may be a useful result
because maximising loss coverage does not require knowledge of individuals’ (generally
unobservable) utility functions; loss coverage is based solely on observable quantities.

The rest of this paper is organised as follows. Section 2 develops a theory of insurance
demand, starting from expected utility calculations by individuals in a population in which
all individuals have the same risk of loss but may have different utility functions. We show
that if the insurer can observe individuals’ risks but not their utility functions, the demand
for insurance appears to the insurer to be proportional; the insurer observes only the
proportion of individuals with a given risk who buy insurance at a given premium. Section
3 defines a model for insurance market equilibrium, in a population where individuals are
characterized by both risk and utility function. Section 4 establishes the link between loss
coverage and social welfare. Section 5 offers brief conclusions.

2. A Theory of Demand for Insurance

2.1 Utility of Wealth and Certainty Equivalence
Consider an individual with an initial wealth W , who is exposed to the risk of losing

an amount of L with probability µ. Suppose preference for wealth is driven by the utility
function U(w), which is increasing in wealth w, i.e. U ′(w) > 0.

Individuals are typically also assumed to be risk-averse i.e. U ′′(w) < 0. This provides
the motivation for insurance purchase at an actuarially fair price, and initially we shall
discuss individuals for whom the assumption holds. But we shall see later in Section 2.2
that our theory of insurance demand does not require that all individuals are risk-averse.
Figure 1 shows an example of a utility function U(w) with U ′(w) > 0 and U ′′(w) < 0:

If no insurance is bought, occurrence of the risk event will reduce the individual’s
wealth from W to (W − L) with probability µ. Hence the individual’s expected utility,
without insurance, is given by:

(1− µ)U(W ) + µU(W − L). (1)

If, however, the individual has the option to insure against the risk at premium rate π per
unit of loss and chooses to buy insurance for full cover, the individual’s expected utility
is:

U(W − πL), (2)

because the individual’s wealth diminishes immediately by the amount of premium, but
there is no further uncertainty as the loss is insured.
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Figure 1: Insurance purchasing decision based on an individual’s utility of wealth.

An individual will choose to buy insurance if the expected utility is higher with
insurance than without it, i.e.

U(W − πL) > (1− µ)U(W ) + µU(W − L). (3)

In particular, individuals with concave utility functions will buy insurance at the actu-
arially fair premium π = µ. Furthermore, these individuals will be prepared to purchase
insurance up to the premium level πc, where:

U(W − πcL) = (1− µ)U(W ) + µU(W − L), (4)

which is also known as the certainty-equivalence principle. This is depicted in Figure 1.

2.2 Heterogeneity in Insurance Purchasing Behaviour
In the above model, all individuals with the same utility function and probability of

loss either buy insurance or they do not, based on whether or not the premium being
charged, π, exceeds πc. However, in real insurance markets, we typically observe that not
all individuals with the same probability of loss make the same purchasing decision. How
can this variation in insurance purchasing decisions be explained?
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One plausible explanation is that risk preferences vary between individuals. To for-
mulate this variability, let us assume a population of individuals, all with the same risk µ
but who may have different utility functions. Suppose for simplicity that utility functions
belong to a family parameterized by a positive real number γ. So a particular individual’s
utility function can be denoted by Uγ(w).

Further suppose that an individual’s utility function parameter γ is sampled randomly
from an underlying random variable Γ with distribution function FΓ(γ). So, a particular
individual’s utility function, Uγ(w), is a random quantity3, the randomness being induced
by FΓ(γ).

Based on this formulation, an individual will choose to buy insurance if and only if
the following condition is satisfied for the combination of the offered premium π and their
particular utility function Uγ(w):

Uγ(W − πL) > (1− µ)Uγ(W ) + µUγ(W − L), (5)

Note that all individuals are behaving deterministically, given their knowledge.
Although utility functions of different individuals can have different origins and scales,

certainty-equivalent decisions are independent of these choices. So without loss of gener-
ality, we will assume that all individuals have the same utility at the “end points” W −L
and W . And for clarity, we will suppress the subscript γ for the utility at the “end points”
and write U(W ) and U(W − L) as they are the same for all individuals. We can then
write Equation (5) as:

Uγ(W − πL) > uc where (6)

uc = (1− µ)U(W ) + µU(W − L) is a constant. (7)

This says that an individual insures if the utility from insurance exceeds a critical
value uc. Note that uc is the same for all individuals who are exposed to the same
probability of loss.

Figure 2 provides a graphical representation showing utility functions of four individ-
uals with the same probability of loss µ. The concave utility curves, with points A, B
and C, represent risk-averse individuals, where higher concavity represents higher risk-
aversion. We also show a convex utility curve, with point D, which represents a risk-loving
(or risk-neglecting) individual. (As mentioned previously, our model does not require that
all individuals are risk-averse.) For the individual at point A, the utility with insurance,
UγA(W − πL), exceeds the critical value uc, where γA is the individual’s utility function
parameter. So the individual buys insurance. For the individuals at points C and D,
the inverse applies, so they do not purchase insurance. The individual at point B is
indifferent.

3We must be careful not to call the function Uγ(w) a random variable. We shall have no need of any
of the metric structure of spaces of functions that this would entail.
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Figure 2: Heterogeneous utility functions within a risk-group, leading to proportional
insurance demand.

The utility at the fixed wealth (W − πL) is a random variable, that we denote by
UΓ(W − πL). The distribution function of UΓ(W − πL) is induced by that of Γ and we
denote it by GΓ(γ). The corresponding probability density function of the utilities at that
level of wealth is shown in the rotated plot on the right-hand side of Figure 2.

Now assume that the insurer cannot observe individuals’ utility functions. Then, for
given offered premium π, all the insurer can observe of insurance purchasing behaviour
is the proportion of individuals who buy insurance. We call this a demand function and
denote it by d(π). We have:

d(π) = P [UΓ(W − πL) > uc] = 1−GΓ(uc). (8)

Insurance purchase is denoted by the shaded area, d(π), under the density graph for
UΓ(W − πL).

We note the following three properties of demand for insurance:

1. d(π), denotes a proportion, as 0 ≤ d(π) ≤ 1 is a valid probability.

2. d(π) is non-increasing in π, i.e. demand for insurance cannot increase when premium
increases. This can be shown as follows: For utility functions with U ′(w) > 0, if
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π1 < π2, the random variable UΓ(W −π1L) is statewise dominant4 over the random
variable UΓ(W − π2L). So,

π1 < π2 ⇒ P [UΓ(W − π1L) > uc] ≥ P [UΓ(W − π2L) > uc]⇒ d(π1) ≥ d(π2). (9)

3. Each individual’s decision is completely deterministic, given what they know. But
to the insurer it appears stochastic, given what the insurer knows. In respect of
any individual chosen randomly, define the function Q to be Q = 1 if they buy
insurance or Q = 0 if they do not. To the individual concerned, Q is a deterministic
function. To the insurer, Q is a Bernoulli random variable with parameter d(π). A
full probabilistic model accounting for these different levels of information is given
in Appendix A.

As noted earlier, certainty equivalent decisions do not depend on the origins and scales
of utility functions, so we can standardise the utility functions such that all individuals
have the same utilities U(W ) and U(W − L) at the “end points” W and W − L. The
following standardisation is convenient:

U(W ) = 1, (10)

U(W − L) = 0. (11)

The constant uc in Equation 8 then becomes (1−µ), and so the demand for insurance is:

d(π) = P[UΓ(W − π L) > 1− µ]. (12)

2.3 Example
This sub-section gives an illustrative example of the link from a specific distribution

of risk preferences to a specific proportional demand for insurance where individuals are
exposed to the same probability of loss.

Suppose W = L = 1 with a power utility function:

Uγ(w) = wγ, (13)

so that Uγ(0) = 0 and Uγ(1) = 1. This particular form of utility function leads to:

relative risk aversion coefficient: − w
U ′′γ (w)

U ′γ(w)
= 1− γ. (14)

So the heterogeneity in preferences between individuals can be modelled through the
randomness of the risk aversion parameter γ. As outlined in Section 2.2, we define a

4One random variable is statewise dominant over a second if the first is at least as high as the second
in all states of nature, with strict inequality for at least one state. It is an absolute form of dominance.



10

positive random variable Γ, and individual risk preferences γ are then instances drawn
from the distribution of Γ.

Demand for insurance at a given premium π is then:

d(π) = P [UΓ(1− π) > 1− µ] , (15)

= P
[
(1− π)Γ > 1− µ

]
, (16)

= P [Γ log(1− π) > log(1− µ)] , as log is monotonic, (17)

= P

[
Γ <

log(1− µ)

log(1− π)

]
, as log(1− π) < 0, (18)

≈ P
[
Γ <

µ

π

]
, as log(1− x) ≈ −x, for small x. (19)

Now suppose Γ has the following distribution:

FΓ(γ) = P [Γ ≤ γ] =


0 if γ < 0

τ γλ if 0 ≤ γ ≤ (1/τ)1/λ

1 if γ > (1/τ)1/λ,

(20)

where τ and λ are positive parameters. Note that τ = λ = 1 leads to a uniform distri-
bution. λ controls the shape of the distribution function and τ controls the range over
which Γ takes its values.5

Based on this distribution for Γ, the demand for insurance in Equation (19) takes the
form:

d(π) = τ
(µ
π

)λ
, (21)

which corresponds to iso-elastic demand, the constant demand elasticity being:

ε(π) = −∂ log(d(π))

∂ log π
= λ. (22)

The parameter τ can also be interpreted as the fair-premium demand, that is the demand
when an actuarially fair premium is charged. See Hao et al. (2016) for details.

The illustrative numerical example given in Section 1.1 can then be shown to corre-
spond to this iso-elastic demand function, with fair-premium demand τ = 0.5 and constant
demand elasticity λ = 0.435 for both risk-groups. These are reasonable parameters.6

5This is a generalised version of the Kumaraswamy distribution, which in its standard form takes
values only over [0,1] (Kumarasawamy (1980)).

6Approximately half the population has some life insurance (see footnote 2). For yearly renewable
term insurance in the US, demand elasticity has been estimated at 0.4 to 0.5 (Pauly et al., 2003). A
questionnaire survey about life insurance purchasing decisions produced an estimate of 0.66 (Viswanathan
et al., 2007).
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An important point to note here is that power utility function of the form given
in Equation 13 is concave only if the risk aversion parameter γ is less than 1. Such a
constraint can be imposed on random variable Γ by setting τ = 1 in Equation (20). Then
the third branch of Equation (20) implies that d(π) = 1 for π < µ, which corresponds to
the standard assumption in the economics literature that all individuals are risk-averse
and hence will buy insurance for premiums not exceeding their probability of loss. By
permitting some individuals to be ‘risk-lovers’, our model better represents the partial
take-up of insurance which is observed in practice. Although ‘risk-loving’ or ‘risk-seeking’
are the usual descriptions, ‘risk-neglecting’ might be a more realistic one.

3. Insurance Risk Classification, Market Equilibrium and Loss Coverage

3.1 Framework for Insurance Risk Classification
In Section 2, we have developed a framework for insurance demand based on het-

erogeneous risk preferences of individuals who have the same wealth W and the same
probabilities of loss amount L. In this section, we sketch a generalised framework to al-
low individuals to belong to different risk-groups having different loss probabilities. Full
details are in Appendix A.

Suppose a population can be sub-divided into n distinct risk-groups with probabilities
of loss given by µ1, µ2, . . . , µn. Without loss of generality, we assume the risk-groups are
indexed in increasing order of risk, i.e. 0 < µ1 < µ2 < . . . < µn < 1.

Let µ be a random variable denoting the probability of loss for an individual chosen
at random from the whole population, such that P[µ = µi] = pi for i = 1, 2, . . . , n. In
other words, the proportion of the population belonging to risk-group i is pi.

Suppose insurers charge premiums π1, π2, . . . , πn for the respective risk-groups. Ini-
tially we do not impose any constraints on the order or size of insurance premiums, so that
the insurers are free to charge any premiums to any risk-group. Based on the framework
developed in Section 2, we denote the demand for insurance for risk-group i, given offered
premium πi, by di(πi), where 0 ≤ di(πi) ≤ 1 and di(πi) is non-increasing in πi.

Let the insurance purchasing decision of an individual chosen at random from the
whole population be represented by the indicator random variable Q, taking the value of
1 if insurance is purchased; and 0 otherwise. Then conditional on the risk-group, Q is a
Bernoulli random variable defined by:

E[Q | µ = µi ] = P[Q = 1 | µ = µi ] = di(πi). (23)

Then the expected population demand for insurance is the unconditional expected value
of Q:

E[Q ] =
n∑
i=1

E[Q | µ = µi ] P[µ = µi] =
n∑
i=1

di(πi)pi. (24)
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Now suppose that the occurrence of a loss event for an individual chosen at random
from the whole population is represented by the indicator random variable, X, taking the
value of 1 if a loss event has occurred; and 0 otherwise. Then X is a Bernoulli random
variable defined as:

E[X | µ = µi ] = P[X = 1 | µ = µi ] = µi. (25)

Then the expected population loss is the unconditional expected value of X:

E[X ] =
n∑
i=1

E[X | µ = µi ] P[µ = µi] =
n∑
i=1

µipi. (26)

We assume that Q and X are independent, conditional on µ = µi. That is, the level
of risk may influence the decision to buy insurance, but there is no moral hazard; insured
individuals in any risk-group are not more likely to suffer the loss event than uninsured
individuals. Then the expected claims outgo for insurers is:

E[QX] =
n∑
i=1

E[QX | µ = µi ] P[µ = µi],

=
n∑
i=1

E[Q | µ = µi ] E[X | µ = µi ] P[µ = µi],

=
n∑
i=1

di(πi)µipi. (27)

Finally, for an individual chosen at random from the whole population, define random
variable Π, as the premium paid by that individual. As premiums are only paid by
individuals who purchase insurance, Π = QΠ. And since everybody in risk-group i is
offered the same premium πi, we have:

E[ Π | µ = µi ] = E[QΠ | µ = µi ] = E[Q | µ = µi ]πi = di(πi)πi. (28)

Then the unconditional expected premium income is:

E[Π] =
n∑
i=1

E[ Π | µ = µi ] P[µ = µi] =
n∑
i=1

di(πi)πipi. (29)

The expected profit for insurers, as a function of risk-classification regime π =
(π1, π2, . . . , πn), is then :

ρ(π) = E[Π]− E[QX] =
n∑
i=1

di(πi)πipi −
n∑
i=1

di(πi)µipi. (30)
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3.2 Equilibrium in the Insurance Market
Equilibrium is achieved when the expected profit for insurers is zero. In other words,

π = (π1, π2, . . . , πn) denotes an equilibrium, if it satisfies the equilibrium condition:

ρ(π) = 0 ⇔
n∑
i=1

di(πi)πipi −
n∑
i=1

di(πi)µipi = 0. (31)

A full probabilistic model, of heterogeneity in insurance purchasing behaviour leading
to a framework within which insurance risk classification and market equilibrium can be
analysed, is provided in Appendix A.

In what follows, for brevity, we confine our attention to two obvious, and opposing,
risk classification schemes, though, under suitable regulation, there are infinitely many
possibilities.

3.2.1 Full risk classification
An obvious solution to Equation (31) is to set premiums equal to the respective loss

probabilities, i.e. πi = µi for i = 1, 2, . . . , n. We call this particular equilibrium the full
risk classification regime.

3.2.2 No risk classification
At the other end of the spectrum is the pooled equilibrium where risk classification

is banned and so all risk-groups are charged the same premium π0, i.e. πi = π0 for
i = 1, 2, . . . , n. The existence of a pooled equilibrium can be demonstrated as follows.
Setting the pooled premium π0 = µ1, the probability of loss for the lowest risk-group, leads
to ρ(µ1) ≤ 0.7 Setting the pooled premium at the highest level of risk, i.e. π0 = µn, gives
ρ(µn) ≥ 0. Assuming insurance demand to be a continuous function of premium, there
exists at least one root π0 ∈ [µ1, µn] which gives a pooled equilibrium, i.e. ρ(π0) = 0.8

3.3 Loss coverage
We suggested in the motivating examples in Section 1.1, that loss coverage — heuristi-

cally characterised as the proportion of the population’s losses compensated by insurance
— can be used as a measure for social efficacy of insurance. Loss coverage can now be
formally defined within our model framework as the expected insurance claims outgo,
or expected population losses compensated by insurance, at equilibrium i.e. E[QX] as
defined in Equation (27). So:

Loss coverage: LC(π) = E[QX], (32)

7For notational convenience, we specify only one argument for multivariate functions if all arguments
are equal, e.g. we write ρ(π) for ρ(π, π, . . . , π).

8Uniqueness is not guaranteed, but the lowest of any multiple roots can arguably be regarded as the
only true equilibrium. This is because any putative equilibrium above the lowest root can be broken by
one insurer charging slightly more than the lowest root (Hoy & Polborn, 2000). In any event, the theory
developed in this paper is applicable around any equilibrium.
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where π satisfies the equilibrium condition in Equation (31).
To compare the relative merits of different risk classification regimes, we need to define

a reference level of loss coverage. We use the level under risk-differentiated premiums,
and so define the loss coverage ratio, as follows:

Loss coverage ratio: C =
LC(π)

LC(µ)
. (33)

3.4 Examples
Following Hao et al. (2016), we continue the example developed in Section 2.3.

Suppose there are two risk-groups with population proportions p1, p2, probabilities of loss
µ1 < µ2 and insurance demand modelled as per Equation (22):

di(π) = τi

(µi
π

)λ
, i = 1, 2. (34)

If the same premium π0 is charged for both risk-groups, the equilibrium premium
satisfying ρ(π0) = 0 is unique and is given by:

π0 =
α1µ

λ+1
1 + α2µ

λ+1
2

α1µλ1 + α2µλ2
, where αi =

piτi
p1τ1 + p2τ2

, i = 1, 2 (35)

that is, αi is the fair-premium demand-share, that is the share of total demand represented
by risk-group i when actuarially fair premiums are charged.

The loss coverage ratio, comparing loss coverage under pooled premiums to that under
risk-differentiated premiums, is:

C =
1

πλ0

α1µ
λ+1
1 + α2µ

λ+1
2

α1µ1 + α2µ2

, (36)

where π0 is the pooled equilibrium premium given in Equation (35).
Figures 3 and 4 show the plots of pooled equilibrium premium, insurance demand

(cover) and loss coverage ratio as a function of demand elasticity λ, for the risks (µ1, µ2) =
(0.01, 0.04) and fair-premium demand-shares (α1, α2) = (0.9, 0.1). Compared with the
result under risk-differentiated premiums, under pooling the premium is always higher,
and demand (cover) is always lower. This reduction in cover is the perceived loss of
efficiency arising from adverse selection. Loss coverage, on the other hand, is not always
lower: for this iso-elastic demand function, it is higher than under risk-differentiated
premiums if demand elasticity is less than 1. There is some empirical evidence that
insurance demand elasticities are typically less than 1 in many markets (Pauly et al.,
2003; Viswanathan et al., 2007; Chernew et al., 1997; Blumberg et al., 2001; Buchmueller
& Ohri, 2006; Butler, 1999).
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Figure 3: Pooled equilibrium premium (top panel) and aggregate demand (bottom panel)
as functions of demand elasticity.
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Figure 4: Loss coverage ratio as a function of demand elasticity.

The pattern shown in Figure 4 can be formalised by noting the following property of
the loss coverage ratio given in Equation (36):

λ Q 1⇒ C R 1. (37)

This says that for iso-elastic demand, pooling produces higher loss coverage than risk-
differentiated premiums if demand elasticity is less than 1. The proof of this result is
provided in Appendix B.
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4. Social Welfare and Loss Coverage

Our approach to social welfare is in the same spirit as Hoy (2006): we assume cardinal
and interpersonally comparable utilities, and assign equal weights to the utilities of all
individuals. This equal-weights approach is based on the Harsanyi (1955) ‘veil of igno-
rance’ argument: that is, behind the (hypothetical) ‘veil of ignorance’, where one does not
know what position in society (e.g. high risk or low risk) one occupies, the appropriate
probability to assign to being any individual is 1/n, where n is the number of individuals
in society. Alternative risk classification regimes can then be compared by comparing
expected utility in each regime for the (hypothetical) individual utility-maximiser behind
the ‘veil of ignorance’.

In our model in Sections 2 and 3, suppose an individual is selected at random from
the whole population. The individual’s expected utility can be written as follows:

Social Welfare = E [QUΓ(W − ΠL) + (1−Q) [(1−X)UΓ(W ) +X UΓ(W − L)] ] (38)

where the first part represents random utility if insurance is purchased; and the second
part is the random utility if insurance is not purchased.

As certainty equivalent decisions do not depend on the origins and scales of utility
functions, in Section 2, we assumed without loss of generality, that utilities for all indi-
viduals are the same at the ‘end-points’, W and W − L. But, this argument cannot be
directly extended to Equation (38), because individuals’ utilities can differ for identical
levels of wealth, which has direct implications for social welfare.

However, without any standardisation, Equation (38) is susceptible to being domi-
nated by a ‘utility monster’ who derives more utility from a given level of wealth than
all other individuals combined (see Bailey (1997), Nozick (1974)). So we propose to con-
tinue standardising utility functions so that all utilities are the same at ‘end-points’, W
and W − L, as before. This standardisation implies that the same ‘disutility of unin-
sured loss’ [U(W ) − U(W − L)] is assigned to all individuals, but utility if insurance is
purchased UΓ(W − ΠL) differs between individuals. Under this standardisation, social
welfare, denoted by S can be expressed as:

S = E [QUΓ(W − ΠL)] + (1−Q) [(1−X)U(W ) +X U(W − L)] . (39)

To derive an expression for S, we consider the constituent parts of Equation (39)
separately. Here we sketch the argument, the full probabilistic model is in Appendix A.
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First:

E [QUΓ(W − ΠL) ]

=
n∑
i=1

E[QUΓ(W − πiL) | µ = µi ] P[µ = µi], (40)

=
n∑
i=1

E[UΓ(W − πiL) | UΓ(W − πiL) > uci , µ = µi ] P [UΓ(W − πiL) > uci | µ = µi ] pi,

(41)

=
n∑
i=1

U∗i (W − πiL) di(πi) pi, using Equation (8), (42)

where uci = (1−µi)U(W )+µiU(W −L) (as defined in Equation (7)) and U∗i (W −πiL) =
E[UΓ(W−πiL) | UΓ(W−πiL) > uci , µ = µi ] represents the expected utility of individuals
purchasing insurance in risk-group i.

Using the assumption that all individuals have the same utilities U(W ) and U(W−L)
at wealth levels W and W −L, and that the random variables Q and X are independent
given a risk-group, the second part of Equation (39) becomes:

E [ (1−Q) [(1−X)U(W ) +X U(W − L)] ]

=
n∑
i=1

E[ (1−Q) [(1−X)U(W ) +X U(W − L)] | µ = µi ] P[µ = µi], (43)

=
n∑
i=1

[(1− di(πi)) {(1− µi)U(W ) + µi U(W − L)}] pi (44)
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Combining Equations (42) and (44), we get the following expression for social welfare:

S =
n∑
i=1

[
di(πi)U

∗
i (W − πi L)︸ ︷︷ ︸

Insured population

+ (1− di(πi)) {(1− µi)U(W ) + µi U(W − L)}︸ ︷︷ ︸
Uninsured population

]
pi, (45)

=
n∑
i=1

[(1− µi)U(W ) + µi U(W − L)] pi︸ ︷︷ ︸
Constant as a function of πi

+

(
n∑
i=1

di(πi)µipi

)
× [U(W )− U(W − L)]︸ ︷︷ ︸

Loss coverage×Positive multiplier

−
n∑
i=1

di(πi) [U(W )− U∗i (W − πiL)] pi︸ ︷︷ ︸
Adjustment factor to account for premiums

. (46)

A regulator or a policymaker aiming to maximise social welfare, will be interested in
choosing a risk-classification regime π which maximises S.

In most insurance contracts, the premium amount πi L will account for a small propor-
tional of the initial wealth W , so that U(W ) ≈ U∗i (W − πiL). Under this approximation,
Equation (46) simplifies to:

S ≈ Constant + Loss Coverage× Positive multiplier. (47)

In other words, in most cases maximising social welfare becomes approximately equivalent
to maximising loss coverage.

This may be a useful approximation, because social welfare depends on (unobservable)
utility functions, but loss coverage depends solely on observable quantities. Hence a
regulator or policymaker may wish to use loss coverage as a proxy for social welfare.

In cases where premiums cannot be assumed to be small compared to initial wealth
W , unapproximated S needs to be maximised. To work with the full expression of social
welfare, it might be more convenient to re-express Equation (46) as:

S = Constant +
n∑
i=1

di(πi) [U∗i (W − πiL)− {(1− µi)U(W ) + µi U(W − L)}]︸ ︷︷ ︸
Excess expected utility of insurance over gamble of not insuring

pi. (48)

Maximising social welfare in this context becomes equivalent to maximising the excess of
aggregate expected utility of insurance over the gamble of not insuring.

5. Conclusions
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We have proposed loss coverage as an intuitively appealing metric for evaluation of
different insurance risk classification schemes. Loss coverage is defined as the expected
population losses compensated by insurance at market equilibrium.

Bans on insurance risk classification typically induce adverse selection, leading to a
fall in the number of insured individuals compared with that obtained under full risk
classification. This reduction in coverage is usually seen as inefficient. However, adverse
selection also typically leads to a shift in coverage towards higher risks. If this shift is
large enough, it can more than outweigh the fall in numbers insured, so that loss coverage
is increased. Since this implies that more risk is voluntarily traded and more losses are
compensated, it is a counter-argument to the perception of reduced efficiency.

For coverage to shift towards higher risks when risk classification is banned, it must
be the case that not all individuals choose to buy insurance at any given premium. This is
an observable reality in many insurance markets. We have shown that it can be explained
by heterogenous utility functions, which are unobservable by the insurer. Individuals
make decisions completely deterministically on the basis of certainty-equivalent utility
calculations, but the insurer observes apparently stochastic decision-making, resulting in
a proportional insurance demand function.

We have also shown that loss coverage can be reconciled with (although it is not the
same as) an equal-weights definition of utilitarian social welfare in an insurance market,
in the spirit of Hoy (2006) or Dionne and Rothschild (2014). Specifically, if insurance
premiums are negligible relative to wealth, then maximising loss coverage maximises social
welfare. Notably, however, the calculation of social welfare requires utility functions to
be observable, while the calculation of loss coverage does not.

References

American Council of Life Insurers (2014). 2014 Life Insurers Factbook. http://www.acli.org.
(Accessed 3 September 2015).

Bailey, J.W. (1997). Utilitarianism, institutions and justice. Oxford University Press.

Blumberg, L., Nichold, L. & Banthin, J. (2001). Worker decisions to purchase health
insurance. International Journal of Health Care Finance and Economics, 1, 305–325.

Buchmueller, T.C. & Ohri, S. (2006). Health insurance take-up by the near-elderly. Health
Services Research, 41, 2054–2073.

Butler, J. R. (2002). Policy change and private health insurance: Did the cheapest policy do
the trick?. Australian Health Review, 25, 6.33–41

Cardon, J.H. & Hendel, I. (2001). Asymmetric information in health insurance: evidence
from the National Medical Expenditure Survey. Rand Journal of Economics, 32, 408–427.

Cawley, J. & Philipson, T. (1999). An empirical examination of information barriers to
trade in insurance. American Economic Review, 89, 827–846.



21

Chernew, M., Frick, K. & McLaughlin, C. (1997). The demand for health insurance
coverage by low-income workers: Can reduced premiums achieve full coverage?. Health
Services Research, 32, 453–470.

Chiappori, P-A. & Salanie, B. (2000). Testing for asymmetric information in insurance
markets. Journal of Political Economy, 108, 56–78.

Cohen, A. & Siegelman, P. (2010). Testing for adverse selection in insurance markets.
Journal of Risk and Insurance, 77, 39–84.

De Jong, P. & Ferris, S (2006). Adverse selection spirals. ASTIN Bulletin, 36, 589–628.

Dionne, G. & Rothschild, C.G. (2014). Economic effects of risk classification bans. Geneva
Risk and Insurance Review, 39, 184-221.

Einav, L. & Finkelstein, A. (2011). Selection in insurance markets: theory and empirics in
pictures. Journal of Economic Perspectives, 25, 115–138.

Finkelstein, A. & McGarry, K. (2006). Multiple dimensions of private information: evi-
dence from the long-term care insurance market. American Economic Review, 96, 938–958.

Finkelstein, A. & Poterba, J. (2004). Adverse selection in insurance markets: policyholder
evidence from the UK annuity market. Journal of Political Economy, 112, 183–208.

Hao, M., Macdonald, A.S., Tapadar, P. & Thomas, R.G. (2016). Insurance loss coverage
under restricted risk classification: The case of iso-elastic demand. To appear in ASTIN
Bulletin.

Hoy, M. (2006). Risk classification and social welfare. Geneva Papers on Risk and Insurance,
31, 245–269.

Hoy, M. & Polborn, M. (2000). The value of genetic information in the life insurance market.
Journal of Public Economics, 78, 235–252.

Kumarasawamy, P. (1980). A generalized probability density function for double-bounded
random processes. Journal of Hydrology, 46, 79–88.

LIMRA (2013). Facts about life 2013. http://www.limra.com. (Accessed 3 September 2015).

Nozick, R. (1974). Anarchy, state and utopia. Basic Books, N.Y..

Pauly, M.V., Withers, K.H., Viswanathan, K.S., Lemaire, J., Hershey, J.C., Arm-
strong, K., & Asch, D.A. ( 2003). Price elasticity of demand for term life insurance and
adverse selection. NBER Working Paper, 9925, .

Rothschild, M. and Stiglitz, J. (1976). Equilibrium in competitive insurance markets:
an essay on the economics of imperfect information. Quarterly Journal of Economics,
90(4), 630–649. Thomas, R.G. (2008). Loss coverage as a public policy objective for risk

classification schemes. Journal of Risk and Insurance, 75, 997–1018.

Viswanathan, K.S., Lemaire, J., K. Withers, K., Armstrong, K., Baumritter, A.,
Hershey, J., Pauly, M., & Asch, D.A. (2006). Adverse selection in term life insurance
purchasing due to the BRCA 1/2 Genetic Test and elastic demand. Journal of Risk and
Insurance, 74, 65–86.



22

Appendices

A. Probabilistic Model of Heterogeneous Insurance Purchasers

We can construct a probabilistic model by supposing that any individual sampled at random
posesses two attributes, risk of suffering a loss event (or just ‘risk’ for short) and a utility function.

• We suppose that ‘risk’ is defined as the probability µ of suffering a defined loss event. For
simplicity, suppose the set of possible values of µ is the finite set M = {µ1, µ2, . . . , µn},
that G is the power set of M and that P[µ = µi] = pi.

• For simplicity, suppose that all utility functions belong to a family parameterized by a
real number γ. Individuals’ utility functions take values in R.

Then the idea of risk and utility being heterogeneous in a population may be modelled by the
probability space (Ω,F , P ) where:

• The sample space is Ω = M ×R.

• The sigma-algebra F is G × B, where B is the Borel sigma-algebra on R.

• The probability measure P is assumed to be given by a probability function F (µ, γ),
discrete in its first component and absolutely continuous in its second component.

An individual sampled at random has the attributes µ and γ given by the probability F . We
must have the marginal distribution:

pi = P[µ = µi] =

∫
{µi}×R

dF (µ, γ) =

∫
R
dF (µi, γ) (49)

where the first integral is Stieltjes, summing over the first component of F and integrating over
the second component.

Two individuals with the same value µi of µ may be said to belong to the same risk group,
for insurance purposes. The insurer is supposed able to observe µ and will offer the same
premium πi to everyone with risk µi. It is assumed that an individual with risk µi, offered
premium πi, will decide to buy insurance, or not, non-randomly, determined by their utility
function. We suppose, however, that the insurer cannot observe γ. Since different individuals,
sampled at random and allocated to the same risk-group, can have different utility functions,
the insurer will observe heterogeneous behaviour within a risk-group. That is, even though all in
the risk-group are offered the same premium rate, some will buy insurance and others will not.
The purchasing decision, given the utility function, is non-random, but to the insurer it appears
to be random because of the unobserved heterogeneity. At most, the insurer can observe the
proportion of individuals in any risk-group that buy insurance. Thus the insurer may model the
insurance-buying decision of an individual in a given risk-group as a Bernoulli random variable.
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The insurer’s premium strategy may be represented by a G−measurable random variable
on M , or by a (G × {∅,Ω})−measurable random variable on Ω. In either case, denote it by Π.
The insurance purchasing decision may be represented by an indicator Q, taking the value 1 if
insurance is purchased and 0 otherwise. For a given premium strategy Π on the insurer’s part,
Q is an F−measurable random variable on Ω. Its restriction to a fixed value of the risk µ = µi
is the Bernoulli random variable that the insurer observes in that risk-group.

The proportion of risks with µ = µi that buy insurance, which we may call a ‘demand
function’ and denote by di(πi), is the conditional expected value of Q:

di(πi) = P[Q = 1 | µi ] = E[Q | µi ] =

∫
RQ(µi, γ) dF (µi, γ)∫

R dF (µi, γ)
(50)

and the expected population demand for insurance is the unconditional expected value of Q:

E[Q] =

∫
Ω
Q(µ, γ) dF (µ, γ) (51)

=
∑
i∈M

∫
R
Q(µi, γ) dF (µi, γ) (52)

=
∑
i∈M

(∫
RQ(µi, γ) dF (µi, γ)∫

R dF (µi, γ)
×
∫
R
dF (µi, γ)

)
(53)

=
∑
i∈M

di(πi) pi. (54)

Define X to be a Bernoulli random variable, indicating that a loss event occurs. Given µi,
X has parameter µi, and does not depend on any utility function. Observation of X is new
information, not part of the model above. Then:

E[X] =

∫
Ω

E[X | µ, γ] dF (µ, γ) (55)

=
∑
i∈M

E[X | µi ]

∫
R
dF (µi, γ) (56)

=
∑
i∈M

µipi. (57)

Assume that Q and X are independent, conditional on µi. That is, the level of risk may influence
the decision to buy insurance, but there is no moral hazard; insured individuals in any risk-group
are not more likely to suffer the loss event than uninsured individuals. Then the expected claims
outgo for the insurer is:
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E[QX] =

∫
Ω

E[QX | µ, γ ] dF (µ, γ) (58)

=

∫
Ω
Q(µ, γ) E[X | µ, γ ] dF (µ, γ) (Q is F−measurable) (59)

=
∑
i∈M

E[X | µi ]

∫
R
Q(µi, γ) dF (µi, γ) (60)

=
∑
i∈M

µi di(πi) pi (following Equation (53)). (61)

Finally, the expected premium income is:

E[QΠ] =

∫
Ω

E[QΠ | µ, γ ] dF (µ, γ) (62)

=

∫
Ω
Q(µ, γ) E[ Π | µ, γ ] dF (µ, γ) (63)

=
∑
i∈M

E[ Π | µi ]

∫
R
Q(µi, γ) dF (µi, γ) (64)

=
∑
i∈M

πi di(πi) pi (following Equation (53)). (65)

Based on the formulation of expected premium income and claims outgo, the total expected
profit for insurers, as a function of risk-classification regime π = (π1, π2, . . . , πn), can be defined
as:

Expected profit for insurers: ρ(π) = E[QΠ]− E[QX] =

n∑
i=1

di(πi)πipi −
n∑
i=1

di(πi)µipi.

(66)

Finally we define social welfare as expected utility of an individual chosen at random, i.e.

Social Welfare = E
[
QUΓ(W − πL) + (1−Q)

[
X UΓ(W − L) + (1−X)UΓ(W )

]]
. (67)

as in Equation (38). Let us review the measurability and dependencies of the quantities we will
need.

µ is G−measureable.
Γ is B−measureable (Borel sigma-algebra on R).
Π is G−measureable.
Q is F−measureable, but not independent of Π.
X is neither G−measureable nor F−measureable, but it is independent of Π.
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Note that E[X | F ] = E[X | µi ] = µi. Considering S term by term.

E[QUΓ(W − πL)] (68)

= E[ E[QUΓ(W − πL) | F ] ] (69)

=
n∑
i=1

pi

∫
R
Q(µi, γ)Uγ(W − πiL) dF (πi, γ) (70)

=

n∑
i=1

pi di(πi)

∫
RQ(µi, γ)Uγ(W − πiL) dF (πi, γ)

di(πi)
(71)

=

n∑
i=1

pi di(πi) E

[∫
R
Q(µi, γ)Uγ(W − πiL) dF (πi, γ)

∣∣∣Q(µi, ·) = 1

]
(72)

where Q(µi, ·) denotes the restriction of Q to the ith risk-group. This is equivalent to Equation
(42) in the main text. Next:

E[ (1−Q)X UΓ(W − L) ] (73)

= E E[ (1−Q)X UΓ(W − L) | F ] (74)

=

n∑
i=1

pi

∫
R

(1−Q(µi, γ))Uγ(W − L) E[X | F ] dF (πi, γ) (75)

=

n∑
i=1

pi µi

∫
R

(1−Q(µi, γ))Uγ(W − L) dF (πi, γ) (76)

=

n∑
i=1

pi µi (1− di(πi))
∫
R(1−Q(µi, γ))Uγ(W − L) dF (πi, γ)

1− di(πi)
(77)

=

n∑
i=1

pi µi (1− di(πi)) E

[∫
R

(1−Q)Uγ(W − L) dF (µi, γ)
∣∣∣Q(πi, ·) = 0

]
(78)

=

n∑
i=1

pi µi (1− di(πi))U(W − L), if Uγ(W − L) = U(W − L) for all γ. (79)

Similarly,

E[ (1−Q) (1−X)UΓ(W ) ] (80)

=
n∑
i=1

pi (1− µi) (1− di(πi)) E

[∫
R

(1−Q)Uγ(W ) dF (µi, γ)
∣∣∣Q(πi, ·) = 0

]
(81)

=
n∑
i=1

pi (1− µi) (1− di(πi))U(W ), if Uγ(W ) = U(W ) for all γ. (82)
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B. Loss Coverage Ratio

The argument given here follows Hao et al., (2016). The loss coverage ratio for the case of
equal demand elasticity is given in Equation (36) and can be expressed as follows:

C =
1

πλ0

α1µ
λ+1
1 + α2µ

λ+1
2

α1µ1 + α2µ2
, where π0 =

α1µ
λ+1
1 + α2µ

λ+1
2

α1µλ1 + α2µλ2
; (83)

=
[
wµλ−1

1 + (1− w)µλ−1
2

]λ [
wµλ1 + (1− w)µλ2

]1−λ
where w =

α1µ1

α1µ1 + α2µ2
; (84)

= Ew

[
µλ−1

]λ
Ew

[
µλ
]1−λ

, (85)

where Ew denotes expectation in this context and the random variable µ takes values µ1 and
µ2 with probabilities w and 1− w respectively.

Result B.1. For λ > 0,
λ Q 1⇒ C R 1. (86)

Proof. Case λ = 1: It follows directly from Equation (85) that C(1) = 1.

Case 0 < λ < 1: Holder’s inequality states that, if 1 < p, q < ∞ where 1/p + 1/q = 1, for

positive random variables X,Y with E[X]p, E[Y ]q <∞, E [Xp]1/pE [Y q]1/q ≥ E[XY ].

Setting 1/p = λ, 1/q = 1− λ, X = µλ(λ−1) and Y = 1/X, applying Holder’s inequality to
Equation (85) gives,

C = Ew

[
X1/λ

]λ
Ew

[
Y 1/(1−λ)

]1−λ
≥ Ew[XY ] = 1. (87)

Case λ > 1: Lyapunov’s inequality states that, for positive random variable µ and 0 < s < t,
E[µt]1/t ≥ E[µs]1/s.

So Equation 85 gives:

C =
Ew
[
µλ−1

]λ
Ew [µλ]

λ−1
=

[
Ew
[
µλ−1

]1/(λ−1)

Ew [µλ]
1/λ

]λ(λ−1)

≤ 1, (88)

as Ew
[
µλ−1

]1/(λ−1) ≤ Ew
[
µλ
]1/λ

for λ > 1 by Lyapunov’s inequality.


