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Abstract

The core challenge in designing an effective static progaaalysis

is to find a good program abstraction — one that retains oribilde
relevant to a given query. In this paper, we present a newoaphr
for automatically finding such an abstraction. Our approasés

a pessimistic strategy, which can optionally use guidamoenf
a probabilistic model. Our approach applies to parametstics
analyses implemented in Datalog, and is based on countepiea
guided abstraction refinement. For each untried abstractiar
probabilistic model provides a probability of success, le/tthe
size of the abstraction provides an estimate of its cost imge
of analysis time. Combining these two metrics, probabiétyd
cost, our refinement algorithm picks an optimal abstractdor
probabilistic model is a variant of the Erd6s—Rényi ramdgraph
model, and it is tunable by what we call hyperparameters. We
present a method to learn good values for these hyperpaesnet
by observing past runs of the analysis on an existing codelvsls
evaluate our approach on an object sensitive pointer andiys
Java programs, with two client analyses (PolySite and Dast)c

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords Datalog, Horn, hypergraph, probability

1. Introduction

We wish that static program analyses would become bettdregs t
see more code. Starting from this motivation, we designedkan
straction refinement algorithm that incorporates knowdeliarnt
from observing its own previous runs, on an existing codebasr

a given query about a program, this knowledge guides the algo
rithm towards a good abstraction that retains only the etdithe
program relevant to the query. Similar guidance also featim
existing abstraction refinement algorithn#s 8, 20], but is based
on nontrivial heuristics that are developed manually byysisde-
signers. These heuristics are often suboptimal and diffioutans-
fer from one analysis to another. Our algorithm has the (iztieio
improve itself by learning from past runs, and it applies lroast
any analysis implemented in Datalog.

[Copyright notice will appear here once 'preprint’ opticrémoved.]

Prior work on abstraction refinement for Datal&g][implicitly
uses an optimistic strategy: the search is geared towaiadian
abstraction that would show the current counterexample teploi-
rious. We take the complimentary approach: our search isedea
towards finding an abstraction that would show the curreoneo
terexample to be unavoidable. Furthermore, we bias thelsdgr
using a probabilistic model, which is tuned using inforraatfrom
previous runs of the analysis.

In other approaches to program analysis that are basedon lea
ing [43, 54], the analysis designer must choose appropriate features.
A feature is a measurable property of the program, usually-a n
meric one. Choosing features that are effective for progaaaly-
sis is nontrivial, and involves knowledge of both the anialysd
the probabilistic model. In our approach, the analysisgiesidoes
not need to choose appropriate features.

Instead of observing features, our models observe diréogly
internal representations of analysis runs. Parametritc staaly-
ses implemented in Datalog consist of universally quactifiern
clauses, and work by instantiating the universal quantitinaof
these clauses, while respecting the constraints on irastiamnt im-
posed by a given parameter setting. These instantiateddtburses
are typically implications of the form

h <+ ti,ta,... tn

and can be understood as a directed (hyper) arc from theesourc
verticests, ..., t, to the target vertexh. Thus, the instantiated
Horn clauses taken altogether form a hypergraph. This ayaph
changes when we try the analysis again with a different patam
setting. Given a hypergraph obtained under one parametargse
we build a probabilistic model that predicts how the hypapgr
would change if a new and more precise parameter setting were
used. In particular, the probabilistic model estimates likaly it
is that the new parameter setting will end the refinementgasic
which happens when the new hypergraph includes evidende tha
the analysis will never prove a query. Technically, our tabstic
model is a variant of the Erdés—Rényi random graph moti#t [
given a template hypergraph, each of its subhypergraphs is
assigned a probability, which depends on the values of tpery
parameters. Intuitively, this probability quantifies tHeance that
H correctly describes the changesGhwhen the analysis is run
with the new and more precise parameter settings. The hypemp
eters quantify how much approximation occurs in each of treng
tified Horn clauses of the analysis. We provide an efficierthoe
for learning hyperparameters from prior analysis runs. @ethod
uses certain analytic bounds in order to avoid the combiiizdex-
plosion of a naive learning method based on maximum likeliho
the explosion is caused Wy being a latent variable, which can be
observed only indirectly.

The next parameter setting to try is chosen by our refinement
algorithm based on predictions of the probabilistic modeldiso
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object x, y, z, Vv
assume x.dirty

x.value := 10
0: smudge2(x, y)
0’: y.value := y.value + 2 * x.value
1: smudge3(y, z)
if z.dirty && y.value > 5
v.value := x.value + y.value

2: smudge3(z,
3: smudgeb5(x,

4: smudge7(y,
assert !v.dirty

Figure 1. Architecture

based on an estimate of the runtime cost. For each paranetter s
ting, the probability of successfully handling the quergvsluated

by our model, and the runtime is estimated to increase wigh th
precision of the parameter setting. We prove that our metfod
integrating these two metrics is optimal, under reasonaséeimp-
tions.

The paper starts with an informal overview of our approach
(Section 2 and a review of notations from probability theory
(Section 3, and is followed by a description of our probabilis-
tic model Section 4 and its learning algorithmSection 3. The
probabilistic model is then used to implement a refinemeap lo
that optimally chooses the next parameter setti®gction §. The
experimental evaluationSgection J shows the value of the pes-
simistic strategy, but suggests we need better optimisessdier to
take full advantage of the probabilistic mod8kection 8positions
our work in the various attempts to combine probabilistas@ning
and static analyses, as&ction Sconcludes the paper. Most proofs
are in appendices.

2. Overview

Figure 1gives a high level overview of our abstraction refinement
algorithm, and in particular it shows the role of our proliabc
model. The refinement loop is standard, with analysis on afee s
and refinement on the other. Our contribution lies in the esfient
part, which receives guidance from a learnt probabilisticlet and
chooses the next abstraction by balancing the model’s giredi
and the estimated cost of running the analysis under eat¢raebs
tion.

We assume that the analysis is given and obeys two constraint
The first is that the analysis is implemented in Datalog — it is
specified in terms of universally quantified Horn clauseshsas

pointsto(a, {) < precise(a), pointsto(f3,¢),
. @
assignTo(f, @)
in which all the free variablesy, 3, ¢ are implicitly universally
quantified. We call these claus@atalog rules The analysis works
by instantiating the quantification of these rules, and thersving
new facts. A query is a particular fact such gsintsto(x, h),
which is an instantiation of the left side of the rulg,(with o := x
and ¢ := h. The query represents an undesirable situation in
the program being analysed. The analysis could derive teeyqu
because the undesirable situation really occurs at runtug the
analysis could also derive the query because it approxsriaie
runtime semantics. Our task is to decide whether it is plessth
avoid deriving the query by approximating less. If the query
derived, then the set of all instances of Datalog rules domsta
counterexample, which is then used for refinement.

Figure 2. Example program to analyse

The second constraint is that the analysis is parametric. Fo
instance, it might have a parameter for each program variabl
which specifies whether the variable should be tracked gebci
or not. The analysis would encode a setting of these paramete
in Datalog by using relationsheap and precise. In fact, the
Datalog rule 1) assumes such parametrisation and fires only when
the parameter setting dictates the precise tracking ofahiahlec.

For a parametric analysis, an abstraction can be specified by
parameter setting, and so we use these two terms interciagge

The refinement part analyses a counterexample, and suggests
new promising parameter setting. If the counterexamplivelethe
query without relying on approximations, then the refinetypemt
reports impossibility and stop$1, 55, 56]. If the counterexample
derives the query by relying on approximations, then theesfient
part sets itself the goal to find a similar counterexampl¢ doas
not rely on approximations. This is a pessimistic goal. Td fach
a similar counterexample, the analysis must be run withfareift
parameter setting. Which one? On the one hand, the parameter
setting should be likely to uncover a similar counterexamgn
the other hand, the parameter should be as cheap as po3siéle.
refinement part uses aM SAT solver to balance these desiderata.

Consider now the example programHRigure 2 The language
is idiosyncratic, and so will be the analysis. The languaw#tae
analysis are chosen to allow a concise rendering of the rde#si
In this toy language, each object has two fields, the boolgaty
and the integewalue. Initially, all value fields are0. Objectz is
dirty at the beginning, and we are interested in whetherabbjés
dirty at the end. Dirtiness is propagated from one objechtaitzer
only by the primitive commandsmudgeK. The effect of the com-
mandsmudgeK (x, y) is equivalent to the following pseudocode:

if (x.value + y.value) mod K =0
y.dirty = x.dirty V y.dirty

That is, if the sum of the values of objectsandy is a multiple
of K, then dirt propagates fromto y.

To decide whether objeet is dirty at the end, an analysis may
need to track the values of multiple objects. The values @n b
changed by guarded assignments. The guard of an assignarent ¢
be any boolean expression; the right hand side of an assigruae
be any integer expression. In short, tracking values aratioels
between values could be expensive.

However, tracking all values may also be unnecessary. In the
first iteration, the analysis treats all non-smudge comraaasl
skip. As a result, the analysis knows nothing about tadue
fields. To remain sound, it assumes that smudge commandgsalwa
propagate dirtiness; that is, it treats the commanddgek (z, y)
as equivalent to the following pseudocode, dropping thedjua

y.dirty == x.dirty V y.dirty
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Figure 3. Abstract view of the program iRigure 2 Each label on
the leftidentifies a smudge command. The dashed, verties Big-
nify that once an object is dirty it remains dirty. The solijique
lines signify that smudge commands might propagate dstinBe-
pending on the values of the objectssmudgek command prop-
agates dirtiness with probability/ . The highlighted path illus-
trates one way in which dirtiness could propagate from dhbjeo
objectv, thus violating the assertion.

If, using these approximate semantics, the analysis cdadlthat
v is clean at the end, then it would stop. But, in our example,

v could be dirty at the end, for example because of the smudge

commands on line® and 4: the smudge on lind propagates
dirtiness frome to ¢, and the smudge on linepropagates dirtiness
from y to v. This scenario corresponds to the highlighted path in
Figure 3

Before seeing what happens in the next iteration, let us first
describe the analysis in more detail. The approximate stosan
of the commandmudge2 are modelled by the following Datalog
rule:

dirty(¢', B) < cheap(f),dirty(f, o), flow (¢, ')

smudge2({, , B) @

The rule makes use of the following relations:

flow(£,¢") the control flow goes fron to ¢’
smudge2({, o, ) the command atis smudge2(c, 3)
cheap(¢) the command at should be approximated
dirty({, ) «.dirty is true before the command &t

The relationsflow andsmudge2 encode the program that is being
analysed. The relatiosheap parametrises the analysis, by allow-
ing it or disallowing it to approximate the semantics of adar
commands. Finally, the relatiatirty expresses facts about execu-
tions of the program that is being analysed. From the pointenf

of the analysisflow, smudge2, andcheap are part of the input,
while dirty is part of the output. The relatiofd ow andsmudge?2

are simply a transliteration of the program text. The relatheap

is computed by a refinement algorithm, which we will see later

The precise semantics shudge2 can also be encoded with a
Datalog rule, albeit a more complicated one.

dirty(¢', B) + precise(£),dirty (¢, o), flou((, ),
smudge2({, o, B), value(4, o, a),
value({,3,b), (a+b) mod 2 =0
This rule makes use of two further relations:

@)

the command at should not be approximated
a.value = a holds before the command &t

precise()
value(4,a, a)

Like cheap, the relationprecise is part of the input. If the input
relationprecise activates rules like the one above, then the anal-
ysis takes longer not only because the rule is more compticat
but also because it needs to compute more facts about thiemnela
value.

The refinement algorithm ensures that for each program goint
exactly one ofcheap(¢) andprecise(¢) holds. In the first itera-
tion, cheap(¥) holds for all?, andprecise holds for nof. In each
of the next iterations, the refinement algorithm switchereoro-
gram points from cheap to precise semantics.

Let us see what happens when one program point is switched
from cheap to precise. In the first iteratiateap(0) is part of the
input, and the following rule instance derivésrty(0', y):

dirty(0’,y) < cheap(0),dirty(0,x), flow(0,0")
smudge2(0, x, y)

Let us now look at the scenario in which for the second iterati
the fact cheap(0) is replaced by the facprecise(0). In this
casedirty(0’,y) is still derived, this time by the following rule
instance:

dirty(0’,y) < precise(0),dirty(0,x),£Llow(0,0"),
smudge2(0, x,y), value(0, x, 10),
value(0,y,0), (10 4+ 0) mod 2 =0

To be able to apply this rule, the analysis had to work harter,
derive the intermediate resuktalue(0, x, 10) andvalue(0, y, 0).
Using precise(0) influences other Datalog rules as well, and
forces the analysis to derive these intermediate resutghat
dirty(0’,y) is still derived. This is not always the case. For exam-
ple, thesmudge3 command at program pointwill not propagate
dirtiness if the precise semantics is used.

Let us now step back and see which parts of the example gener-
alise.

Model. If we replacecheap(?) by precise(¥¢), then the set of
Datalog rule instances could change unpredictably. Yeghserve
empirically that the change is confined to one of two cases:

(a) precise(¥) eventually derives facts similar to those facts that
cheap(¢) derives, but with more work; or

(b) precise(?) no longer derives the facts thetieap(¢) derived.

This dichotomy is by no means necessary. Intuitively, idsdbe-
cause the Datalog rules are not arbitrary: they are implénmga
program analysis. In our example, case (a) occurs wiheap(0)

is replaced byrecise(0), and case (b) occurs wheheap(1) is
replaced byprecise(1). In general, we formalise this dichotomy
by requiring that a certain predictability condition hald$e con-
dition is flexible, in that it allows one to choose the meanafg
similar’ in case (a) by defining a so called projection fuonot In
our example, no projection is necessary. In context seasnal-
yses, projection corresponds to truncating contexts. fregg, by
adjusting the definition of the projection function we carmplei
more knowledge about the analysis, if we so wish. If we do not,
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then it is always possible to choose a trivial projectiondrich
the meaning of ‘similar’ is ‘exactly the same’.
Provided that the predictability condition holds, whichai$or-

that the pessimistic strategy will consider, whose setsrcd are
012 and34. The pathD4 gets a probabilityl /2 x 1/7 of surviving;
the path012 gets a probabilityl /2 x 1/3 x 1/3 of surviving; the

mal way of saying that the dichotomy between cases (a) and (b) path34 gets a probabilityl /5 x 1/7 of surviving. According to

holds, it is natural to define the probabilistic model as aaverof
the Erd6s—Rényi random graph model. Our sets of Datallegimu

probabilities, the patit4 has the highest chance of showing that
v is dirty at the end.

stances are seen as sets of arcs of a hypergraph. Each are of th We designed an algorithm which generalises the pessimistic

hypergraph is either selected or not, with a certain prdipalBe-
ing selected corresponds to case (a) — having a counterptrei
precise hypergraph; being unselected corresponds to lopsa6t
having a counterpart in the precise hypergraph.

For the predictability condition and for the projection étion,
we drew inspiration from abstract interpretatidtO]. Intuitively,
our projection functions correspond to concretisation snapd our
predictability condition corresponds to correctness qfrapima-
tion. However, we did not formalise this intuitive correspence.

Learning. The model predicts that each rule instance is selected

(that is, has a precise counterpart) with some probabHitw to
pick this probability?Figure 3gives an intuitive representation of

strategy described above by taking into account unionstbfgnd
also the runtime cost of trying a parameter setting. Our eefient
algorithm has to work in a more general setting than sugdedste
Figure 3 In particular, it must handle hypergraphs, not just graphs

3. Preliminaries and Notations

In this section we recall several basic notions from proligbi
theory. Atthe same time, we introduce the notation useditjirout
the paper.

A finite probability spaceis a finite set2 together with a
functionPr :  — R such thatPr(w) > 0 forall w € , and
> weq Pr(w) = 1. An eventis a subset of2. The probability of

a set of instances. In particular, each dashed arc and e#idh so aneventA is

arc represents some rule instance. We assume that instames
resented by dashed arcs are selected with probabiliijhese are
instances of some rule which says that a dirty object rendiihg
We also assume that instances represented by solid aredected
with probability 1/ K. These are instances of rules of the foi2j (
which describe the semanticssaifudgeK commands. These proba-
bilities make intuitive sense. In particular, it is readoleato expect
that a number is a multiple d& with probability 1/ K.

But, how can we design an algorithm to find these probalslitie
without appealing to intuition and knowledge about arittio®

Pr(A4) := Z Pr(w) = Z Pr(w)[w € 4]

weA weN

The notation[¥] is the Iverson bracket: if is true it evaluates
to 1, if U is false it evaluates t0. A random variableis a function
X : Q — X. For each value: € X, the setX ™' (z) is an event,
traditionally denoted byX = z). In particular, we writePr(X =
x) for its probability; occasionally, we may writer(x = X) for
the same probability. Aoolean random variablds a function
X : Q@ — {0,1}. For a random variabl& with X C R, we

The answer is that we run the analysis on many programs, anddefine itsexpectationE X by

observe whether rule instances have precise counterpartsto
In our example, if the training sample is large enough, weld/ou
observe that instances of the for) ¢lo indeed have counterparts
of the form @) in aboutl/K of cases. In general, it is not possible
to observe directly which rules have precise counterpdits
difficult to decide which rule is a counterpart of which ruiestead,
we make indirect observations based on which similar fagts a
derived.

Refinement. In terms ofFigure 3 refinement can be understood
intuitively as follows. We are interested in whether thexaipath
from the input on the top left to the output on the bottom right

EX := Z zPr(X =2x) = Z Pr(w)X(w)

rzeX weN
In particular, ifX is a boolean random variable, then
EX=Pr(X=1)

EventsA,, ..., A, are said to béndependentvhen

Pr(Ain...NA,) =[] Pr(4:)
=1

Note thatn events could be pairwise independent, but still depen-

We know the dashed arcs are really present: they have a @recis dentwhen taken altogether. Random variaies. . . , X, are said

counterpart with probability. We do not know if the solid arcs

are really present: we see them only because we used a chea@re independent for aity, ..

parameter setting, and they have a precise counterpartvatily

to be independent when the eve®: = z1),...,(Xn = zn)
., Ty, in their respective domains. In
particular, if X1,...,X,, are independent boolean random vari-

probability 1/ K. We can find out whether the solid arcs are really ables, theXy A ... A X, is also a boolean random variable, and

present or just an illusion, by running the analysis with areno

precise parameter setting. But, we have to pay a price, becau

more precise parameter settings are also more expensive.

E(XiA... AX,) =]][EX:
i=1

The question is then which of the solid arcs should we enquire gyentsA andB are said to béncompatiblewhen they are disjoint.

about, such that we decide quickly whether there is a path fro
input to output. There are several possible strategiesaiiticplar
there is an optimistic strategy and a pessimistic strat€g. op-
timistic strategy hopes that there is no path, so objeis clean
at the end. Accordingly, the optimistic strategy considesking
about those sets of solid arcs that could disconnect the fnpm
the output, if the arcs were not really there. The pessimistategy
hopes that there is a path, so objeds dirty at the end. Accord-
ingly, the pessimistic strategy considers asking aboigdtsets of
solid arcs that could connect the input to the output, if ttos avere
really there. The highlighted path Figure 3corresponds to replac-
ing cheap(0) by precise(0), and alsccheap(4) by precise(4).
Thus, let us denote its set of arcsls There are two other paths

In that casePr(A U B) = Pr(A) + Pr(B). In particular, if
Xi4,...,X, are boolean random variables such that the events
(X1 =1),...,(X, =1) are pairwise incompatible, then

E(XiV...vX,) =Y EX;
=1

4. Probabilistic Model

The probabilistic model predicts what analyses would ddéfyt
were run with precise parameter settings. To make such gredi
tions, the model relies on several assumptions: the asafyast
be implemented in Datalogéction 4.] and its precision must be
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configurable by parameterSéction 4.2, furthermore, increasing
precision should correspond to invalidating some devatteps
(Section 4.3. Given probabilities that individual derivation steps
survive the increase in precision, we compute probatslitiat sets
of derivation steps survive the increase in precisiacdtion 4.4
Given which set of derivation steps survives the increageéai-
sion, we can tell whether a given query, which signifies a lisig,
still reachable $ection 4.5.

4.1 Datalog Programs and Hypergraphs

We shall use a simplified model of Datalog programs, which is
essentially a directed hypergraph. The semantics will beegiven
by reachability in this hypergraph. For readers alreadylfanwith
Datalog, it may help to think of vertices as elements of Dmgal
relations, and to think of arcs as instances of Datalog rwiés
non-relational constraints removed. For readers not familith
Datalog, simply thinking in terms of the hypergraph introed
below will be sufficient to understand the rest of the paper.

We assume a finite universe fi#cts An arc is a pair(h, B)
of a headh and a bodyB; the headis a fact; thebodyis a set of
facts. Ahypergraphis a set of arcs. Theerticesof a hypergraph
are those facts that appear in its arcs. If a hyperg@mpontains
an arc(h, B), then we say thak is reachable fromB in G. In
general, given a hypergrapght and a sefl” of facts, the seRoT
of facts reachable fror#i in G is defined as the least fixed-point of
the following recursive equation:

{h|(h,B)eGandB C RcT}UT C RcT
The following monotonicity properties are easy to check.

Proposition 1. LetG, G1 andG» be hypergraphs; Ief’, 77 andT>
be sets of facts.

(a) If Ty C 7o, thenRng C RaTs.
(b) If G1 C G, thenRg, T C Ra,T.

Given a hypergraplt and a sefl’ of facts, theinduced sub-
hypergraphG|[T] retains those arcs that mention facts frém

GT]:={(h,B)eG|heTandBC T}
4.2 Analyses

We use Datalog programs to implement static analyses tleat ar
parametric and monotone. Thus, the Datalog programs wedssns
have additional properties:

1. Because the Datalog program implements a static anabysis
subset of facts encode queries, corresponding to asseition
the program being analysed.

2. Because the static analysis is parametric, a subset tSf éae
code parameter settings.

3. Because the static analysis is monotone, parametergsettiat
are more expensive are also more precise.

For example, inSection 2 queries are facts from the relation
dirty; parameter settings are encoded by relatiohsap and
precise; and switching a parameter fromheap to precise
makes the analysis more expensive but cannot grow theaelati
dirty.

If we only assume that the analysis is parametric, monotone,

choosing an appropriate projection. In some cases, theehsi
straightforward. For example, if the analysiski®bject sensitive,
meaning that it tracks calling contexts using sequencesliafea
tion sites, then a good choice of projection correspondsuttcht-
ing these sequences.

An analysis A is a tuple (G, Q, P, po, p1,7), whereG is a
hypergraph called thglobal provenanceQ is a set of facts called
queries P is a finite set ofparameters the encoding functions
po and p1 map parameters to facts, aadis a partial function
from facts to facts calleg@rojection A parameter setting: of an
analysisA is an assignment of booleans to the paramefergve
sometimes refer to parameter settingsabstractions for brevity.
We encode the abstractianas two sets of factg (a) and P; (a),
defined by

Py(a) :={pr(z) |z € Panda(z) =k} fork e {0,1}

The setA(a) of factsderivedby the analysisd under abstraction

is defined to b&R ¢ (Po(a) U Py (a)). Abstractions form a complete
lattice with respect to the pointwise order< o’ iff a(z) < a'(z)
for all x € P. We write L for the cheapest abstractiorthat
assigng) to all parameters, and for themost precise abstraction
that assigng to all parameters.

For an analysis4, we sometimes consider the restriction of
its hypergraph to those facts derived under a given abgiraat
G" := G| A(a)]. In particular,G™ is called thecheap provenance
andG'" is called theprecise provenance

An analysis iswell formedwhen it obeys further restrictions:
(i) facts derived under the cheapest abstraction are fiodutgpof
the projection,r(z) = « for x € A(L), (i) the image of the
projections is included inA(_L), (iii) only fixed-points project on
queries,t'(¢) C {q¢} for ¢ € Q, (iv) the encoding functions
po andp; are injective and have disjoint images, and (v) projec-
tion is compatible with parameter encodingoe p1 = po. From
(i) and (ii) it follows that« is idempotent. These conditions are
technical: they ease the treatment that follows, but do estrict
which analyses can be modelled.

An analysisA is said to bemonotonewhen the set of derived
queries decreases as a function of the abstraction:a’ implies
(QNA(a) 2 (QNA(a)).

We can now formally define the main problem.

Problem 2. Given are a well formed, monotone analygls and
a queryq for A. Does there exist an abstractiarsuch thatg ¢
A(a)?

Because the analysis is monotoges .A(a) for all a if and only
if ¢ € A(T). Thus, one way to solve the problem is to checkii
derived by.4 under the most precise abstractidn However, this
is typically too expensive. Instead, we consider a classlotions
calledmonotone refinement algorithmsA monotone refinement
algorithm evaluates the analysis for a sequemce< --- < an,
of abstractions. Refinement algorithms terminate when dhem
conditions holds: (i); ¢ A(an) or (i) ¢ € Rgan (Pi(an)). Itis
easy to see why ¢ A(a,) implies thatProblem 2has answer
‘yes'. It is less easy to see why € Rgan (Pi(an)) implies
thatProblem Zhas answer ‘no’. Intuitively, this second termination

and implemented in Datalog, then we can already make good pre condition says that the queryis reachable even if we rely only

dictions in some cases, such as the case of the analySéiion 2
In other cases, we require more information about the oalakiip

on precise semantics. In other words, our abstract cowatengle
does not actually have any abstract step. Formally, we nmelthe

between what the analysis does when run in a precise mode andollowing lemma:

what the analysis does when run in an imprecise mode. We assum

that this information comes in the form of a partial functitat
projects facts. The technical requirements on the prapdiinc-
tion are mild, so the analysis designer has considerablealee

Lemma 3. Letq be a query for a well formed, monotone analy-
sisA. If ¢ € Rga (Pi(a)) for some abstraction, theng € A(a’)
for all abstractionsa’.
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Proof. By Proposition {a), ¢ € Raa (Pi(a)) = Ra(Pi(a)) C
Rea(Pi(T)) = A(T). We conclude by noting that the analysis is
monotone. O

4.3 Predictability

The precise provenandg' contains all the information necessary
to answerProblem 2 Unfortunately, the precise provenangé is
typically very large and hard to compute. In contrast, theagh
provenanceG' is typically smaller and easier to compute. In
fact, most refinement algorithms start with the cheapedtadison,
a1 = L. Fortunately, we observed empirically tt@{ andG+ are
compatible, in a way made precise next.

We begin by lifting the projectior to setsT” of facts as follows:

n(T):={t'|t' ==n(t)andt € T}

In particular, if the partial functiomr is not defined for any € T,
thenw(T') = (0. Our empirical observation is that

forsomeH C G+ (4)

An analysisA that obeys conditiord) is said to bepredictable A
hypergraphH that witnesses conditiod is said to be gredictive
provenanceof analysisA. For a predictable analysis, reachability
and projection almost commute on the imagePpf except that if
projection is done first, then reachability must ignore samus.

The inspiration for condition4) came from the notion of correct
approximation, as used in abstract interpretation. Bus, fiiot the
same. We tested conditiod)(on analyses that do not explicitly
follow the abstract interpretation framework, and we werpgsed
that it holds. Then we designed the example analysis ention 2
so that the reason why conditiof)) holds is apparent: Datalog rules
come in pairs, one encoding precise semantics, the othedimgc
approximate semantics. But, for real analyses, we couldisoern
any such simple reason. Thus, we consider our empiricahijnais
surprising and intriguing.

Recall that refinement algorithms use two termination condi
tions:q ¢ A(a) andg € Rge (P1(a)). Predictive provenances
help us evaluate the termination conditions of refinemego-al
rithms.

ToRgTroPL=Rygomo P,

Lemma 4. Let A be a well formed, monotone analysis. lebe
an abstraction, and leff be a predictive provenance. Finally, lgt
be a query derived byl under the cheapest abstractidn

(@) If ¢ ¢ A(a), theng ¢ R (Po(a)) andq ¢ Ru (r(Pi(a))).
(b) Also,q € Raa (Pi(a)) if and only ifg € R (w(P1(a))).

Part (a) lets us approximate the termination conditiorg
A(a); part (b) lets us evaluate the termination conditigne
Rga (Pl(a)). In both cases, only small parts of the global prove-

nanceG are used, namelg— and H. The assumptiog € A(L)
is reasonable: otherwise the refinement algorithm terregatter
the first iteration.

Proof. Assume thayy € Ry (7(P1(a))). We have
R (m(Pi(a)) = 7 (Rg (Pi(a)))
gen(Rgr (Pi(a))) = g€ ReT (Pi(a)) bym '(q) S{a}
R (Pi(a) = Raa (Pi(a) C Ala) by Prop.1(a)
Putting these together, we conclude that A(a). Using a very
similar argument we can show that € R.. (Po(a)) implies

g € A(a). This concludes the proof of part (a).
The proof of part (b) is similar. a

by (4)

Lemma 4tells us that we could evaluate termination conditions
more efficiently if we knew a predictive provenance. Alas, dee
not know a predictive provenance.

4.4 Probabilities of Predictive Provenances

If we do not know a predictive provenance, then a naive way for
ward is as follows: enumerate each possible predictiveqmance,
see what it predicts, and take an average of the predictidnos.
model is only marginally more complicated: it considers seguos-
sible predictive provenances as more likely than othersh@iace

of it, enumerating all possible predictive provenancessals back

to an inefficient algorithm. We will see later how to deal wiittis
problem Section §. Now, let us define the probabilistic model for-
mally.

The blueprint of the probabilistic model is given by a cheap
provenances . To each are € G+, we associate a boolean ran-
dom variableS., and call it theselection variableof e. Selection
variables are independent but may have different expecwtiWe
partition G+ into typesG7y, . .., Gi, and we do not require selec-
tion variables to have the same expectation unless they thave
same type. Each typ€i has an associatduyperparameterdy,:
if e € Gi, then we say that has typek, and we require that
ES. = 0;. Recall thatE S. = Pr(S. = 1). We define, in terms
of the selection variables, a random variablewhose values are
predictive provenances, by requiring ti8at = [e € H]. Thus, the
probability of a predictive provenandg is

t
Pr(H = H) = [T 01 " (1 — 6,) %\

k=1

Q)

For example, if all arcs have the same type, then the modelrigs
one hyperparamete; andPr(H = H)is /(1 — )/ \HI At
the other extreme, if all arcs have their own type, then theeho
has one hyperparametgr for each are € G+, andPr(H = H)
is [T e OFS (1 — 0.)le# ),
How many types should there be? Few types could lead to under-
fitting, many types could lead to overfitting. In the implertaion,
we have one type per Datalog rule. Intuitively, this mearzd tine
trust the judgement of whoever implemented the analysis.

4.5 Use of the Model

Before using the probabilistic model in a refinement aldponit we
must choose appropriate values for hyperparameters. Jhliierie
offline, in a learning phasé&egction 5. After learning, each Datalog
rule has an associated probability — its hyperparameter.

After the first invocation of the analysis we know the cheap
provenance5 -, which we use as a blueprint for the probabilistic
model. Then, our model predicts whetlgee Rga (Pi(a)), where
a is some abstraction not yet tried. Recall that Rga (Pi(a)) is
one of the termination conditions. The hypergraphis unknown,
and thus we model it by a random variabf&*. However, we
do know fromLemma 4b) thatg € Rga(P1(a)) if and only if
q € Ru(m(Pi(a))). Thus,

Pr(q € RGQ(Pl(a))) = Pr(q € RH(W(Pl(a))))
= > Pr(Ru(n(Pi(a) = R)
R

qER

whereR ranges over subsets of vertices®f . It remains to com-
pute a probability of the fornPr(RuT = R). Explicit expres-
sions for such probabilities are also needed during legrisiothey
are discussed lateBéction 5.

Intuitively, one could think that the refinement algorithoms
a simulation in which the static analyser is approximatedHsy
probabilistic model. However, it would be inefficient to aally run
a simulation, and we will have to use heuristics that haverlai
effect Section §, namely to minimise the expected total runtime.
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5. Learning

The probabilistic modelJection 4 lets us compute the probability
that a given abstraction will provide a definite answer, amast
terminate the refinement. These probabilities are compased
function of hyperparameters. The values of the hyperpaiensie
however, remain to be determined. To find good hyperparas)ete

we shall use a standard method from machine learning, namely

MLE (maximum likelihood estimation).

MLE works as follows. First, we set up an experiment. The re-
sult of the experiment is that we observe an ev@ntNext, we
compute thdikelihood Pr(O) according to the model, which is a
function of the hyperparameters. Finally, we pick for hyjgeame-
ters values that maximise the likelihood.

The standard challenge in deploying the MLE method is in the
last phase: the likelihood is typically a complicated fuoictof the
hyperparameters. Often, to maximise the likelihood, araiypeth-
ods do not exist, and numeric methods could be unstable fi-ine
cient. This is indeed the case for our model: analytic methminot
apply, and many numeric methods are inefficient. But, we did fi
one numeric method that is both stable and effici@gcfion 7.2.

In addition to the standard challenge, our setting presamisddi-
tional difficulty. The expression dPr(O) is exponentially large if
the cheap provenance has cycles. We will handle this difficay
finding bounds that approximat&:(O).

5.1 Training Experiment

For the training experiment, we collect a set of programs.tke
formal development, it is convenient to consider the setafmams

as one larger program. We run the analysis on this largeirigain
program several times, each time under a different abgiradthe
abstractions:s, . . . , a, are chosen randomly, with bias. In partic-
ular, they have to be cheap enough so that the analysis t&esin
in reasonable time. As a result of running the analysis, veeok
the provenance& ', ..., G . To connect these observed prove-
nances to a probabilistic event, we shall use the predlitiabon-
dition (4) together with the following simple fact.

Proposition 5. LetG be a hypergraph, and |, and7% be sets of
facts. IfTh C Ts, thenReTh = R Th, whereG' = G[Ra T3]

Corollary 6. Let a be an abstraction for analysigl. We have

R (Pi(a)) = Ree (Pi(a)).
Given an efficient way to compute the projectian we can
compute the sets of fact®, := 7(Rgex (Pi(ax))), for each

k € {1,...,n}. Using Corollary 6 and condition 4), we have
that R, = Ru(n(P1(ax))), for k € {1,...,n}. We define the
following events:

Ok = (Ru(r(Pi(ax))) =
O = (Olﬂ...ﬂOn)

The eventO is what we observe. It is completely described by
the pairs(ax, Ry). The abstractiora, is sampled at random. The
set Ry, of facts is easily computed frod“+. The provenancé“x

is obtained from the set of instantiated Datalog rules duthe
analysis under abstractiaf, and it records all the reasoning steps
of the analysis.

Ry) forke{l,...,n}

5.2 Bounds on Likelihood

There appears to be no formula that computes the likelifftad®)
and that is not exponentially large. However, there exessoaably
small formulas that provide lower and upper bounds. We sisal
the lower bound for learning, and we shall use both bounds to
evaluate the quality of the model.

One could define different bounds on likelihood. Our choise r
lies on the concept of forward arc, which leads to severdtalele

properties we will see later. Given a hypergraghwe define the

distancedﬁf)(h) from verticesT’ to vertexh by requiringdﬁf) to
be the unique fixed-point of the following equations:

&)y =0 fheT
d\P (h) = o0 if h g RaT
d(TG)(h) = min max(d(TG)(b) +1) otherwise

e=(h,B)EG bEB

We omit the superscript when the hypergraph is clear frontestn
A forward arc with respect tdl” is an arce = (h, B) € G such
thatdr(h) > dr(b) for everyb € B.

Theorem 7. Consider the probabilistic model associated with the
cheap provenanc&'® of some analysisd. Let T1,..., T, and
Ri1,..., R be subsets of vertices 6f*. If h ¢ B for all arcs
(h,B) in G+ and R, C Rg. Ty for all k, then we have the
following lower and upper bounds dhr(N;,_, (RuTkx = Rk)):

[Ivs. 11 = IIws I ws.
eeN ecEy e€Ap\E1
C,ﬁé@ EICA,
VkeC), E1NFL#0

(O (RuTh = Ru))
HV H Z

Ch;é@ Eq CA
Vkech, Elm)k;é@

H ES.

ecEq

H ES.

ecAp\Eq

where
N:={(W,B) e G" | B C Ry andh’ ¢ Ry, for somek’ }
Cn:={K |heRu\Tw} An:={(h,B)eG }\N
Dy :={(W,B)eG" | B CRy}
Fy:={e= (h',B’) € Dy | eis aforward arc w.r.t7} }

Intuitively, the arcs inNV are those arcs that were observed to
be not selected; thus, the factﬁ[eeN ES.. For each reachable
vertex, there is a factor that requires a justification, imeof other
reachable vertices and in terms of selected arcs. Let usdeores
simple example, in which the lower and upper bounds coincide
there are four arcs, = (h,{by}) for k € {1,2,3,4}, and we
observedR1 = {bl}, Ry = {61, bz, b4, h}, anng, = {bg, b4, h}

In Ry, vertexh is not reachable but; is, soS., must not hold. In
R», vertexh is reachable and could be justified by oneofes, e4,
S0Sc, V S, V Se, must hold. InRs, vertexh is reachable and
could be justified by one afs, e4, SOS.; V Se, must hold. In all,

Sey A(Se; VSey VSe,) A(Ses VSe,)
=8Se; A(Se, VSe,) A (Ses VSe,)

must hold. The expectation of this quantity is writterTimeorem 7
asESel(E Se, ES.,ESc, +--- +ES., ES., ES,,), where
the inner sum enumerates the model$f3);,f2 ASe;)V Se,.

The situation becomes more complicated when the hypergraph
has cycles. In the presence of cycles, the recipe from thé-pre
ous example does not compute the likelihood, but it does ctenp
an upper bound. The reason is that it counts all cyclic jestifi
tions as if they were valid. Indeed, this is the upper bounergi
in Theorem 7 For the lower bound, we first eliminate cycles by
dropping some arcs, thus lowering the likelihood; then, wela
the same recipd.heorem 7ndicates that the arcs which should be
dropped are the nonforward arcs. Why is this a good choice? On
might think that we should drop a minimum number of arcs if we
want a good lower bound. However, (1) it is NP-hard to find the

(6)
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minimum number of arcs2B, Feedback Arc Set], and (2) the set
of such arcs is not uniquely determined. In contrast, we agah fi
the set of nonforward arcs in polynomial time, and the sofuts
unique.

Another nice property of the set of forward arcs is that, if
for each reachable vertek we retain at least one forward arc
whose head i#, then all reachable vertices remain reachable. This
property is desirable for detecting impossibility (¢&nmma 15. In
terms of the lower bound, this property means that we nevegro
bound a positive probability bg.

In the implementation, we sometimes heuristically dropvénd
arcs, in order to keep the size of the formula small. But, wig on
choose to drop a forward arc with headf there are more than
8 forward arcs with head. For example, if we drop are; in our
running example, the effect is that we lower boufigly

Se; ASey A(Ses VSe,)

We simply drop the corresponding varial8e, from the formula,
thus making the formula smaller. Similarly, we can reduaesize

of the formula for the upper bound, at the cost of weakenimg th
bond. This time, we drop clauses rather than variables.mple,
we can upper bound) by

Se; A(Sey V Se,)

For each vertex, our implementation drops all clauses exoep
the longest one.

Although the probabilistic model is simple, computing the{
lihood of an event of the formRy T = Ry and. .. andRuT, =
R, is not computationally easyAppendix A gives an exact for-
mula that has size exponential in the number of vertices ef th
cheap provenance, but also points to evidence that a sigmifjc
smaller formula is unlikely to exist. The size explosion &ised
mainly by the cycles of the cheap provenanteeorem 7gives
likelihood lower and upper bounds that are exponential anthe
maximum in-degree of the cheap provenance. These formrgas a
still too large to be used in practice. However, there arepkm
heuristics that can be applied to reduce the size of the flasnu
at the cost of weakening the bounds.

We use the lower bound to learn hyperparamet8exiion 7.2
We use the upper bound to measure the quality of the learmrhyp
parametersection 7.3.

5.3 Results

We learnt hyperparameters for a flow insensitive but object s
sitive aliasing analysis. The aliasing analysis is impletad in
59 Datalog rules. All bub rules get a hyperparameter bfA rule
with a hyperparameter of is a rule that was not observed to be
involved in any approximation, in the training set. For tvidhe re-
maining five rules, the learnt hyperparameters were esdigntan-
dom, because the likelihood lower bound did not depend amthe
The reason is that the training set did not contain enough, dat
that the lower bound was too weak.

For the remaining three rules the hyperparameters WOy,
0.985, and0.969. These values were robust, in the sense that they
varied little when the training subset changed. For exantipéerule
with a hyperparameter @969 is

CVC(¢,u, 0) < DVDV(c, u, d, v),CVC(d,v,0),VCfilter(u, o)

Looking briefly at the aliasing analysis implementation we that
(a) cvC(c, u, 0) means ‘in context, variableuw may point to ob-
jecto’, and (b) the relatiodVDV is responsible for copying method
arguments and returned values. We interpret this as evédead
the approximations done by the aliasing analysis are glasklted
to approximations of the call graph.

Given: A well formed, monotone analysis A, and a query gq.
SOLVE

a:=1 // L as initial abstraction
repeat
G := G[A(a)] J/ invokes analysis

if ¢ ¢ A(a) then return “yes”
if ¢ € Rga(Pi(a)) then return “no”

1
2
3
4
5
6 a := CHOOSENEXTABSTRACTIONGY, ¢, a)

Figure 4. The refinement algorithm used to soReoblem 2

We are not the authors of the aliasing analysis; it is taken
from Chord. Our learning algorithm automatically identifithe
three rules that are most interesting, from the point of vigw
approximation.

6. Refinement

The probabilistic model is interesting from a theoreticainp of
view (Section 4. The learning algorithm is already useful, because
it lets us find which rules of a static analysis approximate th
concrete semantics, and by how mu&e¢tion 3. In this section
we explore another potential use of the learnt probahilistodel:
to speed up the refinement of abstractions.

We consider a refinement algorithm that is applicable toyanal
ses implemented in Datalo@éction 6.). The key step of refine-
ment is choosing the next abstraction to try. Abstractibas make
good candidates share several desirable properties. titylar,
they are likely to answer the posed queBg(tion 6.2, and they are
likely to be cheap to trySection 6.3. These two desiderata need
to be balanced (alsBection 6.3 Once we formalise how desirable
an abstraction is, the next task is to search for the mostatesi
one Section 6.4

6.1 Refinement Algorithm

The refinement algorithm is straightforwarBigure 4. It repeat-
edly obtains the provenancg® by running the analysis under ab-
stractiona (line 3), checks if one of the two termination conditions
holds (lines 4 and 5), and invokes{GOSENEXTABSTRACTIONtO
update the current abstraction (line 6). The correctneiaoalgo-
rithm follows from the discussion iBection 4.2and in particular
Lemma 3

Leta’ be the result of @OOSENEXTABSTRACTIONG?, g, a).
For termination, we require that is strictly more precise tham.
This is sufficient because the lattice of abstractions igefinfhe
next abstraction to try should satisfy two further requieers:

1. The termination conditions are likely to hold fg.
2. The estimated runtime of undera’ is small.

Next, we discuss these two requirements in turn. To somesdegr
we will make each of them more precise. But, we caution thoanhfr
now on the discussion leaves the realm of hard theoreticaiagu
tees, and enters the land of heuristic reasoning, wherestieEms
about static program analysis are typically found.

6.2 Making Termination Likely

The key step of the refinement algorithfRigure 4 is the proce-
dure GHOOSENEXTABSTRACTION The simplest implementation
that would ensure correctness is the following: return aloam
element from the set of feasible abstractigng | o’ > a}.
Note that ifa were the most precise abstraction then the procedure
CHoOsBENEXTABSTRACTIONwould not be called, so the feasible
set from above is indeed guaranteed to be nonempty.

One idea to speed up refinement is to restrict the set of feasib
solutions to those abstractions that are likely to providefnite
answer. Letd, and A, be the sets of abstractions that will lead
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the refinement algorithm to terminate on the next iteratidth the
answer ‘yes’ or, respectively, ‘no’:
Ay = {d |d >aandq ¢ A(a")}
An = {d' |d >aandg € R, (Pi(a))}
Of course, exactly one of the two sets and A, is nonempty, but
we do not know which. More generally, we cannot evaluateehes
sets exactly without running the analysis. But, we can agprate
them, because @O OSENEXTABSTRACTIONhas access t@“. For
Ay we can compute an upper bouA@; for A,, we use a heuristic
approximationAy’.
)
Ay
A: —

{d'|d’ >aandq ¢ Rga(Po(a’))}
{d"|d >aandg € Ru(T(a,a’))}

for someH C G¢, where
T(a,a’) := Pi(a)Un(Pi(a’)\ Pi(a))

Itis easy to see whyly2 D Ay;itisless easy to see W, ~ A,.
Let us start with the easy part.

Lemma 8. Let A7 and Ay be defined as above. Thety D Ay.

Proof. Assume that’ > a, as in the definitions ofi2 and A,.
ThenPy(a") C Po(a). By Proposition SandProposition 1

Rae(Po(a)) = Ra(Po(a’)) = Rgar (Po(a)) € A(d)

The claimed inclusion now follows. a
Let us now discuss the less obvious claim tHdt ~ A,. One
could wonder why we did not definé? by

{a'|d >aandg € Ru(n(Pi(a")))}

for someH C G™. This definition is simpler and is also guar-
anteed to be equivalent t4,,, by the predictability condition4).

In the implementation, we use the more complicated defimitib
AL for two reasons. First, we note tha) implies AY = A, if

a = L. Thus, the claim thaty = A, can be seen as a generali-
sation of @). We did not use this generalisation dj (n the more
theoretical partsSection 4and Section § because it would com-
plicate the presentation considerably. For example, agsté one
projectionz, we would have a family of projections that compose.
In principle, however, it would be possible to také’ = A, as
an axiom, from the point of view of the theoretical developitme
Second, the more complicated definition4f exploits all the in-
formation available iG*. The simpler version can also incorporate
information fromG® by conditioningH to be compatible witlz,
via (4). However, this conditioning would only use the projectetl s
of vertices ofG*, rather than its full structure.

Furthermore, the definition oflY’ used in the implementation
has the following intuitive explanation. The conditietfy ~ A,
tells us that in order to predicR ./ (P1(a’)) by usingG* we
should do the following: (i) split?; (a”) into P;(a) and Pi(a’) \
Pi(a); (i) use the factsP;(a) as they are, because they already
appear inG*; (iii) approximate the facts i (a’) \ Pi(a) by their
projections, because they do not appeatzin and (iv) define the
predictive provenancél with respect ta&*, because it is the most
precise provenance available so far.

We defined two possible restrictions of the feasible set,algam
Ay2 and A%. The remaining question is now which one should
we use, or whether we should use some combination of them
such asAZ N AY. The restriction toA7 could be called the
optimistic strategy, because it hopes the answer will bs’;ytbe
restriction toAZ’ could be called the pessimistic strategy, because
it hopes the answer will be ‘no’. The optimistic strategy bagn

used in previous work35]. The pessimistic strategy is used in
our implementation. We found that it leads to smaller ruetim
(Section 7.4. It would be interesting to explore combinations of
the two strategies, as future work.

In the optimistic strategy, one needs to check wheﬂr@r: 0.
In this case, it must be that, = @ and thus the answer is ‘no’. In
other words, the main loop of the refinement algorithm needet
slightly modified to ensure correctness. In the pessimgititeqgy,
it is never the case that, = (), and so the main loop of the re-
finement algorithm is correct as givenkigure 4 The pessimistic
restrictionA7’ is nonempty because it always containsby choos-
ing H = G (seeLemma 13.

The setAZ is defined in terms of an unknown predictive prove-
nanceH . Thus, we work in fact with the random variable

AY ={d |d >aandg € Ru(T(a,a"))}

defined in a probabilistic model with respectd, instead oiG=.
We wish to choose an abstractiahthat is likely in AZ. In other
words, we want to maximis€r(a’ € AY). There is no simple
expression to compute this probability. For optimisatioe, will
use the following lower bound.

Lemma 9. Let AZ be defined as above, with respect to an anal-
ysis A, an abstractiona, and a queryq. Leta’ be some abstrac-
tion such thata’ > a. Let H be some subgraph @ such that

q € Ru(T(a,a’)). Then

Pr(a’ € AY) > [] ES.
ecH
whereS. is the selection variable of are.

Before describing the search procedusedtion 6.4, we must
see how to balance maximising the probability of terminatiath
minimising the running cost.

6.3 Balancing Probabilities and Costs

We are looking for an abstraction that is likely to answerdhery

but, at the same time, is not too expensive. Most of the titrese

two desiderata point in opposite directions: expensivératisons

are more likely to provide an answer. This raises the questio
of how to balance the two desiderata. We model the problem as
follows.

Definition 10 (Action Scheduling Problem)Suppose that we have

a list of m > 1 actions, which can succeed or fail. The success
probabilities of these actions ape, . . . , p» € (0, 1], and the costs
for executing these actions arg . . ., ¢, > 0. Find a permutation

oon{l,...,m} that minimises the cost(c):
m k—1
Clo) =Y ar(@)eopy,  ar(0) = [T(1 = pois)-
k=1 j=1

Intuitively, C'(o) represents the average cost of running actions
according tar until we hit success.

In the setting of our algorithm, the: actions correspond to all
the possible next abstraction$, . . ., a;,,. Thep; is Pr(a; € AY),
and ¢; is the cost of running the analysis under abstraction
Hence, a solution to this action scheduling problem tellsavs we
should combine probability and cost, and select the nexrabs
tiona’.

Lemma 11. Consider an instance of the action scheduling problem
(Definition 10. Assume the success probabilities of the actions are
independent. A permutatianhas minimum cost'(o) if and only

if Do(1)/Co(r) = 2 Po(m)/Co(m)-

Corollary 12. Under the conditions okemma 11 if the cost of
permutations is minimum, thew (1) € arg max; p;/c;.
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Cases all-one fine coarse Or, after absorbingnax in arg max, taking the log of the resulting
objective value, and simplifying the outcome:

95.0% 0 (—0.22,-0.20)  (—0.73,—-0.72)
3.8% —00 (—15,-14) (—33,-32)
1.2% —c0 —o0 (—12,—11) arag,n}llax Z log(ES.) — Z o @
= : o'>a, HCGe T Wil
Table 1. Bounds on the average log-likelihood, in base 4R (T(aa'))

We shall evaluate this expression by using a8 AT solver. The
idea is to encode the rangeafg max as hard constraints, and the
Configuration Solved queries objective value as soft constraints.

There exist several distinct versions of theMSAT problem.

Strategy Optimiser Ruled out  Impossible  Limit . . " A
—— We define here a version that is most convenient to our develop
optimistic exact 6 48 365 ment. We consider arbitrary boolean formulas, not necibgsar
optimistic approximating 6 0 413 some normal form. We view assignments as sets of variabies; i
pessimistic exact 20 82 317 articular
pessimistic approximating 20 82 317 P !
probabilistic  exact 20 70 329 MEz iff re M
robabilistic ~ approximatin 16 81 322 .
P PP g MEZ iff e ¢ M
Table 2. Outcomes. All queries are assertions that seem to be M = ¢1 A ¢ iff M = ¢ andM = és

violated when the cheapest abstraction is usemlléd outquery is . )
an assertion that is shown not to be violated.iipossiblequery is The evaluation rules for other boolean connectives are actad.

an assertion that seems violated even if the most precisaatien It M = ¢ holds, we say that the assignmeht is a model of

is used. The exact optimiser is MiFuMaXd]. The approximating formulag.

optimiser is based on MCSIS§]. Problem 13 (MAX SAT). Given are a boolean formukk and a
weightw(z) for each variable: that occurs inb. Find a model\
of @ that maximise$__ . ,, w(zx).

3500

' ] We refer to® as thehard constraint
// . Remarkl4. Technically,Problem 13is none of the standard vari-

ations of MAXSAT. It is easy to see, although we do not prove
it here, thatProblem 13is polynomial-time equivalent to partial
weighted Max SAT [3, 38]: the reduction in one direction uses the

Tseytin transformation, while the reduction in the otheediion

2500

2000

seconds

prob-exact ||
prob-approx

1500

1000 pess-exact || introduces relaxation variables.
. — otheaet | The idea of the encoding is to define the hard constréint
— opti-approx such that (i) the models ob are in one-to-one correspondence
%o 20 40 60 a0 100 120 with the possible choices aff and T such thatH C G° and
number of solved queries Py(a) C T C Po(a) U Pi(a), and moreover (ii) each model also

encodes the reachable $@t; 7. To construct a hard constraitht
with these properties, we use the same technique as we used fo
computing the likelihood $ection 5.2and Appendix A). As was
the case for likelihood, cycles lead to an exponential esipla We

Figure 5. Runtime comparison.

6.4 MAXSAT encoding again deal with cycles by retaining only forward arcs:
We saw a refinement algorithmSéction 6.1 whose key step G .= {¢ e G* | eis aforward arc W.r.tP(a) U Py (a) }
chooses an abstraction to try next. Then we saw how to esti- o i
mate whether an abstractiafi is a good choiceSection 6.2and The hard constraint is a formula whose variables correspgond
Section 6.} it should have a high ratio between success proba- Vertices and arcsaoG‘L. More precisely, its set of variables is
bility and runtime cost. But, since the number of abstratics Xv(G%) U XEp(GY), where
exponential in the number of parameters, it is infeasiblentomer- Xv(G) = {zu | uvertex of G} Xp(G) := {z. | e arc of G}
ate all in the search for the best one. Instead of performingiae i
exhaustive search, we encode the search problem asxaSMT We construct the hard constraibtas follows:
problem. . . P = 3 Ye (q:'l A Pa A @3)

Let us summarise the search problem. Given are a guem e€Ga,

abstractiorsz and its local provenanc&€®. We want to find an ab-

stractiona’ > a that maximises the rati®r(a’ € A})/c(a’), o, = /\ ((ye © (xe A /\ xb)) A (ye — xh))
wherec(a’) is an estimate of the runtime of the analysis under ab- e=(h,B)€G% beB

stractiona’ (seeCorollary 12. We will approximatePr(a’ € AY)

N (xh — ( \ ye)> ®

e=(h,B)€G,

by a lower bound (sekeemma 9. Based on empirical observations, ®,
we estimate the runtime of the analysis to increase expiatignt

with the number)___ . a(x) of precise parameters. In short, we

want to evaluate the following expression:

arg max<< max H ESe>/exp(a Z a'(l’))) e (ueé}(a) »’Uu) : (uey(a) mu)

i HCG® eeH zeP The notation3.cca, ye stands for several existential quantifiers,
9€R 1 (T(a,a”)) one for each variable in the sfty. | e € G2, }. Intuitively,

h
vertex of G%,
hgPy(a)UPi(a)
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the constraintsb; and ®, ensure that the models correspond to
reachable sets, and the constraint ensures that the query is
reachable and that > a.

The formula® defined above has several desirable properties:
its size is linear in the size of the local provenaidé®, it is satisfi-
able, and each of its models represents a @airH ) that satisfies
the range conditions of7f. The satisfiability of® is important for
the correctness of the refinement algorithm, and it follovesnf
how we remove cycles, by retaining forward arcs. To stateehe
properties more precisely, let us denote the rang&)dby F'(G*)
where

F(G):={(d',H)|d >aandH C Gandg € Ru(T(a,a’))}
9)

Lemma 15. Leta be an abstraction, and letbe a query, for some
analysisA. Let F(G) and G2, be defined as above.df< T and
q € A(a), then(T,G%,) € F(G?,) C F(G*).

The conditionsa < T andg € A(a) are guaranteed to hold
when GHOOSENEXTABSTRACTIONIS called on line 6 ofigure 4

Lemma 16. Let a be an abstraction, and lej be a query, for
some analysisd. Let the hard constrain® be defined as irf8):

let the feasible sef'(G2,) be defined as i9). There is a bijection
between the models/ of ® and the element&’, H) of F(G<,).

According to this bijection,

MNXe(GY) = Xe(H)
M N Xv(G%) = Xv (Ru(T(a,d)))

The proof of this lemma, given iAppendix B relies on tech-
nigues very similar to those used to proMeeorem 7

At this point, we know how to define the hard constraintso
that its models form a subrange of the range®f [t remains to
encode the valug_,_ ;; log(ES.) — a > . p a'(x) by assigning
weights to variables. This is very easy. Each arc variahlds
assigned the weight(z.) = log(E S.). Each vertex variable.,
corresponding tou € Po(a) U Pi(a) is assigned the weight
w(zy) = —a. All other variables are assigned the weight

7. Empirical Evaluation

In the empirical evaluationwe aim to answer three questions:
(@) Which optimisation algorithm should be used for leagnin
(Section 7.2? (b) How well does the probabilistic model predict
what the analysis doeS$éction 7.3? (c) What is the effect of the
new refinement algorithm on the total runtintegtion 7.4?

7.1 Experimental Design

For experiments, our goal was to improve upon the refinement
algorithm of Zhang et al.§5]. Accordingly, we use the same test
suite and the same aliasing analysis. The test suite cen$i8tlava
programs, which amount @45 MiB of application bytecode plus
1 MiB of library bytecode.

We try three refinement strategies: optimistic, pessimistnd
probabilistic. The optimistic strategy uses the baselefsmement
algorithm. The pessimistic strategy uses our refinemeatridtgn
with all hyperparameters set o The probabilistic strategy uses
our refinement algorithm with hyperparameters learnt. We ais
time limit of 60 minutes per query, and a memory limit25 GiB.

we use to solve a query are learnt only from observations raade
the other programs.

7.2 Numeric Optimisation of Likelihood

First, from the8 programs, we chose a random sampl2tdjueries.
Then, for each query, we chose a random sampl® abstractions
(Section 5.1. In total, the training set ha0 samples.

We first tried three numerical optimisers from the SciPyka¢R3)]:
tnc, slsqp, and basinhopping. They all fail. Then we imple-
mented a couple of humeric optimisers ourselves. We fouatl th
the cyclic coordinate ascent method works well on our proble
the implementation, we usgasinhopping andslsqgp as subrou-
tines, for line search.

Intuitively, cyclic coordinate ascent behaves well beeatrse
likelihood tends to be concave along a coordinate, and témds
not be concave along an arbitrary direction. Concave fanstare
much easier to optimise than non-concave functions, arttedane
search algorithm has an easier task when applied alongicated.

7.3 Predictive Power of the Probabilistic Model

In addition to the260 samples used for training, we obtain, using
the same method, another set26f) samples used for evaluation.
Given a model, which is determined by an assignment of values
to hyperparameters, we can evaluate likelihood boundsafcin ef

the 260 evaluation samples. In absolute terms, these numbers are
hard to interpret: are they good or bad? To make the numbers mo
meaningful, we consider three models, and we see how gogd the
are relative to each other.

The three models aré€ine, coarse, andall-one. Thefine
model is learnt as described above. Ebarse model is also learnt
as described above, but under the constraint that all hgpemp
eters have the same value. Thgl-one model simply assigns
value 1 to all hyperparameters, and thus corresponds to the pes-
simistic refinement strategy.

Table 1presents the results of the three models on the evaluation
set. For the aliasing analysis we consider, it turns out #rat
abstraction chosen at random does no better than the cheapes
abstraction ir05% of cases. Thell-one model predicts that all
abstractions do no better than the cheapest one, so it islexac
right in thesed5% of cases; conversely, it thinks the othgk of
cases cannot happen. More interestingly, thee model thinks
that 1.2% samples from the evaluation set cannot happen. This
means that some hyperparameter isit should be< 1. We expect
that the number of such situations would decrease as therimai
set grows. Assuming this is true, we can conclude thatftire
model is better than theoarse model.

It is not possible to conclude which @fl1-one and fine is
better. One difficulty is that th€5% is a property of the analy-
sis. It might very well be that for another analysis this petq(of
cases in which precision helps) is higher or lower. A lowecpat-
age would favour the&ine model; a high percentage favours the
all-one model.

7.4 Total Analysis Runtime

In the 8 programs there are in totalt50 queries. We report results
for a random sample 0f19 queries. The first thing to notice in
Table 2is that most queries are not solved. This is in stark contrast
with Zhang et al. $5] where all queries are reported as solved. The

For learning, we observe what the analysis does on a small setdifference is explained by several differences betweein gatup

of queries and abstractions. Each observation is esdgmtiabvent
of the form ‘RuT:1 = R; and...andRuT, = R,' (Section 5.1
From these observations we learn hyperparameters, byisptga
lower bound on the likelihoodSection 5.2 The hyperparameters

and ours. (1) In addition to their PolySite queries, we afsiuide
Downcast queries. The latter are more difficult. (2) We usss |
space and time: they used a machine wi#8 GiB of memory,
whereas we only ha2b GiB available; they did not have an explicit
time limit, whereas we usetlhour as our time limit. (3) One of our

Inttp://rgrig.appspot.com/static/papers/popl2016experiments . htamodifications to the code (unfortunate, with hindsight)sweat we
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loaded in memory the results of the Datalog analysis, whicthér
increased our memory use. (4) They solve multiple queriesee,
whereas we solve one at a time. By solving one query at a tirae, w
can make a more fine grained comparison.

These differences notwithstanding, we stress that thdtsesu
reported here are for running different algorithms undeitions
that are as similar as possible. For example, as much adfmosséi
the implementation is shared.

From the number of solved querieBaple 3, we see that the
refinement strategies, from best to worst, are: pessimigtiab-
abilistic, optimistic. The pessimistic strategy solves game set
of 102 queries regardless of the optimiser it uses. The probabilis
tic strategy solved01 queries in total, if we take the union over
the two optimisers. There is exactly one query solved by & p
simistic strategy but not by the probabilistic one. The peisdic
strategy solves this query in four iterations, whereas thbabilis-
tic strategy dies in the second iteration. The exact opéntisnes
out. The approximate optimiser increases the precisiorertr@n
necessary after the first iteration, the Datalog solver dops with
the increased precision, but an out of memory error happéile w
Datalog’s answer is loaded in memory.

Figure 5compares the six configurations from the point of view
of runtime. We see that both the pessimistic and the prabktbil
strategies are better than the optimistic strategy.

7.5 Discussion

According toTable 2andFigure 5 setting all hyperparameters to
works better than using learnt hyperparameters. Givenithikere
any point in learning hyperparameters? We believe the ansve
yes. Initially we tried only an exact Mx SAT solvef When the
pessimistic strategy succeeds but the probabilisticegiyefails, the
cause is always that the M SAT solver times out. Our encod-
ing in MAXSAT is already an approximation, so an approximate
answer would do. We conjectured that replacing the exasesol
with an approximate one would improve performance. We ate no
aware of an off-the-shelf approximateAMSAT solver, so we im-
plemented one. Comparingrob-exact with prob-approx, we
see that using an approximate solver does improve the sebuit
not enough. However, our approximate solver is so dumb tleat w
feel it ought to be possible to do much better.

Another reason to learn hyperparameters is independeneiof t
use for refinement: learnt hyperparameters identify iistarg parts
of an analysis implemented in Datalo§egction 5.3. This is es-
pecially useful when one wants to understand an analysigeimp
mented by a third party.

Finally, we note that our empirical evaluation of refinement
strategies shows promise but is not comprehensive. Indwtork,
we intend to try better approximate M SAT solvers, and we
intend to evaluate refinement algorithms on more analyses im
plemented in Datalog. But, first, we need better approximate
MAXSAT solvers, and we need more analyses implemented in
Datalog.

8. Related and Future Work

The potential of using machine learning techniques or goibistic
reasoning for addressing challenges in static analysi¢(] has
been explored by several researchers in the past ten ydaee T
dominant directions so far are: to infer program specificetiau-
tomatically using probabilistic models or other inductiearning
techniquesy, 27, 33, 37, 43, 44, 46], to guess candidate program in-
variants from test data or program traces using generalistgch-
nigues from machine learnin@4, 41, 48], and to predict proper-
ties of potential or real program errors, such as true p@siéss

2also, at submission time, we had not tried setting all hypemmeters td
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and cause, probabilistically3Q, 31, 54, 57]. Our work brings a
new dimension to this line of research by suggesting the @ise o
a probabilistic model for predicting the effectiveness odgram
abstractions: a probabilistic model can be designed fatigtiag
how well a parametric static analysis would perform for aegiv
verification task when it is given a particular abstractiand this
model can help the analysis to select a good program abetrdot
the task in the context of abstraction refinement. Anothgoirrant
message of our work is that the derivations computed durat e
analysis run include a large amount of useful informatior ex-
ploiting this information could lead to more beneficial irstetion
between probabilistic reasoning and static analysis.

Machine learning techniques have been used before to speed u
abstraction refinemen®[ 18], but in the setting of bounded model
checking of hardware.

Several probabilistic models for program source code haea b
proposed in the pastl] 2, 21, 25, 35, 43, 44], and used for ex-
tracting natural coding convention$][ helping the correct use of
library functions §4], translating programs between different lan-
guages25], and cleaning program source code and inferring likely
properties 43]. These models are different from ours in that they
are not designed to predict the behaviours of program aesys-
der different program abstractions, the main task of oubaidis-
tic models.

Our probabilistic models are examples of first-order prdtsab
tic logic programs studied in the work on statistical relatl learn-
ing [12, 13, 19, 47]. In our case, models are large, and training
data provides only partial information about the randonialde H
used in the models. To overcome this difficulty, we designedla
gorithm tailored to our needs, which is based on the idea of va
ational inference 44, 52]. More precisely, we optimised a lower
bound on the likelihood.

Our work builds on a large amount of research for automati-
cally finding good program abstraction, such as CEGARTF-

9, 20, 45], parametric static analysis with parameter search algo-
rithms [29, 40, 55, 56|, and static analysis based on Datalog or
Horn solvers §, 16, 17, 49, 53]. The novelty of our work lies in
the use of adding a bias in this abstraction search using lzapro
bilistic model, which predicts the behaviour of the statialgsis
under different abstractions.

One future direction would be to find new applications for our
probabilistic techniques. For example, one could try to ose
techniques in order to improve other, non-probabilistiprapches
to estimating the impact of abstractiom®2] 50]. Another future
direction would be to better characterise the theoretioapgrties
of our refinement algorithm. For example, if applied in thiisg
of abstract interpretation, how does it interact with théioro of
completenessiy, 15]?

9. Conclusion

We have presented a new approach to abstraction refinerment, o
that receives guidance from a learnt probabilistic modeé model

is designed to predict how well would the static analysidqver

for a given verification task under different parameterisgtt The
model is fully derived from the specification of the analysiad
does not require manually crafted features. Instead, oudefiso
prediction is based on all the reasoning steps performechby t
analysis in a failed run. To make these predictions, the inuekzs

to know how much approximation is involved in each Dataldg ru
that implements the static analysis. We have shown how totifya
the approximation, by using a learning algorithm that obsethe
analysis running on a large codebase. Finally, we have shown

to combine the predictions of the model with a cost measure in
order to choose an optimal next abstraction to try duringesfient.
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Our empirical evaluation with an object-sensitive poirdaaalysis
shows that our approach is promising.
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A. Proof of Theorem 7

We begin by restating in our notation a standard result frogicl
programming. Adependency grapbf a hypergrapld7 is a directed
graph that includes an afé, b) whenever(h, B) € G andb € B
for someB. A loop L of a hypergraph is a nonempty subset
of its vertices that induce a strongly connected subgrapthef
dependency graph af. Note that loops are not required to be
maximal. In particular, sets that contain single verticeslaops,
calledtrivial loops. The set/¢ (L) of justificationsfor loop L in G

is defined as follows:

Ja(L) :={(h,B)e G|he LandBNL =0}

For a hypergrapldz we define itforward formula ¢—, (G) and its
backward formula¢ . (G) as follows:

o (G) = /\ <((/\ ) < me) A(ze — :ch))
e=(h,B)EG ©  bEB

se@) = N\ (A=) (V=)
IoopLofG uek ecJa(L)

Both formulas are defined over the following set of variables
{zu | uvertex of G } U{ z. | earc of G }
We define thdormula ¢(G) of a hypergraplG by

B(G) i= 3ae (65(G) A6 (@)

The notatior8.c ¢ z. stands for several existential quantifiers, one
for each variable in the s¢t. }.c indexed byG. In the definition
of ¢(G) from above, the existential quantification is not strictly
necessary, but convenient: Because the remaining freablesi
correspond to vertices, sets of variables are isomorphisete
of vertices.

We view modelsV/ of a formulayp as sets of variables; that is,

MEz iff zeM
MEz iff x¢ M
ME @1 — @2 iff M| e impliesM = s

ME3ze iff MEyp[z:=00rME plz:=1]

and so on, in the standard way. There is an obvious one-to-one

correspondence between sets of vertices and modélss ia set of
vertices, we writeX' S for the corresponding model, which is a set
of variables:

XS = {2s]s€S}

The following result is stated ir2B, Section 3], in a slightly more
general form and with slightly different notations:

Lemma 17. Let G be a hypergraph, and let(G) be its formula,
defined as above. Thexi(R¢() is the unique model af(G).

For the proof, we refer ta2g].

Remarkl8. We note that_, (G) is linear in the size o7, while

¢ (G) is exponential in the size @ in the worst case. One could
wonder whether it is possible to defiggG) in a way that does
not lead to exponentially large formulas bigmma 17still holds.

It turns out there are reasons to suspect that such an diterna
definition does not exisBp].

Here, we shall need a more flexible formledmma 17 Let S

be a distinguished subset of vertices, none of which occutkd
head of an arc. Define

020 = A (A= (V)

L u€L eJag(L
loop of G e€Ja(L)

LNS=0

15

and

°(G) = 3w (0 (G) A ¢2(@)) (10)
Corollary 19. LetG be a hypergraph, le$ be a subset of vertices
such that none of them occurs in the head of an arc, and let
#°(G) be defined as above. For each suli§etf S, there exists

a unique modeM of ¢° (@) such thatX ~}(M)N S = T, namely

M = X (RaT).

Proof. For a fixed but arbitraryl” C S, construct the graph
Gr = GU{(t,0)|teT}

Itis easy to check tha®¢T = R, (0. FromLemma 17 we know
that X (R¢..0) is the unique model ap(Gr). Since the vertices
of S do not occur in the heads of arcs, they appear only in trivial
loops. Thus, we have

0-(Gr) = 6@ A (\ =)
b (Gr) = oA ( N\ )
SES\T

(The formulas above eliminate via existential quantifmatthe
variables corresponding to the dummy afes)) of Gr, but this
is of little consequence.) And finally

¢=(Gr) Ao (Gr) = ¢-(G) A P2 (G)

/\( A f)/\(/\xt)

seS\T teT

This concludes the proof. |

We now take a special case@brollary 19

Corollary 20. LetG be a hypergraph. LetS, V') be a partition of
its vertices such that no vertex $ occurs as the head of an arc.
Let¢® (@) be defined as above. LBtbe a subset of. Define

$>H(@) = 3 Fu <¢S(G) A (/\ xu) /\( A m_u))
ue uwER wEV\R
Forall T C S, we have thafX 7' is a model of>f(G) if and only
if ReT =TUR.

Proof. Let T be a subset a§. Then, X T is a model ofp> % (Q) if
and only if X (T'U R) is a model of¢°(G). But by Corollary 19
this is equivalent t®ReT = T U R. a

The key idea of our proof is to ugeorollary 20in such a way
that subsets of correspond to predictive provenancls To this
end, we define thextended cheap provenanegs with respect to
the setl” of vertices by

Gr :={(h,BU{se})|e=(h,B) e G }U{(t,0)|teT}

Recall our notatiorG™* for the cheap provenance. For a predictive
provenanced C G, let us writeSH for { s. | e € H }. All the
vertices of SG™ are fresh: they appear ifi+ but not inG+. The
extended cheap provenance has the property that

RG% (SH)=(SH)URHT (11)
for all predictive provenanced C G+ and all sets of vertices.

Suppose the cheap provenarée and two subset® and R of
its vertices are given. The following lemma shows how to trwts
a boolean formula whose models are in one-to-one correspoed
with the cheap provenancés C G for whichR = RyT.
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Lemma 21. Let G+ be a cheap provenance, and Btand 7" be
two subsets of its vertices. Define the extended cheap @een
G+ with respect tdl” as above. We have th@ = RyT if and

only if X (SH) is a model 0f5¢ 2 (G).

Proof. In Corollary 2Q setS := SG* andT := SH andG :=
G+ . We obtain that

X(SH) | ¢°¢ ™(GF) iff Rgy (SH)=(SH)UR
Combining this with 1) we obtain
X(SH) = ¢ B(GE) if (SH)URyT = (SH)UR

Finally, since all the vertices ifH are fresh, we are done. O

What remains to be done is to make explicit the formula

¢5¢" B (G%) mentioned inLemma 21 This is only a matter of
calculation. We begin by unfolding the definitionf¢ "% (G%),

and then that oSS (G). Below, the notationplzr = ]
means that ip we substitute the variable, with valuewv for all
indicesu € R. Also, we writeV for the vertex set o&8*.

50"t

= 3. (gzsscL (GF) A (M/G\qu) A (ue/v\\R m‘u)>

= ¢5% (GF)[zr = [z g = O]

=3 (6(GF) A 6297 (GP)) [om = Ny r = 0]

= 3 2. (VAT

e€G
where
Vo, = ¢ (Gr)[zr = zv\g = 0]
U = 659 (GF)wr = Uwy\ g = 0]

Now we calculate?_, and ¥, in turn. We begin with¥_,.
First we unfold the definition ofp_, (G7), then we unfold the
definition of G5, and finally we apply the substitutions. During
the calculation, we identify:s, with S.. This is partly notational
convenience (to avoid double subscripts), but it will alfovaus
to weigh models according to the probabilistic model.

U, = ¢ (G7)[zr = 1][zy\ g := 0]

= A (Ao =) ) 2221

eeG% beB TY\R ‘= 0
e=(h,B)
= ( A <<( N ) <—>:c) A (ze —mh))
‘egt beBU{s_/}
e’=(h,B)
e=(h,BU{s_/})
rzr =1
A Te N
Al D), O]
e=(t,0)
- A (((se, ABCR]) o 2.) Awe — [he R])>
e'eGt

e’=(h,B)
e=(h,BU{s_s})

16

N /\ Te N\
e=(t,0)
If T ¢ R, then¥_, = 0; otherwise,

ﬁjg A (o) _ghA s.)

[t € R])

e'=(h,B)eG+ B)eG+
:(h BU{s.}) B C Randh € R
BC Randhe R
frandh € 12)
A (A/\ f) A ( m)
e/=(h,B)eG+ teT
e= (;E Bu{é ) e=(t,0)
BZR

Next, we calculatel .

Ve =63 (GF)lan = wyir = 0]

A ((/\fcu)%( \V xe))[xif:_lo]

|Oopcl;fg% u€eL eGJG% (L)
LNSG+=0
=1
= /\ (/\xu)—>( \/ xe))[ﬂm ‘_}
L ( uel e€J g (L) Ty\r =0
loop of G- T
= A <[LgR]—>( \/ :z:e))
|oop§fGJ- eEJG%(L)
= A (0 V=)V =)
L e’ teTNL

loop of G+ &’ =(h, B)eJGJ_(L) e=(t,0)

LCR e=(h,BU{s.})
When we calculat& _, A ¥ we see tha _, fixes the values of
all the variables:c. corresponding to arcs.

QSSGJ-,R(G%) = nge (\Il*)/\\lle)

e€Gp

— e := S, for (e, e’ S
= [TgR]/\g/\ S,y)/\\lfe |: Te ::(:O?(;r(eeg)e
ze := 1fore € I

e'=(h,B)eG+

B C Randh € R
where .S, O, and I stand for corresponding ranges it2f. More
precisely, lettinge’” = (h, B) range overG and lettinge be its
corresponding ar¢h, BU {s.-}) in GF, we haveS := {(e,¢’) |
B C Randh € R} andO := {e| B Z R}. Also, I contains
all the dummy arcs of the fornft, @), for all t € T. Now we
apply these three substitutions $o_, one by one. The first line
just introduces a shorthand notation for each of the thredskof
substitutions.

Te = S for (e,e’) € S S
V. |z.:=0foreec O =v._ |0
T :=1foree ] T
S
A(C V=)V =) o
IoopofGL e'=(h, B)eJGJ_(L) e=(t,0)
LER  e=(h,BU{s.})
S
= AV o=y

L e’
loop of G+ ¢/ =(h,B)€. Jo1 (D)
LER\T .= (h,BU{s.})
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/\ \/ ze[S] We can finally provélheorem 7 Recall its statement:

IoopoLfGL J=(h, B)éJ L@ Theorem 7. Consider the probabilistic model associated with the
LCR\T (s, BU{S/}) cheap provenanc&'® of some analysisd. Let T1,..., T, and
BCR Ri1,..., R, be subsets of vertices 6f*. If h ¢ B for all arcs
- A v S, (h,B) in G+ and R, C Rg. Ty for all k, then we have the

following lower and upper bounds dhr(;,_, (RuTkx = Rx)):

L
|0£g%€; e/'=(h, B)E;GL(L) H ES H Z H Ese H ES@

Finally, we conclude that eeN ot s, c€AR\E:

VkEC), E1NFL#0
SGL R, AL hy E1NF
4 (Gr) =

T CRIA (/\ S) (/\ y Sg) ) <P(ﬁ(RHTk Ri))

e=(h,B)eG* e=(h,B) _
<[es I % Iles IT os.
- - eEN ecEq e€AR\Eq
Now observe that Ch#\)m CE1%A}LD o
n e€Cyp, E1NDy
Pr<ﬂ (Rk = Ru(Tk) )> ( /\ SR (G )) (14) where
=1 N:={(W,B) e G" | B C Ry andh’ ¢ Ry, for somek’ }

Putting togetherX3) and (L4), we obtaln the following lemma. , , B
. o . . Ch:{k|h€Rk/\Tk/} Ah::{(h7B)€G }\N
Lemma 22. Consider the probabilistic model associated with

1
the cheap provenancé of an analysisA. LetT1,. .., T, and Dy :={(W,B")eG" | B'C Ry}
Ri,..., R, be subsets of the vertices@f-. If T}, C Ry, for all k, Fy:={e= (h',B’) € Dy | eis aforward arc w.r.t7} }
then If T, ¢ Ry for somek, then the probability and both of its

Pr< (R;c
k=1

N
I os. (/\ A

= RuT}) | = bounds are ald. In what follows, we shall invokéemma 22 thus
silently assuming thaf, C Ry, for all k. We first prove the claim
about an upper bound, and then show the claim about a lower

\/ se> bound.

loop OfGJ- LCRk\Tk eej;ih(ffw Proof of the Upper Bound iftheorem 7 We start with a short cal-
BCRy, culation which shows what happens if we consider only ttivia
where loops. Recall the assumption thiatZ B for all arcs(h, B).
N = {(h,B) € G* | B C R, andh ¢ Ry, for somek
{(nB) €G* | B Ry andh ¢ Ry } E(/\/\ \/se>
Proof. We assuine thal, C Ry. Using (L3) and (L4), we trans- loop Och LCRk\Tk e YL(LB))\N
form Ap_, ¢°9 7+ (G, ) as follows: BCry,

IN

E( /\ A \/ Se>

e=(h,B)

A\ o% ()

k
k=1 vemexofc;L h€R\T) e¢ N,BC Ry,
“ACA s (A Y s) (AN OV OS) o
k=1\ é=(h,B)eG~ oop G- zJ(h 1?2) o HECH e=(hB)
e
BCRy,, h¢ Ry, LORNT, BEEk h e¢ N,BCRy,
; - 1A Vs
=(As)H (A AV s
eEN k=1 e=(h,B) Ch?f@ egN BCRy,
i, ek
CRATE BER, :HE</\ \/ se>
_ N kEC), e=(h,B)EA),
- /\ S. ) A /\ /\ \/ S Cno BC Ry,
cenN P opinat eci iAW The expression above has the folf, E W. We rewrite U,
LCR\T.  BCrR, by essentially enumerating all of its models and checkinttpéfy
~ satisfyW,,. The result is the following equivalent form:
=(As)A (A A Vs f
eeEN kel n e=(h,B
IooplnGJ' LC{Rk\Tk} eeJGE_ (L))\N y ( /> Se) A ( A/\E Se)
BCRy, E1§1Ah e€k e€AR\E
The conclusion of the lemma now follows from the result ofthi VKECH, E1NDy#0
calculation and the fact th&. andS. are independent whenever
e#e. O
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and so
Ev, =

S IIes.

Eq ecEq
E1CAp
VkeC),, E1ND#0

H ES.

e€Ap\Ey

(16)

Flnally, we multiply the inequalityX5) on both sides by ], ., E
plug in (16), and usd.emma 22

Note that the upper bound is tight @ has no cycles and
therefore all loops are trivial.

Proof of the Lower Bound iltheorem 7 By Lemma 22

Pr(@l(Rk = RHTk)) =
[ess( A A

eeEN

Vs

e=(h,B)

loop ofc;L LCRk\Tk e€Jg1 (L\N
BCRy,

Thus, the main part of the lemma follows if we show that

A V (( As)n( A S)) 17
Chh#@ ElEglAh, e€ by e€AR\E]

VkEC), E1NFy#0

implies
ANV s
e=(h,B)

loop ofGL LCRk\Tk e€Jg1 (L\N
BCRy

(18)

To show this implication, we will show that a fixed but arbitra
conjunct of (L8) holds, assuming thal{) holds. A conjunct of18)
is determined by a loop, and an indeX,. The idea is to show that
loop Ly is justified via its vertex that is closest1a,, .

Since Ly and ko determine a conjunct oflg), we know that
Lo C Rg, \ Tk,. We need to find an are= (h, B) such that

e€ Jgi (Lo) \ N, B C Ry, and S, =1. (19)
SinceLy is not empty and.o C Ry, € R Tk,, We can choose
h € Lo such thatiz, (h)is minimum. Sincé: € Lo C Ry, \ Tk,
we have that

ko € Ch.
This lets us instantiatel ) with h, and derive that for some subset
F of A}L,

EinNF,#£Qforallke C, and S.=1 foralle € E;

(20)
Sinceko € C, the first conjunct implies that, N Fr, # 0. Thus,
there exists an arey = (ho, Bo) in E1 N Fy,, and it satisfies the
following conditions:

1. the headvg of eg IS h;
2. egisnotinV;
3. Bo C Rko; and
4. e is a forward arc with respect @, .
Sinceey is a forward arc w.r.tZy, andh has the minimal distance
from T}, among all the vertices i,
eo € Joi (Lo)
Also, by the second conjunct i2Q),

Sep =1
From what we have just shown follows thatis the desired arc; it
satisfies the requirements ih9). a

18

Note that the lower bound and the upper bound coincide if
Dy N Ap = F, N Ay, for all k£ andh. In this case, both bounds
are tight.

B. Proofs for Results inSection 6

Lemma 9. Let AZ be defined as above, with respect to an anal-
ysis A, an abstractiona, and a queryq. Leta’ be some abstrac-
tion such thata’ > a. Let H be some subgraph @ such that
q € Ru(T(a,a’)). Then
Pr(a’ € AY) > H ES.
eeH
whereS. is the selection variable of are

Proof. The proof is a straightforward calculation.
Pr(a’ € AY) = > [¢€ R (T(a,d')]Pr(H)

H
H'CGe

>

’
HCH'CG®

Z Pr(H

HCH CGQ

A%

[9 € Ry (T(a,a))] Pr(H')

= [ Es.

ecH

The second equality uses two facts: ¢i)e Rz (T(a,a’)), and
(i) Ru(T(a,a’)) C Ry (T(a,a")) forall H O H. O

Lemma 11. Consider an instance of the action scheduling problem
(Definition 10. Assume the success probabilities of the actions are
independent. A permutatianhas minimum cost'(o) if and only

if po1y/Ca(r)y =+ 2 Po(m)/Co(m)-
Proof. Another way of saying that the sequenge; ;) /c, ;) }: is
nonincreasing is to require that for all< 7, j < m,
Co (i) < Co(4)
DPo(i)  Po(y)
Pick an arbitrary permutation. We will study the effect of one
transpositior( <> i + 1) on the cost. Let’ = oo (i <> i+ 1); in
other words

i<j = (1)

o(i+1) ifj=1
' (4) = { o(i) if j=i+1
o(j) otherwise

Observe thaty, (o) andgs (o”) differ for only onevalue ofk:
(

n_ Jailo )

Also notice thaty, (o) # 0 andgy (o) # 0 for all k. The difference
in cost betweewr’ ando is

C(o") —C(o) =

fk=4i+1
otherwise

— Po(i+1))

¢i(0")eor iy + @it1(0")Cor(i41)
— qi(0)co@)y — Git1(0)Co(itn)
= qi(0)co(it1) + 4i(0) (1 = Po(it1))Co(i)
- qi(U)Ca(i) - Qi(ff)(l - pc(i))CG(i+1)

qi(a)(po(i)cc(i+1) —pc(i+1)ca(i))~
Thus,
C(o') —C(o)

— Pi+1Ci
qi(o)

= PiCi+1
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wherep; denote, (;), andc; denotes:, ;), for the fixed permuta-
tiono.

All that remains is to interpret the result of these caldafz.
For the left-to-right direction, assume thatas the minimal cost.
Also, for the sake of contradiction, suppose that theret édad;j
such that < j ande; /p; > ¢;/p;. Then, there must also exist an
i1 such that; /p; > ci+1/pi+1, Which is equivalent to

piCi+1 — pit+1ci < 0.

Thus, the previous calculation shows thdtwould have a lower
cost tharv. This contradicts the assumption thahas the minimal
cost.

For the right-to-left direction, pickr and ¢’ that satisfy the
RHS of 21). Then, we can convett to o’ by composingr with a
sequence of transpositions— i 4 1 for ¢ such that

ﬂ _ Cit+1

Di Pi+1
Then the previous computation shows that such composgres
the cost unchanged. Thusando’ have the same cost. But by what
we have already shown, there should be at leastdrthat satisfies
the RHS of 21) and have the minimal cost. This implies that all of
o, 0’ ando” are optimal. O

Lemma 15. Leta be an abstraction, and letbe a query, for some
analysisA. Let F(G) and G2, be defined as above.df< T and
q € A(a), then(T,G%,) € F(G%) C F(G).

19

Proof. The inclusionF'(G%,) C F(G*) follows from G2, C G*.
We have(T,G?,) € F(G%,) because (aJl > a by assumption,
(b) G2, C G2, trivially, and () g € Rga, (T'(a, T)). To see
why (c) holds, notice that removing nonforward arcs withpesst
toT(a, T) = Po(a) U Pi(a) preserves distances and reachability
from T (a, T),and s0Rga, (T'(a, T)) = Rga(T(a, T)). a

Lemma 16. Let a be an abstraction, and lef be a query, for
some analysisd. Let the hard constrainf> be defined as irf8):

let the feasible sef'(G2,) be defined as i9). There is a bijection
between the model¥/ of & and the elementé&’, H) of F(G%,).

According to this bijection,

MNXg(GL) = Xe(H)
MNXy(GL) = Xv (RH(T(a7 a’)))
Proof sketch.Let
el {(h,eUB)|e=(h,B)eG% }
S = {elec G4}

BecauseG?, has no cycles by constructioy’ does not have
cycles, either. We have that

(. 0n00) o (5000

where the latter uses the definition ih0f. Thus, we can apply
Corollary 19 Finally, note thatb; ensures that’ > a andq ¢
Ru(T(a,a’)). O
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