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Abstract
The core challenge in designing an effective static programanalysis
is to find a good program abstraction – one that retains only details
relevant to a given query. In this paper, we present a new approach
for automatically finding such an abstraction. Our approachuses
a pessimistic strategy, which can optionally use guidance from
a probabilistic model. Our approach applies to parametric static
analyses implemented in Datalog, and is based on counterexample-
guided abstraction refinement. For each untried abstraction, our
probabilistic model provides a probability of success, while the
size of the abstraction provides an estimate of its cost in terms
of analysis time. Combining these two metrics, probabilityand
cost, our refinement algorithm picks an optimal abstraction. Our
probabilistic model is a variant of the Erdős–Rényi random graph
model, and it is tunable by what we call hyperparameters. We
present a method to learn good values for these hyperparameters,
by observing past runs of the analysis on an existing codebase. We
evaluate our approach on an object sensitive pointer analysis for
Java programs, with two client analyses (PolySite and Downcast).

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords Datalog, Horn, hypergraph, probability

1. Introduction
We wish that static program analyses would become better as they
see more code. Starting from this motivation, we designed anab-
straction refinement algorithm that incorporates knowledge learnt
from observing its own previous runs, on an existing codebase. For
a given query about a program, this knowledge guides the algo-
rithm towards a good abstraction that retains only the details of the
program relevant to the query. Similar guidance also features in
existing abstraction refinement algorithms [4, 8, 20], but is based
on nontrivial heuristics that are developed manually by analysis de-
signers. These heuristics are often suboptimal and difficult to trans-
fer from one analysis to another. Our algorithm has the potential to
improve itself by learning from past runs, and it applies to almost
any analysis implemented in Datalog.

[Copyright notice will appear here once ’preprint’ option is removed.]

Prior work on abstraction refinement for Datalog [55] implicitly
uses an optimistic strategy: the search is geared towards finding an
abstraction that would show the current counterexample to be spu-
rious. We take the complimentary approach: our search is geared
towards finding an abstraction that would show the current coun-
terexample to be unavoidable. Furthermore, we bias the search by
using a probabilistic model, which is tuned using information from
previous runs of the analysis.

In other approaches to program analysis that are based on learn-
ing [43, 54], the analysis designer must choose appropriate features.
A feature is a measurable property of the program, usually a nu-
meric one. Choosing features that are effective for programanaly-
sis is nontrivial, and involves knowledge of both the analysis and
the probabilistic model. In our approach, the analysis designer does
not need to choose appropriate features.

Instead of observing features, our models observe directlythe
internal representations of analysis runs. Parametric static analy-
ses implemented in Datalog consist of universally quantified Horn
clauses, and work by instantiating the universal quantification of
these clauses, while respecting the constraints on instantiation im-
posed by a given parameter setting. These instantiated Hornclauses
are typically implications of the form

h← t1, t2, . . . , tn

and can be understood as a directed (hyper) arc from the source
verticest1, . . . , tn to the target vertexh. Thus, the instantiated
Horn clauses taken altogether form a hypergraph. This hypergraph
changes when we try the analysis again with a different parameter
setting. Given a hypergraph obtained under one parameter setting,
we build a probabilistic model that predicts how the hypergraph
would change if a new and more precise parameter setting were
used. In particular, the probabilistic model estimates howlikely it
is that the new parameter setting will end the refinement process,
which happens when the new hypergraph includes evidence that
the analysis will never prove a query. Technically, our probabilistic
model is a variant of the Erdős–Rényi random graph model [11]:
given a template hypergraphG, each of its subhypergraphsH is
assigned a probability, which depends on the values of the hyper-
parameters. Intuitively, this probability quantifies the chance that
H correctly describes the changes inG when the analysis is run
with the new and more precise parameter settings. The hyperparam-
eters quantify how much approximation occurs in each of the quan-
tified Horn clauses of the analysis. We provide an efficient method
for learning hyperparameters from prior analysis runs. Ourmethod
uses certain analytic bounds in order to avoid the combinatorial ex-
plosion of a naive learning method based on maximum likelihood;
the explosion is caused byH being a latent variable, which can be
observed only indirectly.

The next parameter setting to try is chosen by our refinement
algorithm based on predictions of the probabilistic model but also
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based on an estimate of the runtime cost. For each parameter set-
ting, the probability of successfully handling the query isevaluated
by our model, and the runtime is estimated to increase with the
precision of the parameter setting. We prove that our methodof
integrating these two metrics is optimal, under reasonableassump-
tions.

The paper starts with an informal overview of our approach
(Section 2) and a review of notations from probability theory
(Section 3), and is followed by a description of our probabilis-
tic model (Section 4) and its learning algorithm (Section 5). The
probabilistic model is then used to implement a refinement loop
that optimally chooses the next parameter setting (Section 6). The
experimental evaluation (Section 7) shows the value of the pes-
simistic strategy, but suggests we need better optimisers in order to
take full advantage of the probabilistic model.Section 8positions
our work in the various attempts to combine probabilistic reasoning
and static analyses, andSection 9concludes the paper. Most proofs
are in appendices.

2. Overview
Figure 1gives a high level overview of our abstraction refinement
algorithm, and in particular it shows the role of our probabilistic
model. The refinement loop is standard, with analysis on one side
and refinement on the other. Our contribution lies in the refinement
part, which receives guidance from a learnt probabilistic model and
chooses the next abstraction by balancing the model’s prediction
and the estimated cost of running the analysis under each abstrac-
tion.

We assume that the analysis is given and obeys two constraints.
The first is that the analysis is implemented in Datalog – it is
specified in terms of universally quantified Horn clauses, such as

pointsto(α, ℓ)← precise(α), pointsto(β, ℓ),

assignTo(β, α)
(1)

in which all the free variablesα, β, ℓ are implicitly universally
quantified. We call these clausesDatalog rules. The analysis works
by instantiating the quantification of these rules, and thusderiving
new facts. A query is a particular fact such aspointsto(x, h),
which is an instantiation of the left side of the rule (1), with α := x
and ℓ := h. The query represents an undesirable situation in
the program being analysed. The analysis could derive the query
because the undesirable situation really occurs at runtime. But, the
analysis could also derive the query because it approximates the
runtime semantics. Our task is to decide whether it is possible to
avoid deriving the query by approximating less. If the queryis
derived, then the set of all instances of Datalog rules constitute a
counterexample, which is then used for refinement.

object x, y, z, v
assume x.dirty
x.value := 10

0: smudge2(x, y)
0’: y.value := y.value + 2 * x.value
1: smudge3(y, z)

if z.dirty && y.value > 5
v.value := x.value + y.value

2: smudge3(z, v)
...

3: smudge5(x, y)
...

4: smudge7(y, v)
assert !v.dirty

Figure 2. Example program to analyse

The second constraint is that the analysis is parametric. For
instance, it might have a parameter for each program variable,
which specifies whether the variable should be tracked precisely
or not. The analysis would encode a setting of these parameters
in Datalog by using relationscheap and precise. In fact, the
Datalog rule (1) assumes such parametrisation and fires only when
the parameter setting dictates the precise tracking of the variableα.
For a parametric analysis, an abstraction can be specified bya
parameter setting, and so we use these two terms interchangeably.

The refinement part analyses a counterexample, and suggestsa
new promising parameter setting. If the counterexample derives the
query without relying on approximations, then the refinement part
reports impossibility and stops [51, 55, 56]. If the counterexample
derives the query by relying on approximations, then the refinement
part sets itself the goal to find a similar counterexample that does
not rely on approximations. This is a pessimistic goal. To find such
a similar counterexample, the analysis must be run with a different
parameter setting. Which one? On the one hand, the parameter
setting should be likely to uncover a similar counterexample. On
the other hand, the parameter should be as cheap as possible.The
refinement part uses a MAX SAT solver to balance these desiderata.

Consider now the example program inFigure 2. The language
is idiosyncratic, and so will be the analysis. The language and the
analysis are chosen to allow a concise rendering of the main ideas.
In this toy language, each object has two fields, the booleandirty
and the integervalue. Initially, all value fields are0. Objectx is
dirty at the beginning, and we are interested in whether object v is
dirty at the end. Dirtiness is propagated from one object to another
only by the primitive commandssmudgeK. The effect of the com-
mandsmudgeK(x, y) is equivalent to the following pseudocode:

if (x.value + y.value) mod K = 0

y.dirty := x.dirty ∨ y.dirty

That is, if the sum of the values of objectsx andy is a multiple
of K, then dirt propagates fromx to y.

To decide whether objectv is dirty at the end, an analysis may
need to track the values of multiple objects. The values can be
changed by guarded assignments. The guard of an assignment can
be any boolean expression; the right hand side of an assignment can
be any integer expression. In short, tracking values and relations
between values could be expensive.

However, tracking all values may also be unnecessary. In the
first iteration, the analysis treats all non-smudge commands as
skip. As a result, the analysis knows nothing about thevalue
fields. To remain sound, it assumes that smudge commands always
propagate dirtiness; that is, it treats the commandsmudgeK(x, y)
as equivalent to the following pseudocode, dropping the guard:

y.dirty := x.dirty ∨ y.dirty
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Figure 3. Abstract view of the program inFigure 2. Each label on
the left identifies a smudge command. The dashed, vertical lines sig-
nify that once an object is dirty it remains dirty. The solid,oblique
lines signify that smudge commands might propagate dirtiness. De-
pending on the values of the objects, asmudgeK command prop-
agates dirtiness with probability1/K. The highlighted path illus-
trates one way in which dirtiness could propagate from object x to
objectv, thus violating the assertion.

If, using these approximate semantics, the analysis concluded that
v is clean at the end, then it would stop. But, in our example,
v could be dirty at the end, for example because of the smudge
commands on lines0 and 4: the smudge on line0 propagates
dirtiness fromx to y, and the smudge on line4 propagates dirtiness
from y to v. This scenario corresponds to the highlighted path in
Figure 3.

Before seeing what happens in the next iteration, let us first
describe the analysis in more detail. The approximate semantics
of the commandsmudge2 are modelled by the following Datalog
rule:

dirty(ℓ′, β)← cheap(ℓ), dirty(ℓ, α), flow(ℓ, ℓ′)

smudge2(ℓ, α, β)
(2)

The rule makes use of the following relations:

flow(ℓ, ℓ′) the control flow goes fromℓ to ℓ′

smudge2(ℓ, α, β) the command atℓ is smudge2(α, β)

cheap(ℓ) the command atℓ should be approximated

dirty(ℓ, α) α.dirty is true before the command atℓ

The relationsflow andsmudge2 encode the program that is being
analysed. The relationcheap parametrises the analysis, by allow-
ing it or disallowing it to approximate the semantics of particular
commands. Finally, the relationdirty expresses facts about execu-
tions of the program that is being analysed. From the point ofview
of the analysis,flow, smudge2, andcheap are part of the input,
while dirty is part of the output. The relationsflow andsmudge2
are simply a transliteration of the program text. The relationcheap
is computed by a refinement algorithm, which we will see later.

The precise semantics ofsmudge2 can also be encoded with a
Datalog rule, albeit a more complicated one.

dirty(ℓ′, β)← precise(ℓ), dirty(ℓ, α), flow(ℓ, ℓ′),

smudge2(ℓ, α, β), value(ℓ, α, a),

value(ℓ, β, b), (a+ b) mod 2 = 0

(3)

This rule makes use of two further relations:

precise(ℓ) the command atℓ should not be approximated

value(ℓ, α, a) α.value = a holds before the command atℓ

Like cheap, the relationprecise is part of the input. If the input
relationprecise activates rules like the one above, then the anal-
ysis takes longer not only because the rule is more complicated,
but also because it needs to compute more facts about the relation
value.

The refinement algorithm ensures that for each program pointℓ
exactly one ofcheap(ℓ) andprecise(ℓ) holds. In the first itera-
tion, cheap(ℓ) holds for allℓ, andprecise holds for noℓ. In each
of the next iterations, the refinement algorithm switches some pro-
gram points from cheap to precise semantics.

Let us see what happens when one program point is switched
from cheap to precise. In the first iteration,cheap(0) is part of the
input, and the following rule instance derivesdirty(0′, y):

dirty(0′, y)← cheap(0), dirty(0, x), flow(0, 0′)

smudge2(0, x, y)

Let us now look at the scenario in which for the second iteration
the fact cheap(0) is replaced by the factprecise(0). In this
case,dirty(0′, y) is still derived, this time by the following rule
instance:

dirty(0′, y)← precise(0), dirty(0, x), flow(0, 0′),

smudge2(0, x, y), value(0, x, 10),

value(0, y, 0), (10 + 0) mod 2 = 0

To be able to apply this rule, the analysis had to work harder,to
derive the intermediate resultsvalue(0, x, 10) andvalue(0, y, 0).
Using precise(0) influences other Datalog rules as well, and
forces the analysis to derive these intermediate results, so that
dirty(0′, y) is still derived. This is not always the case. For exam-
ple, thesmudge3 command at program point1 will not propagate
dirtiness if the precise semantics is used.

Let us now step back and see which parts of the example gener-
alise.

Model. If we replacecheap(ℓ) by precise(ℓ), then the set of
Datalog rule instances could change unpredictably. Yet, weobserve
empirically that the change is confined to one of two cases:

(a) precise(ℓ) eventually derives facts similar to those facts that
cheap(ℓ) derives, but with more work; or

(b) precise(ℓ) no longer derives the facts thatcheap(ℓ) derived.

This dichotomy is by no means necessary. Intuitively, it holds be-
cause the Datalog rules are not arbitrary: they are implementing a
program analysis. In our example, case (a) occurs whencheap(0)
is replaced byprecise(0), and case (b) occurs whencheap(1) is
replaced byprecise(1). In general, we formalise this dichotomy
by requiring that a certain predictability condition holds. The con-
dition is flexible, in that it allows one to choose the meaningof
‘similar’ in case (a) by defining a so called projection function. In
our example, no projection is necessary. In context sensitive anal-
yses, projection corresponds to truncating contexts. In general, by
adjusting the definition of the projection function we can exploit
more knowledge about the analysis, if we so wish. If we do not,
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then it is always possible to choose a trivial projection forwhich
the meaning of ‘similar’ is ‘exactly the same’.

Provided that the predictability condition holds, which isa for-
mal way of saying that the dichotomy between cases (a) and (b)
holds, it is natural to define the probabilistic model as a variant of
the Erdős–Rényi random graph model. Our sets of Datalog rule in-
stances are seen as sets of arcs of a hypergraph. Each arc of the
hypergraph is either selected or not, with a certain probability. Be-
ing selected corresponds to case (a) – having a counterpart in the
precise hypergraph; being unselected corresponds to case (b) – not
having a counterpart in the precise hypergraph.

For the predictability condition and for the projection function,
we drew inspiration from abstract interpretation [10]. Intuitively,
our projection functions correspond to concretisation maps, and our
predictability condition corresponds to correctness of approxima-
tion. However, we did not formalise this intuitive correspondence.

Learning. The model predicts that each rule instance is selected
(that is, has a precise counterpart) with some probability.How to
pick this probability?Figure 3gives an intuitive representation of
a set of instances. In particular, each dashed arc and each solid
arc represents some rule instance. We assume that instancesrep-
resented by dashed arcs are selected with probability1. These are
instances of some rule which says that a dirty object remainsdirty.
We also assume that instances represented by solid arcs are selected
with probability1/K. These are instances of rules of the form (2),
which describe the semantics ofsmudgeK commands. These proba-
bilities make intuitive sense. In particular, it is reasonable to expect
that a number is a multiple ofK with probability1/K.

But, how can we design an algorithm to find these probabilities,
without appealing to intuition and knowledge about arithmetic?
The answer is that we run the analysis on many programs, and
observe whether rule instances have precise counterparts or not.
In our example, if the training sample is large enough, we would
observe that instances of the form (2) do indeed have counterparts
of the form (3) in about1/K of cases. In general, it is not possible
to observe directly which rules have precise counterparts.It is
difficult to decide which rule is a counterpart of which rule.Instead,
we make indirect observations based on which similar facts are
derived.

Refinement. In terms ofFigure 3, refinement can be understood
intuitively as follows. We are interested in whether there is a path
from the input on the top left to the output on the bottom right.
We know the dashed arcs are really present: they have a precise
counterpart with probability1. We do not know if the solid arcs
are really present: we see them only because we used a cheap
parameter setting, and they have a precise counterpart onlywith
probability1/K. We can find out whether the solid arcs are really
present or just an illusion, by running the analysis with a more
precise parameter setting. But, we have to pay a price, because
more precise parameter settings are also more expensive.

The question is then which of the solid arcs should we enquire
about, such that we decide quickly whether there is a path from
input to output. There are several possible strategies, in particular
there is an optimistic strategy and a pessimistic strategy.The op-
timistic strategy hopes that there is no path, so objectv is clean
at the end. Accordingly, the optimistic strategy considersasking
about those sets of solid arcs that could disconnect the input from
the output, if the arcs were not really there. The pessimistic strategy
hopes that there is a path, so objectv is dirty at the end. Accord-
ingly, the pessimistic strategy considers asking about those sets of
solid arcs that could connect the input to the output, if the arcs were
really there. The highlighted path inFigure 3corresponds to replac-
ing cheap(0) by precise(0), and alsocheap(4) by precise(4).
Thus, let us denote its set of arcs as04. There are two other paths

that the pessimistic strategy will consider, whose sets of arcs are
012 and34. The path04 gets a probability1/2× 1/7 of surviving;
the path012 gets a probability1/2 × 1/3 × 1/3 of surviving; the
path34 gets a probability1/5 × 1/7 of surviving. According to
probabilities, the path04 has the highest chance of showing that
v is dirty at the end.

We designed an algorithm which generalises the pessimistic
strategy described above by taking into account unions of paths and
also the runtime cost of trying a parameter setting. Our refinement
algorithm has to work in a more general setting than suggested by
Figure 3. In particular, it must handle hypergraphs, not just graphs.

3. Preliminaries and Notations
In this section we recall several basic notions from probability
theory. At the same time, we introduce the notation used throughout
the paper.

A finite probability spaceis a finite setΩ together with a
functionPr : Ω → R such thatPr(ω) ≥ 0 for all ω ∈ Ω, and
∑

ω∈Ω Pr(ω) = 1. An eventis a subset ofΩ. Theprobability of
an eventA is

Pr(A) :=
∑

ω∈A

Pr(ω) =
∑

ω∈Ω

Pr(ω)[ω ∈ A]

The notation[Ψ] is the Iverson bracket: ifΨ is true it evaluates
to 1, if Ψ is false it evaluates to0. A random variableis a function
X : Ω → X . For each valuex ∈ X , the setX−1(x) is an event,
traditionally denoted by(X = x). In particular, we writePr(X =
x) for its probability; occasionally, we may writePr(x = X) for
the same probability. Aboolean random variableis a function
X : Ω → {0, 1}. For a random variableX with X ⊆ R, we
define itsexpectationEX by

EX :=
∑

x∈X

xPr(X = x) =
∑

ω∈Ω

Pr(ω)X(ω)

In particular, ifX is a boolean random variable, then

EX = Pr(X = 1)

EventsA1, . . . , An are said to beindependentwhen

Pr(A1 ∩ . . . ∩An) =

n
∏

i=1

Pr(Ai)

Note thatn events could be pairwise independent, but still depen-
dent when taken altogether. Random variablesX1, . . . ,Xn are said
to be independent when the events(X1 = x1), . . . , (Xn = xn)
are independent for allx1, . . . , xn in their respective domains. In
particular, if X1, . . . ,Xn are independent boolean random vari-
ables, thenX1 ∧ . . . ∧Xn is also a boolean random variable, and

E(X1 ∧ . . . ∧Xn) =
n
∏

i=1

EXi

EventsA andB are said to beincompatiblewhen they are disjoint.
In that case,Pr(A ∪ B) = Pr(A) + Pr(B). In particular, if
X1, . . . ,Xn are boolean random variables such that the events
(X1 = 1), . . . , (Xn = 1) are pairwise incompatible, then

E(X1 ∨ . . . ∨Xn) =

n
∑

i=1

EXi

4. Probabilistic Model
The probabilistic model predicts what analyses would do if they
were run with precise parameter settings. To make such predic-
tions, the model relies on several assumptions: the analysis must
be implemented in Datalog (Section 4.1) and its precision must be
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configurable by parameters (Section 4.2); furthermore, increasing
precision should correspond to invalidating some derivation steps
(Section 4.3). Given probabilities that individual derivation steps
survive the increase in precision, we compute probabilities that sets
of derivation steps survive the increase in precision (Section 4.4).
Given which set of derivation steps survives the increase inpreci-
sion, we can tell whether a given query, which signifies a bug,is
still reachable (Section 4.5).

4.1 Datalog Programs and Hypergraphs

We shall use a simplified model of Datalog programs, which is
essentially a directed hypergraph. The semantics will thenbe given
by reachability in this hypergraph. For readers already familiar with
Datalog, it may help to think of vertices as elements of Datalog
relations, and to think of arcs as instances of Datalog ruleswith
non-relational constraints removed. For readers not familiar with
Datalog, simply thinking in terms of the hypergraph introduced
below will be sufficient to understand the rest of the paper.

We assume a finite universe offacts. An arc is a pair(h,B)
of a headh and a bodyB; the head is a fact; thebody is a set of
facts. Ahypergraphis a set of arcs. Theverticesof a hypergraph
are those facts that appear in its arcs. If a hypergraphG contains
an arc(h,B), then we say thath is reachable fromB in G. In
general, given a hypergraphG and a setT of facts, the setRGT
of facts reachable fromT in G is defined as the least fixed-point of
the following recursive equation:

{h | (h, B) ∈ G andB ⊆ RGT } ∪ T ⊆ RGT

The following monotonicity properties are easy to check.

Proposition 1. LetG,G1 andG2 be hypergraphs; letT ,T1 andT2

be sets of facts.

(a) If T1 ⊆ T2, thenRGT1 ⊆ RGT2.
(b) If G1 ⊆ G2, thenRG1

T ⊆ RG2
T .

Given a hypergraphG and a setT of facts, theinduced sub-
hypergraphG[T ] retains those arcs that mention facts fromT :

G[T ] := { (h,B) ∈ G | h ∈ T andB ⊆ T }

4.2 Analyses

We use Datalog programs to implement static analyses that are
parametric and monotone. Thus, the Datalog programs we consider
have additional properties:

1. Because the Datalog program implements a static analysis, a
subset of facts encode queries, corresponding to assertions in
the program being analysed.

2. Because the static analysis is parametric, a subset of facts en-
code parameter settings.

3. Because the static analysis is monotone, parameter settings that
are more expensive are also more precise.

For example, inSection 2, queries are facts from the relation
dirty; parameter settings are encoded by relationscheap and
precise; and switching a parameter fromcheap to precise

makes the analysis more expensive but cannot grow the relation
dirty.

If we only assume that the analysis is parametric, monotone,
and implemented in Datalog, then we can already make good pre-
dictions in some cases, such as the case of the analysis inSection 2.
In other cases, we require more information about the relationship
between what the analysis does when run in a precise mode and
what the analysis does when run in an imprecise mode. We assume
that this information comes in the form of a partial functionthat
projects facts. The technical requirements on the projection func-
tion are mild, so the analysis designer has considerable leeway in

choosing an appropriate projection. In some cases, the choice is
straightforward. For example, if the analysis isk-object sensitive,
meaning that it tracks calling contexts using sequences of alloca-
tion sites, then a good choice of projection corresponds to truncat-
ing these sequences.

An analysisA is a tuple(G,Q,P, p0, p1, π), whereG is a
hypergraph called theglobal provenance, Q is a set of facts called
queries, P is a finite set ofparameters, the encoding functions
p0 and p1 map parameters to facts, andπ is a partial function
from facts to facts calledprojection. A parameter settinga of an
analysisA is an assignment of booleans to the parametersP . We
sometimes refer to parameter settings asabstractions, for brevity.
We encode the abstractiona as two sets of facts,P0(a) andP1(a),
defined by

Pk(a) := { pk(x) | x ∈ P anda(x) = k } for k ∈ {0, 1}

The setA(a) of factsderivedby the analysisA under abstractiona
is defined to beRG

(

P0(a)∪P1(a)
)

. Abstractions form a complete
lattice with respect to the pointwise order:a ≤ a′ iff a(x) ≤ a′(x)
for all x ∈ P . We write ⊥ for the cheapest abstractionthat
assigns0 to all parameters, and⊤ for themost precise abstraction
that assigns1 to all parameters.

For an analysisA, we sometimes consider the restriction of
its hypergraph to those facts derived under a given abstraction a:
Ga := G[A(a)]. In particular,G⊥ is called thecheap provenance,
andG⊤ is called theprecise provenance.

An analysis iswell formed when it obeys further restrictions:
(i) facts derived under the cheapest abstraction are fixed-points of
the projection,π(x) = x for x ∈ A(⊥), (ii) the image of the
projectionπ is included inA(⊥), (iii) only fixed-points project on
queries,π−1(q) ⊆ {q} for q ∈ Q, (iv) the encoding functions
p0 andp1 are injective and have disjoint images, and (v) projec-
tion is compatible with parameter encoding,π ◦ p1 = p0. From
(i) and (ii) it follows thatπ is idempotent. These conditions are
technical: they ease the treatment that follows, but do not restrict
which analyses can be modelled.

An analysisA is said to bemonotonewhen the set of derived
queries decreases as a function of the abstraction:a ≤ a′ implies
(

Q ∩A(a)
)

⊇
(

Q ∩A(a′)
)

.
We can now formally define the main problem.

Problem 2. Given are a well formed, monotone analysisA, and
a queryq for A. Does there exist an abstractiona such thatq /∈
A(a)?

Because the analysis is monotone,q ∈ A(a) for all a if and only
if q ∈ A(⊤). Thus, one way to solve the problem is to check ifq is
derived byA under the most precise abstraction⊤. However, this
is typically too expensive. Instead, we consider a class of solutions
calledmonotone refinement algorithms. A monotone refinement
algorithm evaluates the analysis for a sequencea1 ≤ · · · ≤ an

of abstractions. Refinement algorithms terminate when one of two
conditions holds: (i)q /∈ A(an) or (ii) q ∈ RGan

(

P1(an)
)

. It is
easy to see whyq /∈ A(an) implies thatProblem 2has answer
‘yes’. It is less easy to see whyq ∈ RGan

(

P1(an)
)

implies
thatProblem 2has answer ‘no’. Intuitively, this second termination
condition says that the queryq is reachable even if we rely only
on precise semantics. In other words, our abstract counterexample
does not actually have any abstract step. Formally, we rely on the
following lemma:

Lemma 3. Let q be a query for a well formed, monotone analy-
sisA. If q ∈ RGa

(

P1(a)
)

for some abstractiona, thenq ∈ A(a′)
for all abstractionsa′.
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Proof. By Proposition 1(a), q ∈ RGa

(

P1(a)
)

= RG

(

P1(a)
)

⊆
RG

(

P1(⊤)
)

= A(⊤). We conclude by noting that the analysis is
monotone.

4.3 Predictability

The precise provenanceG⊤ contains all the information necessary
to answerProblem 2. Unfortunately, the precise provenanceG⊤ is
typically very large and hard to compute. In contrast, the cheap
provenanceG⊥ is typically smaller and easier to compute. In
fact, most refinement algorithms start with the cheapest abstraction,
a1 = ⊥. Fortunately, we observed empirically thatG⊤ andG⊥ are
compatible, in a way made precise next.

We begin by lifting the projectionπ to setsT of facts as follows:

π(T ) := { t′ | t′ = π(t) andt ∈ T }

In particular, if the partial functionπ is not defined for anyt ∈ T ,
thenπ(T ) = ∅. Our empirical observation is that

π ◦ RG⊤ ◦ P1 = RH ◦ π ◦ P1 for someH ⊆ G⊥ (4)

An analysisA that obeys condition (4) is said to bepredictable. A
hypergraphH that witnesses condition (4) is said to be apredictive
provenanceof analysisA. For a predictable analysis, reachability
and projection almost commute on the image ofP1, except that if
projection is done first, then reachability must ignore somearcs.

The inspiration for condition (4) came from the notion of correct
approximation, as used in abstract interpretation. But, itis not the
same. We tested condition (4) on analyses that do not explicitly
follow the abstract interpretation framework, and we were surprised
that it holds. Then we designed the example analysis fromSection 2
so that the reason why condition (4) holds is apparent: Datalog rules
come in pairs, one encoding precise semantics, the other encoding
approximate semantics. But, for real analyses, we could notdiscern
any such simple reason. Thus, we consider our empirical finding as
surprising and intriguing.

Recall that refinement algorithms use two termination condi-
tions: q /∈ A(a) and q ∈ RGa

(

P1(a)
)

. Predictive provenances
help us evaluate the termination conditions of refinement algo-
rithms.

Lemma 4. LetA be a well formed, monotone analysis. Leta be
an abstraction, and letH be a predictive provenance. Finally, letq
be a query derived byA under the cheapest abstraction⊥.

(a) If q /∈ A(a), thenq /∈ RG⊥ (P0(a)) andq /∈ RH(π(P1(a))).
(b) Also,q ∈ RGa

(

P1(a)
)

if and only ifq ∈ RH(π(P1(a))).

Part (a) lets us approximate the termination conditionq /∈
A(a); part (b) lets us evaluate the termination conditionq ∈
RGa

(

P1(a)
)

. In both cases, only small parts of the global prove-
nanceG are used, namelyG⊥ andH . The assumptionq ∈ A(⊥)
is reasonable: otherwise the refinement algorithm terminates after
the first iteration.

Proof. Assume thatq ∈ RH(π(P1(a))). We have

RH(π(P1(a))) = π
(

RG⊤ (P1(a))
)

by (4)

q∈π
(

RG⊤ (P1(a))
)

⇒ q ∈RG⊤ (P1(a)) by π−1(q)⊆{q}

RG⊤ (P1(a)) = RGa(P1(a)) ⊆ A(a) by Prop.1(a)

Putting these together, we conclude thatq ∈ A(a). Using a very
similar argument we can show thatq ∈ RG⊥ (P0(a)) implies
q ∈ A(a). This concludes the proof of part (a).

The proof of part (b) is similar.

Lemma 4tells us that we could evaluate termination conditions
more efficiently if we knew a predictive provenance. Alas, wedo
not know a predictive provenance.

4.4 Probabilities of Predictive Provenances

If we do not know a predictive provenance, then a naive way for-
ward is as follows: enumerate each possible predictive provenance,
see what it predicts, and take an average of the predictions.Our
model is only marginally more complicated: it considers some pos-
sible predictive provenances as more likely than others. Onthe face
of it, enumerating all possible predictive provenances takes us back
to an inefficient algorithm. We will see later how to deal withthis
problem (Section 6). Now, let us define the probabilistic model for-
mally.

The blueprint of the probabilistic model is given by a cheap
provenanceG⊥. To each arce ∈ G⊥, we associate a boolean ran-
dom variableSe, and call it theselection variableof e. Selection
variables are independent but may have different expectations. We
partitionG⊥ into typesG⊥1 , . . . , G

⊥
t , and we do not require selec-

tion variables to have the same expectation unless they havethe
same type. Each typeG⊥k has an associatedhyperparameterθk:
if e ∈ G⊥k , then we say thate has typek, and we require that
ESe = θk. Recall thatESe = Pr(Se = 1). We define, in terms
of the selection variables, a random variableH whose values are
predictive provenances, by requiring thatSe = [e ∈ H]. Thus, the
probability of a predictive provenanceH is

Pr(H = H) =
t
∏

k=1

θ
|G⊥

k
∩H|

k (1− θk)
|G⊥

k
\H| (5)

For example, if all arcs have the same type, then the model hasonly
one hyperparameterθ, andPr(H = H) is θ|H|(1− θ)|G

⊥\H|. At
the other extreme, if all arcs have their own type, then the model
has one hyperparameterθe for each arce ∈ G⊥, andPr(H = H)

is
∏

e∈G⊥ θ
[e∈H]
e (1− θe)

[e/∈H].
How many types should there be? Few types could lead to under-

fitting, many types could lead to overfitting. In the implementation,
we have one type per Datalog rule. Intuitively, this means that we
trust the judgement of whoever implemented the analysis.

4.5 Use of the Model

Before using the probabilistic model in a refinement algorithm, we
must choose appropriate values for hyperparameters. This is done
offline, in a learning phase (Section 5). After learning, each Datalog
rule has an associated probability – its hyperparameter.

After the first invocation of the analysis we know the cheap
provenanceG⊥, which we use as a blueprint for the probabilistic
model. Then, our model predicts whetherq ∈ RGa(P1(a)), where
a is some abstraction not yet tried. Recall thatq ∈ RGa (P1(a)) is
one of the termination conditions. The hypergraphGa is unknown,
and thus we model it by a random variableGa. However, we
do know fromLemma 4(b) that q ∈ RGa (P1(a)) if and only if
q ∈ RH(π(P1(a))). Thus,

Pr
(

q ∈ RGa(P1(a))
)

= Pr
(

q ∈ RH(π(P1(a)))
)

=
∑

R
q∈R

Pr
(

RH(π(P1(a))) = R
)

whereR ranges over subsets of vertices ofG⊥. It remains to com-
pute a probability of the formPr

(

RHT = R
)

. Explicit expres-
sions for such probabilities are also needed during learning, so they
are discussed later (Section 5).

Intuitively, one could think that the refinement algorithm runs
a simulation in which the static analyser is approximated bythe
probabilistic model. However, it would be inefficient to actually run
a simulation, and we will have to use heuristics that have a similar
effect (Section 6), namely to minimise the expected total runtime.
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5. Learning
The probabilistic model (Section 4) lets us compute the probability
that a given abstraction will provide a definite answer, and thus
terminate the refinement. These probabilities are computedas a
function of hyperparameters. The values of the hyperparameters,
however, remain to be determined. To find good hyperparameters,
we shall use a standard method from machine learning, namely
MLE (maximum likelihood estimation).

MLE works as follows. First, we set up an experiment. The re-
sult of the experiment is that we observe an eventO. Next, we
compute thelikelihood Pr(O) according to the model, which is a
function of the hyperparameters. Finally, we pick for hyperparame-
ters values that maximise the likelihood.

The standard challenge in deploying the MLE method is in the
last phase: the likelihood is typically a complicated function of the
hyperparameters. Often, to maximise the likelihood, analytic meth-
ods do not exist, and numeric methods could be unstable or ineffi-
cient. This is indeed the case for our model: analytic methods do not
apply, and many numeric methods are inefficient. But, we did find
one numeric method that is both stable and efficient (Section 7.2).
In addition to the standard challenge, our setting presentsan addi-
tional difficulty. The expression ofPr(O) is exponentially large if
the cheap provenance has cycles. We will handle this difficulty by
finding bounds that approximatePr(O).

5.1 Training Experiment

For the training experiment, we collect a set of programs. For the
formal development, it is convenient to consider the set of programs
as one larger program. We run the analysis on this large training
program several times, each time under a different abstraction. The
abstractionsa1, . . . , an are chosen randomly, with bias. In partic-
ular, they have to be cheap enough so that the analysis terminates
in reasonable time. As a result of running the analysis, we observe
the provenancesGa1 , . . . , Gan . To connect these observed prove-
nances to a probabilistic event, we shall use the predictability con-
dition (4) together with the following simple fact.

Proposition 5. LetG be a hypergraph, and letT1 andT2 be sets of
facts. IfT1 ⊆ T2, thenRGT1 = RG′T1, whereG′ = G[RGT2].

Corollary 6. Let a be an abstraction for analysisA. We have
RG⊤ (P1(a)) = RGa(P1(a)).

Given an efficient way to compute the projectionπ, we can
compute the sets of factsRk := π

(

RGak (P1(ak))
)

, for each
k ∈ {1, . . . , n}. Using Corollary 6 and condition (4), we have
thatRk = RH(π(P1(ak))), for k ∈ {1, . . . , n}. We define the
following events:

Ok :=
(

RH(π(P1(ak))) = Rk

)

for k ∈ {1, . . . , n}

O :=
(

O1 ∩ . . . ∩ On

)

The eventO is what we observe. It is completely described by
the pairs(ak, Rk). The abstractionak is sampled at random. The
setRk of facts is easily computed fromGak . The provenanceGak

is obtained from the set of instantiated Datalog rules during the
analysis under abstractionak, and it records all the reasoning steps
of the analysis.

5.2 Bounds on Likelihood

There appears to be no formula that computes the likelihoodPr(O)
and that is not exponentially large. However, there exist reasonably
small formulas that provide lower and upper bounds. We shalluse
the lower bound for learning, and we shall use both bounds to
evaluate the quality of the model.

One could define different bounds on likelihood. Our choice re-
lies on the concept of forward arc, which leads to several desirable

properties we will see later. Given a hypergraphG, we define the
distanced(G)

T (h) from verticesT to vertexh by requiringd(G)
T to

be the unique fixed-point of the following equations:

d
(G)
T (h) = 0 if h ∈ T

d
(G)
T (h) =∞ if h 6∈ RGT

d
(G)
T (h) = min

e=(h,B)∈G
max
b∈B

(d
(G)
T (b) + 1) otherwise

We omit the superscript when the hypergraph is clear from context.
A forward arc with respect toT is an arce = (h, B) ∈ G such
thatdT (h) > dT (b) for everyb ∈ B.

Theorem 7. Consider the probabilistic model associated with the
cheap provenanceG⊥ of some analysisA. Let T1, . . . , Tn and
R1, . . . , Rn be subsets of vertices ofG⊥. If h /∈ B for all arcs
(h,B) in G⊥ and Rk ⊆ RG⊥Tk for all k, then we have the
following lower and upper bounds onPr

(
⋂n

k=1(RHTk = Rk)
)

:
∏

e∈N

E S̄e

∏

h
Ch 6=∅

∑

E1

E1⊆Ah

∀k∈Ch, E1∩Fk 6=∅

∏

e∈E1

ESe

∏

e∈Ah\E1

E S̄e

≤ Pr
(

n
⋂

k=1

(

RHTk = Rk

)

)

≤
∏

e∈N

E S̄e

∏

h
Ch 6=∅

∑

E1

E1⊆Ah

∀k∈Ch, E1∩Dk 6=∅

∏

e∈E1

ESe

∏

e∈Ah\E1

E S̄e

where

N := { (h′, B′) ∈ G⊥ | B′ ⊆ Rk′ andh′ /∈ Rk′ for somek′ }

Ch := { k′ | h ∈ Rk′ \ Tk′ } Ah := { (h, B′) ∈ G⊥ } \N

Dk := { (h′, B′) ∈ G⊥ | B′ ⊆ Rk }

Fk := { e = (h′, B′) ∈ Dk | e is a forward arc w.r.t.Tk }

Intuitively, the arcs inN are those arcs that were observed to
be not selected; thus, the factor

∏

e∈N E S̄e. For each reachable
vertex, there is a factor that requires a justification, in terms of other
reachable vertices and in terms of selected arcs. Let us consider a
simple example, in which the lower and upper bounds coincide:
there are four arcsek = (h, {bk}) for k ∈ {1, 2, 3, 4}, and we
observedR1 = {b1}, R2 = {b1, b2, b4, h}, andR3 = {b3, b4, h}.
In R1, vertexh is not reachable butb1 is, soSe1 must not hold. In
R2, vertexh is reachable and could be justified by one ofe1, e2, e4,
soSe1 ∨ Se2 ∨ Se4 must hold. InR3, vertexh is reachable and
could be justified by one ofe3, e4, soSe3 ∨ Se4 must hold. In all,

S̄e1 ∧ (Se1 ∨ Se2 ∨ Se4) ∧ (Se3 ∨ Se4)

= S̄e1 ∧ (Se2 ∨ Se4) ∧ (Se3 ∨ Se4)
(6)

must hold. The expectation of this quantity is written inTheorem 7
asE S̄e1(E S̄e2 E S̄e3 ESe4 + · · · + ESe2 ESe3 ESe4), where
the inner sum enumerates the models of(Se2 ∧ Se3) ∨ Se4 .

The situation becomes more complicated when the hypergraph
has cycles. In the presence of cycles, the recipe from the previ-
ous example does not compute the likelihood, but it does compute
an upper bound. The reason is that it counts all cyclic justifica-
tions as if they were valid. Indeed, this is the upper bound given
in Theorem 7. For the lower bound, we first eliminate cycles by
dropping some arcs, thus lowering the likelihood; then, we apply
the same recipe.Theorem 7indicates that the arcs which should be
dropped are the nonforward arcs. Why is this a good choice? One
might think that we should drop a minimum number of arcs if we
want a good lower bound. However, (1) it is NP-hard to find the
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minimum number of arcs [26, Feedback Arc Set], and (2) the set
of such arcs is not uniquely determined. In contrast, we can find
the set of nonforward arcs in polynomial time, and the solution is
unique.

Another nice property of the set of forward arcs is that, if
for each reachable vertexh we retain at least one forward arc
whose head ish, then all reachable vertices remain reachable. This
property is desirable for detecting impossibility (seeLemma 15). In
terms of the lower bound, this property means that we never lower
bound a positive probability by0.

In the implementation, we sometimes heuristically drop forward
arcs, in order to keep the size of the formula small. But, we only
choose to drop a forward arc with headh if there are more than
8 forward arcs with headh. For example, if we drop arce2 in our
running example, the effect is that we lower bound (6) by

S̄e1 ∧ Se4 ∧ (Se3 ∨ Se4)

We simply drop the corresponding variableSe2 from the formula,
thus making the formula smaller. Similarly, we can reduce the size
of the formula for the upper bound, at the cost of weakening the
bond. This time, we drop clauses rather than variables. For example,
we can upper bound (6) by

S̄e1 ∧ (Se2 ∨ Se4)

For each vertex, our implementation drops all clauses except for
the longest one.

Although the probabilistic model is simple, computing the like-
lihood of an event of the form ‘RHT1 = R1 and. . . andRHTn =
Rn’ is not computationally easy.Appendix A gives an exact for-
mula that has size exponential in the number of vertices of the
cheap provenance, but also points to evidence that a significantly
smaller formula is unlikely to exist. The size explosion is caused
mainly by the cycles of the cheap provenance.Theorem 7gives
likelihood lower and upper bounds that are exponential onlyin the
maximum in-degree of the cheap provenance. These formulas are
still too large to be used in practice. However, there are simple
heuristics that can be applied to reduce the size of the formulas,
at the cost of weakening the bounds.

We use the lower bound to learn hyperparameters (Section 7.2).
We use the upper bound to measure the quality of the learnt hyper-
parameters (Section 7.3).

5.3 Results

We learnt hyperparameters for a flow insensitive but object sen-
sitive aliasing analysis. The aliasing analysis is implemented in
59 Datalog rules. All but5 rules get a hyperparameter of1. A rule
with a hyperparameter of1 is a rule that was not observed to be
involved in any approximation, in the training set. For two of the re-
maining five rules, the learnt hyperparameters were essentially ran-
dom, because the likelihood lower bound did not depend on them.
The reason is that the training set did not contain enough data, or
that the lower bound was too weak.

For the remaining three rules the hyperparameters were0.997,
0.985, and0.969. These values were robust, in the sense that they
varied little when the training subset changed. For example, the rule
with a hyperparameter of0.969 is

CVC(c, u, o)← DVDV(c, u, d, v), CVC(d, v, o), VCfilter(u, o)

Looking briefly at the aliasing analysis implementation we see that
(a) CVC(c, u, o) means ‘in contextc, variableu may point to ob-
jecto’, and (b) the relationDVDV is responsible for copying method
arguments and returned values. We interpret this as evidence that
the approximations done by the aliasing analysis are closely related
to approximations of the call graph.

Given: A well formed, monotone analysis A, and a query q.
SOLVE

1 a := ⊥ // ⊥ as initial abstraction
2 repeat
3 Ga := G[A(a)] // invokes analysis
4 if q /∈ A(a) then return “yes”
5 if q ∈ RGa (P1(a)) then return “no”
6 a := CHOOSENEXTABSTRACTION(Ga, q, a)

Figure 4. The refinement algorithm used to solveProblem 2.

We are not the authors of the aliasing analysis; it is taken
from Chord. Our learning algorithm automatically identified the
three rules that are most interesting, from the point of viewof
approximation.

6. Refinement
The probabilistic model is interesting from a theoretical point of
view (Section 4). The learning algorithm is already useful, because
it lets us find which rules of a static analysis approximate the
concrete semantics, and by how much (Section 5). In this section
we explore another potential use of the learnt probabilistic model:
to speed up the refinement of abstractions.

We consider a refinement algorithm that is applicable to analy-
ses implemented in Datalog (Section 6.1). The key step of refine-
ment is choosing the next abstraction to try. Abstractions that make
good candidates share several desirable properties. In particular,
they are likely to answer the posed query (Section 6.2), and they are
likely to be cheap to try (Section 6.3). These two desiderata need
to be balanced (alsoSection 6.3). Once we formalise how desirable
an abstraction is, the next task is to search for the most desirable
one (Section 6.4).

6.1 Refinement Algorithm

The refinement algorithm is straightforward (Figure 4). It repeat-
edly obtains the provenanceGa by running the analysis under ab-
stractiona (line 3), checks if one of the two termination conditions
holds (lines 4 and 5), and invokes CHOOSENEXTABSTRACTIONto
update the current abstraction (line 6). The correctness ofthis algo-
rithm follows from the discussion inSection 4.2, and in particular
Lemma 3.

Let a′ be the result of CHOOSENEXTABSTRACTION(Ga, q, a).
For termination, we require thata′ is strictly more precise thana.
This is sufficient because the lattice of abstractions is finite. The
next abstraction to try should satisfy two further requirements:

1. The termination conditions are likely to hold fora′.

2. The estimated runtime ofA undera′ is small.

Next, we discuss these two requirements in turn. To some degree,
we will make each of them more precise. But, we caution that from
now on the discussion leaves the realm of hard theoretical guaran-
tees, and enters the land of heuristic reasoning, where discussions
about static program analysis are typically found.

6.2 Making Termination Likely

The key step of the refinement algorithm (Figure 4) is the proce-
dure CHOOSENEXTABSTRACTION. The simplest implementation
that would ensure correctness is the following: return a random
element from the set of feasible abstractions{ a′ | a′ > a }.
Note that ifa were the most precise abstraction then the procedure
CHOOSENEXTABSTRACTIONwould not be called, so the feasible
set from above is indeed guaranteed to be nonempty.

One idea to speed up refinement is to restrict the set of feasible
solutions to those abstractions that are likely to provide adefinite
answer. LetAy andAn be the sets of abstractions that will lead
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the refinement algorithm to terminate on the next iteration with the
answer ‘yes’ or, respectively, ‘no’:

Ay := { a′ | a′ > a andq /∈ A(a′) }

An := { a′ | a′ > a andq ∈ RGa′ (P1(a
′)) }

Of course, exactly one of the two setsAy andAn is nonempty, but
we do not know which. More generally, we cannot evaluate these
sets exactly without running the analysis. But, we can approximate
them, because CHOOSENEXTABSTRACTIONhas access toGa. For
Ay we can compute an upper boundA⊇y ; for An we use a heuristic
approximationA≈n .

A⊇y := { a′ | a′ > a andq /∈ RGa(P0(a
′)) }

A≈n := { a′ | a′ > a andq ∈ RH(T (a, a′)) }

for someH ⊆ Ga, where

T (a, a′) := P1(a) ∪ π(P1(a
′) \ P1(a))

It is easy to see whyA⊇y ⊇ Ay; it is less easy to see whyA≈n ≈ An.
Let us start with the easy part.

Lemma 8. LetA⊇y andAy be defined as above. ThenA⊇y ⊇ Ay.

Proof. Assume thata′ > a, as in the definitions ofA⊇y andAy.
ThenP0(a

′) ⊆ P0(a). By Proposition 5andProposition 1,

RGa(P0(a
′)) = RG(P0(a

′)) = RGa′ (P0(a
′)) ⊆ A(a′)

The claimed inclusion now follows.

Let us now discuss the less obvious claim thatA≈n ≈ An. One
could wonder why we did not defineA≈n by

{ a′ | a′ > a andq ∈ RH(π(P1(a
′))) }

for someH ⊆ G⊥. This definition is simpler and is also guar-
anteed to be equivalent toAn, by the predictability condition (4).
In the implementation, we use the more complicated definition of
A≈n for two reasons. First, we note that (4) impliesA≈n = An if
a = ⊥. Thus, the claim thatA≈n = An can be seen as a generali-
sation of (4). We did not use this generalisation of (4) in the more
theoretical parts (Section 4andSection 5) because it would com-
plicate the presentation considerably. For example, instead of one
projectionπ, we would have a family of projections that compose.
In principle, however, it would be possible to takeA≈n = An as
an axiom, from the point of view of the theoretical development.
Second, the more complicated definition ofA≈n exploits all the in-
formation available inGa. The simpler version can also incorporate
information fromGa by conditioningH to be compatible withGa,
via (4). However, this conditioning would only use the projected set
of vertices ofGa, rather than its full structure.

Furthermore, the definition ofA≈n used in the implementation
has the following intuitive explanation. The conditionA≈n ≈ An

tells us that in order to predictRGa′ (P1(a
′)) by usingGa we

should do the following: (i) splitP1(a
′) into P1(a) andP1(a

′) \
P1(a); (ii) use the factsP1(a) as they are, because they already
appear inGa; (iii) approximate the facts inP1(a

′) \P1(a) by their
projections, because they do not appear inGa; and (iv) define the
predictive provenanceH with respect toGa, because it is the most
precise provenance available so far.

We defined two possible restrictions of the feasible set, namely
A⊇y and A≈n . The remaining question is now which one should
we use, or whether we should use some combination of them
such asA⊇y ∩ A≈n . The restriction toA⊇y could be called the
optimistic strategy, because it hopes the answer will be ‘yes’; the
restriction toA≈n could be called the pessimistic strategy, because
it hopes the answer will be ‘no’. The optimistic strategy hasbeen

used in previous work [55]. The pessimistic strategy is used in
our implementation. We found that it leads to smaller runtime
(Section 7.4). It would be interesting to explore combinations of
the two strategies, as future work.

In the optimistic strategy, one needs to check whetherA⊇y = ∅.
In this case, it must be thatAy = ∅ and thus the answer is ‘no’. In
other words, the main loop of the refinement algorithm needs to be
slightly modified to ensure correctness. In the pessimisticstrategy,
it is never the case thatA≈n = ∅, and so the main loop of the re-
finement algorithm is correct as given inFigure 4. The pessimistic
restrictionA≈n is nonempty because it always contains⊤, by choos-
ingH = Ga (seeLemma 15).

The setA≈n is defined in terms of an unknown predictive prove-
nanceH . Thus, we work in fact with the random variable

A
≈
n := { a′ | a′ > a andq ∈ RH(T (a, a′)) }

defined in a probabilistic model with respect toGa, instead ofG⊥.
We wish to choose an abstractiona′ that is likely inA≈n . In other
words, we want to maximisePr(a′ ∈ A

≈
n ). There is no simple

expression to compute this probability. For optimisation,we will
use the following lower bound.

Lemma 9. Let A≈n be defined as above, with respect to an anal-
ysisA, an abstractiona, and a queryq. Let a′ be some abstrac-
tion such thata′ > a. LetH be some subgraph ofGa such that
q ∈ RH(T (a, a′)). Then

Pr(a′ ∈ A
≈
n ) ≥

∏

e∈H

ESe

whereSe is the selection variable of arce.

Before describing the search procedure (Section 6.4), we must
see how to balance maximising the probability of termination with
minimising the running cost.

6.3 Balancing Probabilities and Costs

We are looking for an abstraction that is likely to answer thequery
but, at the same time, is not too expensive. Most of the time, these
two desiderata point in opposite directions: expensive abstractions
are more likely to provide an answer. This raises the question
of how to balance the two desiderata. We model the problem as
follows.

Definition 10 (Action Scheduling Problem). Suppose that we have
a list of m ≥ 1 actions, which can succeed or fail. The success
probabilities of these actions arep1, . . . , pm ∈ (0, 1], and the costs
for executing these actions arec1, . . . , cm > 0. Find a permutation
σ on{1, . . . ,m} that minimises the costC(σ):

C(σ) =
m
∑

k=1

qk(σ)cσ(k), qk(σ) =

k−1
∏

j=1

(

1− pσ(j)

)

.

Intuitively, C(σ) represents the average cost of running actions
according toσ until we hit success.

In the setting of our algorithm, them actions correspond to all
the possible next abstractionsa′1, . . . , a

′
m. Thepi isPr(a′i ∈ A

≈
n ),

and ci is the cost of running the analysis under abstractiona′i.
Hence, a solution to this action scheduling problem tells ushow we
should combine probability and cost, and select the next abstrac-
tion a′.

Lemma 11. Consider an instance of the action scheduling problem
(Definition 10). Assume the success probabilities of the actions are
independent. A permutationσ has minimum costC(σ) if and only
if pσ(1)/cσ(1) ≥ · · · ≥ pσ(m)/cσ(m).

Corollary 12. Under the conditions ofLemma 11, if the cost of
permutationσ is minimum, thenσ(1) ∈ argmaxi pi/ci.
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Cases all-one fine coarse

95.0% 0 (−0.22,−0.20) (−0.73,−0.72)
3.8% −∞ (−15,−14) (−33,−32)
1.2% −∞ −∞ (−12,−11)

Table 1. Bounds on the average log-likelihood, in basee.

Configuration Solved queries

Strategy Optimiser Ruled out Impossible Limit

optimistic exact 6 48 365
optimistic approximating 6 0 413
pessimistic exact 20 82 317
pessimistic approximating 20 82 317
probabilistic exact 20 70 329
probabilistic approximating 16 81 322

Table 2. Outcomes. All queries are assertions that seem to be
violated when the cheapest abstraction is used. Aruled outquery is
an assertion that is shown not to be violated. Animpossiblequery is
an assertion that seems violated even if the most precise abstraction
is used. The exact optimiser is MiFuMax [22]. The approximating
optimiser is based on MCSls [36].

Figure 5. Runtime comparison.

6.4 MAX SAT encoding

We saw a refinement algorithm (Section 6.1) whose key step
chooses an abstraction to try next. Then we saw how to esti-
mate whether an abstractiona′ is a good choice (Section 6.2and
Section 6.3): it should have a high ratio between success proba-
bility and runtime cost. But, since the number of abstractions is
exponential in the number of parameters, it is infeasible toenumer-
ate all in the search for the best one. Instead of performing anaive
exhaustive search, we encode the search problem as a MAX SAT
problem.

Let us summarise the search problem. Given are a queryq, an
abstractiona and its local provenanceGa. We want to find an ab-
stractiona′ > a that maximises the ratioPr(a′ ∈ A

≈
n )/c(a

′),
wherec(a′) is an estimate of the runtime of the analysis under ab-
stractiona′ (seeCorollary 12). We will approximatePr(a′ ∈ A

≈
n )

by a lower bound (seeLemma 9). Based on empirical observations,
we estimate the runtime of the analysis to increase exponentially
with the number

∑

x∈P a(x) of precise parameters. In short, we
want to evaluate the following expression:

argmax
a′

a′>a

(

(

max
H

H⊆Ga

q∈RH(T (a,a′))

∏

e∈H

ESe

)/

exp
(

α
∑

x∈P

a′(x)
)

)

Or, after absorbingmax in argmax, taking the log of the resulting
objective value, and simplifying the outcome:

argmax
a′,H

a′>a, H⊆Ga

q∈RH(T (a,a′))

(

∑

e∈H

log(ESe)−
∑

x∈P
a′(x)=1

α

)

(7)

We shall evaluate this expression by using a MAX SAT solver. The
idea is to encode the range ofargmax as hard constraints, and the
objective value as soft constraints.

There exist several distinct versions of the MAX SAT problem.
We define here a version that is most convenient to our develop-
ment. We consider arbitrary boolean formulas, not necessarily in
some normal form. We view assignments as sets of variables; in
particular,

M |= x iff x ∈M

M |= x̄ iff x /∈M

M |= φ1 ∧ φ2 iff M |= φ1 andM |= φ2

The evaluation rules for other boolean connectives are as expected.
If M |= φ holds, we say that the assignmentM is a model of
formulaφ.

Problem 13 (MAX SAT). Given are a boolean formulaΦ and a
weightw(x) for each variablex that occurs inΦ. Find a modelM
of Φ that maximises

∑

x∈M w(x).

We refer toΦ as thehard constraint.
Remark14. Technically,Problem 13is none of the standard vari-
ations of MAX SAT. It is easy to see, although we do not prove
it here, thatProblem 13is polynomial-time equivalent to partial
weighted MAX SAT [3, 38]: the reduction in one direction uses the
Tseytin transformation, while the reduction in the other direction
introduces relaxation variables.

The idea of the encoding is to define the hard constraintΦ
such that (i) the models ofΦ are in one-to-one correspondence
with the possible choices ofH and T such thatH ⊆ Ga and
P0(a) ⊆ T ⊆ P0(a) ∪ P1(a), and moreover (ii) each model also
encodes the reachable setRHT . To construct a hard constraintΦ
with these properties, we use the same technique as we used for
computing the likelihood (Section 5.2and Appendix A). As was
the case for likelihood, cycles lead to an exponential explosion. We
again deal with cycles by retaining only forward arcs:

Ga
→ := { e ∈ Ga | e is a forward arc w.r.t.P0(a) ∪ P1(a) }

The hard constraint is a formula whose variables correspondto
vertices and arcs ofGa

→. More precisely, its set of variables is
XV (Ga

→) ∪XE(G
a
→), where

XV (G) := {xu | u vertex ofG} XE(G) := {xe | e arc ofG}

We construct the hard constraintΦ as follows:

Φ := ∃
e∈Ga

→

ye
(

Φ1 ∧ Φ2 ∧ Φ3

)

Φ1 :=
∧

e=(h,B)∈Ga
→

(

(

ye ↔
(

xe ∧
∧

b∈B

xb

))

∧ (ye → xh)

)

Φ2 :=
∧

h
vertex ofGa

→

h6∈P0(a)∪P1(a)

(

xh →
(

∨

e=(h,B)∈Ga
→

ye
)

)

Φ3 := xq ∧
(

∧

u∈P0(a)

xu

)

∧
(

∨

u∈P1(a)

xu

)

(8)

The notation∃e∈Ga
→

ye stands for several existential quantifiers,
one for each variable in the set{ ye | e ∈ Ga

→ }. Intuitively,
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the constraintsΦ1 andΦ2 ensure that the models correspond to
reachable sets, and the constraintΦ3 ensures that the query is
reachable and thata′ > a.

The formulaΦ defined above has several desirable properties:
its size is linear in the size of the local provenanceGa, it is satisfi-
able, and each of its models represents a pair(a′,H) that satisfies
the range conditions of (7). The satisfiability ofΦ is important for
the correctness of the refinement algorithm, and it follows from
how we remove cycles, by retaining forward arcs. To state these
properties more precisely, let us denote the range of (7) by F (Ga)
where

F (G) := { (a′,H) | a′ > a andH ⊆ G andq ∈ RH(T (a, a′)) }
(9)

Lemma 15. Leta be an abstraction, and letq be a query, for some
analysisA. LetF (G) andGa

→ be defined as above. Ifa < ⊤ and
q ∈ A(a), then(⊤, Ga

→) ∈ F (Ga
→) ⊆ F (Ga).

The conditionsa < ⊤ andq ∈ A(a) are guaranteed to hold
when CHOOSENEXTABSTRACTIONis called on line 6 ofFigure 4.

Lemma 16. Let a be an abstraction, and letq be a query, for
some analysisA. Let the hard constraintΦ be defined as in(8):
let the feasible setF (Ga

→) be defined as in(9). There is a bijection
between the modelsM of Φ and the elements(a′, H) of F (Ga

→).
According to this bijection,

M ∩XE(G
a
→) = XE(H)

M ∩XV (Ga
→) = XV

(

RH(T (a, a′))
)

The proof of this lemma, given inAppendix B, relies on tech-
niques very similar to those used to proveTheorem 7.

At this point, we know how to define the hard constraintΦ, so
that its models form a subrange of the range of (7). It remains to
encode the value

∑

e∈H log(ESe) − α
∑

x∈P a′(x) by assigning
weights to variables. This is very easy. Each arc variablexe is
assigned the weightw(xe) = log(ESe). Each vertex variablexu

corresponding tou ∈ P0(a) ∪ P1(a) is assigned the weight
w(xu) = −α. All other variables are assigned the weight0.

7. Empirical Evaluation
In the empirical evaluation1 we aim to answer three questions:
(a) Which optimisation algorithm should be used for learning
(Section 7.2)? (b) How well does the probabilistic model predict
what the analysis does (Section 7.3)? (c) What is the effect of the
new refinement algorithm on the total runtime (Section 7.4)?

7.1 Experimental Design

For experiments, our goal was to improve upon the refinement
algorithm of Zhang et al. [55]. Accordingly, we use the same test
suite and the same aliasing analysis. The test suite consists of 8 Java
programs, which amount to0.45MiB of application bytecode plus
1MiB of library bytecode.

We try three refinement strategies: optimistic, pessimistic, and
probabilistic. The optimistic strategy uses the baseline refinement
algorithm. The pessimistic strategy uses our refinement algorithm
with all hyperparameters set to1. The probabilistic strategy uses
our refinement algorithm with hyperparameters learnt. We use a
time limit of 60 minutes per query, and a memory limit of25GiB.

For learning, we observe what the analysis does on a small set
of queries and abstractions. Each observation is essentially an event
of the form ‘RHT1 = R1 and. . . andRHTn = Rn’ (Section 5.1).
From these observations we learn hyperparameters, by optimising a
lower bound on the likelihood (Section 5.2). The hyperparameters

1http://rgrig.appspot.com/static/papers/popl2016experiments.html

we use to solve a query are learnt only from observations madeon
the other programs.

7.2 Numeric Optimisation of Likelihood

First, from the8 programs, we chose a random sample of26 queries.
Then, for each query, we chose a random sample of10 abstractions
(Section 5.1). In total, the training set has260 samples.

We first tried three numerical optimisers from the SciPy toolkit [23]:
tnc, slsqp, and basinhopping. They all fail. Then we imple-
mented a couple of numeric optimisers ourselves. We found that
the cyclic coordinate ascent method works well on our problem. In
the implementation, we usebasinhopping andslsqp as subrou-
tines, for line search.

Intuitively, cyclic coordinate ascent behaves well because the
likelihood tends to be concave along a coordinate, and tendsto
not be concave along an arbitrary direction. Concave functions are
much easier to optimise than non-concave functions, and so the line
search algorithm has an easier task when applied along coordinates.

7.3 Predictive Power of the Probabilistic Model

In addition to the260 samples used for training, we obtain, using
the same method, another set of260 samples used for evaluation.
Given a model, which is determined by an assignment of values
to hyperparameters, we can evaluate likelihood bounds for each of
the 260 evaluation samples. In absolute terms, these numbers are
hard to interpret: are they good or bad? To make the numbers more
meaningful, we consider three models, and we see how good they
are relative to each other.

The three models are:fine, coarse, andall-one. Thefine
model is learnt as described above. Thecoarse model is also learnt
as described above, but under the constraint that all hyperparam-
eters have the same value. Theall-one model simply assigns
value 1 to all hyperparameters, and thus corresponds to the pes-
simistic refinement strategy.

Table 1presents the results of the three models on the evaluation
set. For the aliasing analysis we consider, it turns out thatan
abstraction chosen at random does no better than the cheapest
abstraction in95% of cases. Theall-one model predicts that all
abstractions do no better than the cheapest one, so it is exactly
right in these95% of cases; conversely, it thinks the other5% of
cases cannot happen. More interestingly, thefine model thinks
that 1.2% samples from the evaluation set cannot happen. This
means that some hyperparameter is1 but should be< 1. We expect
that the number of such situations would decrease as the training
set grows. Assuming this is true, we can conclude that thefine

model is better than thecoarse model.
It is not possible to conclude which ofall-one andfine is

better. One difficulty is that the95% is a property of the analy-
sis. It might very well be that for another analysis this percent (of
cases in which precision helps) is higher or lower. A lower percent-
age would favour thefine model; a high percentage favours the
all-one model.

7.4 Total Analysis Runtime

In the8 programs there are in total1450 queries. We report results
for a random sample of419 queries. The first thing to notice in
Table 2is that most queries are not solved. This is in stark contrast
with Zhang et al. [55] where all queries are reported as solved. The
difference is explained by several differences between their setup
and ours. (1) In addition to their PolySite queries, we also include
Downcast queries. The latter are more difficult. (2) We used less
space and time: they used a machine with128GiB of memory,
whereas we only had25GiB available; they did not have an explicit
time limit, whereas we used1 hour as our time limit. (3) One of our
modifications to the code (unfortunate, with hindsight), was that we
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loaded in memory the results of the Datalog analysis, which further
increased our memory use. (4) They solve multiple queries atonce,
whereas we solve one at a time. By solving one query at a time, we
can make a more fine grained comparison.

These differences notwithstanding, we stress that the results
reported here are for running different algorithms under conditions
that are as similar as possible. For example, as much as possible of
the implementation is shared.

From the number of solved queries (Table 2), we see that the
refinement strategies, from best to worst, are: pessimistic, prob-
abilistic, optimistic. The pessimistic strategy solves the same set
of 102 queries regardless of the optimiser it uses. The probabilis-
tic strategy solves101 queries in total, if we take the union over
the two optimisers. There is exactly one query solved by the pes-
simistic strategy but not by the probabilistic one. The pessimistic
strategy solves this query in four iterations, whereas the probabilis-
tic strategy dies in the second iteration. The exact optimiser times
out. The approximate optimiser increases the precision more than
necessary after the first iteration, the Datalog solver doescope with
the increased precision, but an out of memory error happens while
Datalog’s answer is loaded in memory.

Figure 5compares the six configurations from the point of view
of runtime. We see that both the pessimistic and the probabilistic
strategies are better than the optimistic strategy.

7.5 Discussion

According toTable 2andFigure 5, setting all hyperparameters to1
works better than using learnt hyperparameters. Given this, is there
any point in learning hyperparameters? We believe the answer is
yes. Initially we tried only an exact MAX SAT solver2. When the
pessimistic strategy succeeds but the probabilistic strategy fails, the
cause is always that the MAX SAT solver times out. Our encod-
ing in MAX SAT is already an approximation, so an approximate
answer would do. We conjectured that replacing the exact solver
with an approximate one would improve performance. We are not
aware of an off-the-shelf approximate MAX SAT solver, so we im-
plemented one. Comparingprob-exact with prob-approx, we
see that using an approximate solver does improve the results, but
not enough. However, our approximate solver is so dumb that we
feel it ought to be possible to do much better.

Another reason to learn hyperparameters is independent of their
use for refinement: learnt hyperparameters identify interesting parts
of an analysis implemented in Datalog (Section 5.3). This is es-
pecially useful when one wants to understand an analysis imple-
mented by a third party.

Finally, we note that our empirical evaluation of refinement
strategies shows promise but is not comprehensive. In future work,
we intend to try better approximate MAX SAT solvers, and we
intend to evaluate refinement algorithms on more analyses im-
plemented in Datalog. But, first, we need better approximate
MAX SAT solvers, and we need more analyses implemented in
Datalog.

8. Related and Future Work
The potential of using machine learning techniques or probabilistic
reasoning for addressing challenges in static analysis [4, 10] has
been explored by several researchers in the past ten years. Three
dominant directions so far are: to infer program specifications au-
tomatically using probabilistic models or other inductivelearning
techniques [5, 27, 33, 37, 43, 44, 46], to guess candidate program in-
variants from test data or program traces using generalisation tech-
niques from machine learning [34, 41, 48], and to predict proper-
ties of potential or real program errors, such as true positiveness

2 also, at submission time, we had not tried setting all hyperparameters to1

and cause, probabilistically [30, 31, 54, 57]. Our work brings a
new dimension to this line of research by suggesting the use of
a probabilistic model for predicting the effectiveness of program
abstractions: a probabilistic model can be designed for predicting
how well a parametric static analysis would perform for a given
verification task when it is given a particular abstraction,and this
model can help the analysis to select a good program abstraction for
the task in the context of abstraction refinement. Another important
message of our work is that the derivations computed during each
analysis run include a large amount of useful information, and ex-
ploiting this information could lead to more beneficial interaction
between probabilistic reasoning and static analysis.

Machine learning techniques have been used before to speed up
abstraction refinement [9, 18], but in the setting of bounded model
checking of hardware.

Several probabilistic models for program source code have been
proposed in the past [1, 2, 21, 25, 35, 43, 44], and used for ex-
tracting natural coding conventions [1], helping the correct use of
library functions [44], translating programs between different lan-
guages [25], and cleaning program source code and inferring likely
properties [43]. These models are different from ours in that they
are not designed to predict the behaviours of program analyses un-
der different program abstractions, the main task of our probabilis-
tic models.

Our probabilistic models are examples of first-order probabilis-
tic logic programs studied in the work on statistical relational learn-
ing [12, 13, 19, 47]. In our case, models are large, and training
data provides only partial information about the random variableH
used in the models. To overcome this difficulty, we designed an al-
gorithm tailored to our needs, which is based on the idea of vari-
ational inference [24, 52]. More precisely, we optimised a lower
bound on the likelihood.

Our work builds on a large amount of research for automati-
cally finding good program abstraction, such as CEGAR [4, 7–
9, 20, 45], parametric static analysis with parameter search algo-
rithms [29, 40, 55, 56], and static analysis based on Datalog or
Horn solvers [6, 16, 17, 49, 53]. The novelty of our work lies in
the use of adding a bias in this abstraction search using a proba-
bilistic model, which predicts the behaviour of the static analysis
under different abstractions.

One future direction would be to find new applications for our
probabilistic techniques. For example, one could try to useour
techniques in order to improve other, non-probabilistic approaches
to estimating the impact of abstractions [42, 50]. Another future
direction would be to better characterise the theoretical properties
of our refinement algorithm. For example, if applied in the setting
of abstract interpretation, how does it interact with the notion of
completeness [14, 15]?

9. Conclusion
We have presented a new approach to abstraction refinement, one
that receives guidance from a learnt probabilistic model. The model
is designed to predict how well would the static analysis perform
for a given verification task under different parameter settings. The
model is fully derived from the specification of the analysis, and
does not require manually crafted features. Instead, our model’s
prediction is based on all the reasoning steps performed by the
analysis in a failed run. To make these predictions, the model needs
to know how much approximation is involved in each Datalog rule
that implements the static analysis. We have shown how to quantify
the approximation, by using a learning algorithm that observes the
analysis running on a large codebase. Finally, we have shownhow
to combine the predictions of the model with a cost measure in
order to choose an optimal next abstraction to try during refinement.
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Our empirical evaluation with an object-sensitive pointeranalysis
shows that our approach is promising.
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A. Proof of Theorem 7
We begin by restating in our notation a standard result from logic
programming. Adependency graphof a hypergraphG is a directed
graph that includes an arc(h, b) whenever(h,B) ∈ G andb ∈ B
for someB. A loop L of a hypergraphG is a nonempty subset
of its vertices that induce a strongly connected subgraph ofthe
dependency graph ofG. Note that loops are not required to be
maximal. In particular, sets that contain single vertices are loops,
calledtrivial loops. The setJG(L) of justificationsfor loopL in G
is defined as follows:

JG(L) := { (h,B) ∈ G | h ∈ L andB ∩ L = ∅ }

For a hypergraphG we define itsforward formula φ→(G) and its
backward formulaφ←(G) as follows:

φ→(G) :=
∧

e=(h,B)∈G

(

(

(

∧

b∈B

xb

)

↔ xe

)

∧ (xe → xh)

)

φ←(G) :=
∧

L
loop ofG

(

(

∧

u∈L

xu

)

→
(

∨

e∈JG(L)

xe

)

)

Both formulas are defined over the following set of variables:

{xu | u vertex ofG } ∪ { xe | e arc ofG }

We define theformula φ(G) of a hypergraphG by

φ(G) := ∃
e∈G

xe

(

φ→(G) ∧ φ←(G)
)

The notation∃e∈G xe stands for several existential quantifiers, one
for each variable in the set{xe}e∈G indexed byG. In the definition
of φ(G) from above, the existential quantification is not strictly
necessary, but convenient: Because the remaining free variables
correspond to vertices, sets of variables are isomorphic tosets
of vertices.

We view modelsM of a formulaϕ as sets of variables; that is,

M |= x iff x ∈M

M |= x̄ iff x /∈M

M |= ϕ1 → ϕ2 iff M |= ϕ1 impliesM |= ϕ2

M |= ∃xϕ iff M |= ϕ[x := 0] or M |= ϕ[x := 1]

and so on, in the standard way. There is an obvious one-to-one
correspondence between sets of vertices and models; ifS is a set of
vertices, we writeXS for the corresponding model, which is a set
of variables:

XS := {xs | s ∈ S }

The following result is stated in [28, Section 3], in a slightly more
general form and with slightly different notations:

Lemma 17. LetG be a hypergraph, and letφ(G) be its formula,
defined as above. ThenX

(

RG∅
)

is the unique model ofφ(G).

For the proof, we refer to [28].
Remark18. We note thatφ→(G) is linear in the size ofG, while
φ←(G) is exponential in the size ofG in the worst case. One could
wonder whether it is possible to defineφ(G) in a way that does
not lead to exponentially large formulas butLemma 17still holds.
It turns out there are reasons to suspect that such an alternative
definition does not exist [32].

Here, we shall need a more flexible form ofLemma 17. Let S
be a distinguished subset of vertices, none of which occurs in the
head of an arc. Define

φS
←(G) :=

∧

L
loop ofG
L∩S=∅

(

(

∧

u∈L

xu

)

→
(

∨

e∈JG(L)

xe

)

)

and

φS(G) := ∃
e∈G

xe

(

φ→(G) ∧ φS
←(G)

)

(10)

Corollary 19. LetG be a hypergraph, letS be a subset of vertices
such that none of them occurs in the head of an arc, and let
φS(G) be defined as above. For each subsetT of S, there exists
a unique modelM of φS(G) such thatX−1(M)∩S = T , namely
M = X

(

RGT
)

.

Proof. For a fixed but arbitraryT ⊆ S, construct the graph

GT := G ∪ { (t, ∅) | t ∈ T }

It is easy to check thatRGT = RGT
∅. FromLemma 17, we know

thatX
(

RGT
∅
)

is the unique model ofφ(GT ). Since the vertices
of S do not occur in the heads of arcs, they appear only in trivial
loops. Thus, we have

φ→(GT ) = φ→(G) ∧
(

∧

t∈T

xt

)

φ←(GT ) = φS
←(G) ∧

(

∧

s∈S\T

x̄s

)

(The formulas above eliminate via existential quantification the
variables corresponding to the dummy arcs(t, ∅) of GT , but this
is of little consequence.) And finally

φ→(GT ) ∧ φ←(GT ) = φ→(G) ∧ φS
←(G)

∧
(

∧

s∈S\T

x̄s

)

∧
(

∧

t∈T

xt

)

This concludes the proof.

We now take a special case ofCorollary 19.

Corollary 20. LetG be a hypergraph. Let(S, V ) be a partition of
its vertices such that no vertex inS occurs as the head of an arc.
LetφS(G) be defined as above. LetR be a subset ofV . Define

φS,R(G) := ∃
u∈V

xu

(

φS(G) ∧
(

∧

u∈R

xu

)

∧
(

∧

u∈V \R

x̄u

)

)

For all T ⊆ S, we have thatXT is a model ofφS,R(G) if and only
if RGT = T ∪ R.

Proof. Let T be a subset ofS. Then,XT is a model ofφS,R(G) if
and only ifX(T ∪ R) is a model ofφS(G). But by Corollary 19,
this is equivalent toRGT = T ∪ R.

The key idea of our proof is to useCorollary 20in such a way
that subsets ofS correspond to predictive provenancesH . To this
end, we define theextended cheap provenanceG⊥T with respect to
the setT of vertices by

G⊥T := { (h,B ∪ {se}) | e = (h, B) ∈ G⊥ } ∪ { (t, ∅) | t ∈ T }

Recall our notationG⊥ for the cheap provenance. For a predictive
provenanceH ⊆ G⊥, let us writeSH for { se | e ∈ H }. All the
vertices ofSG⊥ are fresh: they appear inG⊥T but not inG⊥. The
extended cheap provenance has the property that

RG⊥

T

(SH) = (SH) ∪RHT (11)

for all predictive provenancesH ⊆ G⊥ and all sets of verticesT .
Suppose the cheap provenanceG⊥ and two subsetsT andR of

its vertices are given. The following lemma shows how to construct
a boolean formula whose models are in one-to-one correspondence
with the cheap provenancesH ⊆ G⊥ for whichR = RHT .
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Lemma 21. LetG⊥ be a cheap provenance, and letR andT be
two subsets of its vertices. Define the extended cheap provenance
G⊥T with respect toT as above. We have thatR = RHT if and
only if X(SH) is a model ofφSG⊥,R(G⊥T ).

Proof. In Corollary 20, setS := SG⊥ andT := SH andG :=
G⊥T . We obtain that

X(SH) |= φSG⊥,R(G⊥T ) iff RG⊥

T

(SH) = (SH) ∪R

Combining this with (11) we obtain

X(SH) |= φSG⊥,R(G⊥T ) iff (SH) ∪RHT = (SH) ∪ R

Finally, since all the vertices inSH are fresh, we are done.

What remains to be done is to make explicit the formula
φSG⊥,R(G⊥T ) mentioned inLemma 21. This is only a matter of
calculation. We begin by unfolding the definition ofφSG⊥,R(G⊥T ),
and then that ofφSG⊥

(G⊥T ). Below, the notationϕ[xR := v]
means that inϕ we substitute the variablexu with valuev for all
indicesu ∈ R. Also, we writeV for the vertex set ofG⊥.

φSG⊥,R(G⊥T )

= ∃
u∈V

xu

(

φSG⊥

(G⊥T ) ∧
(

∧

u∈R

xu

)

∧
(

∧

u∈V \R

x̄u

)

)

= φSG⊥

(G⊥T )[xR := 1][xV \R := 0]

= ∃
e∈G⊥

T

xe

(

φ→(G⊥T ) ∧ φSG⊥

← (G⊥T )
)

[xR := 1][xV \R := 0]

= ∃
e∈G⊥

T

xe

(

Ψ→ ∧Ψ←
)

where

Ψ→ := φ→(G⊥T )[xR := 1][xV \R := 0]

Ψ← := φSG⊥

← (G⊥T )[xR := 1][xV \R := 0]

Now we calculateΨ→ and Ψ←, in turn. We begin withΨ→.
First we unfold the definition ofφ→(G⊥T ), then we unfold the
definition of G⊥T , and finally we apply the substitutions. During
the calculation, we identifyxse with Se. This is partly notational
convenience (to avoid double subscripts), but it will also allow us
to weigh models according to the probabilistic model.

Ψ→ = φ→(G⊥T )[xR := 1][xV \R := 0]

=
∧

e∈G⊥

T

e=(h,B)

(

(

(

∧

b∈B

xb

)

↔ xe

)

∧ (xe → xh)

)

[

xR := 1

xV \R := 0

]

=

(

∧

e′∈G⊥

e′=(h,B)
e=(h,B∪{s

e′
})

(

(

(

∧

b∈B∪{s
e′
}

xb

)

↔ xe

)

∧ (xe → xh)

)

∧
∧

t∈T
e=(t,∅)

(xe ∧ xt)

)

[

xR := 1

xV \R := 0

]

=
∧

e′∈G⊥

e′=(h,B)
e=(h,B∪{s

e′
})

(

(

(

Se′ ∧ [B ⊆ R]
)

↔ xe

)

∧ (xe → [h ∈ R])

)

∧
∧

t∈T
e=(t,∅)

(xe ∧ [t ∈ R])

If T 6⊆ R, thenΨ→ = 0; otherwise,

Ψ→ =

(

∧

e′=(h,B)∈G⊥

e=(h,B∪{s
e′
})

B ⊆ R andh ∈ R

(

Se′ ↔ xe

)

)

∧

(

∧

e′=(h,B)∈G⊥

B ⊆ R andh 6∈ R

S̄e′

)

∧

(

∧

e′=(h,B)∈G⊥

e=(h,B∪{s
e′
})

B 6⊆ R

x̄e

)

∧

(

∧

t∈T
e=(t,∅)

xe

) (12)

Next, we calculateΨ←.

Ψ← = φSG⊥

← (G⊥T )[xR := 1][xV \R := 0]

=
∧

L
loop ofG⊥

T

L∩SG⊥=∅

(

(

∧

u∈L

xu

)

→
(

∨

e∈J
G⊥

T

(L)

xe

)

)

[

xR := 1

xV \R := 0

]

=
∧

L
loop ofG⊥

(

(

∧

u∈L

xu

)

→
(

∨

e∈J
G⊥

T

(L)

xe

)

)

[

xR := 1

xV \R := 0

]

=
∧

L
loop ofG⊥

(

[L ⊆ R]→
(

∨

e∈J
G⊥

T

(L)

xe

)

)

=
∧

L
loop ofG⊥

L⊆R

(

(

∨

e′

e′=(h,B)∈J
G⊥ (L)

e=(h,B∪{s
e′
})

xe

)

∨
(

∨

t∈T∩L
e=(t,∅)

xe

)

)

When we calculateΨ→ ∧ Ψ← we see thatΨ→ fixes the values of
all the variablesxe corresponding to arcs.

φSG⊥,R(G⊥T ) = ∃
e∈G⊥

T

xe (Ψ→ ∧Ψ←)

= [T ⊆ R] ∧

(

∧

e′=(h,B)∈G⊥

B ⊆ R andh 6∈ R

S̄e′

)

∧Ψ←

[

xe := S
e′

for (e, e′) ∈ S
xe := 0 for e ∈ O
xe := 1 for e ∈ I

]

whereS, O, andI stand for corresponding ranges in (12). More
precisely, lettinge′ = (h, B) range overG⊥ and lettinge be its
corresponding arc(h,B∪{se′}) in G⊥T , we haveS := { (e, e′) |
B ⊆ R andh ∈ R} andO := { e | B 6⊆ R }. Also, I contains
all the dummy arcs of the form(t, ∅), for all t ∈ T . Now we
apply these three substitutions toΨ←, one by one. The first line
just introduces a shorthand notation for each of the three kinds of
substitutions.

Ψ←







xe := Se′ for (e, e′) ∈ S

xe := 0 for e ∈ O

xe := 1 for e ∈ I






= Ψ←







S

O

I







=
∧

L
loop ofG⊥

L⊆R

(

(

∨

e′

e′=(h,B)∈J
G⊥ (L)

e=(h,B∪{s
e′
})

xe

)

∨
(

∨

t∈T∩L
e=(t,∅)

xe

)

)







S

O

I







=
∧

L
loop ofG⊥

L⊆R\T

∨

e′

e′=(h,B)∈J
G⊥ (L)

e=(h,B∪{s
e′
})

xe

[

S

O

]
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=
∧

L
loop ofG⊥

L⊆R\T

∨

e′

e′=(h,B)∈J
G⊥ (L)

e=(h,B∪{s
e′
})

B⊆R

xe[S ]

=
∧

L
loop ofG⊥

L⊆R\T

∨

e′

e′=(h,B)∈J
G⊥ (L)

B⊆R

Se′

Finally, we conclude that

φSG⊥,R(G⊥T ) =

[T ⊆ R] ∧

(

∧

e=(h,B)∈G⊥

B⊆R, h/∈R

S̄e

)

∧

(

∧

L
loop inG⊥

L⊆R\T

∨

e=(h,B)
e∈J

G⊥ (L)

B⊆R

Se

)

(13)

Now observe that

Pr

( n
⋂

k=1

(

Rk = RH(Tk)
)

)

= E

( n
∧

k=1

φSG⊥,Rk(G⊥Tk
)

)

(14)

Putting together (13) and (14), we obtain the following lemma.

Lemma 22. Consider the probabilistic model associated with
the cheap provenanceG⊥ of an analysisA. Let T1, . . . , Tn and
R1, . . . , Rn be subsets of the vertices ofG⊥. If Tk ⊆ Rk for all k,
then

Pr

( n
⋂

k=1

(

Rk = RHTk

)

)

=

∏

e∈N

E S̄e · E

(

∧

L
loop ofG⊥

∧

k
L⊆Rk\Tk

∨

e=(h,B)
e∈J

G⊥ (L)\N

B⊆Rk

Se

)

where

N := { (h,B) ∈ G⊥ | B ⊆ Rk andh /∈ Rk for somek }

Proof. We assume thatTk ⊆ Rk. Using (13) and (14), we trans-
form

∧n
k=1 φ

SG⊥,Rk (G⊥Tk
) as follows:

n
∧

k=1

φSG⊥,Rk (G⊥Tk
)

=
n
∧

k=1

(

(

∧

e=(h,B)∈G⊥

B⊆Rk, h/∈Rk

S̄e

)

∧

(

∧

L
loop inG⊥

L⊆Rk\Tk

∨

e=(h,B)
e∈J

G⊥ (L)

B⊆Rk

Se

)

)

=

(

∧

e∈N

S̄e

)

∧

( n
∧

k=1

∧

L
loop inG⊥

L⊆Rk\Tk

∨

e=(h,B)
e∈J

G⊥ (L)

B⊆Rk

Se

)

=

(

∧

e∈N

S̄e

)

∧

( n
∧

k=1

∧

L
loop inG⊥

L⊆Rk\Tk

∨

e=(h,B)
e∈J

G⊥ (L)\N

B⊆Rk

Se

)

=

(

∧

e∈N

S̄e

)

∧

(

∧

L
loop inG⊥

∧

k∈{1,...,n}
L⊆Rk\Tk

∨

e=(h,B)
e∈J

G⊥ (L)\N

B⊆Rk

Se

)

The conclusion of the lemma now follows from the result of this
calculation and the fact thatSe andSe′ are independent whenever
e 6= e′.

We can finally proveTheorem 7. Recall its statement:

Theorem 7. Consider the probabilistic model associated with the
cheap provenanceG⊥ of some analysisA. Let T1, . . . , Tn and
R1, . . . , Rn be subsets of vertices ofG⊥. If h /∈ B for all arcs
(h,B) in G⊥ and Rk ⊆ RG⊥Tk for all k, then we have the
following lower and upper bounds onPr

(
⋂n

k=1(RHTk = Rk)
)

:
∏

e∈N

E S̄e

∏

h
Ch 6=∅

∑

E1

E1⊆Ah

∀k∈Ch, E1∩Fk 6=∅

∏

e∈E1

ESe

∏

e∈Ah\E1

E S̄e

≤ Pr
(

n
⋂

k=1

(

RHTk = Rk

)

)

≤
∏

e∈N

E S̄e

∏

h
Ch 6=∅

∑

E1

E1⊆Ah

∀k∈Ch, E1∩Dk 6=∅

∏

e∈E1

ESe

∏

e∈Ah\E1

E S̄e

where

N := { (h′, B′) ∈ G⊥ | B′ ⊆ Rk′ andh′ /∈ Rk′ for somek′ }

Ch := { k′ | h ∈ Rk′ \ Tk′ } Ah := { (h, B′) ∈ G⊥ } \N

Dk := { (h′, B′) ∈ G⊥ | B′ ⊆ Rk }

Fk := { e = (h′, B′) ∈ Dk | e is a forward arc w.r.t.Tk }

If Tk 6⊆ Rk for somek, then the probability and both of its
bounds are all0. In what follows, we shall invokeLemma 22, thus
silently assuming thatTk ⊆ Rk for all k. We first prove the claim
about an upper bound, and then show the claim about a lower
bound.

Proof of the Upper Bound inTheorem 7. We start with a short cal-
culation which shows what happens if we consider only trivial
loops. Recall the assumption thath /∈ B for all arcs(h, B).

E

(

∧

L
loop ofG⊥

∧

k
L⊆Rk\Tk

∨

e=(h,B)
e∈J

G⊥ (L)\N

B⊆Rk

Se

)

≤ E

(

∧

h
vertex ofG⊥

∧

k
h∈Rk\Tk

∨

e=(h,B)
e/∈N,B⊆Rk

Se

)

= E

(

∧

h
Ch 6=∅

∧

k∈Ch

∨

e=(h,B)
e/∈N,B⊆Rk

Se

)

=
∏

h
Ch 6=∅

E

(

∧

k∈Ch

∨

e=(h,B)
e/∈N,B⊆Rk

Se

)

=
∏

h
Ch 6=∅

E

(

∧

k∈Ch

∨

e=(h,B)∈Ah

B⊆Rk

Se

)

(15)

The expression above has the form
∏

h EΨh. We rewriteΨh,
by essentially enumerating all of its models and checking ifthey
satisfyΨh. The result is the following equivalent form:

∨

E1

E1⊆Ah

∀k∈Ch, E1∩Dk 6=∅

(

(

∧

e∈E1

Se

)

∧

(

∧

e∈Ah\E1

S̄e

)

)
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and so

EΨh =
∑

E1

E1⊆Ah

∀k∈Ch, E1∩Dk 6=∅

∏

e∈E1

ESe

∏

e∈Ah\E1

E S̄e (16)

Finally, we multiply the inequality (15) on both sides by
∏

e∈N E S̄e,
plug in (16), and useLemma 22.

Note that the upper bound is tight ifG⊥ has no cycles and
therefore all loops are trivial.

Proof of the Lower Bound inTheorem 7. By Lemma 22,

Pr

( n
⋂

k=1

(

Rk = RHTk

)

)

=

∏

e∈N

E S̄e · E

(

∧

L
loop ofG⊥

∧

k
L⊆Rk\Tk

∨

e=(h,B)
e∈J

G⊥ (L)\N

B⊆Rk

Se

)

Thus, the main part of the lemma follows if we show that
∧

h
Ch 6=∅

∨

E1

E1⊆Ah

∀k∈Ch, E1∩Fk 6=∅

(

(

∧

e∈E1

Se

)

∧
(

∧

e∈Ah\E1

S̄e

)

)

(17)

implies
∧

L
loop ofG⊥

∧

k
L⊆Rk\Tk

∨

e=(h,B)
e∈J

G⊥ (L)\N

B⊆Rk

Se (18)

To show this implication, we will show that a fixed but arbitrary
conjunct of (18) holds, assuming that (17) holds. A conjunct of (18)
is determined by a loopL0 and an indexk0. The idea is to show that
loopL0 is justified via its vertex that is closest toTk0

.
SinceL0 andk0 determine a conjunct of (18), we know that

L0 ⊆ Rk0
\ Tk0

. We need to find an arce = (h,B) such that

e ∈ JG⊥ (L0) \N, B ⊆ Rk0
, and Se = 1. (19)

SinceL0 is not empty andL0 ⊆ Rk0
⊆ RG⊥Tk0

, we can choose
h ∈ L0 such thatdTk0

(h) is minimum. Sinceh ∈ L0 ⊆ Rk0
\Tk0

,
we have that

k0 ∈ Ch.

This lets us instantiate (17) with h, and derive that for some subset
E1 of Ah,

E1 ∩ Fk 6= ∅ for all k ∈ Ch and Se = 1 for all e ∈ E1

(20)
Sincek0 ∈ Ch, the first conjunct implies thatE1 ∩Fk0

6= ∅. Thus,
there exists an arce0 = (h0, B0) in E1 ∩ Fk0

, and it satisfies the
following conditions:

1. the headh0 of e0 is h;
2. e0 is not inN ;
3. B0 ⊆ Rk0

; and
4. e0 is a forward arc with respect toTk0

.

Sincee0 is a forward arc w.r.t.Tk0
andh has the minimal distance

from Tk0
among all the vertices inL0,

e0 ∈ JG⊥ (L0)

Also, by the second conjunct in (20),

Se0 = 1

From what we have just shown follows thate0 is the desired arc; it
satisfies the requirements in (19).

Note that the lower bound and the upper bound coincide if
Dk ∩ Ah = Fk ∩ Ah for all k andh. In this case, both bounds
are tight.

B. Proofs for Results inSection 6
Lemma 9. Let A≈n be defined as above, with respect to an anal-
ysisA, an abstractiona, and a queryq. Let a′ be some abstrac-
tion such thata′ > a. LetH be some subgraph ofGa such that
q ∈ RH(T (a, a′)). Then

Pr(a′ ∈ A
≈
n ) ≥

∏

e∈H

ESe

whereSe is the selection variable of arce.

Proof. The proof is a straightforward calculation.

Pr(a′ ∈ A
≈
n ) =

∑

H′

H′⊆Ga

[q ∈ RH′(T (a, a′))] Pr(H ′)

≥
∑

H′

H⊆H′⊆Ga

[q ∈ RH′(T (a, a′))] Pr(H ′)

=
∑

H′

H⊆H′⊆Ga

Pr(H ′) =
∏

e∈H

ESe

The second equality uses two facts: (i)q ∈ RH(T (a, a′)), and
(ii) RH(T (a, a′)) ⊆ RH′(T (a, a′)) for all H ′ ⊇ H .

Lemma 11. Consider an instance of the action scheduling problem
(Definition 10). Assume the success probabilities of the actions are
independent. A permutationσ has minimum costC(σ) if and only
if pσ(1)/cσ(1) ≥ · · · ≥ pσ(m)/cσ(m).

Proof. Another way of saying that the sequence{pσ(i)/cσ(i)}i is
nonincreasing is to require that for all1 ≤ i, j ≤ m,

i ≤ j ⇒
cσ(i)

pσ(i)

≤
cσ(j)

pσ(j)

(21)

Pick an arbitrary permutationσ. We will study the effect of one
transposition(i↔ i+1) on the cost. Letσ′ = σ ◦ (i↔ i+1); in
other words

σ′(j) =











σ(i+ 1) if j = i

σ(i) if j = i+ 1

σ(j) otherwise

Observe thatqk(σ) andqk(σ′) differ for only onevalue ofk:

qk(σ
′) =

{

qi(σ)(1− pσ(i+1)) if k = i+ 1

qk(σ) otherwise

Also notice thatqk(σ) 6= 0 andq′k(σ) 6= 0 for all k. The difference
in cost betweenσ′ andσ is

C(σ′)− C(σ) = qi(σ
′)cσ′(i) + qi+1(σ

′)cσ′(i+1)

− qi(σ)cσ(i) − qi+1(σ)cσ(i+1)

= qi(σ)cσ(i+1) + qi(σ)(1− pσ(i+1))cσ(i)

− qi(σ)cσ(i) − qi(σ)(1− pσ(i))cσ(i+1)

= qi(σ)(pσ(i)cσ(i+1) − pσ(i+1)cσ(i)).

Thus,
C(σ′)− C(σ)

qi(σ)
= pici+1 − pi+1ci
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wherepi denotespσ(i), andci denotescσ(i), for the fixed permuta-
tion σ.

All that remains is to interpret the result of these calculations.
For the left-to-right direction, assume thatσ has the minimal cost.
Also, for the sake of contradiction, suppose that there exist i andj
such thati ≤ j andci/pi > cj/pj . Then, there must also exist an
i such thatci/pi > ci+1/pi+1, which is equivalent to

pici+1 − pi+1ci < 0.

Thus, the previous calculation shows thatσ′ would have a lower
cost thanσ. This contradicts the assumption thatσ has the minimal
cost.

For the right-to-left direction, pickσ and σ′ that satisfy the
RHS of (21). Then, we can convertσ to σ′ by composingσ with a
sequence of transpositionsi↔ i+ 1 for i such that

ci
pi

=
ci+1

pi+1
.

Then the previous computation shows that such composition leaves
the cost unchanged. Thus,σ andσ′ have the same cost. But by what
we have already shown, there should be at least oneσ′′ that satisfies
the RHS of (21) and have the minimal cost. This implies that all of
σ, σ′ andσ′′ are optimal.

Lemma 15. Leta be an abstraction, and letq be a query, for some
analysisA. LetF (G) andGa

→ be defined as above. Ifa < ⊤ and
q ∈ A(a), then(⊤, Ga

→) ∈ F (Ga
→) ⊆ F (Ga).

Proof. The inclusionF (Ga
→) ⊆ F (Ga) follows fromGa

→ ⊆ Ga.
We have(⊤,Ga

→) ∈ F (Ga
→) because (a)⊤ > a by assumption,

(b) Ga
→ ⊆ Ga

→ trivially, and (c) q ∈ RGa
→
(T (a,⊤)). To see

why (c) holds, notice that removing nonforward arcs with respect
to T (a,⊤) = P0(a) ∪ P1(a) preserves distances and reachability
from T (a,⊤), and soRGa

→
(T (a,⊤)) = RGa(T (a,⊤)).

Lemma 16. Let a be an abstraction, and letq be a query, for
some analysisA. Let the hard constraintΦ be defined as in(8):
let the feasible setF (Ga

→) be defined as in(9). There is a bijection
between the modelsM of Φ and the elements(a′,H) of F (Ga

→).
According to this bijection,

M ∩XE(G
a
→) = XE(H)

M ∩XV (Ga
→) = XV

(

RH(T (a, a′))
)

Proof sketch.Let

G′ := { (h, e ∪ B) | e = (h,B) ∈ Ga
→ }

S′ := { e | e ∈ Ga
→ }

BecauseGa
→ has no cycles by construction,G′ does not have

cycles, either. We have that
(

∃
e∈Ga

→

ye (Φ1 ∧ Φ2)
)

⇔
(

φS′∪P0(a)∪P1(a)(G′)
)

where the latter uses the definition in (10). Thus, we can apply
Corollary 19. Finally, note thatΦ3 ensures thata′ > a andq ∈
RH(T (a, a′)).
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