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a Department of Statistics, University of Warwick, Coventry CV4 7AL, U.K.

b Kent Business School, University of Kent, Canterbury, Kent CT2 7PE, U.K.

Abstract

In this paper, we investigate the issue of unreliability in hub location planning. A mixed integer

nonlinear programming model is formulated for optimally locating p uncapacitated hubs, each of which

can fail with a site-speci�c probability. The objective is to determine the location of hubs and the

assignment of demand nodes to hubs in order to minimize expected demand weighted travel cost plus a

penalty if all hubs fail. A linear version of the model is developed employing a specialized �ow network

called a probability lattice to evaluate compound probability terms. A Tabu search algorithm is proposed

to �nd optimal to near optimal solutions for large problem instances. A parallel computing strategy

is integrated into the Tabu search process to improve performance. Experimental results carried out

on several benchmark instances show the e�ciency of our linearized model and heuristic algorithm.

Compared to a standard hub median model that disregards the potential for hub failures, our model

produces solutions that serve larger numbers of customers and at lower cost per customer.

Keywords: hub location; reliability; linearization; probability lattice; Tabu search; parallel computing

1 Introduction

Hub network design involves the location of hub facilities through which �ows from di�erent origins to

destinations must be routed. Many practical applications of hub location exist for transportation, telecom-

munications, and other logistics systems. The classic uncapacitated, single allocation p-hub median problem

was �rst introduced by O'Kelly (1987). Alternative formulations have been proposed by Campbell (1994),

Skorin-Kapov et al. (1996), Ernst and Krishnamoorthy (1996), and Ebery (2001), among others. Given the

di�culty of solving p-hub median problems of even moderate size, a signi�cant amount of research has been

aimed at the development of e�cient heuristic methods. This includes work by Klincewicz (1992), Skorin-

Kapov and Skorin-Kapov (1994), Ernst and Krishnamoorthy (1996), Abdinnour-Helm (1998), Chen (2007),

Silva and Cunha (2009), and Ili¢ et al. (2010). Recent review papers highlight the wide variety of models and

solution methods that have been examined for this important problem (Alumur and Kara, 2008; Campbell

and O'Kelly, 2012; Farahani et al., 2013).

∗Correspondence email: j.ohanley@kent.ac.uk
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In this paper, we focus on a critical issue in hub location planning that has, thus far, received little attention:

hub reliability. Speci�cally, we propose an uncapacitated, single allocation hub location model that accounts

for the random failure of hubs. A total of p hubs can be located. Hubs are assumed to fail independently with

site-speci�c probabilities. Assignment of customer nodes to hubs follows a sequential order with a customer

going to its level-s hub only if the �rst s− 1 assigned hubs have all failed. At any given assignment level, a

customer can allocate to only one hub. In the event that all hubs fail, a system-wide penalty is incurred. The

goal is to minimize, over all hub failure scenarios, the expected demand weighted cost of routing customer-

to-customer �ows plus the penalty. We refer to the problem formally as the uncapacitated, single allocation,

unreliable p-hub median problem (UHMP).

Within the location science literature, the topic of reliability has received considerable attention, particularly

in the past decade. Reliable versions exist for the �xed-charge location problem (Snyder and Daskin, 2005;

Cui et al., 2010), the p-median problem (Drezner, 1987; Berman et al., 2007), the maximum covering problem

(Daskin, 1983; Camm et al., 2002), and various types of supply chain systems (Qi et al., 2010; Peng et al.,

2011). Simpler reliability models assume there is an equal facility failure probability (Drezner, 1987; Snyder

and Daskin, 2005), while more sophisticated ones allow for unequal failure probabilities (Berman et al., 2007;

Cui et al., 2010; O'Hanley et al., 2013a). A detailed review of facility location problems under uncertainty

can be found in Snyder (2006).

In the context of hub design and operations, examples of work dealing with reliability are limited. Exceptions

include Jani¢ (2005), Ball et al. (2007), and O'Kelly et al. (2006), all which propose response strategies

(e.g., delaying, canceling, rerouting, and network peering) if and when disruptions occur. Such measures

are important for coping with disruption, but are reactive in nature (as opposed to strategic) and can be

expensive to implement, especially in the event of multiple disruptions.

A generally more robust approach for dealing with hub disruption is to consider it when deciding where to

locate hubs in the �rst place. Kim and O'Kelly (2009), for example, consider the reliability of routes in

the design of telecommunications networks. Failure is assumed to occur along arcs and at hubs. Critically,

no rerouting is assumed to occur. Consequently, the success of sending messages between an origin and

destination requires that all intermediary arcs (i.e., origin to hub, hub to hub, and hub to destination) be

operational. Models with and without dispersion requirements are proposed for locating hubs in order to

maximize expected �ows. Following the same arc disruption approach, Kim (2012) proposes a series of hub

location models to mitigate against hub failures, including two variants in which disrupted �ows can be

rerouted through a single intermediate backup hub. The backup hubs (q in total), unlike primary hubs (p in

total), are assumed not to fail and are only used in the event of primary hub failure. Non-hubs are further

allowed to have multiple primary and backup hub allocations.

The use of backup hubs has also been employed by An et al. (2011) and Azizi et al. (2014). In both

studies, nonlinear and linear integer models are devised to minimize transportation costs under pre- and

post-disruption conditions plus a penalty for lost demand (when the source or destination is a hub). Unlike

Kim (2012), non-hubs must be assigned to a single hub and disrupted �ow can pass through up to two hubs.

Critically, as opposed to having a set of dedicated backup hubs, backup hubs are chosen among the existing

primary hubs. It is assumed that at most one hub can fail at any one time so that the backup is guaranteed

to be operational. The models of An et al. (2011) and Azizi et al. (2014) di�er in how disrupted �ow is

rerouted. In Azizi et al. (2014), all �ow passing through the disrupted hub is rerouted through the backup

(i.e., each non-hub assigned to a particular hub must assign to the same backup hub), whereas in An et al.
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(2011), individual �ows between di�erent origin-destination pairs can be allocated to di�erent backups (i.e.,

non-hubs can assign to di�erent backup hubs). In terms of solution methodology, An et al. (2011) propose

Lagrangian relaxation combined with branch and bound to �nd optimal solutions to their problem. In Azizi

et al. (2014) a genetic algorithm is used to produce heuristic solutions.

Our current work, as with the papers cited above, takes an expected-value approach for dealing with hub

failures. An alternative would be to plan speci�cally for the worst-case scenario. Using an interdiction type

framework, hubs/arcs are not assumed to fail randomly but in a systematic way which causes maximum

disruption to the system. Parvaresh et al. (2012), for example, propose a bi-level mixed integer formulation

for optimally locating p hubs in order to minimize the maximum increase in transportation costs as a result

of losing any subset of r hubs. Similar location-interdiction and protection-interdiction models have been

proposed for the well-known maximum covering (O'Hanley and Church, 2013), p-median (Scaparra and

Church, 2008; Losada et al., 2012a; Liberatore et al., 2012) and �xed-charge facility location (Aksen and

Aras, 2012) problems.

We o�er a few observations about previous work on reliable hub location. One obvious critique of using

dedicated backups is the signi�cant cost involved. Such a strategy only makes sense when there is an

appreciably high chance of disruption. If not, backups would only rarely be relied upon. The assumptions

that dedicated backups are fail-proof and that all disrupted �ow needs to be rerouted exclusively through

backups are two other somewhat dubious assumptions. Rerouting �ows through currently operational hubs

seems a far more sensible and e�cient option. However, even when this has been attempted, the rather

unrealistic assumption has been made that only one hub can fail at a time, meaning that a hub is allowed

to fail when considered as the primary hub but not when it is a backup. Logically, multiple hub failures are

a distinct possibility unless the probability of any single hub failing is extremely small, in which case using

a reliable hub location model probably serves little purpose. On the other hand, if failure probabilities are

su�ciently large and multiple hubs can fail, it makes sense to recognize this fact and incorporate it into the

decision making framework.

Our present work is aimed directly at addressing some of the shortcomings of existing hub location planning

models. To this end, we begin by presenting a nonlinear integer model for locating unreliable hubs that not

only considers the possibility of multiple hub failures but also allows disrupted �ows to be rerouted through

remaining operational hubs. We succeed in linearizing this model through the use of a novel network �ow

structure referred to as a probability lattice. A probability lattice extends the concept of probability chains

recently introduced by O'Hanley et al. (2013a) for evaluating compound probability terms by interlinking

multiple probability chains together. Related work on linearizing compound probability terms using alter-

native network �ow structures includes that of Morton et al. (2007), Losada et al. (2012b) and O'Hanley

et al. (2013b). The probability lattice model allows us to produce optimal solutions, but only for relatively

small problem instances. To e�ciently solve medium to large instances, we propose a Tabu search heuristic

coupled with a parallel computing strategy.

The remainder of this paper is organized as follows. In Section 2, we present a nonlinear formulation of

our unreliable hub location model and then show how to linearize the it through the introduction of a

probability lattice. A description of the Tabu search algorithm, a node-to-hub assignment heuristic, and

parallel computing strategy are provided in Section 3. In Section 4, we report computational results of our

linearized model and heuristic algorithm on two test datasets. We further discuss some insights about reliable

hub network design. Finally, we give some concluding remarks and suggestions for future work in Section 5.
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2 The Unreliable p-Hub Median Problem

2.1 Nonlinear Formulation

We assume that p hubs need to be located and that non-hub nodes (aka spokes) need to be singly allocated

to a hub with all inbound as well as outbound �ows for a spoke being routed through the assigned hub. The

hubs fail independently with site-speci�c probabilities. In the event of hub failure, the spokes assigned to a

failed hub must be reassigned to another operational hub. For simplicity, spokes assign to hubs in a sequential

fashion based on a level-set approach. Speci�cally, a spoke will assign to its level-s hub only when the hubs

at levels 1, . . . , s − 1 have all failed. In the event that a spoke cannot be allocated to a hub (i.e., all hubs

fail), a penalty cost φ is incurred per unit demand. Some other basic assumptions of our model are that: (i)

the cost of locating hubs is equal; (ii) hubs have unlimited capacities; (iii) all hubs in the network are fully

connected; (iv) planners have complete information about the operational status of hubs; (v) a spoke can

be allocated to only one hub at each assignment level; (vi) direct transportation between spoke nodes is not

allowed; and (vii) transportation costs satisfy the triangle inequality (i.e., �ow between two di�erent spokes

can pass through one or at most two hubs). The goal of our problem is to determine both the location of

hubs and level assignments for spokes to hubs.

To formulate the problem mathematically, let N be a set of demand nodes, indexed by i, j, k and m. Hubs, of

which there are p, can be located at any of the n = |N | demand sites. For notational purposes, indices i and

j will be used to index non-hub sites; indices k and m will be used to index hub sites. Indexes s = 1, . . . , p

and t = 1, . . . , p, meanwhile, will be used to denote the level-s and level-t hub assignments for origin node

i and destination node j, respectively. The demand �ow from node i to node j is denoted by hij . The

unit transportation cost along the link connecting nodes i and j is given by cij . The overall unit cost of

transporting demand from node i to node j via hubs at sites k and m is given by cijkm = χcik+γckm+δcmj ,

where γ is the unit cost for inter-hub transportation and χ and δ are unit collection and distribution costs,

respectively. Typically, γ is assumed to be less than χ and δ to account for economies of scale associated

with consolidating �ows through hubs. A hub located at node k is assumed to fail (not fail) with probability

qk (q̄k = 1− qk).

The set of decision variables is given by:

Xk =







1 if a hub is located at site k

0 otherwise

Y s
ik =







1 if a hub located at site k is the level-s hub of node i

0 otherwise

V st
ijm =







1 if site m is the level-t hub for node j but not the level-s hub for node i

0 otherwise

W st
ijm =







1 if site m is the level-t hub for node j and the level-s hub for node i

0 otherwise
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λst
ijkm = the joint probability that node i can allocate to site k at its level-s hub and node j

can allocate to site m as its level-t hub

Given the assumption of single allocation, it necessarily holds that λst
ijkm = λts

jimk. Accordingly, let h′
ij =

hij + hji and c′ijkm = hijcijkm + hjicjimk. A nonlinear formulation of the uncapacitated, single allocation,

unreliable p-hub median problem (UHMP) is then given as follows.

[UHMP1] min
∑

i

∑

j>i

∑

k

∑

m

∑

s

∑

t

c′ijkmλst
ijkm +

∑

i

∑

j>i

φh′
ij

∏

k

(1− q̄kXk) (1)

s.t.

∑

k

Xk = p (2)

∑

k

Y s
ik = 1 ∀i, s (3)

∑

s

Y s
ik ≤ Xk ∀i, k (4)

λst
ijkm =







∏

r<s

∏

ℓ (1− q̄ℓY
r
iℓ) q̄kY

s
ik ×

∏

r<t

∏

ℓ

(

1− q̄ℓV
sr
ijℓ

)(

1−W sr
ijℓ

)

q̄mV st
ijm m 6= k

∏

r<s

∏

ℓ (1− q̄ℓY
r
iℓ) q̄kY

s
ik ×

∏

r<t

∏

ℓ

(

1− q̄ℓV
sr
ijℓ

)(

1−W sr
ijℓ

)

W st
ijm m = k

∀i, j > i, k,m, s, t (5)

1 + V st
ijm ≥ Y t

jm +
∑

r>s

Y r
im ∀i, j > i,m, s, t (6)

V st
ijm ≤ Y t

jm ∀i, j > i,m, s, t (7)

V st
ijm ≤

∑

r>s

Y r
im ∀i, j > i,m, s, t (8)

1 +W st
ijm ≥ Y t

jm + Y s
im ∀i, j > i,m, s, t (9)

W st
ijm ≤ Y t

jm ∀i, j > i,m, s, t (10)

W st
ijm ≤ Y s

im ∀i, j > i,m, s, t (11)

Xk ∈ {0, 1} ∀k (12)

Y s
ik ∈ {0, 1} ∀i, k, s (13)

V st
ijm,W st

ijm ≥ 0 ∀i, j > i,m, s, t (14)
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The objective function (1) minimizes total expected transportation cost over all hub disruption scenarios

(the series of summations involving c′ijkmλst
ijkm) plus a penalty

∑

i

∑

j>i φh
′
ij in the event all hubs fail, which

occurs with probability
∏

k (1− q̄kXk). Note that intrahub �ows hii are not taken into consideration as these

are assumed to occur regardless of any possible hub disruptions. Constraint (2) requires exactly p hubs be

located. Constraints (3) ensure for any given assignment level s that each node is allocated to exactly one

hub. Constraints (4) allow node i to assign to site k at any level s only if site k has been selected as a hub

(Xk = 1).

Equations (5) determine for any origin-destination pair the joint probability that origin node i will allocate

to site k as its level-s hub and destination node j will allocate to site m as its level-t hub. Speci�cally, for

each node i, the product
∏

r<s

∏

ℓ (1− q̄ℓY
r
iℓ) in (5) determines the probability that node i cannot allocate

to any of its �rst s− 1 assigned hubs (i.e., hubs at levels r = 1, . . . , s− 1 all fail). Note that this product is

taken over all sites ℓ since, according to (3), only one Y r
iℓ will be equal to 1 at each level r < t. The product

q̄kY
s
ik gives the probability that level-s hub for node i is located at site k and does not fail. Multiplying the

two terms together gives the marginal probability that node i will allocate to site k as its level-s hub.

The product to the right of
∏

r<s

∏

ℓ (1− q̄ℓY
r
iℓ) in (5), either

∏

r<t

∏

ℓ

(

1− q̄ℓV
sr
ijℓ

)(

1−W sr
ijℓ

)

q̄mV st
ijm if

m 6= k or
∏

r<t

∏

ℓ

(

1− q̄ℓV
sr
ijℓ

)(

1−W sr
ijℓ

)

W st
ijm if m = k, determines the conditional probability that

destination node j will allocate to site m as its level-t hub given that origin node i is allocated to site k as

its level-s hub. The derivation of this expression is explained as follows. In order for node j to allocate to its

level-t hub, all hubs at levels r < t have to fail, which occurs with probability
∏

r<t

∏

ℓ

(

1− q̄ℓV
sr
ijℓ

)

assuming

node j and node i do not share any hub assignments in common at levels r < t (W sr
ijℓ = 0, ∀ℓ, r < t). If,

however, node j has the same hub assignment ℓ at level r < t as node i does at level s (W sr
ijℓ = 1), then the

probability of node j actually allocating to its level-t hub is 0, since node j would allocate to site ℓ at level r.

Consequently, for a given level t, either this term will be equal to 0 (i.e., if W sr
ijℓ = 1 for any ℓ, r < t) or equal

to the product of the hub failure probabilities at levels r < t (i.e., the series of qℓ values such that V sr
ijℓ = 1,

r < t). Accordingly,
∏

r<t

∏

ℓ

(

1− q̄ℓV
sr
ijℓ

)(

1−W sr
ijℓ

)

gives the correct conditional probability that all hubs

assigned to node j fail at levels r < t .

Continuing on, it is necessary to distinguish whether at level t destination node j would allocate to the

same or to a di�erent hub as origin node i. If the level-t assignment for node j is di�erent from the level-s

assignment for node i (V st
ijm = 1), then with conditional probability

∏

r<t

∏

ℓ

(

1− q̄ℓV
sr
ijℓ

)(

1−W sr
ijℓ

)

q̄mV st
ijm

node j will allocate to a particular site m. This is simply the probability that all hubs at levels r < t fail
∏

r<t

∏

ℓ

(

1− q̄ℓV
sr
ijℓ

)(

1−W sr
ijℓ

)

times the probability that the level-t hub is located at m and operational

q̄mV st
ijm. On the other hand, if the level-t and level-s assignments for nodes j and i are the same (W st

ijm = 1),

then the probability of node j allocating to its level-t hub is conditional only on the failure of hubs at levels

r < t (i.e.,
∏

r<t

∏

ℓ

(

1− q̄ℓV
sr
ijℓ

)(

1−W sr
ijℓ

)

). The operational status of the level-t hub for node j is already

factored into the probability of node i being able to assign to its level-s hub. Speci�cally, with probability

q̄kY
s
ik the level-s hub for i and level-t hub for j will be operational, as given in the �rst part of (5).

To conclude, constraints (6) - (11) help to determine the correct values for the auxiliary variables V st
ijm and

W st
ijm feeding into (5). Inequalities (6) force variable V st

ijm to be 1 whenever site m is the level-t hub for node

j but node i assigns to m at some level r > s (an equivalent de�nition for variable V st
ijm). Inequalities (7) and

(8), on the other hand, force variable V st
ijm to be 0 whenever this condition is not met. Similarly, inequalities

(9) force W st
ijm to be 1 whenever site m is both the level-t hub for node j and the level-s hub for node i,

while inequalities (10) and (11) force variable W st
ijm to be 0 whenever this does not hold. Lastly, constraints
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(12) and (13) place binary restrictions on the Xk and Y s
ik variables, respectively, while constraints (14) place

non-negativity restrictions on the V st
ijm and W st

ijm variables. Given the nature of the objective function and

the constraint set, these variables are guaranteed to take on binary values.

2.2 Linear Reformulation

To linearize UHMP, we introduce the following auxiliary variables.

αs
ik = the marginal probability that node i can allocate to site k as its level-s hub

βs
ik = the marginal probability that node i cannot allocate to site ℓ ≤ k as its level-s hub

µst
ijkm = the joint probability that node i can allocate to site k as its level-s hub but node j

cannot allocate to site ℓ ≤ m as its level-t hub

A linear formulation for UHMP is then given by:

[UHMP2] min
∑

i

∑

j>i

∑

k

∑

m

∑

s

∑

t

c′ijkmλst
ijkm + φ

∑

i

∑

j>i

h′
ijβ

p
in (15)

subject to (2)-(4), (6)-(14) and the following set of constraints:

(Backbone Chain)

αs
ik + βs

ik =































1 k = 1, s = 1

βs−1
in k = 1, s > 1

βs
i(k−1) k > 1, s > 1

∀i, k, s (16)

αs
ik ≤ q̄kY

s
ik ∀i, k, s (17)

αs
ik ≤































q̄k k = 1, s = 1

q̄kβ
s−1
in k = 1, s > 1

q̄kβ
s
i(k−1) k > 1, s > 1

∀i, k, s (18)

βs
ik ≤































qk + q̄k (1− Y s
ik) k = 1, s = 1

qkβ
s−1
in + q̄k (1− Y s

ik) k = 1, s > 1

qkβ
s
i(k−1) + q̄k (1− Y s

ik) k > 1, s > 1

∀i, k, s (19)
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(Spur Chains)

λst
ijkm + µst

ijkm =































αs
ik m = 1, t = 1

µ
s(t−1)
ijkn m = 1, t > 1

µst
ijk(m−1) m > 1, t > 1

∀i, j > i, k,m, s, t (20)

λst
ijkm ≤















q̄mV st
ijm m 6= k

q̄mW st
ijm m = k

∀i, j > i, k,m, s, t (21)

λst
ijkm ≤































q̄mαs
ik m = 1, t = 1

q̄mµ
s(t−1)
ijkn m = 1, t > 1

q̄mµst
ijk(m−1) m > 1, t > 1

∀i, j > i, k,m 6= k, s, t (22)

µst
ijkm ≤ q̄m

(

1−W st
ijm

)

∀i, j > i, k,m = k, s, t (23)

µst
ijkm ≤































qmαs
ik + q̄m

(

1− V st
ijm

)

m = 1, t = 1

qmµ
s(t−1)
ijkn + q̄m

(

1− V st
ijm

)

m = 1, t > 1

qmµst
ijk(m−1) + q̄m

(

1− V st
ijm

)

m > 1, t > 1

∀i, j > i, k,m 6= k, s, t (24)

Our linear reformulation of UHMP is based on evaluating the nonlinear terms in (1) and (5) using continuous

variables αs
ik, β

s
ik, λ

st
ijkm and µst

ijkm together with �ow-conservation constraints (16) and (20) and bounding

constraints (17)-(19) and (21)-(24). These variables and constraints form a series of specialized �ow networks,

one for each origin-destination pair (i, j), which we refer to as a probability lattice. A probability lattice

represents an extension of the probability chain concept proposed by O'Hanley et al. (2013a) in which

multiple probability chains are interlinked together. In our particular problem, the lattice for a given (i, j)

pair is composed of a backbone chain (16)-(19) for origin node i and multiple spur chains (20)-(24) emanating

from the backbone for destination node j. A graph representation of a probability lattice is shown in Figure

1.

The backbone chain serves to evaluate marginal probabilities αs
ik and βs

ik while the spur chains are used

to compute joint probabilities λst
ijkm and µst

ijkm. In Figure 1, the backbone for origin node i is shown as

a series of square nodes along the top with a node de�ned for each site k = 1, . . . , n and assignment level

s = 1, . . . , p. The dashed out-�ow arcs emanating from and the solid transverse arcs connecting the backbone

nodes correspond to variables αs
ik and βs

ik, respectively. Connected to each backbone out-�ow arc αs
ik is a

separate spur chain. Every spur chain for destination node j is made up of a series of round nodes for each

site m = 1, . . . , p and assignment level t = 1, . . . , p along with a matching set of dashed out-�ow and solid

transverse arcs corresponding to λst
ijkm and µst

ijkm, respectively.

8



Figure 1: Graph representation of a probability lattice for a hypothetical origin-destination pair (i, j) in a
network with n nodes and p hubs.

With respect to the probability lattice's underlying structure and function, the backbone and spur chains are

individually composed of p interlinking probability subchains (one for each hub assignment level s = 1, . . . , p

and t = 1, . . . , p, respectively) with each subchain being comprised of n nodes (one for each site k = 1, . . . , n

and m = 1, . . . , n, respectively). Internal �ow βs
ik within the backbone chain is implicitly determined by all

preceding out-�ows αr
iℓ, r ≤ s, ℓ ≤ k. Internal �ow µst

ijkm of a spur chain, meanwhile, is determined by both

the initial in-�ow αs
ik coming from the backbone chain and any intervening out-�ows λsr

ijkℓ, r ≤ t, ℓ ≤ m.

Looking speci�cally at the set of constraints (16)-(19) for a given backbone chain, inequalities (17) and (18)

place bounds on the probability αs
ik that node i will allocate to site k as its level-s hub. If site k is not

selected as the level-s hub (Y s
ik = 0), then (17) forces αs

ik to be 0. If site k = 1 is selected as the level s = 1

hub (Y 1
i1 = 1), (18) restricts α1

i1 to be less than or equal to the probability site 1 does not fail or q̄1. If instead

site k = 1 is selected at a higher level (Y s
i1 = 1, s > 1), the probability of node i assigning to site 1 is bounded

above by q̄1 times the probability that node i cannot allocate to any lower level hub βs−1
in . For any other

site k 6= 1 selected as an level-s hub (Y s
ik = 1, k > 1), the bound on αs

ik is q̄k times βs
i(k−1), the probability

that node i cannot allocate to any other site ℓ < k at level s. Inequalities (19) take on an analogous role to

9



(18) by specifying permissible values for the βs
ik variables. They are limiting only in the case when Y s

ik = 1.

Finally, inequalities (16) force αs
ik and βs

ik to take on binding values as determined by (17)-(18) and (19),

respectively.

Spur chain constraints (20)-(24) perform the same role for the λst
ijkm and µst

ijkm �ow variables that (16)-(19)

do for the αs
ik and βs

ik variables. The primary di�erence lies in the incorporation of variables V st
ijm and

W st
ijm in place of Y s

ik and the addition of (23), which further restricts µst
ijkm to be 0 whenever W st

ijm = 1. In

particular, if both V st
ijm = 0 (m 6= k) and W st

ijm = 0 (m = k), then (21) forces out-�ow λst
ijkm to be 0, while

(20) requires any non-zero �ow to be sent via µst
ijkm. If V st

ijm = 1 (m 6= k), however, equations (20) force

(22) to be binding for λst
ijkm and (24) to be binding for µst

ijkm. Di�erent bounds for the λst
ijkm and µst

ijkm

variables are speci�ed in (22) and (24) depending on the site m and assignment level t in question. Lastly,

if W st
ijm = 1, then (23) forces internal �ow µst

ijkm to be 0, while (20) requires any non-zero �ow to be sent

along the out-�ow λst
ijkm. It is worth noting that constraints (3) imply for given backbone subchain s, that

exactly one out-�ow variable αs
ik can be non-zero (i.e., for Y s

ik = 1). Consequently, only one spur chain with

potentially non-zero �ow can be active per backbone subchain for any feasible set of hub locations and hub

assignments.

Returning to the linearized objective function (15), expected transportation cost is given by the term
∑

i

∑

j>i

∑

k

∑

m

∑

s

∑

t c
′
ijkmλst

ijkm, the same as in (1). Variable β
p
in, meanwhile, is simply the proba-

bility that all hubs fail (speci�cally, all p hubs assigned to node i fail) and is equivalent to the product
∏

k (1− q̄kXk) in (1).

2.3 Problem Size Reduction

As observed by O'Kelly et al. (1996), the set of feasible inter-node paths can, for any level s and t, be

restricted to A = {(i, j, k,m) : (i < j) ∧ [(k = i) ∨ (k 6= i ∧ k = m = j) ∨ (k 6= i ∧ k 6= j ∧m 6= i)]}. Accord-

ingly, it possible to reduce the size of UHMP2 by adding the following constraints, which e�ectively remove

any λst
ijkm variables not in set A from the formulation.

λst
kℓmk = λst

ℓkkm = 0 ∀k, ℓ > k,m 6= k, s, t (25)

This variable �xing scheme was employed by Marín et al. (2006) to a standard multiple allocation hub median

problem in the special case where transportation costs are symmetric (cijkm = cjimk). Applying reduction

rule (25) produced a marginal decrease in solution time for the datasets we tested. This is not particularly

surprising given that we had, prior to applying this rule, already eliminated origin-destination pairs such that

j ≤ i, thus resulting in few additional routes in set A that could subsequently be eliminated.

To further reduce UHMP2, we can also include the following constraints:

µ
sp
ijkn = 0 ∀i, j > i, k, s (26)

which are based on the observation that if node j cannot allocate to its level-p hub, then the probability of

node i allocating to any level-s hub must be 0 (i.e., since all hubs must have failed). Experimental results

showed that this simple variable �xing rule was successful in signi�cantly reducing branch and bound solution

times by up to 40-fold in some cases.
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2.4 Bounding Constraints

To help tighten the linear formulation UHMP2, additional bounding constraints can be imposed on the

αs
ik and βs

ik variables that are particularly e�ective when the hub failure probabilities qk are all close in

value (i.e., qk ≈ q, ∀k). To begin, note that variable αs
ik can be evaluated directly by the equation αs

ik =
∏

r<s

∏

ℓ (1− q̄ℓY
r
iℓ) q̄kY

s
ik. For Y s

ik = 1, it is straightforward to show that the product
∏

r<s

∏

ℓ (1− q̄ℓY
r
iℓ)

is bounded above (below) by the product of the s − 1 largest (smallest) hub failure probabilities excluding

site k. Letting Qmax
ks =

∏

r≤s q
max
[r] (k), such that qmax

[r] (k) is the rth largest hub failure probability in the set

N\ {k}, and letting Qmin
ks =

∏

r≤s q
min
[r] (k), such that qmin

[r] (k) is the rth smallest hub failure probability in

the set N\ {k}, this naturally leads to the following bounds on αs
ik.

αs
ik ≤ Qmax

k(s−1)q̄kY
s
ik ∀i, k, s (27)

αs
ik ≥ Qmin

k(s−1)q̄kY
s
ik ∀i, k, s (28)

In a similar way, variable βs
ik can be evaluated using the equation βs

ik =
∏

r<s

∏

ℓ (1− q̄ℓY
r
iℓ) (1− q̄kY

s
ik).

For Y s
iℓ = 1, such that ℓ ≤ k,βs

ik is bounded above and below by Qmax
ℓ(s−1)qℓ and Qmin

ℓ(s−1)qℓ, respectively.

On the other hand, if Y s
iℓ = 0, then βs

ik is bounded above by product of the s − 1 largest hub failure

probabilities (denoted Qmax
(s−1)) and bounded below by the s − 1 smallest hub failure probabilities (denoted

Qmin
(s−1)). Accordingly, we have the following bounds on theβs

ik variables.

βs
ik ≤ Qmax

(s−1) +
∑

ℓ≤k

(

Qmax
ℓ(s−1)qℓ −Qmax

(s−1)

)

Y s
iℓ ∀i, k, s (29)

βs
ik ≥ Qmin

(s−1) +
∑

ℓ≤k

(

Qmin
ℓ(s−1)qℓ −Qmin

(s−1)

)

Y s
iℓ ∀i, k, s (30)

Initial testing showed that adding constraints (27)-(30) to UHMP2 usually resulted in a 20% or more reduction

in solution time. Moreover, better lower bounds and better feasible solutions (in cases where the model could

not be solved to optimality) could be obtained. We note that bounds similar to (27)-(30) can also be derived

for variables λst
ijkm and µst

ijkm. Unfortunately, preliminary experiments showed that placing individual bounds

on λst
ijkm and or µst

ijkm led to a marked increase in solution times for larger problem instances due to the

considerable number of additional constraints.

In spite of improvements in solution time due to the addition of the bounding constraints and variable �xing

rules, it was found that even fairly small problems (≤20 nodes) were di�cult to solve to optimality. This

motivated us to explore the use of a heuristic solution method, as discussed in the following section.

3 Tabu Search for UHMP

Tabu search (Glover, 1989) is a local search method that has been employed for solving a variety of optimiza-

tion problems, including hub location problems (HLPs). For the standard uncapacitated, single allocation
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Figure 2: An illustrative example of a Tabu search solution representation.

p-hub median problem (USApHMP), a simple but e�cient Tabu search was developed by Skorin-Kapov and

Skorin-Kapov (1994). Numerous hybrid approaches that combine Tabu search with some other metaheuris-

tic have also been proposed in attempt to improve its e�ciency. This includes Tabu search with genetic

algorithms (Abdinnour-Helm, 1998); Tabu search with simulated annealing (Chen, 2007); and multiple start

Tabu search (Silva and Cunha, 2009). Tabu search algorithms which have been devised to solve various types

of HLPs can be found in Farahani et al. (2013). In what follows, we introduce a Tabu search integrated into

a parallel computing strategy to e�ciently solve our unreliable hub location model UHMP.

3.1 Solution Representation, Neighborhood Structure and Tabu List

A feasible solution to UHMP is determined entirely by its hub locations X̂ and hub assignments Ŷ ; the corre-

sponding V̂ , Ŵ and λ̂ variables can be computed directly from X̂ and Ŷ via constraints (5)-(11) and (14). To

represent a feasible solution in our Tabu search heuristic, therefore, we only need to consider the indices k in X̂

and Ŷ with value equal to 1. These are stored, respectively, in a 1×p row vector X = [k[1], . . . , k[z], . . . , k[p]] of

hub locations and a n×pmatrix Y = [[k1[1] , . . . , k1[s] , . . . , k1[p]], . . . , [ki[1] , . . . , ki[s] , . . . , ki[p] ], . . . , [kn[1]
, . . . , kn[s]

,

. . . , kn[p]
]] of hub assignments, where k[z] is the index of the zth hub site in the set {k : X̂k = 1} and ki[s] is

the index of the level-s hub assignment for node i in the set Yi = {k : Ŷ s
ik = 1}, respectively.

An example of our Tabu search solution representation for an example hub network with n = 5 demand nodes

and p = 3 hubs under each possible disruption scenario is shown in Figure 2. Hubs are located at nodes 2, 3,
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and 4; nodes 1 and 5 are non-hubs. Operational hubs are indicated as blue-�lled solid nodes, nonoperational

hubs as orange-�lled dashed nodes, and non-hubs as white-�lled solid nodes. Hub assignments are based

on the assignment matrix Y. With all hubs operational, we obtain the hub-and-spoke allocation shown in

Figure 2. Here, node 1 is assigned to hub site 2 and node 5 is assigned to hub site 3. If hub site 3 were to

fail (middle of Figure 2b), then according to the hub assignment matrix Y, hub 3 would allocate to hub 2

(k3[2] = 2) and non-hub 5 would allocates to hub 4 (k5[2] = 4).

The neighborhood of solutions used in our Tabu search consists of all 1-opt moves from the current solution

X (i.e., any exchange which drops a hub location and replaces it with a non-hub). The �rst improving move

that decreases the objective is chosen and the incumbent solution updated. Following a successful move, the

new solution is added to a Tabu list for a speci�ed number of iterations (i.e., the full set of hub locations

as opposed to the selected 1-opt move). The Tabu list prohibits recent combinations of moves from being

chosen in an attempt to prevent the search from cycling back to previously visited solutions. The length of

the Tabu list was determined based on preliminary testing.

Critically, when evaluating any potential solution X
′

within the neighborhood of X, it is necessary to determine

a corresponding set of hub assignments Y
′

. Given that there are p! possible hub assignment orderings alone

for each node, this poses an especially challenging problem. To �nd a set of hub assignments Y
′

for candidate

solution X
′

, we perform a secondary 2-opt search of each node's hub assignments (i.e., exchanges involving

two hub assignments for any non-hub). This is explained in detail in Section 3.2.

We also considered employing larger neighborhoods in our Tabu search, speci�cally 2-opt moves for hub

locations (swapping two hubs with two non-hub) and or 3-opt moves for hub assignments (swapping three

hub assignments). Larger neighborhoods can sometimes help by allowing a local search to escape from a local

optimum. Preliminary testing, however, showed that the use of these larger neighborhoods only increased

run times of the Tabu search without any improvement in solution quality.

3.2 Hub Assignment Search Heuristic

Given a set of hub locations X, we would like to determine an optimal or near-optimal set of hub assignments

for each demand node. An initial set of hub assignment for a given node i is obtained by sorting hubs in

order of unit transportation costs cik[z]
(i.e., the cost of transporting from node i to the zth hub). The hub

with the lowest unit cost is assigned as the level-1 hub, the one with next highest unit cost the level-2 hub,

and so on. We also considered ordering hubs based on
∑

j c
′
ijk[z]k[z]

, a measure of aggregate demand-weighted

transportation cost in which it is presumed both nodes i and j assign to the same hub k[z], but this did not

result in substantially better solutions. After constructing an initial ordering of hubs, a 2-opt search is applied

to improve the initial allocation order. This 2-opt search is performed repeatedly until no improvement of

the assignments can be made.

During a 2-opt search, we need to recalculate the objective value associated with swapping two of a node's hub

assignments. To save on the computational e�ort of this operation, we only recalculate the λst
ijkm probabilities

a�ected by this change. Speci�cally, assume that we swap the level-r and level-r′ hub assignments for node

ℓ such that r′ > r. Only the probabilities λst
iℓki[s]

kℓ[t]
(i < ℓ, s = 1, . . . , p, r ≤ t ≤ r′) and λst

ℓjkℓ[s]
kj[t]

(j > ℓ, r ≤ s ≤ r′, t = 1, . . . , p) are a�ected by the swap (see Figure 3).

Accordingly, let λ̃st
ijki[s]

kj[t]
denote the probability of node i allocating to its designated level-s hub ki[s] and

node j allocating to its designated level-t hub kj[t] given that the level-r and level-r′ hub assignments for
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Figure 3: Representation of the required probability updates involved with swapping the level-r and level-r′

hub assignment of node ℓ. The indices in each box represent a speci�ed assignment level.

node ℓ (as currently de�ned in Y) have been swapped. Note that probabilities λst
ijki[s]

kj[t]
and λ̃st

ijki[s]
kj[t]

can

be calculated via (5) with variables Y s
ik, V

st
ijm, and W st

ijm implicitly determined for solution Y. With this in

place, we then update the objective by adding ∆c1, ∆c2, ∆c3, and ∆c4, as de�ned below.

△c1 =
∑

i<ℓ

∑

s

(

c′iℓki[s]
kℓ

[r′]
λ̃sr
iℓki[s]

kℓ
[r′]

− c′iℓki[s]
kℓ[r]

λsr
iℓki[s]

kℓ[r]

)

+
∑

i<ℓ

∑

s

(

c′iℓki[s]
kℓ[r]

λ̃sr′

iℓki[s]
kℓ[r]

− ac′iℓki[s]
kℓ

[r′]
λsr′

iℓki[s]
kℓ

[r′]

)

(31)

△c2 =
∑

j>ℓ

∑

t

(

c′ℓjkℓ
[r′]

kj[t]
λ̃rt
ℓjkℓ

[r′]
kj[t]

− c′ℓjkℓ[r]
kj[t]

λrt
ℓjkℓ[r]

kj[t]

)

+
∑

j>ℓ

∑

t

(

c′ℓjkℓ[r]
kj[t]

λ̃r′t
ℓjkℓ[r]

kj[t]
− c′ℓjkℓ

[r′]
kj[t]

λr′t
ℓjkℓ

[r′]
kj[t]

)

(32)

△c3 =
∑

i<ℓ

∑

s

∑

r<t<r′

c′iℓki[s]
kℓ[t]

(

λ̃st
iℓki[s]

kℓ[t]
− λst

iℓki[s]
kℓ[t]

)

(33)

△c4 =
∑

j>ℓ

∑

t

∑

r<s<r′

c′ℓjkℓ[s]
kj[t]

(

λ̃st
ℓjkℓ[s]

kj[t]
− λst

ℓjkℓ[s]
kj[t]

)

(34)

Values ∆c1 and ∆c2 correspond to the incremental cost (for any node i < ℓ and j > ℓ, respectively) associated

with node ℓ allocating to hub location kℓ[r′] at level-r and hub location kℓ[r] at level-r
′. Values ∆c3 and ∆c4,

meanwhile, correspond to the the incremental cost (for any node i < ℓ and j > ℓ, respectively) associated

with node ℓ allocating to hubs at levels strictly between r and r′. Preliminary experiments showed that using

(31)-(34) reduced overall run time by roughly 10-fold compared to recomputing all λst
ijkm following a swap.
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Figure 4: Flow chart of our proposed Tabu search with parallel computing for UHMP.

3.3 Parallel Computing Strategy

We implemented a parallel computing strategy for the Tabu search heuristic aimed at reducing the time

involved with evaluating neighboring solutions. By allocating a subset of neighbors to each CPU core and

then performing hub assignment searches for each neighboring solution on di�erent cores, we were able to

save considerable computation time on �nding an improving Tabu search move. Preliminary results showed

that run times were roughly 6 times faster by using a parallel computing strategy.

A �ow chart of our parallelized Tabu search procedure is shown in Figure 4. The set of neighboring solutions

to X is denoted by H(X), while Hm(X), m = 1, ...M , signi�es a �region� of the full neighborhood H(X) =
⋃

m∈M Hm(X). The number of regions M is determined based on the number CPU cores. The parallel search

of the neighboring solution space H(X) stops as soon as an improving move in any region m = 1, . . . ,M is

found.

To construct an initial solution for the Tabu search, we �rst determine for each possible hub site k ∈ N the

total unit transportation cost
∑

i cik between each demand node i and the hub site. We then sort the hub sites

in ascending order of total unit transportation cost and select the �rst p sites as hub locations. Alternatively,

an initial solution can be obtained by applying the same constructive procedure but with hub sites sorted

according to
∑

i

∑

j c
′
ijkk, a measure of total demand-weighted transportation cost. We implemented both

constructive procedures and select the better of the two solutions to be the initial solution of the Tabu search.

Termination conditions for the Tabu search include a maximum number of iterations and a time limit. If

either condition is met, the Tabu search terminates and the best solution found is reported.
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4 Results and Analysis

In this section, we investigate the computational e�ciency of solving the unreliable p-hub median problem

UHMP using either the linear model UHMP2 or the parallelized Tabu search algorithm (hereafter referred to

as PCTS). We also analyze the bene�ts of incorporating facility reliability into the design of hub systems by

comparing our solutions with those obtained by solving a standard single allocation p-hub median problem

(denoted HMP). The comparison is made with respect to various performance measures.

The model UHMP2 and the algorithm PCTS were both implemented in C++ and run on the same Microsoft

Windows 7 Enterprise PC with an Intel Core i7-3770 processor (3.40 GHz per chip) and 24 GB of RAM.

UHMP2 was formulated and solved using the IBM ILOG CPLEX version 12.5 callable library. In our com-

putational analysis, we set a time limit of 24 hours for UHMP2 and 3 hours for PCTS. Based on preliminary

experiments, parameter values for PCTS were chosen as follows: the maximum number of iterations was set

to 30, the length of the Tabu list was 5, and the number of regions M in the parallel computing implemen-

tation was 8 (the same as the number of cores on the Intel Core i7 processor). Increasing the length of Tabu

list did not produce any substantive changes in solution quality given the small number of iterations that

were performed.

4.1 Datasets and Parameter Settings

Our computational experiments were run on two well-known benchmark hub location datasets available from

the OR-Library (Beasley, 1990).

• The Civil Aeronautics Board (CAB) dataset (O'Kelly, 1987) consists of airline passenger �ow volumes

and travel distances between 25 major cities in the United States. From this dataset, we extracted

4 problem instances of di�erent size: number of demand nodes n = 10, 15, 20, 25. Each instance was

solved with the number of hubs p = 2, 3, 4, 5. We set the inter-hub transfer cost rate γ = 0.7 and the

collection and distribution unit costs χ = δ = 1.

• The Australia Post (AP) dataset (Ernst and Krishnamoorthy, 1996) consists of the locations of 200

postcode districts and their associated �ow volumes. In order to generate smaller sized problems, we

aggregated the nodes following the procedure described in (Ernst and Krishnamoorthy, 1996). We

produced instances with n = 10, 20, 25, 40, 50, 100, 200. As with the CAB dataset, we considered the

number of hubs p = 2, 3, 4, 5. In accordance with the settings used in other articles, the cost parameter

values were set as follows: γ = 0.75, χ = 3, and δ = 2.

For both datasets, failure probabilities qk were generated uniformly in the range 0.02 to 0.10. The penalty

term φ was set equal to τ ×max{cijkm}, withτ = 10. In the computation of φ, only the cost of feasible routes

were considered (i.e., routes (i, j, k,m) in set A de�ned in Section 2.3).

4.2 Computational Performance of UHMP2 and PCTS

In this part of our analysis, we compare the computational performance of UHMP2 and the PCTS algorithm

on the CAB and AP test problems. The results, shown in Table 1, are only reported for instances n ≤ 20, as
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Table 1: Results for UHMP2 and PCTS on the CAB and AP instances.

UHMP2 PCTS
Dataset n p Obj LB Time (s)* Gap (%) Obj Time (s) Gap (%)
CAB 10 2 819.28 - 11.81 0.00 819.28 0.38 0.00

3 691.80 - 127.64 0.00 691.80 0.88 0.00
4 634.04 - 1,279.93 0.00 634.04 2.12 0.00
5 578.74 - 8,290.94 0.00 578.74 3.90 0.00

15 2 2,898.62 - 1,143.15 0.00 2,898.62 1.15 0.00
3 2,580.08 - 10,520.50 0.00 2,580.08 4.89 0.00
4 2,361.88 - 29,735.68 0.00 2,361.88 12.34 0.00
5 2,200.42 - 70,332.89 0.00 2,200.42 23.59 0.00

20 2 6,909.40 - 27,745.07 0.00 6,909.40 3.85 0.00
3 6,143.70 - 81,125.66 0.00 6,143.70 10.89 0.00
4 5,690.25 5,471.39 - 3.85 5,615.72 27.13 2.57
5 5,564.31 4,796.82 - 13.79 5,215.34 72.76 8.02

AP 10 2 175.09 - 31.84 0.00 175.09 0.36 0.00
3 129.39 - 212.02 0.00 129.39 1.05 0.00
4 107.22 - 1,211.69 0.00 107.22 3.16 0.00
5 92.36 - 33,574.35 0.00 92.36 5.47 0.00

20 2 179.58 - 37,145.80 0.00 179.58 2.55 0.00
3 150.02 141.53 - 5.66 147.40 10.24 3.98
4 137.85 128.83 - 6.54 134.11 24.06 3.94
5 134.11 111.76 - 16.67 121.61 46.40 8.10

Avg 2.33 12.86 1.33

* A �-� indicates that the 24-hour time limit was reached without obtaining a proven optimal solution.

larger problems could not be solved by UHMP2 due to the large number of variables and constraints. Note

that for problem instances with n = 20 and p = 5, the UHMP2 model has about 4 million variables (2020

binary) and 8 million constraints. This is a clear challenge for any available commercial solver.

For each combination of the parameters n and p, Table 1 shows for each of the two solution approaches

the expected cost (Obj), CPU computing time in seconds (Time), and the percentage optimality gap (Gap)

relative to the linear programming lower bound (LB) given by CPLEX. Expected costs in columns Obj and

LB were divided by 106 for the CAB instances and by 103 for the AP instances.

The results show that UHMP2 is able to solve to optimality on all of the n < 20 instances. For the n = 20

instances, optimality gaps were still signi�cant in some cases, up to 13.79% to 16.67%, even after 24 hours

of computing time. Overall, the average optimality gap for UHMP2 was 2.33%. Optimality gaps for the

PCTS algorithm, in contrast, were much smaller, just 1.33% on average and 8.10% in the worst case. We

note that the non-zero optimality gaps for PCTS are, in all cases, based on the linear programming lower

bounds to UHMP2 rather than proven optimal solutions. The reported gaps, as such, do not give a de�nitive

picture of PCTS solution quality. Indeed, PCTS found optimal solutions for instances that could be solved

to optimality by UHMP2 and identi�ed better feasible solutions (highlighted in bold) for instances that could

not be solved to optimality by UHMP2, giving us some con�dence that the heuristic is able to produce high

quality solutions.

Computing times for the PCTS algorithm were negligible compared to UHMP2 (12.86 seconds on average).

The performance of PCTS on larger problems is discussed further in the next section.
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4.3 Comparison of Standard and Unreliable p-Hub Median Models

To assess the utility of our modeling approach, solutions to UHMP and a standard single allocation p-

hub median problem (HMP) were evaluated with respect to the following performance measures: normal

operating cost without disruptions (denoted NCost), expected transportation cost including the penalty cost

(denoted ECost), network capacity (denoted Cap), and expected unit cost (denoted UCost). The normal

operating cost NCost of a solution to UHMP can be easily computed by considering only the probabilities

associated with �rst level assignments λ11
ijkm. NCost for a standard p-hub median solution is simply the

value of the objective function. Expected transportation cost ECost of an unreliable p-hub solution is

given by the objective function value of UHMP. To compute ECost for a solution to HMP, the solution's

hub assignments were used as the level-1 hub assignments in UHMP; the PCTS algorithm was then run to

determine the higher-level assignments (s > 1) with hub locations and level-1 hub assignments �xed. The

optimized assignments were used to derive the assignment probabilities λst
ijkm and the overall expected cost

for an HMP solution.

The performance measure Cap (Klincewicz, 1998) is de�ned as the ratio of the expected value of served

demand over the total demand in the network:

Cap =
EDemand
∑

i

∑

j h
′
ij

× 100. (35)

The UCost measure was calculated as the ratio of the expected transportation cost (including the penalty

cost) over the expected value of served demand:

UCost =
ECost

EDemand
. (36)

In both formulas (35) and (37), the expected value of served demand is computed as:

EDemand =
∑

i

∑

j>i

∑

k

∑

m

∑

s

∑

t

h′
ijλ

st
ijkm (37)

Note that for HMP, the assignment probabilities λst
ijkm in formula (37) were obtained using the procedure

described above for computing ECost.

The results of our comparative analysis for the CAB dataset are displayed in Table 2. The solutions to HMP

are known to be optimal in all cases. We observe that the solutions of the two models di�er only for p = 2

and in only one case for p = 3. When the solutions do di�er, our model has lower expected cost, lower unit

cost, and higher Cap in all instances. On the other hand, normal operating costs for the standard model

are lower. On balance, our model gives up a little on normal operating cost (0.83% higher on average) but

improves more on expected cost (2.47% lower) and unit cost (2.52% lower). The most noticeable gain for

the reliable model is observed for the n = 25 and p = 2 instance, where our model reduces expected cost by

24.64%, while increasing normal operating cost by just 4.13%. The fact that UHMP performs much better

than HMP in terms of expected cost when the number of hubs is small is quite easily explained by the fact

that even one hub failure can, in such circumstances, produce a substantial increase in transportation costs

because of the few remaining hubs through which �ows can be routed.
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Table 2: Comparison between UHMP (solved by PCTS) and HMP for the CAB instances.

UHMP HMP
n p Hubs ECost NCost Cap UCost Time (s) Hubs ECost NCost Cap UCost

10 2 (4, 7) 819.28 779.24 99.95 820.45 0.38 (7, 9) 855.10 761.04 99.89 856.88
3 (4, 6, 7) 691.80 681.22 100.00 692.48 0.88 (4, 6, 7) 691.80 681.22 100.00 692.48
4 (4, 6, 7, 8) 634.04 619.24 100.00 634.66 2.12 (4, 6, 7, 8) 634.04 619.24 100.00 634.66
5 (1, 4, 6, 7, 8) 578.74 561.78 100.00 579.30 3.90 (1, 4, 6, 7, 8) 578.74 561.78 100.00 579.30

15 2 (4, 7) 2,898.62 2,803.34 99.95 1,226.23 1.15 (4, 11) 3,058.56 2,778.40 99.82 1,295.58
3 (4, 7, 8) 2,580.08 2,518.48 100.00 1,091.01 4.89 (4, 7, 12) 2,580.98 2,512.38 100.00 1,091.39
4 (1, 4, 7, 12) 2,361.88 2,303.36 100.00 998.70 12.34 (1, 4, 7, 12) 2,361.88 2,303.36 100.00 998.70
5 (1, 4, 6, 7, 12) 2,200.42 2,145.30 100.00 930.43 23.59 (1, 4, 6, 7, 12) 2,200.42 2,145.30 100.00 930.43

20 2 (2, 4) 6,909.40 6,670.40 99.95 1,201.25 3.85 (4, 17) 7,127.98 6,547.48 99.88 1,240.19
3 (4, 7, 17) 6,143.70 6,007.25 100.00 1,067.64 10.89 (4, 12, 17) 6,176.38 5,942.26 100.00 1,073.42
4 (1, 4, 12, 17) 5,615.72 5,410.40 100.00 975.87 27.13 (1, 4, 12, 17) 5,615.72 5,410.40 100.00 975.87
5 (1, 4, 6, 12, 17) 5,215.34 5,063.37 100.00 906.29 72.76 (4, 7, 12, 14, 17) 5,254.32 5,032.94 100.00 913.07

25 2 (2, 4) 11,487.50 11,095.34 99.95 1,345.79 5.58 (12, 20) 15,244.16 10,654.90 99.45 1,794.93
3 (2, 4, 12) 9,645.22 9,361.54 100.00 1,129.47 18.33 (2, 4, 12) 9,645.22 9,361.54 100.00 1,129.47
4 (2, 4, 7, 12) 8,999.56 8,768.18 100.00 1,053.81 52.95 (1, 4, 12, 18) 9,053.62 8,662.86 100.00 1,060.43
5 (1, 2, 4, 7, 12) 8,493.44 8,247.97 100.00 994.55 113.22 (1, 4, 7, 12, 18) 8,537.60 8,179.14 100.00 1,000.53

Avg 99.99 978.00 22.12 99.94 1,016.71
Avg Di�erence (%) - 2.47 0.83 0.05 - 2.52
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Table 3: Comparison between UHMP (solved by PCTS) and HMP for the AP instances.

UHMP HMP
n p Hubs ECost NCost Cap UCost Time (s) Hubs ECost NCost Cap UCost

10 2 (3, 7) 175.09 167.49 99.82 44.09 0.36 (3, 7) 175.09 167.49 99.82 44.09
3 (3, 7, 8) 129.39 136.77 99.99 32.52 1.05 (3, 4, 7) 131.19 136.01 99.99 32.98
4 (3, 4, 7, 8) 107.22 112.40 100.00 26.95 3.16 (3, 4, 7, 8) 107.22 112.40 100.00 26.95
5 (1, 3, 4, 7, 8) 92.36 91.10 100.00 23.21 5.47 (1, 3, 4, 7, 8) 92.36 91.10 100.00 23.21

20 2 (6, 14) 179.58 172.82 99.89 45.18 2.55 (6, 14) 179.58 172.82 99.89 45.18
3 (6, 11, 14) 147.40 152.65 99.99 37.05 10.24 (6, 12, 14) 148.51 151.53 99.99 37.32
4 (2, 6, 11, 14) 134.11 136.88 100.00 33.71 24.06 (2, 6, 12, 14) 134.97 135.62 100.00 33.92
5 (2, 6, 12, 13, 14) 121.61 123.13 100.00 30.56 46.40 (2, 6, 12, 13, 14) 121.61 123.13 100.00 30.56

25 2 (13, 18) 188.82 190.74 99.94 47.48 7.46 (8, 18) 199.57 175.54 99.79 50.26
3 (7, 14, 18) 154.16 155.26 99.99 38.75 17.42 (7, 14, 18) 154.16 155.26 99.99 38.75
4 (2, 7, 14, 18) 138.00 139.20 100.00 34.68 46.61 (2, 7, 14, 18) 138.00 139.20 100.00 34.68
5 (2, 7, 14, 17, 18) 122.88 123.57 100.00 30.88 119.97 (2, 7, 14, 17, 18) 122.88 123.57 100.00 30.88

40 2 (20, 28) 201.33 192.34 99.91 50.65 34.15 (12, 28) 237.60 177.47 99.61 59.95
3 (12, 22, 28) 162.71 158.83 99.99 40.90 83.48 (12, 22, 28) 162.71 158.83 99.99 40.90
4 (12, 22, 26, 28) 145.90 143.97 100.00 36.67 251.89 (12, 22, 26, 28) 145.90 143.97 100.00 36.67
5 (3, 12, 22, 26, 28) 135.61 134.26 100.00 34.08 463.44 (3, 12, 22, 26, 28) 135.61 134.26 100.00 34.08

50 2 (14, 36) 201.58 179.18 99.86 50.73 65.15 (14, 35) 211.40 178.48 99.81 53.23
3 (14, 33, 36) 164.39 162.58 99.99 41.32 186.03 (14, 28, 35) 166.00 158.57 99.98 41.73
4 (14, 28, 33, 35) 146.56 143.38 100.00 36.83 318.88 (14, 28, 33, 35) 146.56 143.38 100.00 36.83
5 (4, 14, 28, 33, 35) 136.19 132.37 100.00 34.23 462.58 (4, 14, 28, 33, 35) 136.19 132.37 100.00 34.23

Avg 99.97 37.52 107.52 99.94 38.32
Avg Di�erence (%) - 1.45 1.11 0.03 - 1.47
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Table 4: Impact of failure probability q on solution diversity and quality for the CAB instances.

q
No. of Di�erent Solutions / Avg Change in Avg Change in

No. of Instances ECost (%) NCost (%)
0.05 4 / 16 - 0.30 0.33
0.10 9 / 16 - 0.86 0.88
0.15 13 / 16 - 1.60 2.50
0.20 15 / 16 - 2.29 3.41
0.25 15 / 16 - 2.83 3.83
0.30 15 / 16 - 3.16 5.00

Table 3 presents a comparison for the AP dataset. Note that optimal solutions to HMP can be obtained for

problem instances with n ≤ 50. For n = 100 and 200, we used the best known solutions found by Ili¢ et al.

(2010). The same general observations made for the CAB dataset also hold for the AP instances, although

there is slightly greater variability in the solutions identi�ed by the two models. Three of the solutions

di�ered for p = 3 and one solution was di�erent for p = 4. The gain in expected costs relative to the increase

in normal costs is less pronounced for this dataset. However, there are a few cases where the improvement in

expected cost is still signi�cant. An example is the instance with n = 40 and p = 2, where our model reduces

expected cost by 15.27% with an 8.38% increase in normal operating cost.

Based on our analysis, it can be inferred that solutions to a standard p-hub median problem are fairly reliable

and generally similar to the UHMP solutions (the ratio of di�erent solutions to the total number of instances

is 9 / 16 for CAB and 7 / 20 for AP). This is particularly true when the number of hubs being located is high

(i.e., p = 4 and 5). This phenomenon can be attributed in part to the fairly low hub failure probabilities used

in our tests. To investigate further the role failure probabilities play in a�ecting the similarity of solutions, we

solved the instances of the CAB dataset for a range of equal failure probabilities q varying between 0.05 and

0.3 in steps of 0.05. Table 4 shows that the number of times solutions to UHMP and HMP di�er increases

with increasing values of the failure probability. For any value of q greater than 0.2, 15 out of the 16 solutions

were di�erent. This result shows, as one might intuitively expect, that the solutions to a standard p-hub

median problem become less reliable when the probability of failure is high. While it is true that the average

percentage increase in normal costs is higher relative to the average percentage decrease in expected costs

(over the range of q values analyzed), solutions to our model nonetheless perform better in an expected sense

and, in some cases, can be substantially better. As a �nal remark, we point out that expected costs for the

HMP solutions were obtained by using our model to optimize customer assignments in case of failure. This

certainly had a positive impact on the overall quality of the HMP solutions as measured in terms of ECost.

An illustrative example of how solutions to our model can di�er from a standard p-hub median model is

displayed in Figure 5 for one of the CAB instances used in Table 4. The �gure shows how the hub locations

based our model are clustered in the central part of US, an area with high customer demand. The standard

hub network, in contrast, has a hub located at Los Angeles which only serves itself. The closer concentration

of hubs guarantees that in case of failure, backup hubs will not be too far away from customers that need to

be reassigned.

Based on our observation that the HMP solutions are in many cases quite reliable, we modi�ed the PCTS

algorithm in order to improve its e�ciency at solving large-sized problems. Speci�cally, we considered using

a two-phase approach where, in the �rst phase, a standard p-hub median solution was generated and in the
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(a) Reliable hub network (b) Standard hub network

Figure 5: Illustration of reliable versus standard hub networks for the CAB instance n = 15, p = 3 and a
�xed hub failure probability q = 0.15

second phase this solution was used as the starting solution for the PCTS algorithm. To generate an HMP

solution in phase 1, we modi�ed the PCTS algorithm so that the sequential 2-opt search of hub assignments

was restricted to the level-1 assignments only and moves were evaluated with respect to the objective of a

standard HMP model.

The two-phase approach was tested on some large instances of the AP dataset with n = 100 and 200. We

used 100 iterations for phase 1 and the same parameter settings described previously for PCTS in phase 2.

Results obtained by solving UHMP using the PCTS algorithm with and without phase 1 are shown in Table

5. The table also shows a comparison with the solutions of the standard p-hub median problem based on our

de�ned performance measures. We point out that in all cases, phase 1 of PCTS produced either an optimal

solution or the best known solution to HMP (results not shown).

The bene�ts of using a two-phase approach are clearly evident. Without phase 1, there are two cases (i.e.,

n = 200, p = 4, 5) where the standard model �nds better solutions than our model in terms of expected

and unit costs. This implies that the solutions found by PCTS are sub-optimal. With phase 1, however, the

PCTS algorithm produces better solutions in all cases in terms of expected and unit costs. Average reduction

in expected cost improves from 4.91% to 6.70%, while unit cost improves on average from 4.99% to 6.78%

lower. At the same time, the average increase in normal operating cost is reduced from 4.20% to 3.32% above

HMP. The reduction in expected cost is signi�cant for the instance n = 100, p = 2 (14.48%) and for the

instance with n = 200, p = 2 (28.49%).

4.4 Discount Factor Sensitivity Analysis

In attempt to understand the in�uence of the discount factor γ on expected hub and spoke �ows for UHMP

and HMP, we carried out experiments on the AP dataset with n = 20 nodes in which parameters p and γ were

systematically varied. Minimum and maximum expected hub arc �ows, as well as the average percentage of

spoke arcs with �ow greater than hub arcs, are reported in Table 6.
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Table 5: Performance of PCTS without phase 1 (upper portion) and with phase 1 (lower portion) on the large AP instances.

PCTS HMP
n p Hubs ECost NCost Cap UCost Time (s)* Hubs ECost NCost Cap UCost

100 2 (26, 92) 206.47 197.33 99.93 51.93 542.33 (28, 71) 241.43 180.22 99.66 60.88
3 (28, 65, 73) 168.59 166.30 99.99 42.37 964.67 (28, 55, 70) 170.14 160.85 99.98 42.77
4 (28, 55, 66, 71) 150.11 146.34 100.00 37.73 3,215.61 (28, 55, 64, 70) 150.79 145.90 100.00 37.90
5 (7, 28, 55, 66, 70) 140.58 137.09 100.00 35.33 - (7, 28, 55, 64, 70) 141.21 136.93 100.00 35.49

200 2 (54, 147) 213.02 203.28 99.94 53.57 4,856.04 (56, 140) 297.90 182.46 99.40 75.32
3 (53, 107, 140) 181.83 162.89 99.96 45.72 9,225.17 (53, 107, 140) 181.83 162.89 99.96 45.72
4 (56, 106, 131, 140) 156.89 149.82 100.00 39.43 - (56, 110, 131, 140) 156.76 147.77 100.00 39.40
5 (61, 101, 112, 131, 141) 154.61 150.55 100.00 38.86 - (14, 61, 113, 131, 140) 146.64 140.06 100.00 36.85

Avg 99.98 43.12 99.88 46.79
Avg Di�erence (%) - 4.91 4.20 0.10 - 4.99
100 2 (26, 92) 206.47 197.33 99.93 51.93 618.90 (28, 71) 241.43 180.22 99.66 60.88

3 (28, 65, 73) 168.59 166.30 99.99 42.37 1,152.77 (28, 55, 70) 170.14 160.85 99.98 42.77
4 (28, 55, 66, 71) 150.11 146.34 100.00 37.73 3,572.55 (28, 55, 64, 70) 150.79 145.90 100.00 37.90
5 (7, 28, 55, 66, 70) 140.58 137.09 100.00 35.33 - (7, 28, 55, 64, 70) 141.21 136.93 100.00 35.49

200 2 (54, 147) 213.02 203.28 99.94 53.57 5,190.68 (56, 140) 297.90 182.46 99.40 75.32
3 (57, 103, 141) 171.92 165.23 99.99 43.20 - (53, 107, 140) 181.83 162.89 99.96 45.72
4 (57, 108, 130, 141) 152.90 148.05 100.00 38.43 - (56, 110, 131, 140) 156.76 147.77 100.00 39.40
5 (14, 61, 112, 130, 141) 145.36 140.42 100.00 36.53 - (14, 61, 113, 131, 140) 146.64 140.06 100.00 36.85

Avg 99.98 42.39 99.88 46.79
Avg Di�erence (%) - 6.70 3.32 0.11 - 6.78

* A �-� indicates that the 3-hour time limit was reached.
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Table 6: Discount factor e�ects on inter-hub �ows of UHMP (solved by PCTS) and HMP for selected AP n = 20 instances.

UHMP HMP
Hub Arc Flows Spoke Arcs Hub Arc Flows Spoke Arcs

Hubs ECost Min Max
with Flow >

Hubs ECost Min Max
with Flow >

p γ Hub Arcs (%) Hub Arcs (%)
3 0.2 (6, 12, 14) 129.66 366.0 866.9 5 (6, 12, 14) 129.66 366.0 866.9 5

0.4 (6, 12, 14) 136.56 318.1 813.3 10 (6, 12, 14) 136.56 318.1 813.3 10
0.6 (6, 11, 14) 143.36 366.7 801.3 5 (6, 12, 14) 143.38 318.1 813.3 10
0.8 (6, 11, 14) 148.75 366.7 801.3 5 (6, 12, 14) 150.13 265.8 865.6 15

4 0.2 (2, 6, 12, 14) 111.58 88.1 677.6 38 (2, 6, 12, 14) 111.58 88.1 677.6 38
0.4 (2, 6, 12, 14) 120.13 88.1 725.2 43 (2, 6, 12, 14) 120.13 88.1 725.2 43
0.6 (2, 6, 12, 14) 128.62 85.3 727.9 43 (2, 6, 12, 14) 128.62 85.3 727.9 43
0.8 (2, 6, 11, 14) 135.88 109.6 786.2 43 (2, 6, 12, 14) 137.04 70.9 672.7 44

5 0.2 (2, 6, 12, 13, 14) 96.10 65.7 578.9 50 (2, 6, 12, 13, 14) 96.10 65.7 578.9 50
0.4 (2, 6, 12, 13, 14) 105.45 67.5 626.8 52 (2, 6, 12, 13, 14) 105.45 67.5 626.8 52
0.6 (2, 6, 12, 13, 14) 114.68 67.5 626.9 52 (2, 6, 12, 13, 14) 114.68 67.5 626.9 52
0.8 (2, 6, 12, 13, 14) 123.89 67.5 585.8 53 (2, 4, 6, 11, 14) 124.70 21.8 688.0 58
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As observed with various other hub location models (O'Kelly, 1987; Campbell, 1994; O'Kelly and Bryan,

1998), inter-hub �ows for UHMP are imbalanced; a few inter-hub links tend to have very high �ows, while

others have comparatively small �ows. This is clearly seen with the p = 4 and 5 instances, where the

minimum inter-hub �ows are 11-14% of the maximum inter-hub �ows. Interestingly, we see that in cases

where solutions to UHMP with HMP di�er (highlighted in bold), UHMP yields a somewhat more equitable

distribution of inter-hub �ows, as indicated by the higher minimum �ows and generally lower maximum �ows

along hub arcs.

Another observation that can be gleaned from Table 6 is that economies of scale are not being fully captured

in UHMP. In particular, a signi�cant proportion of spoke arcs, up to 53%, have �ows exceeding hub arc �ows.

This does not adhere to one of the core premises of a hub-and-spoke architecture, namely that discounting

is justi�ed by the concentration of �ows between hubs. This is a common problem, which a number of

studies have documented (O'Kelly and Bryan, 1998; Campbell et al., 2005), when hubs are assumed to be

fully connected. It is important to point out, however, that in comparison to a standard hub median model,

UHMP tends to mitigate this issue to some extent. In the 4 cases where UHMP produced a di�erent solution

from HMP, the mean percentage of spoke arcs with �ow greater than hub arc was strictly less. Results for

CAB n = 20 instances (results not shown) were qualitatively similar, indicating that our �ndings regarding

UHMP hub and spoke �ows may be generalizable.

4.5 Failure Probability Sensitivity Analysis

In this section, we analyze the robustness of the UHMP solutions to variations in the failure probabilities

and evaluate the possible impacts on solution quality of using inaccurate probability values. For example

purposes, the analysis is carried out on the CAB n = 10 instance with equal hub failure probabilities q in

the range [0.0, 0.05, . . . , 0.3].

Let X∗
A (X∗

T ) be the optimal hub locations obtained by solving UHMP2 with an assumed (true) failure

probability qA (qT ). We denote by Z(·) the objective function value for a particular solution given that the

true failure probability is qT . We de�ne the relative percentage error in objective value when the assumed

probability is qA and the true probability is qT as follows:

Error =
Z(X∗

A)− Z(X∗
T )

Z(X∗
T )

× 100 (38)

Computational results of solution robustness for UHMP are presented in Table 7 for each combination of

assumed and true hub failure probabilities. The last two columns report the average and maximum percentage

error for each assumed probability value. The results suggest that for small values of p, it is better to assume

a small probability of failure. Conversely, for large values of p, it is better to assume a large probability of

failure. This can be explained by the fact that when resources are limited (small p), there is little room for

recourse and the best option is to plan for normal operating conditions. On the other hand, when resources

are greater (large p), there is more room to accommodate for potential failure. The maximum percentage

error found (10.34%) was for p = 2 when the probability of failure is assumed to be high (qA ≥ 0.15) but in

reality no failure occurs (qT = 0). Percentage error is quite signi�cant as well for the instances p = 4 and 5

when the hub network is planned assuming a low failure probability (qA ≤ 0.1) but failures actually occur

with high probability (qA ≥ 0.2).
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Table 7: Solution robustness of CAB n = 10 instances.

Assumed True Probability
p Probability 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Avg Error Max Error
2 0.00 - 0.00 0.00 1.73 2.58 2.79 2.69 1.63 2.79

0.05 0.00 - 0.00 1.73 2.58 2.79 2.69 1.63 2.79
0.10 0.00 0.00 - 1.73 2.58 2.79 2.69 1.63 2.79
0.15 10.34 4.47 0.38 - 0.00 0.00 0.00 2.53 10.34
0.20 10.34 4.47 0.38 0.00 - 0.00 0.00 2.53 10.34
0.25 10.34 4.47 0.38 0.00 0.00 - 0.00 2.53 10.34
0.30 10.34 4.47 0.38 0.00 0.00 0.00 - 2.53 10.34

3 0.00 - 0.00 0.00 0.00 0.02 0.09 0.12 0.04 0.12
0.05 0.00 - 0.00 0.00 0.02 0.09 0.12 0.04 0.12
0.10 0.00 0.00 - 0.00 0.02 0.09 0.12 0.04 0.12
0.15 0.00 0.00 0.00 - 0.02 0.09 0.12 0.04 0.12
0.20 0.72 0.49 0.28 0.10 - 0.00 0.00 0.27 0.72
0.25 0.72 0.49 0.28 0.10 0.00 - 0.00 0.27 0.72
0.30 0.72 0.49 0.28 0.10 0.00 0.00 - 0.27 0.72

4 0.00 - 0.00 0.20 1.14 2.79 4.26 5.25 2.27 5.25
0.05 0.00 - 0.20 1.14 2.79 4.26 5.25 2.27 5.25
0.10 0.58 0.36 - 0.16 0.91 1.54 2.22 0.96 2.22
0.15 2.40 1.64 0.60 - 0.00 0.00 0.00 0.77 2.40
0.20 2.40 1.64 0.60 0.00 - 0.00 0.00 0.77 2.40
0.25 2.40 1.64 0.60 0.00 0.00 - 0.00 0.77 2.40
0.30 2.40 1.64 0.60 0.00 0.00 0.00 - 0.77 2.40

5 0.00 - 0.00 0.00 0.09 0.88 2.50 3.35 1.14 3.35
0.05 0.00 - 0.00 0.09 0.88 2.50 3.35 1.14 3.35
0.10 0.00 0.00 - 0.09 0.88 2.50 3.35 1.14 3.35
0.15 1.92 1.41 0.74 - 0.00 0.00 0.72 0.80 1.92
0.20 1.92 1.41 0.74 0.00 - 0.00 0.72 0.80 1.92
0.25 1.92 1.41 0.74 0.00 0.00 - 0.72 0.80 1.92
0.30 8.72 6.81 4.90 2.93 1.69 0.33 - 4.23 8.72

5 Discussion

The design of reliable hub networks is an important issue that has received relatively limited attention in the

literature. In this paper, we present a model for locating unreliable hubs, assuming that multiple hubs can

fail simultaneously and that disrupted �ows must be rerouted through remaining operational hubs. Besides

presenting a nonlinear formulation of the problem, we devise an exact linear version based on the use of a

specialized �ow network referred to as a probability lattice. A probability lattice extends the concept of a

probability chains by linking multiple probability chains together into a backbone and spur structure in order

to evaluate joint, compound probability terms. Computational experiments demonstrate the e�ciency of our

linear model on small-sized instances (≤20 nodes). For large-sized instances, heuristic methods are required.

We therefore propose a Tabu search procedure employing a parallel computing strategy to �nd optimal or

near optimal hub locations with reasonable computational e�ort. A sensitivity analysis was carried out to

gain a preliminary understanding of how expected �ows on hub and spoke arcs are a�ected by discounting

and how variability in hub failure probability a�ects solution robustness.

It is worth pointing out some of the caveats and limitations of our study. Firstly, a bit of caution is warranted

about over-interpreting the performance of our heuristic solution method. In particular, the results showed
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that using simple 1-opt hub facility moves managed to produce low optimality gaps. This �nding, however,

is based on tests involving relatively small problem size instances. With larger problem instances, a 1-opt

strategy may not perform as well, in which case the use of larger search neighborhoods may prove bene�cial.

A key issue we discovered is that our model su�ers from many of the same problems as a standard single

allocation p-hub median problem due to the assumption of having a fully connected hub network. As the

computational results clearly show, solutions to UHMP can have imbalanced inter-hub �ows and, more

importantly, spoke-to-hub �ows that often exceed hub-to-hub �ows. This latter characteristic contradicts a

key premise of hub-and-spoke networks, namely that discounting is justi�ed by the concentration of �ows

between hubs. That being said, we are encouraged by the fact our model tends to restrict the magnitude

of both imbalanced �ows and excessively high spoke arc �ows when compared to a standard hub median

problem, suggesting that a reliability framework has additional advantages beyond mitigating against the

impacts of hub disruption. Moving forward, an interesting line of research would be to incorporate more

realistic cost structures into our hub reliability modeling framework, for example �ow discounting (O'Kelly

and Bryan, 1998; Bryan, 1998) or hub arc location (Campbell et al., 2005; Alumur et al., 2009), which better

account for economies of scale.

Another limitation of our model relates to the manner in which spoke nodes are reassigned to hubs. We employ

a level-set approach, whereby spokes assign to hubs in a speci�ed order based on the operational status of

hubs. Under this assumption, it would be challenging to incorporate, in a straightforward way, certain model

extension such as multiple hub allocation (Ernst and Krishnamoorthy, 1999) or hub capacity constraints

(Marín et al., 2006). Formulating a model that incorporates these types of problem considerations would

likely involve moving away from a level-set approach to a scenario based approach in which every combination

of hub failures is enumerated and explicitly modeled. The trick, of course, would be to devise ways of dealing

with the combinatorial explosion in the number of scenarios as the number of hubs increases and attempting

to linearizing such a model. Other interesting lines of research would be to consider correlated hub failures

and the use of other hub service protocols such as a maximum covering objective. These are areas we are

actively investigating.

Finally, our current model neglects some practical considerations with regard to reassigning disrupted �ows.

In particular, we do not take into account how far the rerouting process can continue. This stands in contrast

to protocols often used in the transportation sector, airlines being a good example, where a journey (�ight)

is canceled if the added travel travel distance/time exceeds some threshold. This could, in part, be dealt

with by only considering assignments up to some level r < p (i.e., assignment levels s and t could range

from 1, . . . , r instead of 1, . . . , p). This would have the added advantage of reducing the size of model by

eliminating variables and constraints associated with assignment levels > r. Another possibility would be to

introduce additional variables and constraints to enforce a strict limit on how far rerouting is allowed to occur

in the event of hub disruption. The obvious downside is that a very large number of additional variables

and constraints may be required, which would almost certainly make an already complex model yet more

complex and di�cult to solve.
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