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Abstract 

 

This paper presents a methodology for predicting NOx emissions from a biomass combustion process 

through flame radical imaging and DL (deep learning). The dataset was established experimentally from 

flame radical images captured on a biomass-gas fired test rig. MCA (Morphological component 

analysis) is undertaken to improve the quality of the dataset, and the region-of-interest extraction is 

introduced to extract the flame radical part and rescale the image size. The developed DL-based 

prediction model contains three successive stages for implementing the feature extraction, feature fusion 

and emission prediction. The fine-tuning based on the prediction is introduced to adjust the process of 

the feature fusion. The effects of the feature fusion and fine-tuning are discussed in detail. A comparison 

between various image- and machine learning-based prediction models shows that the proposed DL 

prediction model outperforms other models in terms of RMSE (Root Mean Square Error) criteria. The 

predicted NOx emissions are in good agreement with the measurement results.  

 

Keywords: Flame radical imaging, biomass, NOx emission, image processing, deep learning, de-

noising auto-encoder 
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1 Introduction 

 

In the foreseeable future, biomass is one of the most common renewable energy resources for power 

generation due to their wide availability and environmental friendliness (Saidur et al., 2001). Similar to 

fossil fuel combustion, however, biomass firing produces harmful emissions such as NOx (Skalska et 

al., 2010). The control of NOx emissions from biomass combustion is therefore still a concern in power 

generation industry (Demirbas, 2005). Techniques for the monitoring and on-line predication of NOx 

emissions from biomass combustion are thus highly desirable to meet increasingly stringent 

environmental regulations. 

 

Studies on NOx emission production and control in fossil fuel combustion have been undertaken 

computationally and experimentally for many years. The development of an accurate model for NOx 

emission prediction is crucial. Considerable efforts have been paid in this area but most focused on basic 

learning algorithms (such as neural networks, support vector machine and their variants) which attempt 

to use historical and current plant data to establish the relationships between the NOx emissions and the 

combustion process variables (Zhou et al., 2001, Le Bris et al., 2007, Si et al., 2009). In practical 

applications, however, some process parameters such as the concentration of pulverized coal and the 

mass flow rate of coal particles are not available or difficult to be measured by hardware-based sensors 

due to technical and economic limitations (Zhang et al., 2008). In addition, it is very difficult, if not 

impossible, to build an accurate analytical model for on-line NOx prediction due to the lack of available 

combustion parameters (Zhou et al., 2001). It is therefore necessary to develop techniques for NOx 

prediction using more effective inputs such as characteristic information of the flame which relates 

directly to the combustion process. Some research has been devoted to establish CFD models for NOx 

estimation (Li et al., 2004, Stopford, 2009). CFD modelling is, however, generally very time consuming 

and not applicable to real-time processes (Li et al., 2004). 
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Flame radicals (i.e., OH*, CN*, CH* and C2*) act as intermediates in fuel thermal and chemical 

reactions. Early studies have suggested that the characteristics of flame (including radicals) are closely 

linked to furnace conditions such as burner structure, fuel type, air-to-fuel ratio, etc. For instance, the 

information of the flame radicals has proven to be a very good indicator of the air-to-fuel ratio 

(Sandrowitz et al., 1998, Hardalupas et al.,2004, Krabicka et al., 2011). Previous studies have also shown 

that there is a close correlation between the characteristics of flame radicals and NOx emissions (Demory, 

2007, Love et al., 2011, Hernández et al., 2013). Attempts have been made to establish NOx emission 

predication models based on hand-crafted features extracted from flame radical images and software 

computing algorithms. Li et al. (2014) proposed a prediction model based on sparse coding and neural 

network techniques. Further attempts were made to develop a variable image feature structure based on 

Contourlet transform and Zernike moments for improved prediction results (Li et al., 2015a), and a 

prediction model based on NMF (non-negative matrix factorization) texture analysis and fast sparse 

regression (Li et al. (2015b). The NMF algorithm produces different decomposition modes, each 

containing independent components. The accuracy of the prediction result can be improved by adjusting 

the number of the independent components. Another attempt was made where both the radical image 

features and flame temperature were used to build a neural network for predicting NOx emissions (Li et 

al., 2012). The above studies have achieved some success on the prediction of NOx emissions, however, 

some issues remain unresolved. This is mainly due to the fact that fuel combustion is a complex and 

time-varying process, which would introduce significant noises into the images (such as variations in 

size, shape, luminosity, temperature, etc.). Such variations can have a great impact on the accuracy in the 

prediction model. Therefore, the extracted features of the flame image should be representative of and 

robust to the corresponding operation condition. This is particularly referred to the ability of robustness 

to exhibit classification invariance to a diverse range of transformations and distortions (Arel and 

Karnowski, 2010). In the algorithm (Li e al., 2014), the designed feature extractor cannot be optimally 

tuned to the prediction task. The number of the independent components can be considered as a parameter 
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adjusted based on the prediction task (Li et al., 2015b). However, the adjustment process cannot directly 

act on the image feature. Therefore, the feature extractor based on the prediction task requires further 

research. In addition, the multi-model fusion for the different types (up to four) of radical images has not 

been studied in detail, leading to the inefficient prediction and additional computational burden. Finally, 

the existing learning algorithms have limited modeling and representational power which may affect the 

accuracy of prediction results. Therefore, an effective prediction model of NOx emissions which should 

rely more on automatic learning and less on hand-designed heuristics is highly desirable.  

 

In the present work, we address these intractable problems by presenting a prediction model based on 

DL (deep learning) algorithms. The DL algorithms work on a layered, hierarchical architecture for 

extracting complex structure and building internal representation from rich sensory inputs (Schmidhuber, 

2015). In comparison with existing learning algorithms, a key benefit of the DL is that the data (such as 

signals and images) representations (features) are extracted automatically from massive amounts of 

unsupervised data. In this study, the FRI (flame radical image) dataset is established experimentally. 

Image preprocessing techniques such as MCA (morphological component analysis) (Starck et al., 2004) 

and the ROI (region-of-interest) extraction are employed to improve the quality of the FRI dataset and 

reduce the computational load of the DL model. The discreetly designed numerical experimentation 

shows the effectiveness of the proposed techniques in the prediction model.   

 

2 METHODOLOGY 

 

2.1 Brief introduction to deep learning   

Deep learning has become a hot topic in various fields of research such as classification tasks (Bengio 

et al., 2007), modeling textures (Osindero, and Hinton, 2008), modeling motion (Taylor, and Hinton, 

2009), and object segmentation (Levner, 2009). This is due to recent advances in machine learning and 
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information processing research, particularly the significant increases of chip processing abilities and 

training data size (Yu, and Deng, 2011). In comparison with other machine learning algorithms, DL 

algorithms can effectively exploit complex, compositional nonlinear functions, which make it possible 

to learn distributed and hierarchical feature representations for both labeled and unlabeled data. Most 

DL algorithms overcome the limitations of the traditional machine learning architectures which have 

generally an insufficient depth, resulting in a poor generalization ability in classification and regression 

tasks. In DL algorithms, the hierarchical architecture with a sufficient depth offers an excellent learning 

ability on the data representation, particularly for some pattern recognition applications.  

 

In the deep learning, basic structures are usually stacked to construct the hierarchical architecture of DL 

models (Bengio, 2009). An auto-encoder is a neural network based on the concept of sparse coding 

(Olshausen, 1996). The aim of the auto-encoder is to learn a compressed, distributed representation for 

a set of data, typically for the purpose of dimensionality reduction (Hinton, and Salakhutdinov, 2006). 

The auto-encoder is a discrimination model which learns an approximation to the identity function and 

discovers the internal structure of the data by limiting the number of hidden units. The DAE (de-noising 

auto-encoder) adds noise to the original radical image to acquire the corrupted image from which the 

DAE intends to reconstruct the uncorrupted-image. Recent work has suggested that the DAE is effective 

in learning the underlying data generating distribution (Vincent et al., 2008), which would be very useful 

in the construction of the DL model.  

 

2.2 Deep learning model for NOx prediction 

Figure 1 shows the block diagram of the prediction model of NOx emissions based on images of flame 

radicals (i.e., OH*, CN*, CH* and C2*). The model has three successive stages. The first stage is a 

learning unit for extracting the image feature of four flame radicals. The resulted image features are 

taken as the input to the second stage to learn the fusion feature. Some DAEs are stacked to construct 
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the first two stages. The number of the DAE depends on the image size and the practical problem. In 

comparison to the feature extraction method referring to hand-crafted features, the designed learning 

units rely more on automatic learning. In the third stage, the prediction unit establishes the relationships 

between the fusion features and NOx emissions. In addition, the interaction of the last two stages can 

improve the accuracy of the prediction results. A detailed description of each stage is given as follows. 

 

The first stage of the prediction model aims to generate image features which are extracted by the four 

independent channels corresponding to the four flame radicals, as shown in Figure 2. The pixel values 

of the radical images are given to the corresponding channel to acquire the compacted image feature. 

Each channel is in fact a DDAE (deep DAE) network. A DDAE network is basically a neural network 

which has multiple hidden layers. The outputs of each layer are connected to the inputs of the successive 

layer. The greedy layer-wise approach for the DDAE pre-training is used which trains each layer in turn 

based on the reconstruction error. The image feature is the output of the activation function of the 

deepest layer of hidden units. The number of the hidden units reduces layer by layer for the compacted 

image feature. The training procedure of the n-layer DDAE network can be formulated as following, 

ni = cj(ai), i = 0,1, … , n; j = 1,2, … , n                                             (1) 

  ai+1 = fj(ni), i = 0,1, … , n; j = 1,2, … , n                                          (2) 

ri = gj(ai), i = 1, … n; j = 1,2, … , n                                                 (3) 

ai∗ = argmin(‖ai − ri‖2), i = 0,1, … , n                                            (4) 

where ai is the input of the DDAE network, cj(∙) is the corrupted function which adds the noise to input 

ai, ni is the corrupted version of input  ai, and fj(∙) is the encoder function mapping ni to the ai; g(∙) is 

the decoder function mapping ai to the reconstruction ri. Term ‖ai − ri‖2 denotes the reconstruction 

error in a single layer. The greedy layer-wise approach can be expressed by solving equation (4) in 

every layer rather than among the all DDAE network noted by ∑ ‖ai − ri‖2n
i=1 . Therefore, the equation 

(4) is solved in every hidden layer in the DDAE network, and ai∗ is the output of the activation function 
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of the ith hidden layer. For the n-layer DDAE network,  an∗  is the output of the activation function of the 

deepest layer of hidden units, and can be considered as the image feature. 

 

The second stage is also a DDAE network which is designed to learn the image features generated in 

the first stage. In comparison with the DDAE in the first stage, this DDAE network interacts with the 

prediction unit as shown in Figure 3. The third stage is a three-layer feedforward backpropagation neural 

network considering as the prediction unit. Supposed the m pairs sample (𝑎𝑎𝑛𝑛𝑛𝑛,𝑦𝑦𝑛𝑛), where 𝑎𝑎𝑛𝑛𝑛𝑛 is the 

fusion feature computed by the DDAE network, 𝑦𝑦𝑛𝑛  is the measured value of NOx, the pre-training 

procedure of the n-layer DDAE network in the second stage also follows the equation (1)-(4). , The 

difference is, however, that the backpropagation algorithm is used to solve the following optimization 

problem, 

{ank∗ }k=1m = argmin � 1
m
∑ �1

2
‖h(ank) − yk‖22�m

i=1 � ,                               (5) 

where h(∙) is the activation function in the prediction unit, the term 1
m
∑ �1

2
�hW,b(ank) − yk�2

2
�m

i=1  

denotes the prediction error. To solve the equation (5), the backpropagation algorithm is used to perform 

fine-tuning on the DDAE network in the second stage: the prediction error is back propagated through 

the whole DDAE network in the second stage, and used to improve all the weights of the DDAE 

network.  

 

3 Results and Discussion 

 

3.1 Experimental generation of FRI (flame radical image) dataset and NOx emissions  

The FRI dataset is a collection of the real-world images of flame radials captured on a biomass-gas 

fired combustion test rig using a spectroscopic imaging system developed in early studies (Figure 4(a), 

Krabicka et al., 2011). The imaging system combines optical splitting and filtering and intensified digital 

imaging techniques, capable of taking simultaneously the emission images of four flame radicals. A full 
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description of the imaging system and test rig is given in (Krabicka et al., 2011). In the experiments, the 

primary fuel is biomass (willow) and propane gas is used to support the combustion. The willow was 

ground to fine particles and pneumatically conveyed to the burner. The proximate and ultimate analyses 

of biomass fuel are summarized in Table 1 (Williams et al, 2012). A turntable feeder was used controlled 

the flow rate of the air and thus the willow. A total of seven different biomass mass flow rates were 

created by changing the speed of the feeder from 10Hz to 40Hz with an interval of 5Hz under a fixed 

propane flow rate of 0.6 liter per minute. For each test condition, images of four flame radicals were 

concurrently captured using the spectroscopic imaging system. A total of 100 images were collected 

under each test condition. The image sets were collected to reflect the full range of conditions of the 

combustion process. 

The actual values of NOx emissions in the gas flue were measured using a portable gas analyzer (KANE 

900 PLUS) during the image acquisition (Figure 4). Three samples were taken under each condition and 

the average of the three sample data was used as the reference values for the NOx prediction. These 

reference values are attached to the FRI dataset to form the complete label dataset. Note that, due to the 

fact that the temperature of the biomass combustion could not reach 1600°C or above under the 

experimental conditions, the main source of NOx produced was considered to be fuel NOx in this study. 

 

The dataset has a total of 2800 examples which consists of four of image sequences of flame radicals, 

i.e., OH* (308 nm), CH* (432 nm), CN* (387 nm), and C2* (514 nm), and is divided into the training 

set (1680 examples) and testing set (1120 examples). All images have a size of 256×256 pixels, each 

pixel is represented by a value between 0 and 1, where 0 is black, 1 is white and any value, g, in between 

represents a different grey-level. Figure 4(b) illustrates typical examples of flame radical images 

captured in the experiments. 
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It should be mentioned that, in practical furnaces, whether the images of flame radicals can be acquired 

or not by an imaging system is dependent up on the accessibility of the furnace. However, considering 

the fact that many modern power plants have been equipped vision-based monitoring systems such as 

CCTVs, it is feasible to install the flame imaging system on practical furnaces without a significant 

modification of the furnace.  

 

3.2 Image Preprocessing  

Although the cooling system of the EMCCD camera allows the efficient reduction of dark noise, the 

images acquired still contain unwanted variances. The MCA algorithm (Starck et al., 2004) was applied 

over the FRI data to decompose the raw flame radical image into the smoothed image part and the noisy 

part (noisy texture). Compared with traditional de-noising methods, the noise model is able to learn via 

the MCA algorithm rather than based on assumptions on the noise source. The selected dictionaries in 

this study were curvelet dictionary (Candès and Donoho, 1999) and local DCT (discrete cosine 

transform) dictionary (Starck et al., 2005). The selected dictionaries are mutually incoherent so that each 

has sparse representations for its intended content type, while giving non-sparse representations on the 

other content type (Starck et al., 2004). Figure 5 illustrates an example of the decomposition results. It 

is clear that the smoothed image (Figure 5(b)) and the noisy part (Figure 5(c)) are successfully 

decomposed. The irregular impurities in Figure 5(c) suggest that the MCA algorithm can appropriately 

model the irregular noise content by the selected dictionaries whilst traditional noise models based on 

the probabilistic assumption (such as Gaussian noise) cannot. 

 

In addition, it is recognized that a 256×256 pixel image results in a 65536-dimension vector which 

induces computationally expensive to train the constructed model. As shown in Figure 4, there is a large 

area which is the background of the image to be processed, resulting in too much irrelevant information 

in the 65536-dimension vector. Therefore, the ROI of radical images are extracted and rescaled to 64×64 
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pixels. The extraction is done by computing first the minimum area of the rectangle containing the flame 

radical part, and then scaling the segmented image area a square. The square is finally rescaled to 64×64 

pixels.  

 

3.3 Impact of the feature fusion and fine-tuning on the prediction model 

The assessment of the proposed prediction model focuses on two aspects, i.e., the necessity of the 

learning unit for the fusion feature; the effect of the fine-tuning done by the prediction unit. Three 

subsequent model architectures are constructed to facilitate comparative analysis using the RMSE (root 

mean square error),  

RMSE = �1
N
∑ (yi − yı�)2N
i=1  ,                                 (6) 

where yi is the measured value of the NOx emission, yı�  is the corresponding predicted value, and N is 

the number of samples.  The three model architectures examined are, 

 

MA1 (Model architecture 1), the DL based prediction model as described in section 2. The DDAE 

network’s topology was fixed to five layers with 4096-3000-2000-1500-1000-500 (the numbers in the 

sequence mean the number of the hidden units in every layer) in the first stage, six layers with 2000-

1500-1000-500-300-80 in the second stage. The resulting fusion feature is of an 80-dimension vector.  

 

MA2 (Model architecture 2), a modified model architecture which has the same first a and second stages 

as MA1. Its third stage was replaced by the LSSVR model (Li et al., 2015a).  

 

MA3 (Model architecture 3), a modified model architecture which has the same first stage as MA1. Its 

second and third stages were replaced by the LSSVR model. The DDAE network’s topology was fixed 

to 10 layers with 4096-3000-2000-1500-1000-500-300-150-100-50-20. The four kinds of image feature 

are simply concatenated the four types of radical image features.  
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It is hoped that, by comparing the RMSE values of MA1 and MA2, we can assess the impact of the 

fine-tuning on the accuracy of the prediction results; and by comparing the RMSE values of MA2 and 

MA3, we can assess the impact of the fusion features on the prediction results.  

 

The same training and testing sets of the FRI dataset were used to train and test the three models, 

respectively. The RMSE values of the three model architectures are illustrated in Figure 6. The RMSE 

value of the MA2 is lower than that of the MA3, which suggests that the fine-tuning can improve the 

prediction results. For all three models, the MA1 gives the best prediction accuracy for the testing set 

with RMSE 1.5 ppm. It shows that the fusion features go simply beyond concatenating the four kinds 

of radical image features, and the designed prediction model is completeness. It can therefore be 

concluded the proposed DL based prediction model (MA1) has the most appropriate architecture. 

 

3.4 NOx prediction based on the deep prediction model 

Figure 7 shows the predicted values and the standard deviations. The error bars represent the standard 

deviation of the mean computed on the testing dataset. It is clear that the predicted values are in a good 

agreement with the reference values which were obtained using the gas analyzer. The maximum 

standard deviation is 3 ppm occurred for Test 7 and the minimum standard deviation is 0.6 ppm occurred 

for Test 1. Figure 8 shows the relative errors between the predicted and reference values of the NOx 

emissions. The maximum relative errors for Tests 1 to 7 are 1.8%, 2%, 1.8%, 1.7%, 1.8%, 1.9%, and 

2.6%, respectively. As can be seen from the figure, the proposed DL based prediction model has a good 

accuracy in the predication of the NOx emissions in comparison to the reference values. 

 

As previously addressed, the major source of NOx emission in this study is considered to fuel NOx. In 

the case where the flame temperature reaches 1600°C or above such as on a full-scale coal/biomass 
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boiler, the flame temperature may have to be measured and used as an input to the prediction model to 

reflect the contribution of the thermal NOx to the total NOx emission. It should also stressed that the 

combustion process in a full-scale furnace is far more complicated than that in a combustion test rig. 

The variation of the furnace accessibility by an imaging system may also result in the geometric and 

luminous distortions of the images acquired. Therefore, other techniques, such as image de-noising, 

image segmentation, and geometric and luminous corrections, may have to be introduced for 

preprocessing the images, making them suitable for the proposed DL-based prediction model. 

 

3.5 Comparative analysis of different techniques for NOx emission prediction 

There are prediction models which have been developed based on the hand-crafted feature extraction 

and basic learning algorithms have achieved some success in the NOx prediction for different biomass 

types and combustion conditions (Li et al., 2015a, Li et al., 2015b, Li et al., 2012). A comparative 

analysis of different prediction models for NOx emissions was conducted so as to have a further 

assessment of the proposed DL based prediction model. The outlines of these prediction methods are 

described as follows: IR (Intensity ratio) and BP (Backpropagation) (IR+BP) neural network (Li et al., 

2012) where the hand-crafted feature extraction is based on the ratios of flame radical intensities (OH*, 

CH*, CN*, and C2*) together with the flame temperature. A standard three-layer BP neural network is 

used as the predict unit; CTZM+LSSVR (Li et al., 2015a) where the hand-crafted feature extraction is 

based on the CTZM (contourlet transform and zernike moment) algorithm, and the LSSVR is used as 

the predict unit; and NMF-TA+ FSR (fast sparse regression) (Li et al., 2015b) where the hand-crafted 

feature extraction based on the non-negative matrix factorization and texture analysis, and the FSR is 

used as the predict unit.  

 

The same training set was used to train these prediction methods, the RMSE values on the testing set 

was used to evaluate the results. The RMSE values of the different prediction methods are illustrated in 
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Figure 9. As can be seen, the RMSE value of the DL based prediction model is significantly lower than 

that of other methods. It attributes to the advantages of the fusion features and the fine-tuning strategy 

in the DL model. The IR+BP network (Li et al., 2012) has the highest RMSE (32.6 ppm). This may be 

due to the fact that the ratio of flame radical intensities is consider to be the incomplete statistical 

description which is not robust enough to represent image variations especially in a real combustion 

environment. The other two prediction methods in (Li et al., 2015a, Li et al., 2015b) exhibit the 

improved prediction results and the prediction results are still inferior to the proposed DL based 

prediction model.  

 

The results presented have proven that there is a possibility of using the radical information for 

predicating the NOx emissions so as to shorten the control loops for more effective furnace control and 

emissions reduction. Data obtained under laboratory conditions have given us some confidence in 

applying such a technique to practical furnaces. It has been recognized, however, that, due to the 

complexity of the combustion process in a full-scale furnace, other factors such as flame temperature 

should be considered and used to extend the developed DL-based prediction method for applications on 

a full-scale furnace. 

 

4. Conclusions 

 

In this study, a novel model architecture based on flame radical imaging and DL (deep learning) 

techniques has been developed for predicating NOx emissions from a biomass combustion process. The 

FRI (flame radical image) dataset acquired on a biomass-gas combustion test rig has been used to train 

and test the prediction model. The morphological component analysis and ROI extraction algorithms 

have been employed to improve the quality of the FRI dataset and reduce the computational load in the 

data processing. The experimental results have shown that the DL based prediction model, which 
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integrates well the feature learning, multi-feature fusion and the prediction units, can automatically learn 

and fuse the radical image features, and thus establish the correlations between the characteristics of 

flame radials and NOx emissions. Furthermore, the feature fusion and fine-tuning strategies have been 

shown to be efficient to improve the accuracy of the prediction results. The comparisons among the 

different prediction model have suggested that the DL based prediction model has the best performance 

among the prediction models which are based on the hand-crafted feature extraction and basic learning 

algorithms.  
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Figure 1. Block diagram of the deep learning model for NOx emissions prediction. 
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Figure 2. Block diagram of the first stage.  
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Figure 3. Block diagram of the second and third stages. 
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Figure 4. Schematic of experimental setup and example images of flame radicals. 
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Figure 5. Example results after the MCA.  
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Figure 6. Comparison of RMSE values among three models. 
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Figure 7. Estimation of NOx emissions.  
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Figure 8. Variations of relative error for NOx emission prediction. 
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Figure 9. Comparison of RMSE values among the four prediction models. 
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Table 1 Proximate and ultimate analyses of the willow sawdust (Note: *ar- as received, **daf- dry-ash 

free basis) (Williams et al, 2012) 

 
Content  Value (%) 

Moisture (ar*) 6.96 

Volatile Matter (ar) 75.7 

Fixed Carbon (ar) 16.31 

Ash (ar) 1.03 

C (daf**) 51.62 

H (daf) 5.54 

O (daf) 42.42 

N (daf) 0.38 

S (daf) 0.03 

Cl (daf) 0.01 
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