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Abstract 

This study examines the conditional relationship between beta and return for stocks 

traded on S&P 500 for the period from July 2001 to June 2011. The portfolios formed 

based on the Book value per share and betas using monthly data.  A novel approach 

for capturing time variation in betas whose pattern is treated as a function of market 

returns is developed and presented. The estimated coefficients of a nonlinear 

regression constitute the basis of creating a two factor model. Our results indicate that 

the proposed specification surpasses alternative models in explaining the cross-section 

of returns.  
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1. Introduction 

  This study aims at examining the conditional relationship between beta and 

returns using four well-known models (i.e. CAPM, Fama and French three factor 

model (FF3FM), Premium Labor- model (PLM), Arbitrage Pricing Theory (APT)) 

and a new one which in view of the strong evidence of betas instability, it tries to 

capture their time variation, considering their pattern as a function of market returns. 

Hence, the new model incorporates variables targeting to absorb the information 

conveyed by betas’ variability. Our findings suggest that this specification surpasses 

alternative models, previously proposed in the literature, in explaining the cross-

section of returns.   

The Capital Asset Pricing Model (CAPM) developed by Sharpe (1964) and Lintner 

(1965) quantifies the risk return relationship, suggesting that the only relevant risk 
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measure is the beta coefficient, which reflects the systematic risk. Due to the powerful 

and intuitively pleasing predictions (Fama and French, 2004) the model is still widely 

used by financial managers and investors to estimate the risk of the cash flow, the cost 

of capital and the performance of managed funds (Fletcher, 2000; Tang and Shum, 

2003; Perold, 2004).  

 Fama and MacBeth (FMcB) (1973) conducted the first empirical examination 

regarding the validity of the CAPM. They found that on average a positive trade off 

exists between return and risk, leading to a conclusion in favour of the CAPM. 

However, empirical evidence in 1990s (e.g. Jegadeesh, 1992; Davis, 1994; Fama and 

French, 1996, Groenewold and Fraser, 1997) expresses doubts with regard to the 

validity of betas as risk measures, since their findings suggest that betas are not 

always significantly related to returns.  

The limited empirical support found for the CAPM is interpreted in the literature 

either as evidence against the CAPM itself or as evidence that the testing 

methodology is not suitable. For the first case, the literature presents alternative tests 

of measures to the market premium factor suggested by the CAPM. For example, 

Banz (1981) finds that the size effect has a strong impact on stock returns, indicating 

that smaller firms have higher returns and thus higher betas. Similar findings are 

obtained by Zarowin (1990), Fama and French (1992) and Daniel and Titman (1997). 

Furthermore, book to market value and earnings to price ratios also  appear to 

significantly influence the stock returns (Berk, 1995; Fama and French, 1996). Hence, 

stocks with high such ratios are followed by higher returns than stocks with low such 

ratios.  Similar results have been found by Chan et al. (1991) for the Japanese market 

and by Levis and Liodakis (2001) for the UK market. Liquidity also appears to 

influence the expected stock returns as explained by Jacoby et al. (2000). Chen (1983) 

and Groenewold and Fraser (1997) conclude that the Arbitrage Pricing Theory (APT) 

of Ross (1976) outperforms the CAPM. 

In addition, in the CAPM the beta coefficient is assumed to remain constant over 

‘bull’ and ‘bear’ market conditions. However, Levy (1974) proposed that beta may 

differ with market conditions and inferences based on the stable nature of beta may be 

misleading. Fabozzi and Francis (1977) first tested the stability of betas over the ‘bull’ 

and ‘bear’ markets. Defining these specific conditions with three different ways, no 

evidence was found to support the hypothesis that the stock market affects betas 

asymmetrically. Clinebell et al. (1993) show that observed differences of beta 



coefficients between bull and bear market conditions are significant. Woodward and 

Anderson (2009) applying a logistic smooth transition market model (LSTM) for 

Australian industry portfolios report that bull and bear betas are significantly different 

for most industries while the transition between bull and bear states is rather abrupt. 

Wiggins (1992) finds the dual beta model of Fabozzi and Francis (1977) to explain 

better the portfolio returns formed by size, past beta, and historic return performance. 

Bhardwaj and Brooks (1993) conclude that there is not size premium when beta varies 

in up and down markets as small firm stocks underperform large firm stocks. 

The FMcB testing methodology has been criticized for a number of reasons. Roll 

(1977) argued that the CAPM cannot be tested because the composition of the real 

market portfolio is not observed. Isakov (1999) reported that this particular 

methodology does not allow beta to appear as a useful measure of risk for two 

particular reasons. The first one relates to the fact that the model is expressed in terms 

of expected returns but tests can only be performed on realized returns. The second 

reason which closely relates to the first one is that the realized market excess return 

does not behave as expressed since it is too volatile and is often negative. Pettengill et 

al. (1995) proposed an alternative approach in which the excess market returns are 

separated into positive and negative, concerning that investors perceive the possibility 

of the risky assets’ return being below the risk-free rate. However, the FMcB 

procedure is still used in most empirical studies (Fraser et al., 2004) for testing models 

in the cross-sectional framework. 

The paper is organized as follows. Next section develops the methodology for the 

models’ empirical examination, section 3 describes the data and reports the empirical 

findings, while section 4 concludes the paper.  

 

2. Methodology  

2.1 Capital Asset Pricing Model 

The capital asset pricing model is a set of predictions concerning equilibrium of 

expected return on risky assets (Bodie et al., 2002). In the cross sectional context, the 

model states that differences in average returns depend linearly and solely on asset 

betas (Cuthbertson and Nitzsche, 2004). Cross-section tests are based on a two-stage 

procedure of FMcB. In the first step, a time series regression is performed for each 

security or portfolio i of the following form:   

 ( )it ft i i mt ft itR R a R R e       (1) 



where it ftR R  is the excess return of asset i, mt ftR R  is the market excess return, i  

is the systematic risk and ia  and ite  are assumed to be zero according to the model. In 

the second step, a cross-section regression is taken place between the sample average 

monthly returns ( ir ) and the i ’s estimates from the first step regression as equation 

(2) depicts:  

 1
ˆ[ ]i o i iE r         (2) 

 In (2), 0  and 1  are constant across all assets. In addition, we expect that 0 0   

and 1 m fR R   where the bars indicate the sample mean values.  This is the 

unconditional CAPM, since conditional information plays no role in determining 

excess returns.  

The conditional cross-section version of CAPM is as follows: 

  1 0 1 1 1 1
ˆ|it t t t it iE r I            (3) 

In (3), 1tI   is the information set available at time t and 1 1t   is the conditional 

market risk premium. The same assumptions for the conditional cross-section 

regressions hold for the remaingn models. All models are tested both unconditionally 

and conditionally.  

 

2.2 Fama and French Three-Factor Model  

The three-factor model suggested by Fama and French (1996) relates the expected 

return on a portfolio in excess of the risk-free rate,  i fE R R , to three factors. The 

first one is the excess return on a broad market portfolio (i.e. i fR R ), the second is 

the difference between the return on a portfolio of small stocks and the return on a 

portfolio of large stocks (i.e. Small Minus Big, SMB) and finally the third factor is the 

difference between the return on a portfolio of high book-to-market stocks and the 

return on a portfolio of low book-to-market stocks (i.e. High Minus Low, HML). 

Thus, the expected return on asset i is: 

        i f i m f i iE R R E R R s E SMB h E HML          (4) 

The terms    ,  m fE R R E SMB and  E HML  express expected risk premiums and 

the factor loadings, ,  ,  i i is h are the slopes that come from the OLS time series 

regression (5) which constitutes the first step as above:  

 ( )it ft i i mt ft i t i t itR R a R R s SMB h HML e         (5) 



 We make the assumptions for ia  and ite  as in the previous section. Fama and 

French (1996) noted that the three-factor model has no foundation in finance theory, 

but it is merely a statistical model that summarises the empirical regularities that have 

been observed in US stock return (Gregory et al., 2001).  

The cross-section regression is given by: 

 1
ˆˆ ˆ

i o i SMB i HML i ir s h u           (6) 

The intercept o in the above equation should not be statistically different from 

zero while the factor risk premiums should be priced. 

 

2.3 Premium-Labor model 

The Premium-Labor model (PL-model) developed by Jagannathan and Wang 

(JW) (1996) introduces two additional variables. The first variable (premium) tries to 

capture the instability of the asset’s beta over the business cycle. For this purpose, the 

authors use the spread between BAA- and AAA- rated bonds, since interest-rate 

variables are likely to be most helpful in predicting future business conditions (Stock 

and Watson, 1989). The second variable relates to the return on human capital. This 

variable is taken into consideration in order to measure the aggregate wealth, since the 

empirical failure of the CAPM has been attributed to the bad proxy of the market 

index (Roll, 1977). The return on human capital is assumed to be a linear function of 

the growth rate per capita labor income and hence this latter time series is used in the 

analysis. After estimating the betas (being orthogonal to one another) of the 

aforementioned variables in the time series context, the second step cross- section 

regression is as follows: 

 1
ˆ ˆ ˆprem labor

i o i prem i labor i ir v             (7) 

This is the PL-model of JW, which is going to be used for empirical examination 

in the rest of the paper. 

 

2.4 Arbitrage Pricing Theory (APT)  

The APT developed by Ross (1976) attempts to overcome the anomalous 

empirical evidence that has plagued the CAPM (Lehmann and Modest, 1988). This 

equilibrium model generates fewer and more realistic assumptions than the CAPM. 

As a result, the model has attracted great attention, particularly as a ‘testable’ 

alternative to the CAPM (Parhizgari et al., 1993).  



In APT, it is assumed that there are several factors generating returns for the 

securities (Bodie et al., 2002). The following equation illustrates the general form of 

the model:  

 ,1 1 ,2 2 ,... for 1,2,...,i i i i i k k iR a e i N              (8) 

where iR  is the return of asset i while it is linearly related to a set of factors j  where 

1,2,...,j k . The beta coefficients show the sensitivity of the asset to each factor. 

Again, higher values of beta coefficients indicate greater sensitivity, whereas lower 

values indicate lesser sensitivity of the stock return to a particular factor. The last term 

of equation (8), ie , is a random variable and it is expected to have an average value of 

zero over time (i.e. ( ) 0iE e  ) and to be uncorrelated across securities (i.e. ( , ) 0i jE e e  ). 

The cross-section regression of the APT is given by: 

 1 1, 2 2, ,
ˆ ˆ ˆ...i o i i k k i ir                (9) 

The intercept o in the above equation should not be statistically different from zero 

while the factor risk premiums should be priced. If there is only one statistically 

significant factor and that is the market risk, then the APT is equal to CAPM.  

The main drawback of the APT is that it does not specify the number or type of 

factors that are important in determining security returns. Modern financial theory 

focuses upon systematic factors, as sources of risk, and suggests that macroeconomic 

variables systematically affect stock market returns. The inflation rate is the most 

common factor that influences the returns of a portfolio and is found to be significant 

for the US stock market (Chen et al., 1986) and for the UK stock market (Beenstock 

and Chan, 1988; Clare and Thomas, 1994). Similarly industrial production index, 

interest rate, retail index, money supply and fuel and material costs were found to be 

statistically significant in these studies.  

2.5 A new approach: Two Factor Model 

Two steps constitute the new approach we use here for capturing any variations in 

beta coefficients.  In the first step, the beta coefficients from equation (1) are 

estimated. Using the standard OLS method and daily returns data of three years time 

interval1, we estimate the first beta coefficient of period t. Next, a rolling regression is 

applied. More precisely in order to obtain the second value of beta, the first 

                                                 
1 Daves et al., (2000) show that daily returns data of three years time interval give the best daily beta 

predictions.  



observation is dropped and a new is added to the end of the sample. The procedure is 

followed for a five-year period estimating the respective betas of each day. Having 

about 1250 betas at hands, we rank them in ascending order relative to the market 

return on day t=1…1250.   

Then, the averaged values of the estimated betas for each market return discrete 

interval are calculated. This ensures that the equality weights given at each 

observation capture any differences in each and every market condition. At the same 

time, we avoid any subjective bias at the selected market interval. The number of 

market return discrete intervals generally varies from period to period. It is 

determined by the extent to which a given period is more or less volatile. Being able 

to construct the used variables, a question arises regarding the form of beta coefficient 

as a function of Rms  (i.e.  msf R  , (Faff and Brooks, 1998)). Lin et al., (1992) 

suggest that the beta mean fluctuates around an upward or downward parabolic trend 

pattern. Hence, we approach the functional form of ( )f   by:  

 
2( )ms ms ibR cR u

i e   
   (10) 

where α, b, c are the coefficients to be estimated, Rms is the sorted market return, i  

are the average betas of stock i corresponding to each market return interval and u are 

the residuals. We do not make any assumption about the residuals distribution since 

we are interested only in the magnitude of the estimated coefficients.  

Through linearization and assuming that beta coefficients are non-negative, as 

usually happens in financial contexts (Andersen et al., 2006), equation (10) can be 

written as: 

 2ln( ) ln( )i ms ms ia bR cR u       (11) 

If f is continuous in the interval ,ms msR R     and twice differentiable then 

( 2 )ms

ms
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R
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. For 0   and 0c  , f is linear while for positive 

and negative values of b, the function is increasing and decreasing respectively. If 

0c  , f is convex as the second derivative is positive, while for 0c  , f is concave 

with negative second derivative.  

We proceed to the construction of a two-factor model (hereafter TFM) where the 

variables are formed based on the b_coefficients of equation (11). It is expected that 

stocks with positive b_coefficients would give higher returns without an increase in 



the risk. The intuition behind this stems from the fact that at each state of market 

return nature the expected return of security i is higher. So, we could say that 

‘Superior’ stocks are described by increasing beta coefficient as market return 

increases. The reverse holds for ‘Inferior’ stocks. A ‘Superior’ stock should include 

the characteristics that lead to higher returns than its competitors. For example, it 

could be a stock with relatively low leverage. Hence, in bad states of the world its 

beta coefficient would not increase as much as  a stock with high leverage values 

(Jagannathan and Wang, 1996). Thus, the first variable named as ‘SMISI’ (i.e. 

Superior minus Inferior Stock Index) represents the difference in returns between the 

30% of stocks with the highest b_coefficients and the 30% of stocks with the lowest 

b_coefficients. This variable aims at capturing the risk associated with ‘Superior’ and 

‘Inferior’ stocks. The second explanatory variable, which we call it as ‘Neutral’ 

(Neutral Stock Index-NSI), is the remaining 40% of the stocks. The stocks that 

constitute the NSI have on average zero b_coefficients. This index is similar to the 

general index of S&P 500 if the assumption of constant betas coming from the CAPM 

holds. The time series regression is given by the following equation:  

 it ft i i t i t itR R a c SMISI n NSI e       (12) 

and the unconditional cross-section regression is given by:  

 ˆ ˆ
i o smisi i nsi i ir c n z        (13) 

 

3. Empirical Results 

3.1. Data description 

The dataset used consists of securities traded on the S&P 500. The rate of return 

of each security, Ri, at time t is calculated as 1/ 1it it itR P P   . The testing period spans 

from July 2001 to June 2011. The risk free rate is the 3-month US Treasury bill. In 

order to construct the variables used in the TFM we first employ daily observations 

for estimating the b_coefficients, as mentioned in the previous sections.  

To include a stock in the ‘Superior’ or ‘Inferior’ portfolios for a given year, it 

must have statistically significant beta coefficients at least at 10% level (i.e.t-stat 

1.70 ) for all 5 previous years. This way, we ensure that each beta coefficient has 

explanatory power  and that it can be used for estimation purposes. After forming the 

portfolios, monthly returns are constructed. The monthly return observations of the 



FF3FM are retrieved from the authors’ internet homepage2. For the PL-model we use 

the same variables as in JW. The bond yields of BAA and AAA used as the premium 

in the PL-model. Similarly, the per capita monthly income series was obtained from 

the Federal Reserve Bulletin published by the Board of Governors of the Federal 

Reserve System and was used as the labor variable. Following JW, the growth rate in 

labor income is computed as: 1 2 2 3[ ] / [ ]labor

t t t t tR L L L L      , where Lt-1 is the per 

capita labor income at month t-1, which becomes known at the end of month t. 

In order to apply the APT, an arbitrary choice of macroeconomic variables has 

been made that influence the securities in the same degree, implying that all securities 

operate in the same economic environment and that the particular variables are 

important to the whole economy. However, some of them are similar to those 

employed by Clare and Thomas (CT) (1994). The selected macroeconomic variables 

that were used as independent variables in the first step regression (i.e. time series 

regression) are presented in table 1. The macroeconomic time series were obtained 

from the Federal Reserve Bank of St. Louis. Some of the time series such as output or 

inflation are used with one time lag in order to make these variables contemporaneous 

with series of portfolio returns (Chen et al., 1986; Clare and Thomas, 1994). For 

example, the announcement of January’s inflation is done in February and hence 

investors revise stock prices accordingly in February.   

Table 1: Macroeconomic variables 

Variable  Symbol  Form Series ID 

Default risk  (BAA-LTGB) FD    

Term structure  (LTGB-TB3M) (TS) FD    

3 month treasury bill rate (TB3M) FD            TB3MS 

Gold price (GP)  FD            GOLDPMGBD228NLBM 

Real retail sales (RRS) FDL RRSFS 

Industrial production (IP)  FDL INDPRO 

Oil price (OIL) FD MCOILBRENTEU 

Unemployment (UNEM) FDL UNRATENSA 

M3 (M3) L MABMM301USM657S 

Exchange rate (EXR) FDL EXUSUK 

Consumer price index (CPI) FDL CPIAUCNS 

Exports/Imports (EXPIMP) FD [L(Exp/Imp)] BOPGEXP (BOPGIMP) 

Yield on Long-term GB (LTGB) FD 10YCMR 

Excess market return (MR) L 

Notes: The sample period is from July 1996 to June 2011. L, FD and FDL are for level, first differences and first 

differences of the log respectively for the selected time series. The series ID concern the identification code given 

by the Federal Reserve Bank of St. Louis.  

 

 

The models are tested on two different portfolios sorted on the historical beta 

coefficients and the Book Value per share. The beta based portfolios are formed 

                                                 
2 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 



following the standard FMcB methodology. The first five years of monthly 

observations (i.e. t-120,…,t-61) are used to estimate the betas for each security. 

Stocks with statistically significant betas higher than the 10% level were excluded 

from the sample. After estimating the stocks’ i  coefficients from equation (1), the 

stocks were ranked on the basis of estimated betas and were assigned to one of the ten 

portfolios. The first portfolio consisted of stocks with the lowest betas, while portfolio 

10 consisted of stocks with the highest betas. This process was then repeated for each 

subsequent year in our data set. Hence, a time series of monthly returns from July 

1996 to June 2011 for each of the ten portfolios were obtained. Next, the beta of each 

portfolio is estimated over the second period of 5 years (i.e. t-60,…,t-1) by regressing 

the realized portfolio returns on the market index. This is done in order to reduce the 

‘errors in variables’ problem. This problem arises in empirical tests because beta 

estimates are used rather than true values. However, the errors in variables problem is 

reduced by grouping stocks into portfolios since portfolios’ betas will be more precise 

estimates of the true betas than those for individual stocks (Clare and Thomas, 1994).  

The Book Value per share portfolios are formed every calendar year, starting in 2001, 

where we first sort firms into deciles based on their Book Value per share at the end 

of June. For consistency purposes, the beta portfolios have the same starting point 

every year. The Book-Value per share data were taken from Compustat. 

Following Fraser et al. (2004), we repeat this procedure by updating the beta 

estimates on a monthly basis. Thus, time series of risk premiums of the models are 

generated. The test of significance of the risk premia is performed as in FMcB and CT 

as follows:  

 
 

ˆ

ˆ
t

s n





   (14) 

In the above equation, ̂  is the mean value of the estimated risk premium,  ˆs   is the 

standard deviation and n is the number of observations. The variables are priced over 

the estimation period at the 10 per cent level, when t  is greater than 1.30.  

The relatively low number of available stocks at the very early stage of the sample 

could cause survivorship bias problems. To examine possible effects related to 

survivorship bias, we also form big and small sample portfolios. The small sample 

portfolios contain stocks that were used in the construction of the TFM. This is due to 

the fact that during the construction of the variables, the asked number of observations 



is higher (i.e. 8 years). The big sample portfolios contain stocks with statistically 

significant betas at least at the 10% level. Although the higher number of data 

availability the BVps portfolios are also formed from those stocks. For compatibility 

reasons between the two different kind of portfolios, we chose to reduce the number 

of stocks by 10% on average. Figure 1 depicts the number of shares contained in the 

two samples as well as the available data of the BVps.  

 

 

Figure 1: Number of shares in analysis 

 

Tables 2 and 3 provide summary statistics of time series averages of portfolio 

returns for the two samples. For each portfolio, the tables show the mean monthly 

returns in excess of the 3-month Treasury bill, the standard deviation of the monthly 

excess returns and the t-statistics associated with the hypothesis of zero portfolio 

returns. Both tables exhibit the positive differences in returns between the lowest and 

highest BVps portfolios and highest and lowest beta based portfolios. The pattern of 

portfolio returns between the big and small samples looks similar. A deviation is 

observed between the 9th and 10th decile of small sample beta sorted portfolios.  

 

Table 2:Summary statistics for Simple Monthly Excess Returns (in Percent) for the portfolios formed using Book 

value per share and beta coefficients: 07/01-06/11, 120 Months, Big sample (429 shares on average per year).  

Deciles 

 1 2 3 4 5 6 7 8 9   10 

BV per share  Low                                 High 

Mean 1.91 1.42 0.99 0.95 1.06 0.97 0.92 0.63 0.79 0.34 

Std. Dev. 6.20 5.37 5.03 5.44 5.86 4.87 5.41 5.56 5.31 6.25 

t-statistics 3.38 2.89 2.15 1.92 1.98 2.18 1.87 1.24 1.64 0.60 

Beta Low         High 

Mean 0.56 0.81 0.60 0.98 0.85 0.97 0.97 1.08 1.25 1.30 

Std. Dev. 3.30 3.83 4.04 4.32 5.00 5.20 5.99 6.50 7.11 9.85 

t-statistics 1.85 2.31 1.63 2.48 1.87 2.05 1.78 1.81 1.92 1.44 
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Table 3: Summary statistics for Simple Monthly Excess Returns (in Percent) for the portfolios formed using Book 

value per share and beta coefficients: 07/01-06/11, 120 Months, Small sample (257 shares on average per year).  

Deciles 

 1 2 3 4 5 6 7 8 9   10 

BV per share  Low                                  High 

Mean 1.26 0.95 0.77 0.72 0.68 0.91 0.59 0.58 0.83 0.16 

Std. Dev. 5.79 5.16 4.91 5.60 5.64 4.79 6.27 5.34 4.99 6.53 

t-statistics 2.39 2.02 1.71 1.40 1.32 2.08 1.03 1.19 1.83 0.27 

Beta Low         High 

Mean 0.42 0.61 0.49 1.01 0.66 0.83 0.79 0.77 1.13 0.73 

Std. Dev. 3.58 3.72 4.04 4.30 4.78 5.46 6.40 6.84 7.41 9.76 

t-statistics 1.27 1.80 1.34 2.57 1.50 1.66 1.36 1.24 1.67 0.82 

 

  The estimated average betas produced by CAPM are depicted in table 4. We do 

not find significant differences in betas within portfolios formed on BVps. However, 

this is not the case of beta-sorted portfolios as they range from a low of 0.47 to a high 

of 1.65. In addition, at both samples the slopes seem to follow identical pattern.  

 

Table 4: The estimated average slopes for the portfolios formed using Book value per share and beta coefficients. 

Both samples are included.  

Deciles 

 1 2 3 4 5 6 7 8 9   10 

BV ps Big  1.21 1.00 0.96 0.99 1.04 0.90 0.95 0.94 0.85 0.98 

Beta Big 0.47 0.64 0.73 0.79 0.89 0.91 1.02 1.15 1.26 1.65 

BVps Small 1.17 0.94 0.87 1.05 0.97 0.91 1.18 0.91 0.79 1.07 

Beta small 0.48 0.57 0.68 0.69 0.79 0.95 1.17 1.30 1.40 1.82 

 

 In table 5 we present the findings of the existence of survivorship bias. Following 

the method of Banz and Breen (1986) we examine whether the returns over the 120 

months for each portfolio are different. For brevity reasons, we report only the results 

of the Gibbons, Ross, Shanken (1989) test (hereafter GRS test) of the zero α’s 

hypothesis. The table depicts that jointly α’s are different from zero and statistically 

significant differences in returns between the big and the small sample exist. 

However, a more closely examination of portfolios indicates that only three out of ten 

and one out of ten cases are different from zero for the BVps and beta portfolios 

respectively.  

 

 

 

Table 5: GRS test for testing the restriction that all ten alphas are jointly zero (constants in percent, std. errors in 

parentheses) 

Deciles 

 1 2 3 4 5 6 7 8 9   10 GRS test 

BV per share 0.65 0.47 0.22 0.23 0.38 0.06 0.33 0.05 -0.04 0.18 3.37 

 (0.23) (0.15) (0.15) (0.16) (0.16) (0.14) (0.19) (0.11) (0.14) (0.11) 

Beta 0.14 0.20 0.11 -0.03 0.20 0.14 0.18 0.30 0.12 0.57 2.71 

 (0.13) (0.16) (0.16) (0.13) (0.15) (0.12) (0.17) (0.19) (0.18) (0.14) 

 



3.2. Unconditional and Conditional cross-section regressions 

Panel A of table 6 depicts the evidence of the unconditional cross-sectional 

regressions from July 2001 to August 2011. It tries to identify risk premiums 

associated with factors other than market risk. As we can see, the coefficients λ0 are 

not statistically different from zero for the BVps portfolios. This is consistent with the 

Sharpe-Lintner hypothesis (SLH). The R2 of the regression is only 0.7% for the case 

of CAPM while it goes up to 70% and 90% for the TFM and FF3FM respectively. 

The SMISI factor is priced and the market risk premium has the expected positive 

sign apart from the case of FF3FM though not significant at any level. The PL-model 

has relatively low R2 while neither labor factor nor premium factor influence the 

returns. The results of the portfolios formed on beta coefficients are rather different. 

The R2s increase and reach as high as 84.9% for the PL-model with the remaining 

models to follow closely. The intercepts of CAPM and TFM appear to be significant 

violating the SLH while the FF3FM has high R2 value although none of its factors are 

priced. Panel B of Table 6 depicts the results for the period from July 2006 to August 

2011. The TFM continues to have relatively high R2 values while the FF3FM loses 

power relatively to its previously observed R2 values. CAPM still performs poorly 

consistent with the results of JW. On the other hand the PL-model performs better in 

terms of R2. The same tests3 have been also carried out using the small sample. The 

findings differ significantly with regard to R2 values which appear to be lower.  

 

Table 6: Unconditional Cross-sectional regressions of CAPM, FF3FM, TFM and PL-model. 

Panel A: 2001-2011 (BS) 0  
1  SMISI  

NSI  SMB  
HML  labor  

prem  R2 

   BV per share  0.014 -0.004       0.007 

  (0.75) (-0.24) 

 -0.009  0.042 0.018     0.701 

 (-0.75)  (3.74)* (1.54)  

 0.009 -0.008   0.023 -0.002   0.914

 (0.78) (-0.57)   (2.53)* (-0.30)  

 0.009 0.004     -0.006 1.305 0.244 

  (0.03) (0.11)     (-0.99) (0.93)  

 Beta portfolios  0.003 0.005       0.825

  (2.98)* (6.15)*        

  0.004  -0.002 0.005     0.828

  (2.10)**  (-0.34) (3.11)*      

  0.002 0.008   -0.002 0.001   0.833

  (0.95) (1.80)   (-0.36) (0.48)    

  0.006 0.006     0.001 0.201 0.849

  (1.36) (2.37)**     (0.91) (0.85)   

Panel B: 2006-2011 (BS) oc  
marc  SMISIc  

NSIc  SMBc  
HMLc  laborc  

premc  R2 

 BV per share 0.030 -0.019       0.456

  (3.52)* (-2.59)*        

                                                 
3 The results are available from the authors upon request. 



  0.014  0.022 -0.006     0.762

  (1.87)  (4.45)* (-0.78)      

  0.003 0.003   0.003 -0.012   0.879

  (0.47) (0.45)   (0.73) (-2.83)*    

  0.028 -0.013     0.000 0.355 0.496

  (2.32)** (-0.96)     (0.64) (0.21)  

 Beta portfolios -0.001 0.018       0.006

  (-0.01) (0.22)  

  -0.192  0.526 0.221     0.559

  (-2.13)**  (2.92)* (2.47)*  

  -0.055 0.135   -0.069 -0.318   0.323

  (-0.17) (0.33)   (-0.23) (-1.05) 

  -0.209 0.363     0.144 -3.06 0.642

  (-1.19) (3.01)*     (2.59)* (-0.37) 

*,** depict significance at the 5% and the 10% level respectively.  

 

In table 7 we present the unconditional cross-sectional regressions regarding the 

APT. Following Groenewold and Fraser (GF) (1997), in the first stage we estimate the 

factor sensitivities for each of the 20 portfolios (i.e. 10 portfolios sorted on betas and 

another 10 sorted on BV per share) for each of the 13 factors using OLS. In this stage, 

we retain only those factors that are priced at the 5% level. This way, we want to 

ensure that the number of independent variables is lower than the number of 

dependent variables. By following this procedure, GP, UNEM, CPI and LTGB 

variables of table 1 were excluded from the final step. It is worth mentioning here that 

the excess market return is also used in the model, since the initial results without 

market return have shown very low performance of the APT.  The R2 values never 

surpassed the 30% by including only macroeconomic variables. After eliminating 

insignificant factors one-by-one in reverse order of their t-ratios, as in GF , we are 

able to observe in table 7 the variation of significant factors in the tested portfolios. A 

noteworthy finding here is the high R2 value of the model in the case of beta sorted 

portfolios reaching as high as 99%. However, the model leaves unexplained returns 

with the constant being significant at all usually levels.  

 

Table 7: Unconditional Cross-sectional regressions of APT 

Panel A: 2001-2011 (BS) 0  
MR  DR  

EXR  3M  
3TB M  TS  R2 

BV per share  -0.010 0.015   0.445    

 (-1.13) (1.93)**   (5.95)*   0.835 

Beta portfolios 0.006 0.004 -0.075 -0.006 -0.221 0.206 -0.039  

 (18.5)* (15.3)* (-10.6)* (-5.51)* (-14.9)* (20.8)* (-4.03)*   0.999 

*,** depict significance at the 5% and the 10% level respectively.  

 

The results of the conditional cross-sectional regressions are presented in table 8. 

The risk premia are demonstrated in the first column, the second column shows the t-

ratio with the third and fourth columns to depict the normality test and the average 

GRS test coming from the time series first step regression respectively.  We firstly 



note that in the case of BVps portfolios the variables of the TFM are priced though a 

proportion of portfolio returns left unexplained. The same happens with CAPM, while 

the market risk and the HML factor of the FF3FM appear to be significant with the 

constant not being statistically different from zero. Concerning PL-model no factor is 

priced.  At this point we have to mention that the t statistics should be cared with 

caution. For example, there are cases where the distribution of the estimated risk 

premia are clearly not normal according to JB criterion, a result consistent with CT 

when macro-economic variables were used. As for the APT, we proceeded to model’s 

estimation several times dropping those variables with insignificant risk premia in an 

attempt to identify a simplified version of the model. The evidence indicates that 

market return are still priced while two new factors, EXPIMP and IP not previously 

priced in the unconditional setting found to be significantly different from zero at the 

10 per cent level (i.e. t >1.30). The positive signs of the coefficients for EXPIMP and 

IP seem to be correct, except that of the market index. Regarding the beta based 

portfolios almost no risk premia are priced apart from the case of the PL-model. In the 

APT if the market return is added as an additional risk factor, then the TS factor 

becomes significant. However, we chose to not include the market return in the table 

since it is not significant at any level even though the constant term diminishes in 

magnitude.  

The GRS test depict that TFM clearly outperforms CAPM and FF3FM models in 

the first step time series regressions4. The test is not available in PL-model and in the 

APT. In the former case the regressions have been conducted separately for each one 

of the variables while in the latter case different number of factors have been found to 

be significant for each examined portfolio. However, averaging the estimated constant 

terms coming from the time series regressions across both kinds of portfolios we find 

significant differences between the APT and the TFM. In the case of beta sorted 

portfolios the average unexplained returns of the APT reach as high as 0.76% per 

month, significantly higher than the 0.16% per month of the TFM. Accordingly, in the 

case of BV per share portfolios the average unexplained returns are 0.65% and 0.31% 

for the APT and the TFM respectively.  

 

 

 

                                                 
4 Messis and Zapranis (2014) provide analytical results of the TFM’s superiority in explaining portfolio 

returns including momentum ones in the context of time series regressions.   



Table 8: Estimated risk premia in conditional cross-section regression. 

Panel A: 2001-2011 (BS) 
k  t N GRS test 

BVps CAPM 0  -0.011 -2.06* 8.73  

 
mar  0.024 4.18* 5.83* 16.4 

 TFM 0  -0.018 -2.77* 35.8 

 
SMISI  0.019 2.56* 22.7  

 NSI  0.032 3.97* 53.7 2.97* 

 FF3FM 
0  -0.004 -0.53 739.4 

 mar  0.017 1.61* 627.4 

 
SMB  0.007 1.13 35.1 

 HML  -0.012 -2.07* 4.80* 10.36 

 PLM 
0  0.004 1.03 651.2 

 mar  -0.001 -0.11 67.4 

 
prem  0.000 -0.11 17.1   

 labor  0.012 0.08 0.27* N/A 

 APT 
0  0.017 3.30* 0.97*  

  mar  -0.007 -2.76* 4.34*  

  
EXPIMP  0.011 2.39* 1.37*  

  IP  0.002 1.36* 167.1 N/A 

Panel B: 2001-2011 (BS) 
k  t N GRS test 

Beta port. CAPM 0  0.003 0.88 26.0  

 mar  0.006 1.03 50.5 11.9 

 TFM 0  0.004 0.80 28.1 

 SMISI  0.001 0.08 33.5  

 NSI  0.005 0.62 47.8 1.39* 

 FF3FM 0  0.006 1.64* 16.6 

 mar  0.002 0.47 20.9 

 SMB  0.001 0.12 1733.1 

 HML  -0.003 -0.60 68.9 5.52 

 PLM 0  -0.008 -1.46* 0.30* 

 mar  0.025 3.49* 11.9 

 prem  0.002 1.35* 90.7  

 labor  0.041 0.27 466.2 N/A 

 APT 0  0.010 1.92* 48.7  

  TS  0.062 0.64 67.3 N/A  

* depicts significance at 10% level 

 

3.3. Portfolio and models’ performance in extreme market conditions 

The results from our previous section indicate that portfolios formed with different 

criteria gain higher returns. Next, we examine if they are fundamentally riskier. 

According to Lakonishok et al. (1994) a portfolio would be fundamentally riskier if, 

first, underperforms the competitive one in some states of the world and second the 

underperformance would coincide with ‘bad’ states, in which the marginal utility of 



wealth is high, making the portfolio unattractive to risk-averse investors. In addition, 

Chan and Lakonishok (1993) state that downside risk is a major concern of money 

managers. Due to the fact that beta represents a stock’s return sensitivity to market 

ups and downs, it is expected to be a good measure of downside risk. For this point of 

view, low beta portfolios should face lower downside risk than high beta portfolios. 

The opposite should happen when market rises.  

Tables 9 and 10 present the results of the ten largest down and up-market months 

of both portfolios. We are able to distinguish between the two examined portfolios 

some very interesting characteristics. Firstly, in down markets, the lowest decile BVps 

portfolio appears to have lower returns with respect to the highest one. However, this 

fact could be explained in the case of beta based portfolios due to the lower beta 

coefficient, as presented previously in table 4. Instead, BVps portfolios do not exhibit 

such differences in the estimated betas that could explain those return divergences. 

Thus, there might be some other reason associated with this better performance.  

In up markets, the lowest BVps portfolio does not differentiate from the highest 

one though this is the case between the two extreme beta based portfolios.  

 

Table 9: Ten largest down market months: Simple Monthly Excess market Return (in Percent) and returns on 

portfolios formed using Book value per share and beta coefficients.  

Deciles 

 Month Market 1 2 3 4 5 6 7 8 9   10 

BV per share  Low       High 

1 10/08 -17.0 -20.8 -18.4 -16.0 -18.0 -21.3 -15.6 -20.6 -23.1 -22.3 -25.7 

2 9/02 -11.1 -5.5 -6.1 -6.9 -7.7 -8.8 -10.6 -8.7 -11.7 -10.1 -11.0 

3 2/09 -11.0 -6.0 -5.6 -7.3 -13.0 -12.7 -10.6 -8.1 -12.4 -14.1 -20.2 

4 9/08 -9.2 -8.8 -11.5 -10.5 -10.6 -10.1 -9.6 -11.4 -10.2 -11.0 -5.6 

5 6/08 -8.8 -9.2 -6.9 -8.4 -6.1 -9.9 -9.6 -10.1 -8.8 -6.5 -8.7 

6 1/09 -8.6 -5.1 -3.9 -2.9 -5.9 -8.0 -9.2 -8.8 -6.5 -8.7 -15.0 

7 9/01 -8.4 -14.6 -10.3 -13.4 -12.9 -14.9 -11.8 -13.9 -12.5 -8 -9.2 

8 5/10 -8.2 -8.0 -5.3 -6.3 -6.6 -7.8 -7.3 -7.8 -8.1 -7.8 -8.3 

9 7/02 -8.0 -7.6 -6.0 -7.7 -9.2 -11.4 -8.3 -13.6 -10.4 -12.7 -9.9 

10 11/08 -7.5 -11.5 -7.8 -11.7 -11.8 -9.7 -4.1 -7.0 -10.0 -8.7 -12.0 

Average  -9.8 -9.7 -8.2 -9.1 -10.2 -11.5 -9.7 -11.0 -11.4 -11.2 -13.1 

Beta based  Low       High 

1 10/08 -17.0 -14.1 -13.4 -17.7 -16.6 -18.5 -19.1 -22.3 -25.0 -27.0 -25.8 

2 9/02 -11.1 -5.8 -4.0 -6.3 -8.5 -8.6 -7.3 -8.4 -10.8 -10.3 -14.7 

3 2/09 -11.0 -10.9 -11.8 -10.3 -9.3 -12.2 -13.7 -14.1 -8.9 -9.6 -10.8 

4 9/08 -9.2 -6.7 -6.2 -6.0 -6.6 -9.2 -6.9 -8.1 -13.1 -15.6 -18.0 

5 6/08 -8.8 -7.8 -7.8 -9.1 -6.9 -11.3 -7.7 -10.3 -8.5 -11.4 -10.3 

6 1/09 -8.6 -2.8 -4.6 -4.1 -9.6 -9.4 -9.0 -13.5 -10.0 -6.0 -4.1 

7 9/01 -8.4 -5.0 -8.6 -7.7 -9.7 -8.2 -10.5 -8.1 -14.4 -17.8 -25.8 

8 5/10 -8.2 -5.0 -5.4 -6.8 -6.9 -6.9 -7.4 -9.0 -9.4 -6.9 -9.9 

9 7/02 -8.0 -6.8 -11.2 -6.3 -5.6 -10.2 -9.5 -11.1 -14.3 -8.7 -12.8 

10 11/08 -7.5 -4.0 -5.1 -6.6 -4.8 -7.8 -12.9 -11.2 -12.2 -10.6 -17.0 

Average  -9.8 -6.9 -7.8 -8.1 -8.4 -10.2 -10.4 -11.6 -12.7 -12.4 -14.9 

 

 



Table 10: Ten largest up market months: Simple Monthly Excess market Return (in Percent) and returns on 

portfolios formed using Book value per share and beta coefficients.  

Deciles 

 Month Market 1 2 3 4 5 6 7 8 9   10 

BV per share  Low       High 

1 4/09 9.4 19.4 14.5 15.4 18.4 18.9 15.5 17.1 20.3 18.1 23.3 

2 9/10 8.7 11.7 13.3 10.2 10.7 11.9 9.4 9.3 9.6 9.6 7.9 

3 3/09 8.5 11.0 11.3 9.3 9.2 11.7 7.0 9.6 9.4 9.9 14.7 

4 10/02 8.5 11.6 7.8 3.6 9.0 6.4 5.7 3.3 4.7 2.3 4.3 

5 4/03 8.0 8.8 5.8 9.5 8.5 8.4 9.1 9.7 7.8 7.3 10.9 

6 7/09 7.4 8.7 10.6 9.1 10.2 11.2 9.2 9.2 10.0 9.7 8.4 

7 11/01 7.4 11.3 11.0 8.3 9.3 9.2 6.7 8.6 7.0 4.6 8.0 

8 7/10 6.9 7.5 6.4 8.1 6.6 8.6 6.3 8.0 5.9 8.5 7.7 

9 12/10 6.5 6.0 7.0 7.3 6.1 6.9 6.1 6.6 9.3 7.5 8.6 

10 3/10 5.9 7.7 7.3 6.7 7.3 7.0 7.7 6.7 6.5 6.6 7.2 

Average  7.7 10.4 9.5 8.7 9.5 10.0 8.3 8.8 9.1 8.4 10.1 

Beta based  Low       High 

1 4/09 9.4 3.2 8.6 10.4 14.2 17.1 21.4 26.9 23.0 18.9 31.9 

2 9/10 8.7 6.0 6.6 8.1 8.8 10.9 10.9 12.2 12.9 13.3 13.3 

3 3/09 8.5 2.7 6.4 7.2 10.2 10.0 9.0 11.0 10.7 17.0 17.9 

4 10/02 8.5 -0.8 -0.2 1.1 4.1 7.5 5.9 4.1 6.5 9.8 20.1 

5 4/03 8.0 4.4 5.3 7.0 7.0 5.8 5.1 8.1 12.6 10.5 16.4 

6 7/09 7.4 5.5 6.1 7.8 7.6 7.9 8.1 9.1 8.7 17.6 19.2 

7 11/01 7.4 0.9 5.0 3.3 7.8 8.6 7.8 6.8 8.8 12.1 19.6 

8 7/10 6.9 2.9 4.7 5.5 5.3 6.0 7.2 9.7 12.1 8.9 10.7 

9 12/10 6.5 4.6 4.6 5.9 7.0 6.2 7.8 7.4 7.5 7.4 15.0 

10 3/10 5.9 3.6 3.3 4.7 6.4 6.6 6.9 8.0 7.2 10.7 13.0 

Average  7.7 3.3 5.0 6.1 7.8 8.7 9.0 10.3 11.0 12.6 17.7 

 

Following Chan and Lakonishok (1993), we also conduct cross-sectional 

regression exploring the models’ performance during extreme market conditions. This 

time, a large down (up) market is defined as a month where the market excess return 

is larger in magnitude than the median of those observations that are negative 

(positive). The median of negative markets was found to be -2.43% from 26 

observations while the median of positive markets was 2.22% including 34 

observations. The panel data method is employed in this case primarily due to the low 

number of observations that could be possibly distort the results, which are displayed 

in tables 11 and 12. 

Our results indicate that all models leave unexplained returns in down markets 

while the R2 values are similar. However, the models perform better in up markets. In 

the APT, we chose to include the market factor in the case of beta sorted portfolios 

both in up and down markets since the findings without this particular factor were 

poor. Furthermore, the CAPM seems to work reasonable well at both up and down 

markets compared to the findings reported earlier in terms of  R2 values. As for the 

SMISI factor of the TFM, it shows the expected negative (in the case of beta sorted 

portfolios) and positive sign in down and up markets respectively. 

 



Table 11: Cross-sectional regression results classified by down market months 

Panel A:CAPM,TFM, FF 0  mar  SMISI  NSI  SMB  HML  labor  prem  R2 

  BV per share -0.067 0.004       0.829 

 (-6.75)* (0.46) 

 -0.070  0.013 0.008     0.831 

 (-6.26)*  (1.41) (0.69)  

 -0.033 -0.029   0.011 -0.019   0.840

 (-3.16)* (-2.50)*   (1.94** (1.95)**  

 -0.067 0.005     -0.062 0.001 0.829 

  (-6.92)* (0.54)     (-0.40) (1.08)   

Beta portfolios  -0.010 -0.051       0.794

  (-7.09)* (-57.4)*        

  -0.013  -0.036 -0.051     0.796

  (-5.19)*  (-2.00)* (-24.1)*      

  -0.019 -0.041   -0.027 0.002   0.792

  (-4.27)* (-9.12)*   (-2.84)* (0.31)    

  -0.005 -0.055     0.182 -0.001 0.799

  (-2.21)* (-20.1)*     (2.65)* (-1.09)   

Panel B: APT 0  mar  EXPIMP  IP  TS     R2 

BV per share  -0.055 -0.008 -0.036 -0.004     

 (-4.69)* (-0.74) (-2.22)* (-0.94)    0.835 

Beta portfolios -0.004 -0.056   0.141    

 (-1.92)** (-28.2)*   (1.03)   0.821 

*,** depict significance at 5% and 10% respectively.  

 

Table 12: Cross-sectional regression results classified by up market months 

Panel B: Best months o  mar  SMISI  NSI  SMB  HML  labor  prem  R2 

 BV per share 0.013 0.049       0.820

  (1.10) (4.08)*        

  0.006  0.001 0.058     0.817

  (0.69)  (0.11) (5.46)*      

  -0.000 0.061   0.015 0.007   0.821

  (-0.01) (4.42)*   (2.32)* (1.12)    

  0.013 0.049     0.075 -0.000 0.821

  (1.28) (5.34)*     (0.69) (-0.16)  

 Beta portfolios 0.008 0.052       0.646

  (6.63)* (53.6)*  

  0.005  0.053 0.058     0.666

  (-2.01)*  (1.89)** (20.3)*  

  0.031 0.034   0.035 -0.041   0.667

  (2.95)* (3.89)*   (4.54)* (-2.11)* 

  -0.005 0.061     -0.618 0.001 0.675

  (-1.03) (11.9)*     (-8.25)* (1.06) 

Panel A2: APT 0  mar  EXPIMP  IP  TS     R2 

BV per share  0.011 0.049 -0.010 -0.001     

 (1.12) (4.92)* (-1.49) (-0.17)    0.821 

Beta portfolios  0.001 0.058   -0.478    

  (0.01) (15.7)*   (-3.41)*   0.661 

*,** depict significance at 5% and 10% respectively.  

 

4. Conclusions 

 

This paper examines the efficacy of different models to explain the relationship 

between expected returns and risk in the cross-sectional context. We introduce a novel 

approach which is primarily based on the time varying nature of betas. The new TFM 

incorporates two variables. The first one is the ‘SMISI’ and captures the risk 



associated with the difference between ‘Superior’ and ‘Ineferior’ stocks whose betas 

are increasing and decreasing in market return respectively. The second variable, the 

‘NSI’, is constituted from invariant betas and operates as the market factor. The 

proposed model was compared against three models previously presented in the 

literature. Our results show that the proposed model outperforms alternative models. 

The study shows that in the cross-sectional analysis both conditionally and 

unconditionally, the stock market prices different risk factors. Related to the BVps 

portfolios, the SMISI factor is priced and the market risk premium has the expected 

positive sign apart from the case of FF3FM though not significant at any level. As for 

the PL-model, it has relatively low R2 while neither labor nor premium factors 

influence the returns. The results of the portfolios formed on beta coefficients depict 

that PL-model increases its R2 with the rest models to follow closely. In the case of 

APT, different risk factors are priced within the two kinds of portfolios. An interesting 

finding is the model’s high R2 value regarding the beta sorted portfolios even though 

the constant is statistically different from zero.  

The conditional cross-sectional regressions in the case of BVps portfolios identify 

the power of the TFM variables in explaining asset returns even though a proportion 

of them left unexplained. Unexplained returns are also evidenced in the case of the 

CAPM. The market and the HML factors in the FF3FM appear to be significant with 

the constant not being statistically different from zero. Regarding the PL-model no 

factor is priced. In the APT model, two new factors appear to be significant (i.e. 

EXPIMP and IP) other than the market risk not previously mentioned in the 

unconditional setting. For the beta sorted portfolios, almost no risk premia were found 

to be statistically different from zero  in the case of the PL-model. Moreover, the GRS 

test calculated in the first step time series regressions depict the outperformance of 

TFM in relation to CAPM and FF3FM models. 

In extreme market conditions, the selected portfolios appear to have a different 

reaction. A downward movement of the markets has a lower impact on the lower 

portfolios than in the higher ones. However, in an upward movement of the markets 

the lowest BVps portfolio does not differentiate from the highest one though this is 

the case between the two extreme beta sorted portfolios. The models’ performance in 

extreme conditions show that all models in down months leave unexplained returns 

but they perform better in up months.  



The implications of this study show that there are additional factors other than the 

market risk that affect stock returns. The new risk factors which found to be 

significant both in time series and cross section analyses, give valuable information of 

better understanding the characteristics of returns, targeting the reinforcement of stock 

market efficiency.  
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