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Chapter 1

Bayesian stochastic model

specification search for seasonal and

calendar effects

Tommaso Proietti and Stefano Grassi

1.1 Introduction

Economic time series are typically available at the monthly frequency of observations. A

key feature is the presence of seasonality and calendar effects, which account for much of

the variation in the series. Modeling and extracting these component has thus constituted

an important problem in the analysis of economic time series. See Zellner (1978), Zellner

(1983) Nerlove et al. (1979), Hylleberg (1992), Peña et al. (2001), and Ghysels and Osborn

(2001); Findley (2005) discusses some recent advances in seasonal adjustment.

Among the specification issues that have been debated by the literature on seasonality

and its adjustment a prominent one deals with characterizing the nature of the seasonal
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2 CHAPTER 1. SEASONAL MODEL SELECTION

and calendar effects as deterministic or stochastically evolving over time; see, among others,

Canova and Hansen (1995), Hylleberg and Pagan (1997), Haywood and Tunnicliffe Wilson

(2000), Koop and van Dijk (2000), Busetti and Harvey (2003), Dagum et al. (1993), Dagum

and Quenneville (1993), Bell and Martin (2004).

This chapter deals with two research areas to which David Findley contributed signif-

icantly: model selection and stochastic models of seasonality. We apply a recently pro-

posed Bayesian model selection technique, known as stochastic model specification search,

(Frühwirth-Schnatter and Wagner, 2010) for characterising the nature of seasonality and cal-

endar effects in macroeconomic time series. We illustrate that the methodology can be quite

successfully applied to discriminate between stochastic and deterministic trends, seasonals

and trading day effects. In particular, we formulate stochastic models for the components

of an economic time series and decide on whether a specific feature of the series, i.e. the

underlying level and/or a seasonal cycle are fixed or evolve.

The reference model is the unobserved component model known as the basic structural

model (Harvey, 1989, BSM henceforth), which will be presented in Section 1.2. Section 1.3

discusses how stochastic model specification search (SMSS) can be applied for the selection

of the components of the BSM. This hinges on the representation of the components in

non-centered form and a convenient reparameterization of the standard deviation hyperpa-

rameters. Section 1.4 discusses the state space representation of the non-centered model and

Markov Chain Monte Carlo (MCMC) inference via Gibbs sampling for model selection and

Bayesian estimation of the hyperparameters and the components. We apply SMSS to a set

of monthly U.S. and Italian macroeconomic time series; the results are presented in Section

1.5. We draw our conclusions in Section 1.6.

1.2 The Basic Structural Time Series Model

The basic structural model, proposed by Harvey and Todd (1983) for univariate time series

and extended by Harvey (1989), postulates an additive decomposition of the series into a

trend, a seasonal and an irregular component; calendar effects are modeled as regression
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effects. The name stems from the fact that it provides a satisfactory fit to a wide range of

seasonal time series, thereby playing a role analogous to the Airline model in an unobserved

components framework.

Let yt denote a time series observed at t = 1, 2, . . . , n; the BSM is formulated as follows:

yt = µt + St + Ct + ϵt, t = 1, . . . , n, (1.2.1)

where µt is the trend component, St is the seasonal component, Ct is the calendar component

and ϵt ∼ NID(0, σ2
ϵ ) is the irregular component.

The trend component has a local linear representation:

µt = µt−1 + qt−1 + ηt, ηt ∼ NID(0, σ2
η), t = 1, . . . , n,

qt = qt−1 + ζt, ζt ∼ NID(0, σ2
ζ )

(1.2.2)

where qt is the slope component and we assume that ηt and ζt are mutually uncorrelated

and independent of ϵt and St (see Harvey, 1989 and West and Harrison, 1997).

The seasonal component has a trigonometric representation, such that St arises from

the combination of six stochastic cycles defined at the seasonal frequencies λj = 2πj/12,

j = 1, . . . , 6, λ1 representing the fundamental frequency (corresponding to a period of 12

monthly observations) and the remaining being the five harmonics (corresponding to periods

of 6 months, i.e. two cycles in a year, 4 months, i.e. three cycles in a year, 3 months, i.e.

four cycles in a year, 2.4, i.e. five cycles in a year, and 2 months):

St =
6
∑

j=1

Sjt,





Sjt

S∗
jt



 =





cosλj sinλj

− sinλj cosλj









Sj,t−1

S∗
j,t−1



+





ϖj,t

ϖ∗
j,t



 , j = 1, . . . , 5,

(1.2.3)

and S6,t = −S6,t−1 + ϖ6t. The disturbances ϖjt and ϖ∗
jt are normally and independently

distributed with common variance σ2
ω for j = 1, . . . , 5, whereas Var(ϖ6t) = 0.5σ2

ω. While Sjt

is interpreted as the j-th seasonal cycle, the latent component S∗
jt is instrumental to casting

the model in Markovian form.
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Alternatively, the variance of the seasonal disturbances can be allowed to vary with the

frequency, i.e. ϖjt ∼ NID(0, σ2
j ), j = 1, . . . , 6, ϖ∗

jt ∼ NID(0, σ2
j ), j = 1, . . . , 5.

In the sequel we will adopt an equivalent alternative representation for the seasonal com-

ponent due to Hannan (1964), see also Hannan et al. (1970), and known as the evolving

seasonal model:
St =

∑5
j=1(ajt cosλjt+ bjt sinλjt) + a6t cos πt,

ajt = aj,t−1 + ωjt, ωjt ∼ NID(0, σ2
j )

bjt = bj,t−1 + ω∗
jt, ω∗

jt ∼ NID(0, σ2
j )

(1.2.4)

and E(ωjtω
∗
jt) = 0. This particular form can be easily represented in the non-centered form

(see Section 1.3).

By trigonometric identities it is possible to prove that there is a one-to-one mapping

between the two representations; in particular,





ajt

bjt



 =





cosλjt − sinλjt

sinλjt cosλjt









Sjt

S∗
jt



 ;





ωjt

ω∗
jt



 =





cosλjt − sinλjt

sinλjt cosλjt









ϖjt

ϖ∗
jt



 .

The random coefficients ajt and bjt are related to the amplitude of the j-th seasonal cycle

as Sjt can be rewritten: Sjt = φt cos(λjt − ϑt), where φt =
√

a2jt + b2jt is the time varying

amplitude and ϑt = tan−1(bjt/ajt) is the phase shift.

Calendar effects are due to the differential effects of trading days (TD) and to moving

festivals; see Cleveland and Devlin (1982). The former are modeled as TDt =
∑

k ϕkxkt,

where xkt are deterministic regressors defined as follows: letting Djt denote the number of

days of type j, j = 1, . . . , 7, occurring in month t, then xkt = Djt − D7t, k = 1, . . . , 6. The

regressors are the differential number of days of type j, j = 1 . . . , 6, compared to the number

of Sundays, to which type 7 is conventionally assigned. See Bell and Hillmer (1983). If the

effect of weekdays is the same, and Saturdays and Sundays are also the same, the trading

day component is captured by a single explanatory variable, that is xt = D1t − 5D2t/2,

where D1t is the number of weekdays in the month and D2t is the number of Saturdays and

Sundays.
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As far as moving festivals are concerned, we consider Easter and Labor Day (U.S. time

series); their effects are modeled in terms of the proportion of 7 days before Easter or Labor

Day that fall in month t and subtracting their monthly long run average, computed over the

first 400 years of the Gregorian calendar (1583-1982).

A time varying trading day component can be modeled by letting the coefficients ϕk evolve

over time: TDt =
∑6

k=1 ϕktxkt where xkt were defined above and ϕkt are independent Gaus-

sian random walks with common disturbance variance, ϕkt = ϕk,t−1 + νkt, νkt ∼ NID(0, σ2
ν).

Bell and Martin (2004) used this time-varying trading-day model with different disturbance

variances.

1.3 Bayesian stochastic specification search for the BSM

This section illustrates how the stochastic model specification search recently proposed by

Frühwirth-Schnatter and Wagner (Frühwirth-Schnatter and Wagner, 2010, FS-W hence-

forth) can be applied for the selection of the components of the BSM. The different speci-

fications for the trend and the seasonal components are nested inside a more general state

space model and are obtained by imposing exclusion restrictions, so that discriminating

between deterministic and stochastic components amounts to performing variable selection

within the regression framework considered by George and McCulloch (1993).

The stochastic model specification search methodology proposed by FS-W hinges on two

basic ingredients: the first is the reparameterization of the unobserved components µt, St

and Ct, in non-centered form, with respect to location and scale (see also Gelfand et al.,

1995, Frühwirth-Schnatter, 2004 and Strickland et al., 2007). The second is the reparame-

terization of the hyperparameters representing standard deviations as regression parameters

with unrestricted support. The choice of the prior and the conditional independence struc-

ture of the reparameterized model enable the definition of a very efficient MCMC estimation

strategy based on Gibbs sampling.
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1.3.1 Non-centered representation of the random components

The non-centered representation of the trend component is obtained as follows. Denoting

by µ0 and q0 the initial values of the level and slope components, the trend (1.2.2) can be

reparameterized as follows:

µt = µ0 + q0t+ σηµ̃t + σζÃt, t = 1, . . . , n,

µ̃t = µ̃t−1 + η̃t, η̃t ∼ NID(0, 1),

Ãt = Ãt−1 + q̃t−1, q̃t = q̃t−1 + ζ̃t, ζ̃t ∼ NID(0, 1),

(1.3.1)

so that µ̃0 = Ã0 = q̃0 = 0, and ζ̃t = ζt−1/σζ . Thus, in the non-centred representation the

mean function is explicitly written as a linear function of time and the stochastic part is

the combination of a random walk and an integrated random walk, both starting off at the

origin and driven by standardized independent disturbances.

The non-centered representation of the j-th seasonal cycle is obtained as follows. Denoting

by aj0 and bj0 the initial values of the coefficients,

Sjt = aj0 cosλjt+ bj0 sinλjt+ σj

(

ãjt cosλjt+ b̃jt sinλjt
)

, j = 1, . . . , 5

S6t = aj0(−1)t + σ6ã6t(−1)t

ãjt = ãj,t−1 + ω̃jt, ω̃jt ∼ NID(0, 1),

b̃jt = b̃j,t−1 + ω̃∗
jt, ω̃∗

jt ∼ NID(0, 1).

(1.3.2)

Hence, the non-centered representation of the seasonal component is obtained as St =
∑6

j=1 Sjt, with Sjt given as in (1.3.2).

Alternatively, the non-centered representation of the j-th seasonal cycle can be defined

as:

Sjt = aj0 cosλjt+ bj0 sinλjt+ σjS̃jt, j = 1, . . . , 5

S̃jt = cosλjS̃j,t−1 + sinλjS̃
∗
j,t−1 + ϖ̃jt, ϖ̃jt ∼ NID(0, 1),

S̃∗
jt = − sinλjS̃j,t−1 + cosλjS̃

∗
j,t−1 + ϖ̃∗

t , ϖ̃∗
jt ∼ NID(0, 1).

S6t = aj0(−1)t + σ6S̃6t, S̃6t = −S̃6,t−1 + ϖ̃6t, ϖ̃6t ∼ NID(0, 1).

(1.3.3)
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The non-centered representation of the trading days component is:

TDt =
∑6

k=1 ϕk0xkt + σν

(

∑6
k=1 ϕ̃ktxkt

)

ϕ̃kt = ϕ̃k,t−1 + ν̃t, ν̃t ∼ NID(0, 1).
(1.3.4)

1.3.2 Reparameterization of the BSM

The non-centered representation is useful not only for the efficiency of Bayesian estimation

by Markov chain Monte Carlo (MCMC) methods (in particular, when e.g. σ2
η is small

in comparison to σ2
ϵ ), but also since it paves the way to performing model selection in a

regression framework via the stochastic search variable selection (SSVS) approach proposed

by George and McCulloch (1993).

The non-centered representation for the components is identified up to sign switches that

operate on both the standard deviations and on the underlying stochastic components. For

instance the trend component with (−ση)(−µ̃t) replacing σηµ̃t in (1.3.1) is observationally

equivalent, i.e. it has the same likelihood. The same can be said of the pairs (−σζ)(−Ãt) and

(σζ)(Ãt), (−σj)
{

−
(

ãjt cosλjt+ b̃jt sinλjt
)}

and σj

(

ãjt cosλjt+ b̃jt sinλjt
)

, and so forth.

As a consequence, the likelihood function is symmetric around zero along the ση, σζ , σj, σν ,

dimensions and multimodal, if the true standard deviations are larger than zero. This fact

can be exploited to quantify how far the posterior of ση, σζ , σj, j = 1, . . . , 6, and σν , is

removed from zero.

As a matter of fact, defining independent Bernoulli random variables with success prob-

ability 0.5, Bµ,BA,Bsj, j = 1, . . . , 6,BTD, we can equivalently write σηµ̃t = βµµ
∗
t , where

βµ = (−1)Bµση, and µ
∗
t = (−1)Bµµ̃t,; similarly, σζÃt = βAA

∗
t , where βA = (−1)BAσζ , A

∗
t =

(−1)BAÃt,

σj

(

ãjt cosλjt+ b̃jt sinλjt
)

= βsjU
∗
jt, βsj = (−1)Bsjσj, U

∗
jt = (−1)Bsj

(

ãjt cosλjt+ b̃jt sinλjt
)

,
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for j = 1, . . . , 6, and

σν

(

∑

k

ϕktxkt

)

= βTDΦ
∗
t , βTD = (−1)BTDσν ,Φ

∗
t = (−1)BTD

(

∑

k

ϕktxkt

)

.

Replacing into the expressions for the components yields:

yt = µt + St + Ct + ϵt, ϵt ∼ NID(0, σ2
ϵ ),

µt = µ0 + q0t+ βµµ
∗
t + βAA

∗
t ,

µ∗
t = µ∗

t−1 + η̃t, η̃t ∼ NID(0, 1),

A∗
t = A∗

t−1 + q̃t−1,

q̃t = q̃t−1 + ζ̃t, ζ̃t ∼ NID(0, 1),

St =
∑5

j=1(aj0 cosλjt+ bj0 sinλjt) + a60(−1)t +
∑6

j=1 βsjU
∗
jt,

U∗
jt = A∗

jt cosλjt+B∗
jt sinλjt, j = 1, . . . , 5, U∗

6t = A∗
6t cosπt,

A∗
jt = A∗

j,t−1 + ω̃jt, ω̃jt ∼ NID(0, 1),

B∗
jt = B∗

j,t−1 + ω̃∗
jt, ω̃∗

jt ∼ NID(0, 1),

Ct =
∑6

k=1 ϕk0xkt + βTD

(
∑6

k=1 Φ
∗
ktxkt

)

+ ϕExEt,

Φ∗
kt = Φ∗

k,t−1 + ν̃t, ν̃t ∼ NID(0, 1).

(1.3.5)

where we have posited A∗
jt = (−1)Bsj ãjt, B

∗
jt = (−1)Bsj B̃jt,Φ

∗
kt = (−1)BTDϕ∗

kt.

By this reparameterization a standard deviation is transformed into a regression coefficient

and SSVS can be applied. Hence the selection of a randomly evolving component is related

to the inclusion of a particular regressor.

In principle, we could conduct variable selection for any of the explanatory variables;

however, for the computational feasibility of the stochastic search we consider specifications

that always include as explanatory variables the constant term, the set of 11 sine and cosine

terms at the seasonal frequencies, the six trading days regressors and the moving festivals

regressors, so that the most elementary model is a model with a constant level, deterministic
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seasonals and fixed calendar effects. Variable selection is carried out on the slope term a0t,

on the random walk and integrated random walk components µ∗
t , A

∗
t , on the six stochastic

terms U∗
jt and on

(
∑6

k=1 Φ
∗
ktxkt

)

.

We now introduce nine binary indicator variables γµ, γA, γsj, j = 1, . . . , 6, γTD, taking

value 1 if the random effects µ∗
t , A

∗
t , Ujt, j = 1, . . . , 6,

(
∑6

k=1 Φ
∗
ktxkt

)

are present and 0 oth-

erwise, along with a binary indicator for the linear trend component, δ, taking values (0,1)

according to whether the term a0t is included in the model. The ten indicators can be further

collected in the multinomial vector Υ = (γµ, γA, γsj, j = 1, . . . , 6, γTD, δ).

Hence, there are K = 210 = 1024 possible models in competition. These are nested in the

specification:

yt = µ0 + δq0t+ γµβµµ
∗
t + γAβAA

∗
t +

∑5
j=1(aj0 cosλjt+ bj0 sinλjt) + a60(−1)t+

∑6
j=1 γsjβsjU

∗
jt +

∑6
k=1 ϕk0xkt + γTDβTD

(
∑6

k=1 Φ
∗
ktxkt

)

+ ϕExEt + ϵt,

(1.3.6)

The different models will be labelled by

Mk, k = 1 +
U
∑

u=1

2U−uΥu,

where Υu is the u-th element of the vector Υ, u = 1, . . . , U .

1.3.3 The restricted BSM with a single variance parameter and model repa-

rameterization

Deciding whether a single variance parameter should be used instead of six for the seasonal

component is one of the most important specification issues in formulating a seasonal model.

The trigonometric seasonal model with a single variance parameter is nested within the

model for St in (1.3.5), as it arises when σj = σω, j = 1, . . . , 5, and σ6 = 2−1/2σω. Under
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these restrictions, the non-centered representation for the seasonal component becomes

St =
∑5

j=1(aj0 cosλjt+ bj0 sinλjt) + a60(−1)t + σωUt

Ut =
∑5

j=1

(

ãjt cosλjt+ b̃jt sinλjt
)

+ 2−1/2ã6t(−1)t

ãjt = ãj,t−1 + ω̃jt, ω̃jt ∼ NID(0, 1),

b̃jt = b̃j,t−1 + ω̃∗
jt, ω̃∗

jt ∼ NID(0, 1).

(1.3.7)

where Ut is a single explanatory variable resulting from combining six non-centered orthog-

onal stochastic cycles.

More generally, this model can be nested within the more general specification that we

have considered in the previous section, by decomposing the frequency specific variance

parameters as follows:

σj = σω + (σj − σω), j = 1, . . . , 5, σ6 = 2−1/2σω + (σ6 − 2−1/2σω),

where

σω =

∑5
j=1 σj +

√
2σ6

5 +
√
2

is a weighted average of the individual parameters. Further, we denote by σ∗
j = σj − σω, j =

1, . . . , 5, σ∗
6 = (σ6 − 2−1/2σω), the deviations from the mean. These coefficients are such that

∑5
j=1 σ

∗
j +

√
2σ∗

6 = 0, and thus we can express the last coefficient σ∗
6 as a linear combination

of the others, namely

σ∗
6 = −2−1/2

5
∑

j=1

σ∗
j .

Replacing in (1.3.3), we can reparameterize the seasonal component as follows:

St =
∑5

j=1(aj0 cosλjt+ bj0 sinλjt) + a60(−1)t + σωUt +
∑5

j=1 σ
∗
jU

†
jt

Ut =
∑5

j=1

(

ãjt cosλjt+ b̃jt sinλjt
)

+ 2−1/2ã6t(−1)t

U †
jt = ãjt cosλjt+ b̃jt sinλjt− 2−1/2ã6t(−1)t.

(1.3.8)

Hence, the reparameterized non-centered form of the model features six random regressors,

the first being a weighted average and the remaining five representing weighted contrasts
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between the j − th and the last non-centered stochastic cycles. If the restrictions were to

hold, the coefficients σ∗
j would equal zero and the model reduces to (1.3.7)

This treatment shows that deciding this specification issue can be considered as a model se-

lection issue. Again, defining a suitable set of coefficient βs = σω(−1)Bs β∗
sj = σ∗

j (−1)Bsj , j =

1, . . . , 5, where Bs,Bsj are IID Bernoulli random variables, and indicators γs, γ
†
sj, j = 1, . . . , 5,,

taking value 1 if the random effects Ũt = (−1)BsUt, Ũjt = (−1)BsjU †
jt, j = 1, . . . , 5, are

present and 0 otherwise, we can write the 210 possible models arising from the reparameter-

isation as follows:

yt = µ0 + δq0t+ γµβµµ
∗
t + γAβAA

∗
t +

∑5
j=1(aj0 cosλjt+ bj0 sinλjt) + a60(−1)t+

γsβsŨt +
∑5

j=1 γ
†
sjβ

∗
sjŨ

∗
jt +

∑6
k=1 ϕk0xkt + γTDβTD

(
∑6

k=1 Φ
∗
ktxkt

)

+ ϕExEt + ϵt,

(1.3.9)

When the single variance parameter restriction is enforced (β∗
sj = 0, j = 1, . . . 5,), the

number of possible models reduces to 25 = 32. For instance, model M32 has γµ = γA = γs =

γTD = δ = 1, which corresponds to the unrestricted local linear trend model with stochastic

levels and slopes, stochastic seasonality with a single variance parameter and time-varying

trading days effects.

1.4 Statistical Treatment

Depending on the value of Υ, the models nested in (1.3.6) admit the following state space

representation:

yt = x′δ,tρδ + z′γ,tαγ,t + ϵt, ϵt ∼ NID(0, σ2
ϵ ), t = 1, . . . , n,

αγ,t = Tγαγ,t−1 +Rγuγ,t, uγ,t ∼ NID(0, I),
(1.4.1)
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where αγ,0 = 0, and

xδ,t = (1, δt, cosλ1t, sinλ1t, . . . , cos πt, x1t, . . . , x6t, xEt)
′

ρδ = (µ0, q0, a10, b10, . . . , a60, ϕ1, . . . , ϕ6, ϕE)
′,

zγ,t = (γµβµ, γAβA, 0, γs1βs1 cosλ1t, γs1βs1 sinλ1t, . . . , γs6βs6 cos πt, γTDβTDx1t, . . . , γTDβTDx6t)
′,

αγ,t = (µ∗
t , A

∗
t , q̃t, A

∗
1t, B

∗
1t, . . . , A

∗
6t,Φ

∗
1t, . . . ,Φ

∗
6t),

Tγ =















1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 I12















Rγ =















1 0 0

0 0 0

0 1 0

0 0 I12















.

We will assume that the models Mk, k = 1, . . . , K, are equally likely a priori, that is

p(Mk) ∝ 1, or equivalently p(Υ) = 2−U , where p(·) denotes the density or the probability

function of the argument.

As far as model selection is concerned, it would be prohibitively expensive to compute the

posterior model probabilities for each of the 2U models and select that specification which

has the largest. The evaluation of the marginal likelihood for each model is computationally

intensive and the accuracy may be poor (see the discussion in FS-W and the references

therein). Rather than computing the posterior probabilities of all the possible models, it

is computationally more attractive to simulate samples from their posterior distribution by

MCMC methods. In particular, exploiting the conditional independence structure of the

model, and given the availability of the full conditional posterior distribution of Υ in closed

form, the multinomial vector Υ is sampled along with the model parameters by using a Gibbs

sampling scheme and a stochastic search of the most likely explanation of the observed time

series is sought. After the Gibbs sampling scheme has converged, model selection (and

averaging, if one wishes) can be based on p(Υ|y), as estimated by the proportion of times a

particular specification was drawn.
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1.4.1 Prior specification

Let y denote the collection of time series values {yt, t = 1, . . . , n} and α denote that of the

latent states {αγ,t, t = 0, 1, . . . , n}; also let ψΥ collect the appropriate subset of the parame-

ters (µ0, q0, a10, b10, . . . , a60, ϕ10, . . . , ϕ60, βµ, βA, βs1, . . . , βs6, βTD) that enter the model for a

particular value of Υ.

The prior assumes a conditional independence structure between each block of variables,

such that:

p(Υ, ψ, σ2
ϵ , α) = p(Υ)p(σ2

ϵ )p(ψ|Υ, σ2
ϵ )p(α|Υ).

As stated before, the prior distribution over the model space is uniform, that is p(Υ) = 2−U .

For the irregular variance a hierarchical inverse Gamma prior (IG) is adopted, σ2
ϵ ∼

IG(c0, C0), where C0 ∼ Ga(g0, G0), Ga(·) denoting the Gamma distribution, c0 = 2.5 , g0 =

5, and G0 = g0/[0.75Var(yt)(c0− 1)], as in FS-W. The hierarchical prior makes the posterior

distributions less sensitive to the choice of the hyperparameters of the IG distribution; it

obviously requires an additional sampling step where C0 is sampled conditional on σ2
ϵ from

the conditional Gamma posterior C0|σ2
ϵ ∼ Ga(g0+c0, G0+1/σ2

ϵ ) at each sweep of the sample.

For the parameter vector ψΥ, if we denote its generic element by ψΥi, p(ψΥ|Υ, σ2
ϵ ) =

∏

i p(ψi|σ2
ϵ ), where all the priors are conjugate; for instance, βµ|σ2

ϵ ∼ N(0, κµσ
2
ϵ ), βA|σ2

ϵ ∼
N(0, κAσ

2
ϵ ), q0|σ2

ϵ ∼ N(0, d0σ
2
ϵ ), etc. For the constant term and the coefficients aj0, j =

1, . . . , 6, bj0, j = 1, . . . , 5, ϕk0, k = 1, . . . , 6 we adopt the uninformative priors, e.g. p(µ0|σ2
ϵ ) ∝

1.

A distinctive feature of the stochastic specification search methodology proposed by

Frühwirth-Schnatter and Wagner (2010) is the adoption of Gaussian priors, centered at zero,

for the parameters βµ, βA, βsj, βTD. Not only this allows conjugate analysis, but FS-W show

that inference will benefit substantially from the use of a normal prior for e.g. βµ = ±ση,
βµ|σ2

ϵ ∼ N(0, κµσ
2
ϵ ), in lieu of the usual inverse Gamma prior for the variance parameter σ2

η.

In fact, a major problem arising when the IG prior is used is the high sensitivity of the pos-

terior distribution of the variance parameters to the hyperparameters of the IG distribution,
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when the true variance is close to zero; as a result the MCMC draws will mix very slowly

or even lack convergence. On the contrary, the posterior distribution of the β coefficients is

not too sensitive to the choice of the prior variance and Monte Carlo inference is much more

efficient.

Notice that βµ|ση, γµ = 1, is a random variable which takes the values −ση and ση with

probabilities both equal to 1/2 so that a Gaussian prior centered at zero is reasonable;

furthermore, this choice amounts to specifying a hierarchical mixture prior to the parameter

βµ, of the form p(βµ) = (1− γ1)I0 + γ1N(0, κσ2
ϵ ) where I0 is a degenerate density with point

mass at zero, see Smith and Kohn (1996). As pointed out in George and McCulloch (1997),

this prior entails that a stochastic trend will be included if βµ can be distinguished from zero

irrespective of its absolute size.

Finally, the prior for α is provided by the Gaussian dynamic model (1.4.1), so that,

p(α) = p(αγ0)
n
∏

t=1

p(αγt|αγ,t−1),

with αγt|αγ,t−1 ∼ N(Tγαγ,t−1, RγR
′
γ) and αγ,0 = 0.

1.4.2 MCMC Estimation

Model selection requires the evaluation of the posterior probability function of the multino-

mial vector Υ, denoted p(Υ|y). Also, for the selected model we are interested in the marginal

posterior distributions of the parameters p(ψ|y) and the states p(α|y). The required poste-

riors are not available in closed form, but we are capable of drawing samples from them by

Markov chain Monte Carlo methods and, in particular, by a Gibbs sampling (GS) scheme

that we now are going to discuss in some detail. The GS scheme produces correlated random

draws from the posteriors by repeatedly sampling an ergodic Markov chain whose invariant

distribution is the target density; see e.g. Robert and Casella (2004) and Gamerman and

Lopes (2007). In essence, it defines a homogeneous Markov Chain such that the transition

kernel is formed by the full conditional distributions and the invariant distribution is the
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unavailable target density.

The GS scheme can be sketched as follows. Specify a set of initial values Υ(0), σ
2(0)
ϵ , α(0), ψ(0).

For i = 1, 2, . . . ,M , iterate the following operations:

a. Draw Υ(i) ∼ p(Υ|α(i−1), y)

b. Draw σ
2(i)
ϵ ∼ p(σ2

ϵ |Υ(i), ψ(i−1), α(i−1), y)

c. Draw ψ(i) ∼ p(ψ|Υ(i), σ
2(i)
ϵ , α(i−1), y)

d. Draw α(i) ∼ p(α|Υ(i), σ
2(i)
ϵ , ψ(i), y)

The above complete conditional densities are available, up to a normalizing constant, from

the form of the likelihood and the prior.

For the sake of notation, let us write the regression model as y = ZΥψΥ + ϵ, where y and

ϵ are vectors stacking the values {yt} and {ϵt}, respectively, and the generic row of matrix

ZΥ contains the relevant subset of the explanatory variables.

Step a. is carried out by sampling the indicators with probabilities proportional to the

conditional likelihood of the regression model, as

p(Υ|α, y) ∝ p(Υ)p(y|Υ, α)
∝ p(y|Υ, α),

which is available in closed form (see below).

Under the normal-inverse Gamma conjugate prior for (ψΥ, σ
2
ϵ )

σ2
ϵ ∼ IG(c0, C0), ψΥ|σ2

ϵ ∼ N(0, σ2
ϵDΥ),

where DΥ is a diagonal matrix with elements κµ, κA, etc., steps b. and c. are carried out by

sampling from the posteriors

σ2
ϵ |Υ, α, y ∼ IG(cT∗, CT∗)

ψΥ|Υ, σ2
ϵ , α, y ∼ N(m,σ2

ϵS)
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where
S =

(

Z ′
ΥZΥ +D−1

Υ

)−1
, m = SZ ′

Υy

cT∗ = c0 + T ∗/2, CT∗ = C0 +
1
2
(y′y −m′S−1m) .

Finally,

p(y|Υ, α) ∝ |S|0.5

|DΥ|0.5
Γ(cT ∗)

Γ(c0)

Cc0
0

CcT∗

T ∗

,

see e.g. Geweke (2005), where Γ(·) denotes the Gamma function.

The sample from the posterior distribution of the latent states, conditional on the model

and its parameters, in step d., is obtained by the conditional simulation smoother proposed

by Durbin and Koopman (2002) for linear and Gaussian state space models.

Finally, the draw of the parameters βµ, βA, βsj, j = 1, . . . , 6, βTD are obtained by

performing a final random sign permutation. This is achieved by drawing independently

Bernoulli random variables Bµ, BA, Bsj, j = 1, . . . , 6,BTD with probability 0.5, and record-

ing (−1)Bµ(ση, µ̃t), (−1)BA(σζ , Ãt, at), etc.

1.5 Empirical Results

We apply Bayesian stochastic specification search to a set of U.S. and Italian macroeconomic

time series, listed in Table 1.1, which were selected for their relevance in the measurement

of the macroeconomy. All the series are transformed into logarithms, except for the U.S.

monthly inflation rate, which is computed as the logarithmic change of the consumer price

index with respect to the previous month.

Table 1.1 Approximately Here

We start by discussing the results for the specifications with a single seasonal variance

parameter, based on 60,000 MCMC draws, 20,000 of which constituted the burn-in sample.

For this case there are K = 32 models, as Υ is a vector of five indicator variables with

elements (γµ, γA, γs, γTD, δ).



1.5. EMPIRICAL RESULTS 17

Table 1.2 reports the percentage of MCMC replicates by which model Mk, k = 1+16γµ+

8γA + 4γs + 2γTD + δ, was selected. It also reports the value of the Deviance Information

Criterion (DIC). The latter is a measure of model fit (see e.g. Gelman and Rubin, 2004)

computed as follows:

DICΥ = D̂Υ(y;ψ, σ
2
ϵ ) + {D̂Υ(y;ψ, σ

2
ϵ )−DΥ(y; ψ̂, σ̂

2
ϵ )}, (1.5.1)

where

D̂Υ(y;ψ, σ
2
ϵ ) =

1

R

R
∑

i=1

DΥ(y|ψ(i), σ2(i)
ϵ )

is the average value of the deviance

DΥ(y|ψ, σ2
ϵ ) = −2 ln p(y|ψ, σ2

ϵ )

computed over the R posterior simulations of (ψ, σ2
ϵ ) for the specification Υ obtained by the

Gibbs sampling scheme; the conditional likelihood p(y|ψ, σ2
ϵ ) is evaluated by the Kalman filter

for the relevant state space model with parameter values (ψ, σ2
ϵ ). The term in parenthesis

in (1.5.1), where DΥ(y; ψ̂, σ̂
2
ϵ ) represents the deviance evaluated at the posterior means ψ̂ =

R−1
∑

i ψ
(i), σ̂2

ϵ = R−1
∑

i σ
2(i)
ϵ , measures the number of effective parameters in the model.

The main evidence can be summarized as follows.

1. The specification with time-varying trading days is never selected.

2. The modal specification has Υ = (1, 0, 1, 0, 0) in four cases (US.HS, US.IR, US.Imp and

IT.IP): the trend is a driftless random walk and stochastic seasonals.

3. The specifications selected for the US.UR and IT.TA, and US.IP, M18 and M25, respec-

tively, do not feature stochastic seasonality. Model M18 features a random walk trend

with constant drift and fixed seasonal and calendar effects; model M25 differs only for

the trend model, which is local linear.

4. For US.CC and US.CPI the models two most frequently selected specifications are

M29 and M30; they both feature a local linear trend and stochastic seasonal, the only
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difference relating to the fact that the slope component is nonzero at the beginning of

the sample period only for the latter.

5. The models selected for US.CPI and its first differences, US.IR, can be easily reconciled

as M21,M22 are the same as M29,M30, but with a nonstochastic slope. However, notice

that if σ2
η > 0 then the model for the irregular should be replaced by a moving average

component of order one.

6. The two U.S. retail sales series feature models M13 and M14 as modal specifications;

they entail a fixed level, a stochastic slope, stochastic seasonality and the initial slope

is zero (M13) or nonzero (M14).

7. Models selected more frequently have lower DIC values.

Table 1.2 Approximately Here

Turning to the selection of seasonal models with variance parameters varying with the

trigonometric components, we present in Table 1.3 the first three modal specification that

were selected, along with the posterior model probabilities 100 × p̂(Υ|y) estimated by the

Gibbs sampling scheme and the DIC.

The results confirm that for the series considered in the application trading days effects

can be safely considered as fixed, rather than evolving over time, the marginal probability

P (γTD = 1) being virtually zero in all the cases. The main evidence arising from Table 1.3

can be summarized as follows.

• Trends and seasonals are better characterized as stochastic, rather than deterministic.

The results are in broad agreement with the analysis of the restricted model, except for

US.UR and IT.TA, and US.IP, for which some of the trigonometric cycles are not fixed

when the variance parameters are allowed to vary with the frequency of the cycle.

• For US.IP and US.UR the three modal models are such that the trigonometric compo-

nent defined at the fundamental frequency λ1 = π/6 is not stochastic. On the contrary,

the only components that are stochastically evolving for IT.TA are the fundamental

and the first harmonic.
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• There is a lot of variation across the series as to which trigonometric cycles are time-

varying or fixed. The broad evidence arising from Table 1.3 is that the number of

occurrences in which the cycle at λj is selected as stochastically evolving decreases with

j; quite often the cycle defined at the λ6 = π frequency (six cycles per year) is fixed.

• Model uncertainty often concerns marginal aspects, such as the presence of a non-zero

slope term at the initial time, or a specific trigonometric component.

Table 1.3 Approximately Here

Hereby we provide a more detailed analysis of Italian IP series. Figure 1.1 displays the

estimated posterior densities of some of the parameters of the saturated BSM model, which is

(1.3.6) with Υ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1). The estimates are based on MCMC draws obtained

by running the Gibbs sampler for 40,000 iterations after a burn–in of 20,000.

When the posterior of the parameters βΛ,Λ = {µ,A, s1, . . . , s6, TD} is bimodal and suffi-

ciently removed from zero, the corresponding true variance parameter is different from zero

and the associated random component contributes significantly to the evolution of the se-

ries. This is the case of βµ (stochastic level) and the seasonal parameters βsj, j = 1, 2, 3, 4,

whereas βs5 and βs6 have some density around zero. On the contrary, the posterior of βA is

concentrated around zero, which points to a fixed slope; moreover the distribution of q0 is

such that the initial slope is not significantly different from zero, so that the specification

of the trend component reduces to a driftless random walk. Also, trading days effects are

fixed.

Figure 1.1 Approximately Here

When SMSS is applied by running a MCMC sampling scheme that draws samples from the

posterior distribution of the indicators, the specification with maximal estimated posterior

probability is Υ = (1, 0, 1, 1, 1, 1, 1, 0, 0, 0), corresponding to M761, which is a restricted BSM

with no slope, a fixed trigonometric cycle at the Nyquist frequency, and fixed calendar

effects. The estimated posterior model probability is 0.3. Figure 1.2 shows the estimated
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posterior means of the unobserved components (along with the 95% credible interval for

the trend), whereas Figure 1.3 displays the estimated posteriors of the trading days effects,

ϕk0, k = 1, . . . , 6, along with the posterior of the Sunday effect, obtained as ϕ70 = −
∑6

j=1 ϕk0.

Model uncertainty deals essentially with the time variation of the seasonal trigonometric

cycles defined at the frequencies λ5 and λ6 (see Table 1.3).

Figure 1.2 Approximately Here

Figure 1.3 Approximately Here

The saturated BSM model can be estimated also using the reparameterization discussed

in section 1.3.2. In particular, pronounced bi-modality of the posterior distribution of the

parameter βs (presented in the top left panel of figure 1.4) points out that seasonality is

stochastic rather than deterministic. Also, the posterior distributions of the differential

parameters β∗
sj, j = 1, . . . , 5 point out that the variance parameters σj are likely to differ

significantly from
√
2σ6, except for σ5. Hence, the seasonal model could be simplified by

expressing the frequency specific variances in terms of five, rather than six, unrestricted pa-

rameters. Overall, the evidence is against the specification with a single variance parameter.

Figure 1.4 Approximately Here

The model with frequency specific variance parameters is usually a substantial improve-

ment over the specification with a single variance parameter σ2
ω. To illustrate this point,

Figure 1.5 compares the posterior distribution of the Easter regression coefficient ϕE for

the unrestricted model (1.3.6) and the specification enforcing the restriction σ2
j = σ2

ω, j =

1, . . . , 5, σ2
6 = 0.5σ2

ω. Similar considerations can be made for the precision by which the un-

observed components are estimated: the bottom panel compares the 95% credible intervals

of the trend component for the two specifications.

Figure 1.5 Approximately Here
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A final point deals with the comparison of the saturated model (M1024) with the selected

model (see Table 1.3). For the series investigated in this paper model selection has little

effect on the estimation of the seasonally adjusted series, although it may affect the trend

and the irregular, or the seasonal and the calendar components, individually. However, once

model selection has been carried out once, conditioning on the selected model may improve

the efficiency and timeliness of the Gibbs sampling scheme (the convergence statistics, see

e.g. Geweke (2005), not reported for brevity, are always satisfactory for the restricted model,

whereas they may fail for the unrestricted model).

1.6 Conclusions

We have applied a recent methodology, Bayesian stochastic model specification search (Frühwirth-

Schnatter and Wagner, 2010), for the selection of the unobserved components (level, slope,

seasonal cycles, trading days effects) that are stochastically evolving over time.

SMSS hinges on two basic ingredients: the non-centered representation of the unobserved

components and the reparameterization of the hyperparameters representing standard de-

viations as regression parameters with unrestricted support. The choice of the prior and

the conditional independence structure of the model enable the definition of a very efficient

MCMC estimation strategy based on Gibbs sampling. Indeed, our first general conclusion is

that, transcending the model selection problem, Bayesian estimation of the BSM should be

carried out by using the approach suggested by Frühwirth-Schnatter and Wagner (2010).

Our empirical illustrations have dealt with a limited data set consisting of 11 time series,

so that we can envisage an extension of this research that gathers further empirical evidence

by processing a much larger set of data. However, there are some regularities that we have

drawn from our case studies. The first is that, somewhat disappointingly, trading day effects

are time-invariant. A possible explanation is that the series available are possibly too short

to enable us to detect small variations induced by the calendar; moreover, some of the TD

variation may be absorbed by seasonal cycles defined at higher frequencies.
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A second conclusion is that the specification with six frequency specific variance parame-

ters proves superior to that using a single parameter, yielding more precise estimates of the

unobserved components and the regression effects. We also suspect that the latter can in-

duce a bias towards selecting deterministic models of seasonality. We leave to future research

discriminating between the two representations as a model selection problem, by comparing

their posterior probabilities.

The selection of a BSM specification among the 210 possible ones has led in all the cases

to models with one or more seasonal cycles being characterized as deterministic. The over-

all result is that the set of time series analyzed display stochastically evolving trends and

seasonality.

Finally, our stochastic model specification search was carried out for a version of the

BSM with trigonometric seasonality. In the future we would like to apply the methodology

to alternative models for seasonal time series, featuring a stochastic dummy seasonal model

(see e.g. West and Harrison (1997)), where the individual monthly effects may be evolving

over time.
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Frühwirth-Schnatter, S. (2004). Efficient bayesian parameter estimation for state space

models based on reparameterizations. In Harvey, A. C., Koopman, S. J., and Shephard,

N., editors, State Space and Unobserved Component Models: Theory and Applications,

pages 123–151. Cambridge University Press.
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Table 1.1: Dataset used in the study.
Series description Sample period Name
U.S. Housing Starts Total 1960.1 - 2010.2 US.HS
U.S. Industrial Product index 1986.1 - 2010.1 US.IP
U.S. Retail Sales Total 1960.1 - 2008.3 US.RSt
U.S. Retail with Food less Auto 1960.1 - 2008.3 US.RSla
U.S. Unemployment Rate 1960.1 - 2009.8 US.UR
U.S. Consumer Price Index 1960.1 - 2009.8 US.CPI
U.S. Monthly Inflation Rates 1960.2 - 2009.8 US.IR
U.S. Consumer Credit Total 1992.1 - 2009.12 US.CC
U.S. Imports of Crude Oil (Quantity) 1973.1 - 2009.7 US.Imp
Italian Industrial Production 1990.1 - 2010.1 IT.IP
Italian Tourist Arrivals 1990.1 - 2009.10 IT.TA
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Table 1.2: BSM with single seasonal variance parameter. Percentage by which modelMk, k = 1+16γµ+8γA+4γs+2γTD+δ,
is selected in 40,000 MCMC draws. Deviance Information Criterion (DIC) values are in parenthesis.

Model
Series M9 M10 M13 M14 M17 M18 M21 M22 M25 M26 M29 M30

US.HS 0 0 0 0 4
(−1044.0)

5
(−1058.1)

82
(−1193.6)

9
(−1072.0)

0 0 0 0

US.IP 0 0 0 0 0 0 0 0 67
(−3579.2)

33
(−3557.3)

0 0

US.RSt 0 0 53
(−1028.6)

41
(−1009.3)

0 0 0 0 1
(−975.4)

1
(−974.2)

1
(−965.1)

2
(−1001.9)

US.RSla 0 0 30
(−1026.4)

68
(−1057.3)

0 0 0 0 0 0 0 2
(−1014.6)

US.UR 0 0 0 0 0 70
(−1944.1)

20
(−1851.9)

10
(−1850.9)

0 0 0 0

US.CPI 0 0 0 0 0 0 0 0 0 0 30
(−1818.0)

70
(−4739.7)

US.IR 0 0 0 0 0 0 65
(−5217.9)

35
(−5214.7)

0 0 0 0

US.CC 0 0 0 6
(−1017.1)

0 0 0 0 0 0 57
(−5101.0)

43
(−4595.9)

US.Imp 0 0 0 0 1
(−599.11)

0 70
(−689.34)

29
(−601.97)

0 0 0 0

IT.IP 0 0 0 10
(−914.89)

5
(−904.09)

5
(−905.40)

41
(−918.12)

34
(−914.65)

0 1
(−903.22)

4
(−905.70)

0

IT.TA 5
(−867.91)

3
(−868.33)

0 0 29
(−873.91)

59
(−877.05)

0 0 2
(−873.69)

1
(−872.35)

0 0
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Table 1.3: First three modal specifications selected by the Gibbs sampling scheme, estimated posterior probabilities
100× π̂(Υ|y) (in parentheses). The vector Υ has elements (γµ, γA, γsj, j = 1, . . . , 6, γTD, δ).

Series Fist Selected Model % DIC Second Selected Model % DIC Third Selected Model % DIC

US.HS Υ = (1, 0, 1, 1, 0, 0, 0, 0, 0, 0) 35 -1208.7 Υ = (1, 0, 1, 1, 1, 0, 0, 0, 0, 0) 22 -1205.4 Υ = (1, 0, 1, 0, 0, 0, 0, 0, 0, 0) 15 -1185.3
US.IP Υ = (1, 1, 0, 1, 1, 1, 1, 0, 0, 0) 30 -3822.5 Υ = (1, 1, 0, 1, 1, 1, 1, 0, 0, 1) 25 -3810.7 Υ = (1, 1, 0, 1, 1, 1, 0, 0, 0, 0) 10 -3769.9
US.RSt Υ = (0, 1, 1, 1, 0, 1, 0, 0, 0, 0) 37 -1074.9 Υ = (0, 1, 1, 1, 0, 0, 0, 0, 0, 0) 31 -1020.1 Υ = (0, 1, 1, 1, 0, 0, 0, 0, 0, 1) 17 -1057.5
US.RSla Υ = (0, 1, 1, 1, 1, 1, 1, 1, 0, 1) 30 -1153.5 Υ = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0) 24 -1136.1 Υ = (0, 1, 1, 1, 1, 1, 1, 1, 0, 1) 15 -1146.1
US.UR Υ = (1, 0, 0, 1, 1, 1, 1, 1, 0, 0) 40 -2115.3 Υ = (1, 0, 0, 1, 1, 1, 1, 1, 0, 1) 20 -2070.8 Υ = (1, 1, 0, 1, 1, 1, 1, 1, 0, 0) 16 -2068.7
US.CPI Υ = (1, 1, 1, 0, 0, 0, 0, 0, 0, 1) 65 -5250.6 Υ = (1, 1, 1, 1, 0, 0, 0, 0, 0, 1) 34 -5249.2 Υ = (1, 1, 1, 0, 1, 0, 0, 0, 0, 1) 1 -5242.3
US.IR Υ = (1, 0, 1, 1, 0, 0, 0, 0, 0, 0) 70 -7123.5 Υ = (1, 0, 1, 1, 1, 0, 0, 0, 0, 0) 24 -7113.2 Υ = (1, 0, 1, 1, 1, 1, 0, 0, 0, 1) 6 -7109.5
US.CC Υ = (1, 1, 0, 1, 1, 1, 0, 0, 0, 0) 23 -4694.2 Υ = (1, 1, 0, 1, 1, 1, 0, 1, 0, 0) 17 -4685.4 Υ = (1, 1, 0, 1, 1, 1, 0, 0, 0, 1) 16 -4642.5
US.Imp Υ = (1, 0, 1, 0, 0, 0, 0, 0, 0, 0) 38 -677.03 Υ = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 31 -673.26 Υ = (1, 0, 1, 1, 0, 0, 0, 0, 0, 0) 17 -661.66
IT.IP Υ = (1, 0, 1, 1, 1, 1, 1, 0, 0, 0) 30 -979.12 Υ = (1, 0, 1, 1, 1, 1, 1, 1, 0, 0) 24 -974.51 Υ = (1, 0, 1, 1, 1, 1, 0, 0, 0, 0) 10 -951.67
IT.TA Υ = (1, 0, 1, 1, 0, 0, 0, 0, 0, 1) 45 -913.10 Υ = (1, 0, 1, 1, 1, 0, 0, 0, 0, 1) 28 -912.73 Υ = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 10 -905.16
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Figure 1.1: IT.IP series: estimated posterior densities of the parameters βµ, βA, βsj, j =
1, . . . , 6,, βTD and q0.
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Figure 1.2: IT.IP series: posterior means of the unobserved components.



30 BIBLIOGRAPHY

−0.045−0.04 −0.035−0.03 −0.025−0.02 −0.015−0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025 0.03

Saturday

Monday

Wednesday

FridayThursdayTues

Sunday

Figure 1.3: IT.IP series: estimated posterior densities of the trading days coefficients ϕk0,
k = 1, . . . , 6. The Sunday effect has been obtained as ϕ70 = −

∑6
1 ϕk0.

−0.0075−0.0050−0.00250.0000 0.0025 0.0050 0.0075

100

200

300 Densityβs

−0.005 0.000 0.005 0.010

100

200

Density βs1
*

−0.0050 −0.0025 0.0000 0.0025 0.0050

100

200

300

Density βs2
*

−0.003−0.002−0.001 0.000 0.001 0.002 0.003

250

500

Density βs3
*

−0.003 −0.002 −0.001 0.000 0.001 0.002 0.003

250

500

750

Density βs4
*

−0.003 −0.002 −0.001 0.000 0.001 0.002

500

1000

Density βs5
*

Figure 1.4: IT.IP series. Posterior densities of the seasonal parameters βs and β∗
sj, j =

1, . . . , 5, of the reparameterized model 1.3.9.
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Figure 1.5: IT.IP series. Upper panel: posterior densities of the Easter coefficient for model
(1.3.6) with frequency specific coefficients and the restricted specification with σ2

j = σ2
ω, j =

1, . . . , 5, σ2
6 = 0.5σ2

ω (single variance parameter). Lower panel: interval estimates of trend
component.


