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Abstract

This paper presents the R package MitISEM (mixture of t by importance sampling
weighted expectation maximization) which provides an automatic and flexible two-stage
method to approximate a non-elliptical target density kernel – typically a posterior den-
sity kernel – using an adaptive mixture of Student t densities as approximating density. In
the first stage a mixture of Student t densities is fitted to the target using an expectation
maximization algorithm where each step of the optimization procedure is weighted using
importance sampling. In the second stage this mixture density is a candidate density for
efficient and robust application of importance sampling or the Metropolis-Hastings (MH)
method to estimate properties of the target distribution. The package enables Bayesian
inference and prediction on model parameters and probabilities, in particular, for mod-
els where densities have multi-modal or other non-elliptical shapes like curved ridges.
These shapes occur in research topics in several scientific fields. For instance, analysis
of DNA data in bio-informatics, obtaining loans in the banking sector by heterogeneous
groups in financial economics and analysis of education’s effect on earned income in labor
economics. The package MitISEM provides also an extended algorithm, ‘sequential Mi-
tISEM’, which substantially decreases computation time when the target density has to
be approximated for increasing data samples. This occurs when the posterior or predictive
density is updated with new observations and/or when one computes model probabilities
using predictive likelihoods. We illustrate the MitISEM algorithm using three canonical
statistical and econometric models that are characterized by several types of non-elliptical
posterior shapes and that describe well-known data patterns in econometrics and finance.
We show that MH using the candidate density obtained by MitISEM outperforms, in
terms of numerical efficiency, MH using a simpler candidate, as well as the Gibbs sam-
pler. The MitISEM approach is also used for Bayesian model comparison using predictive
likelihoods.

Keywords: finite mixtures, Student t densities, importance sampling, MCMC, Metropolis-
Hastings algorithm, expectation maximization, Bayesian inference, R software.
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1. Introduction

There exist several classes of important statistical and econometric models where poste-
rior and/or predictive distributions have unknown analytical properties and non-elliptical
Bayesian highest posterior density (HPD) credible sets. For a theoretical background see,
e.g., Berger (1985). As examples we name the class of so-called instrumental variable regres-
sion models with weak instruments where, for instance, the effect of years of education on
income is modeled and measured. This is very relevant for government agencies responsible
for compulsory schooling laws. A second example is the class of mixture processes where one
component is nearly non-identified since it corresponds to very few observations, which may
occur in financial models with data that exhibit time varying volatility patterns and heavy
tails and it may also occur in epidemiological models with regional data patterns where very
few observations of a disease occur. A detailed analysis of this literature is beyond the scope
of the present paper. We refer to, e.g., Imbens and Angrist (1994) and Bos, Mahieu, and Van
Dijk (2000), the references cited there and to several textbooks: Lancaster (2004); Geweke
(2005); Rossi, Allemby, and McCulloch (2005) and Koop, Poirier, and Tobias (2007) for more
background. In such studies an important technical issue is the development of efficient and
robust procedures to generate (pseudo-)random draws from non-elliptical distributions in a
numerically efficient way. Even if simulation from the conditional distributions is relatively
easy, for example, using the well-known Gibbs sampler, multi-modality and/or high correla-
tions between model parameters may cause this sampler to converge extremely slowly and
yield erroneous results even with a relatively large sample of draws. We illustrate this in the
present paper.

Two stage method and the approximation property

This paper presents the R (R Core Team 2017) package MitISEM (Baştürk, Hoogerheide, Op-
schoor, and Van Dijk 2017) which provides an automatic and flexible method to approximate
a target posterior or predictive density by an adaptive mixture of Student t densities, also
referred to in the following as approximate, candidate or proposal density.1 The multivariate
target density can be non-elliptical like being multi-modal, strongly correlated and/or having
curved ridges in the surface. Only a kernel of the target density is required for the MitISEM
method, which is typically a posterior density kernel. Our method consists of two stages.
In the first stage a mixture of Student t candidate densities is fitted to the target using an
expectation maximization (EM) algorithm where each step of the optimization procedure is
weighted using importance sampling. Details are given in Section 2. In the second stage the
obtained candidate density can be used in importance sampling or the independence chain
Metropolis-Hastings method for Bayesian inference on model parameters and model proba-
bilities. The MitISEM method has been introduced by Hoogerheide, Opschoor, and Van Dijk
(2012) and it has been shown that the method provides substantial gains in computational
efficiency in Bayesian estimation. The MitISEM method makes use of convex combinations of
densities, and the approximation properties of such density combinations have been analyzed
extensively in the literature. For instance Zeevi and Meir (1997) show that under certain
conditions any density function may be approximated to arbitrary accuracy by a convex com-
bination of ‘basis’ densities. The class of mixtures of Student t densities falls within this
framework.

1These three terms are interchangeably used in the literature and we also do that in the present paper.
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Algorithmic steps

In the first stage the algorithm MitISEM iterates over importance weighted expectation max-
imization steps in order to efficiently construct a mixture of Student t densities that is an
accurate approximation of the target density. Starting with a single Student t density, new
mixture components are added in an iterative way until the required approximation is reached.
At each iteration, parameters of the mixture components – consisting of mode, scale, degrees
of freedom and mixing probability – are optimized such that the Kullback-Leibler divergence
between target density and candidate density of Student t mixtures is minimized. The con-
structed mixture is used in the second stage for efficient and robust application of either
importance sampling (IS) or the independence chain Metropolis-Hastings (MH) method.

Illustrations

We illustrate the MitISEM algorithm using a well-known statistical example distribution from
Gelman and Meng (1991) that is characterized by a very non-elliptical, possibly bi-modal,
joint distribution while the conditional distributions are normal. We also use the posterior
distributions in two classes of canonical econometric models: the generalized autoregressive
conditional heteroskedasticity (GARCH) model that is extensively used in financial economet-
rics and the instrumental variable (IV) regression model that is often used to study the effect
of number of years of education on earned income. Both classes of models yield non-elliptical
posterior and/or predictive distributions. Furthermore, we show that the MitISEM approach
can be used for the evaluation of model probabilities from predictive likelihoods, which are
useful for Bayesian model comparison and model averaging. We also introduce an R pro-
gram for an adapted MitISEM algorithm as in Hoogerheide et al. (2012), named ‘sequential
MitISEM’, which substantially decreases the computational time required for the candidate
density optimization, when the posterior distribution is updated using new observations or
when one computes model probabilities with predictive likelihoods.

The remainder of this paper is organized as follows: Section 2 discusses the basic idea of the
MitISEM method and the ‘sequential MitISEM’ extension, and summarizes the steps of the
expectation maximization algorithm that we make use of. Section 3 presents applications of
the algorithm to several model structures and datasets. Section 4 concludes.

2. Searching for a mixture of Student t candidate densities

The mixture of Student t densities that is obtained by making use of importance sampling
weighted expectation maximization is based on iteratively adding Student t densities to the
mixture (Hoogerheide, Opschoor, and Van Dijk 2012). The algorithm provides an automatic
and flexible method to construct a candidate density minimizing the Kullback-Leibler di-
vergence (or cross-entropy distance, Kullback and Leibler 1951) between two densities: the
so-called target density, typically a posterior density, and the approximate or candidate den-
sity. Each new Student t component in the candidate density covers the areas of the target
density that are not well covered by the previous candidate density. The modes, scales, de-
grees of freedom and mixing probabilities are quickly optimized using the importance sampling
weighted expectation maximization method.

Henceforth we use the notation f(θ) for the target density kernel of θ, the k-dimensional
vector of interest. f(θ) can be a posterior density kernel of model parameters defined as
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f(θ|y) for data y and model parameters θ. Alternatively, f(θ) can be a density kernel f(θ|α)
for data θ and given fixed model parameters α. We concentrate on the former case, where f(θ)
is a posterior density kernel, and simplify the notation by having removed the conditioning
on data. Let g(θ) be a candidate density, a mixture of H Student t densities such that:

g(θ) = g(θ|ζ) =
H∑

h=1

ηh tk(θ|µh,Σh, νh), (1)

where ζ is the set of location parameters µh, scale matrices Σh, degrees of freedom νh, and
mixing probabilities ηh (h = 1, . . . ,H) of the k-dimensional Student t components with den-
sity:

tk(θ|µh,Σh, νh) =
Γ
(

νh+k
2

)

Γ
(νh

2

)
(πνh)k/2

|Σh|−1/2

(
1 +

(θ − µh)⊤Σ−1
h (θ − µh)

νh

)−(k+νh)/2

(2)

with h = 1, . . . ,H and Σh is positive definite, ηh ≥ 0 and
∑H

h=1 ηh = 1. We further restrict
νh such that νh ≥ 0.01. Lower and upper bounds for the degrees of freedom parameter νh

can be defined using an optional input to the function MitISEM (e.g., demanding νh > 2).

MitISEM is a new approach that may be compared with the AdMit method (Hoogerheide,
Kaashoek, and Van Dijk 2007b), implemented in Ardia, Hoogerheide, and Van Dijk (2009,
2017). Both methods rely on the iterative construction of a mixture of Student t densities as
the candidate density, but there are three substantial differences between these methods.

First, MitISEM minimizes the Kullback-Leibler divergence between target and candidate
densities, while AdMit aims at minimizing the variance of the IS estimator, or the variance
of the IS weights.

Second, in MitISEM all mixture parameters are optimized jointly by means of the relatively
quick EM algorithm, while in the AdMit method means and scale matrices of the candidate
components are chosen heuristically and are never updated when additional components are
added to the mixture. That is, AdMit optimizes only mixture component weights. MitISEM
implies a large reduction of the computing time in the approximation procedure, and is
expected to lead to a better candidate in most applications. Therefore the MitISEM method
may be considered to be a substitute for the AdMit method, rather than an accompanying
method.

Third, as shown in Hoogerheide et al. (2012), AdMit requires the joint target density kernel,
whereas MitISEM requires only candidate draws and importance weights. This implies that
AdMit can not be applied partially to the marginal and conditional posterior densities of
subsets of parameters, whereas MitISEM can be used to approximate a marginal density of
which no kernel is explicitly available.

2.1. Background on importance sampling

Importance sampling (Hammersley and Handscomb 1975; Kloek and Van Dijk 1978) is a
general method for estimating expectations of a function h(θ) of parameter θ where the
probability density function of θ is possibly non-standard. Given a density kernel f(θ) for
θ, where one cannot directly generate random draws from in an easy manner, importance
sampling is based on draws from a different density, the so-called candidate or importance
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density g(θ), which is easy to simulate from and which is a reasonable approximation to f(θ).
Given this indirect sampling, instead of direct sampling from f(θ), one needs a correction
step. That is, the draws from the candidate density are weighted according to the importance
sampling (IS) weights that are ratios of target over candidate density. For a consistent
estimator of the expectation of the function of θ, E(h(θ)), the candidate should cover the whole
domain of θ values with f(θ) > 0 and the variance of the weights should be bounded (Geweke
1989). The finite sample accuracy of the estimator improves if g(θ) is a good approximation
to the target kernel (Van Dijk 1984; Van Dijk, Hop, and Louter 1987; Geweke 1989; Hop and
Van Dijk 1992). IS weights for parameter draws θ̃ from g(θ) are calculated as:

W̃ (θ̃) = f(θ̃)/g(θ̃), (3)

i.e., draws with highest IS weights correspond to the region of the target where the candidate
is much smaller than the target and this is a region that is covered too little by the candidate
density.

Parallel Processing of Computations

Cappé, Douc, Guillin, Marin, and Robert (2008) note that there is a renewed interest in
importance sampling, due to the possibility of parallel processing implementation. Numerical
efficiency in sampling methods is not only related to the efficient sample size or relative
numerical efficiency, but also to the possibility to perform the simulation process in a parallel
fashion. Unlike alternative methods such as the random walk Metropolis method or the Gibbs
sampler, importance sampling makes use of independent draws from the candidate density,
which in turn can be obtained from multiple core machines or computer clusters. See Geweke
and Durham (2011) for a very novel approach. We are currently exploring the idea to make
use of paralleled computing in MitISEM. We comment on this possibility in Section 4.

2.2. Background on EM and our use of this algorithm

The EM algorithm (Dempster, Laird, and Rubin 1977) is a method to achieve the maximum
likelihood estimates of parameters θ in models with incomplete data or latent variables. An
example of the latter case is the finite mixture model. For the use of the EM algorithm on
finite mixture models, we refer to e.g., McLachlan and Peel (2000); McLachlan and Krishnan
(2008).

If the latent variables would be observable, the computation of the maximum likelihood es-
timate of θ would be relatively straightforward, depending on the degree of nonlinearity of
the first order conditions. The idea behind EM is to take the expectation of the objective
function, in most cases the log-likelihood function, with respect to the latent variables. The
expectation of the log-likelihood function is then maximized with respect to the model param-
eters. In most models, expectations of the latent variables depend on the model parameters
θ, hence the two steps are repeated until convergence.

We emphasize that during the first stage of the method (in which the candidate density is
optimized) we do not have draws from the posterior but instead have draws from a previously
chosen candidate and corresponding importance weights. As a consequence, we make use of an
importance weighted EM algorithm. As shown in Hoogerheide et al. (2012), in the MitISEM
approach, we minimize the estimated Kullback-Leibler divergence, which implies that we
maximize the weighted average of the logarithm of the candidate density g(.|ζ) evaluated at
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a set of draws θi from a previous candidate g0(θ), where each candidate value log g(θi|ζ) is
weighted by the importance sampling weights W i ≡ f(θi)/g0(θi) of each draw θi from the
previous candidate g0(θ):

1

N

N∑

i=1

W i log g(θi|ζ),

where g(.|ζ) is the mixture of Student t densities to be optimally chosen.

The mixture of Student t densities (1) for θi is equivalent with the specification

θi ∼ N(µh, w
i
hΣh) if zi

h = 1,

where zi is a latent H-dimensional vector indicating from which Student t component the
‘observation’ θi stems: if θi stems from component h, then zi

h = 1, zi
j = 0 for j 6= h; Pr[zi =

eh] = ηh with eh the h-th column of the identity matrix; wi
h has the Inverse-Gamma density

IG(νh/2, νh/2). For a more extensive explanation of this mixture of Student t densities, see
e.g., Peel and McLachlan (2000).

2.3. The IS weighted EM algorithm

We reemphasize that in the literature the EM algorithm is typically used to find the optimal
values of model parameters that maximize the log-likelihood for a given set of data. Here we
make use of EM to find the optimal mixture of Student t densities for a given set of draws
from a previous candidate (and their corresponding weights). We apply an IS-weighted EM
algorithm to these candidate draws instead of a regular EM algorithm to posterior draws
(obtained by applying the Metropolis-Hastings method to these candidate draws), since the
former has three advantages. First, we do not require a burn-in sample. Second, the use of
all candidate draws (without the rejections of the MH method) helps to prevent numerical
problems with estimating scale matrices of Student t components; also draws with relatively
small, but positive importance weights are helpful for this purpose. Third, the use of all
candidate draws may lead to a better approximation.

In Hoogerheide et al. (2012) the different steps of the IS-weighted EM algorithm in our case
are derived. Here we summarize the steps for the mixture of Student t densities. Note that
when one substitutes for the weight W i the value W i = 1 in Equations 8–10, then one is
back in the case of a regular EM algorithm (without IS weighting). In our case the L-th
expectation step for the mixture of Student t densities is specified as follows:

z̃i
h ≡ E

[
zi

h

∣∣∣θi, ζ = ζ(L−1)
]

=
tk(θi|µh,Σh, νh) ηh∑H
j=1 tk(θi|µj ,Σj , νj) ηj

, (4)

z̃/w
i

h ≡ E

[
zi

h

wi
h

∣∣∣∣∣ θ
i, ζ = ζ(L−1)

]
= z̃i

h

k + νh

ρi
h + νh

, (5)

ξi
h ≡ E

[
logwi

h

∣∣∣θi, ζ = ζ(L−1)
]

=

=

[
log

(
ρi

h + νh

2

)
− ψ

(
k + νh

2

)]
z̃i

h +

[
log

(
νh

2

)
− ψ

(
νh

2

)]
(1 − z̃i

h), (6)

δi
h ≡ E

[
1

wi
h

∣∣∣∣∣ θ
i, ζ = ζ(L−1)

]
=

k + νh

ρi
h + νh

z̃i
h + (1 − z̃i

h), (7)
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with ρi
h ≡ (θi −µh)⊤Σ−1

h (θi −µh), ψ(.) the digamma function (the derivative of the logarithm
of the gamma function log Γ(.)), and all parameters µh,Σh, νh, ηh elements of the set of can-
didate’s parameters ζ(L−1) optimized in the previous EM step (L− 1). Given the expectation
of the latent variables in Equation 4 to Equation 7, parameters of each mixture component
are updated using the first order conditions of the expectation of the objective function in
the maximization step:

µ
(L)
h =

[
N∑

i=1

W i z̃/w
i

h

]−1 [ N∑

i=1

W i z̃/w
i

h θ
i

]
, (8)

Σ̂
(L)
h =

∑N
i=1W

i z̃/w
i

h (θi − µ
(L)
h )(θi − µ

(L)
h )⊤

∑N
i=1W

i z̃i
h

, (9)

η
(L)
h =

∑N
i=1W

i z̃i
h∑N

i=1W
i
. (10)

Further, ν
(L)
h is solved from the first order condition of νh:

−ψ(νh/2) + log(νh/2) + 1 −

∑N
i=1W

i ξi
h∑N

i=1W
i

−

∑N
i=1W

i δi
h∑N

i=1W
i

= 0. (11)

Cappé et al. (2008) only update the expectations and scale structures of the Student t densities
and not the degrees of freedom, because there is no closed-form solution for the latter. We
do optimize the degrees of freedom parameter νh during the EM procedure to obtain a better
approximation of the target density. Furthermore, the resulting values of νh (h = 1, . . . ,H)
may provide information on the shape, e.g., kurtosis of the target distribution.

2.4. MitISEM: The basic algorithm

Algorithm 1.

The MitISEM approach for obtaining an approximation to a target density:

(0) Initialization: Simulate draws θ1, . . . , θN from a ‘naive’ candidate distribution with
density gnaive, which is obtained as follows. First, we simulate candidate draws from a
Student t distribution with density gmode, where the mode is taken equal to the mode
of the target density and scale matrix equal to minus the inverse Hessian of the log-
target density (evaluated at the mode), and where the degrees of freedom are chosen by
the user. Second, the mode and scale of gmode are updated using the IS weighted EM
algorithm. Note that gnaive is already a more advanced candidate than the commonly
used gmode; gmode typically yields a substantially worse numerical efficiency than gnaive.

(1) Adaptation: Estimate the target distribution’s mean and covariance matrix using IS
with the draws θ1, . . . , θN from gnaive. Use these estimates as the mode and scale
matrix of Student t density gadaptive. Draw a sample θ1, . . . , θN from this adaptive
Student t distribution with density g0 = gadaptive, and compute the IS weights for this
sample.
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(2) Apply the IS-weighted EM algorithm given the latest IS weights and the drawn sample
of step (1). The output consists of the new candidate density g with optimized ζ, the
set of µh,Σh, νh, ηh (h = 1, . . . ,H). Draw a new sample θ1, . . . , θN from the distribution
that corresponds with this proposal density and compute corresponding IS weights.

(3) Iterate on the number of mixture components: Given the current mixture of H com-
ponents with corresponding µh,Σh, νh and ηh (h = 1, . . . ,H), take x% of the sample
θ1, . . . , θN that correspond to the highest IS weights. Construct with these draws and
IS weights a new mode µH+1 and scale matrix ΣH+1 which are starting values for the
additional component in the mixture candidate density. This choice ensures that the
new component covers a region of the parameter space in which the previous candidate
mixture had relatively too little probability mass. Given the latest IS weights and the
drawn sample from the current mixture of H components, apply the IS-weighted EM
algorithm to optimize each mixture component µh,Σh, νh and ηh with h = 1, . . . ,H+1.
Draw a new sample from the mixture of H + 1 components and compute corresponding
IS weights.

(4) Assess convergence of the candidate density’s quality by inspecting the IS weights and
return to step (3) unless the algorithm has converged.

In step (0), we have specified a novel robustification by updating the initial proposal density
using an IS weighted EM step compared to the MitISEM algorithm proposed in Hoogerheide
et al. (2012). This step improves the algorithm when the initial mode and Hessian estimation
in step (0) is poor. If these initial mode and Hessian estimates are obtained by grid-search
algorithms, the estimates can be poor due to local maxima issues in the target density. In
addition, first component of the candidate density can be user-specified, e.g., using another
optimization algorithm as discussed in Ardia et al. (2009), and the accuracy of these opti-
mization algorithms depend on the target density properties. The additional robustification
step we define eliminates extreme dependence of results to user-specified values especially in
case these user-specified values are not accurate.

Step (1) can be seen as an intermediate step which quickly tries to improve the initial candidate
density g0. If during the EM algorithm, a scale matrix Σh of a Student t component becomes
(nearly) singular, then this h-th component is removed from the mixture. Also if during the
EM algorithm, a weight ηh becomes very small, then this h-th component is removed from
the mixture.

In step (4) convergence can be assessed by computing the relative change in coefficient of vari-
ation (CoV) of the IS weights, i.e. the standard deviation of the IS weights divided by their
mean, as in Hoogerheide et al. (2012), who use the candidate from MitISEM for importance
sampling or the independence chain MH method. Zellner, Ando, Baştürk, Hoogerheide, and
Van Dijk (2014), who use the MitISEM candidate for rejection sampling, propose an alter-
native criterion for the convergence of the MitISEM algorithm. They use the unconditional
acceptance probability, which is a more natural and intuitive convergence criterion in this case
of rejection sampling. The default convergence in MitISEM is defined as the change of the
CoV being smaller than 10%, but the user can specify convergence in terms of the acceptance
probability. The convergence tolerance can also be altered by the user.

Starting values for νH+1 and ηH+1 are at each iteration set at 1 and 0.10, respectively. That
is, the new component has fat tails, and a relatively low probability ex-ante. Starting values
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for µh, Σh, and νh (h = 1, . . . ,H) are the optimal values in the previous mixture of H
components, while ηh (h = 1, . . . ,H) is 0.90 times the previously optimal value. Alternative
initial values for ηH+1 and νH+1 can be set by the user.

Finally, we introduce another novel robustification of the MitISEM method. With this robus-
tification, the given number of candidate draws that is used to construct the candidate does
not include draws for which the target density kernel is 0 (i.e., draws outside the ‘allowed’
parameter region). If the target density is concentrated in a restricted parameter space, for
example for a mixture GARCH model, the number of ‘useful’ or ‘effective’ draws can be oth-
erwise very small, especially during the first steps of the MitISEM algorithm. This robust
simulation is the default simulation method in the provided package, but can be disregarded
by the user.

Approximating the Gelman-Meng density using MitISEM

We illustrate the MitISEM approach using a non-elliptical, bivariate density function proposed
by Gelman and Meng (1991). The target density kernel is:

f (x1, x2) = exp
{

−0.5
(
Ax2

1 + x2
1 + x2

2 − 2Bx1x2 − 2C1x1 − 2C2x2

)}
, (12)

where (x1, x2)⊤ plays the role of the vector of interest θ.

In order to obtain the MitISEM approximation to the density f(x1, x2) one first defines the
target density kernel (see also Ardia et al. 2017):

R> GelmanMeng <- function(x, A = 1, B = 0, C1 = 3, C2 = 3, log = TRUE) {

+ if (is.vector(x)) x <- matrix(x, nrow = 1)

+ r <- -0.5 * (A * x[,1]^2 * x[,2]^2 + x[,1]^2 + x[,2]^2

+ - 2 * B * x[,1] * x[,2] - 2 * C1 * x[,1] - 2 * C2 * x[,2])

+ if (!log) r <- exp(r)

+ as.vector(r)

+ }

where an input log is added in this function for the following reason. We evaluate the IS
weights in the following way. First, we compute the logarithm IS of the weight (log(W i))
as the logarithm of the target density kernel minus the logarithm of the candidate density.
Second, we subtract the maximum of the log(W i). Third, we take the exponent to obtain
W i. If we would directly evaluate the IS weight as the ratio of the target density kernel
and candidate density, then there would often be numerical problems (in the sense of an
‘underflow’ or ‘overflow’, where all IS weights are stored as 0 or ∞). Note that rescaling
the IS weights does not matter in Equations 8–11, as W i always occurs in both a numerator
and a denominator of a ratio. So rescaling the IS weights does not matter for the MitISEM
algorithm. Obviously, the scale does matter for the evaluation of marginal and predictive
likelihoods. In these procedures we do keep track of the scale when rescaling. On the other
hand, we may want to plot the target density and the MitISEM approximation. In that case
we want to plot the actual densities, not their logarithm. Therefore, the ‘log’ argument is
optional.

MitISEM approximation to the target kernel is obtained using function MitISEM and an initial
point, mu0, for the optimization in step (0), where with each additional mixture component,
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the approximation to the target kernel becomes more accurate. This accuracy is measured
by the standard deviation of IS weights in MitISEM steps. The MitISEM approximation and
the evolution of the IS weights with each additional mixture component can be obtained as
follows:

R> set.seed(1234)

R> mu0 <- c(3, 4)

R> app.MitISEM <- MitISEM(KERNEL = GelmanMeng, mu0 = mu0, control =

+ list(trace = TRUE, Hmax = 10))

H METHOD TIME CV IS weights std.dev.

1 BFGS 0 2.795266 0.0002795266

H METHOD TIME CV IS weights std.dev.

1 BFGS 0.00 2.795266 0.0002795266

1 IS-EM 0.37 2.295592 0.0002295592

H METHOD TIME CV IS weights std.dev.

2 IS-EM 6.66 0.4274236 4.274236e-05

H METHOD TIME CV IS weights std.dev.

3 IS-EM 6.13 0.3567865 3.567865e-05

H METHOD TIME CV IS weights std.dev.

4 IS-EM 3.74 0.3281487 3.281487e-05

R> mit.optcomp <- app.MitISEM$mit

R> Hvalues <- app.MitISEM$summary[,1]

R> ISwgt <- app.MitISEM$summary[,5] * 10^4

R> plot(Hvalues, ISwgt, type = "b", xlab = "# of mixture components",

+ ylab = "IS weights (x 10000)", xaxt = "n",

+ main = paste("IS weights from MitISEM approximation with ",

+ max(Hvalues), " comp." , sep = ""))

R> axis(1, at = sort(unique(Hvalues)), labels = sort(unique(Hvalues)))

Figure 1 shows the target density kernel for the Gelman-Meng function with a ‘banana’ shape
and step-by-step approximations to this kernel using MitISEM approximations. The top panel
in the figure shows that the target density has a ‘banana’ shape with two modes. The MitISEM
approximation with a single Student t component and simulated data from this approximation
are shown in the second panel of Figure 1. The obtained approximation with a single Student t
candidate has a single mode, and a large fraction of simulated points are far from the high
density region, or the banana shape, of the target density. The MitISEM candidate with
2 mixture components and simulated data from this approximation are shown in the third
panel of Figure 1. Even with this relatively low number of mixture components, the contours
of the MitISEM approximation are similar to the contours of the target density. Furthermore,
simulated points are concentrated around the high density region of the target density. This
concentration increases with the addition of the third and fourth mixture components, but
the biggest gain is achieved by increasing the number of mixture components from one to
two.

Gains from each additional mixture component in the MitISEM approximation are presented
in detail in Figure 2, where the approximation accuracy is measured by the standard deviation
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Figure 1: Evolution of the MitISEM candidate for the Gelman-Meng target density with a
banana shape. The figure shows the target density kernel (top panel), the MitISEM approxi-
mation to the target density kernel, and draws from this approximation for the Gelman-Meng
density with a banana shape in Section 3.1, for MitISEM approximation with one (second
row) to four (fifth row) Student t components. MitISEM approximations are obtained using
105 draws, and 5 × 103 draws from the approximations are plotted. For draws from MitISEM
approximations, w denotes the IS weights of draws where weights are normalized to have
mean 1. q(x) denotes the x× 100 percentage quantile of IS weights from all draws.
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Figure 2: IS weights for candidate distributions obtained after 1, 2, 3 and 4 iterations of the
MitISEM algorithm. The figure shows standard deviations of IS weights for the step-by-step
MitISEM approximation in Figure 1. Note that there are two candidate densities consisting
of a single Student t density: gmode (around one of the two modes of the target density)
and gnaive (obtained by the IS-EM algorithm), which lead to the highest and second highest
standard deviation.

of IS weights from the MitISEM approximation, for each step of the MitISEM algorithm.2

The MitISEM algorithm suggests 4 mixture components for the approximation. Note that a
smaller standard deviation in IS weights implies that the MitISEM candidate and the target
kernel are closer to each other. In terms of these IS weights, the largest gain is obtained with
the addition of the second Student t component as was already concluded above. The third
and the fourth components of the MitISEM approximation provide relatively smaller gains
compared to the second component.

2.5. Sequential MitISEM

This subsection presents the algorithm ‘sequential MitISEM’, proposed by Hoogerheide et al.
(2012) which applies MitISEM in a sequential manner, so that the candidate density approx-
imating the target density, typically used for posterior and predictive simulation, is updated
when new data become available. The alternative to this method is to repeatedly apply the
basic MitISEM approach when new data become available. Such an ‘ad hoc’ approach, ap-
plying the whole MitISEM algorithm from scratch to achieve multiple estimates over time,
can be computationally inefficient for example for daily Bayesian forecasts.

Sequential MitISEM relies on the fact that the posterior for y1:T +1 = {y1, . . . , yT +1} is often
similar to the posterior for data y1:T = {y1, . . . , yT }. One can check if the same candidate
can be used for the posterior density for the updated data, and ‘recycle’ the same candidate
density if the previous candidate is a good approximation to the posterior for the updated
data. Even if the ‘old’ candidate is not a good approximation to the posterior for the updated
data, it may suffice to perform an update using the IS-weighted EM algorithm, keeping the

2
R scripts for the replication of Figure 1 and Figure 2 are provided in the replication materials of the paper.
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number H of Student t components the same. If the resulting quality is still below a desired
level, then one can start the MitISEM algorithm for the updated data, adding components
until convergence. Note that the IS-weighted EM algorithm of MitISEM is much more suited
to perform (either small or large) adaptations than the AdMit method, since in the MitISEM
method all Student t components are updated.

Suppose that the MitISEM candidate is optimized for the data until time T and the data set
now includes observations upto time T + τ (τ = 1, 2, . . .). Define y1:T +τ = {y1, . . . , yT +τ }.
For the updated data until T + τ the sequential MitISEM steps are as follows:

Algorithm 2.

The sequential MitISEM approach for obtaining a candidate density for the posterior density
for data y1:T +τ :

(1) Compute CoVr
T +τ , the CoV value (coefficient of variation of the IS weights) that is

based on the posterior density kernel for data y1:T +τ and the current, reused candidate
density.

(2) Compare CoVr
T +τ with CoVT , the CoV value for the same candidate and the posterior

for data y1:T (the data set at the last time when the candidate was updated). If the
change is below a certain threshold (10%), stop. Otherwise go to step (3).

(3) Run the IS-weighted EM algorithm with the current mixture of H Student t densities as
starting values. Sample from the new distribution (with the same number of components
H) and compute IS weights and the corresponding CoVu

T +τ , the CoV value with only
an EM update. Since the IS-weighted EM algorithm updates all mixture components,
it can easily perform a useful shift of the candidate density.

(4) Compare CoVu
T +τ and CoVr

T +τ . If the change of quality is below a certain threshold
(10%), stop. Otherwise go to step (5).

(5) Iterate on the number of components until the CoV value has converged.

Note that the change in CoV value can be substantial if the new observation yT +1 is an outlier.
Steps (3) and (5) in that case will typically be required. A Student t component is deleted
from the mixture if the weight of this component is too small, i.e., if the probability of one
component is close to zero. The default tolerance for the required mixing probability is 0, and
a mixture component is removed from the MitISEM approximation if it has a 0 probability.
Hence the number of Student t components is not necessarily monotonically increasing over
time. This criterion for the removal of a mixture component can be altered by the user
through an optional input to the function MitISEM. Further, in step (2) CoVr

T +τ is compared
with CoVT rather than the CoV for the posterior at time yT +τ−1, since in the latter case a
series of small increases of the CoV may eventually lead to a much worse candidate density.
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3. Applications in three domains

In the following subsections, we make use of the MitISEM and the sequential MitISEM
methods in order to deal with distributions that have non-elliptical density contours in three
domains of applications:

(i) Approximating a specific class of well-known, non-elliptical densities in Section 3.1.
Here, we continue to analyze the conditionally normal density of Gelman and Meng
(1991), which can have non-elliptical, and even distinctly bi-modal, shapes in the joint
density depending on specific values of the density function parameters. Note that this
is not a posterior density.

(ii) Approximating posterior densities of a class of models popular in financial econometrics
in Section 3.2. We consider a standard GARCH model and a mixture GARCH model
(for S&P 500 data), which are classes of models extensively used in financial practice.
We further consider an instrumental variables (IV) model and compare the approxima-
tion performance using MitISEM candidate with the griddy Gibbs sampler in Ritter
and Tanner (1992).

(iii) Approximating model probabilities using the concept of predictive likelihoods in Sec-
tion 3.3. We consider a mixture GARCH model and an IV model. The latter one using
income-education data. Both GARCH and IV models yield non-elliptical distributions
for posterior and predictive densities.

For cases (ii) and (iii) obtaining a good candidate density, for example for importance sampling
or the independence chain Metropolis-Hastings method, is crucial for Bayesian estimation of
the model parameters as well as model probabilities.

For all cases, we summarize the application of the R package MitISEM, and compare the
performance of the MitISEM method with a single, relatively ‘naive’ Student t candidate
density. The ‘naive’ density is still an adapted density, obtained by the IS weighted EM
algorithm, with degrees of freedom set as 1. The fat tails of the ‘naive’ candidate density
(due to the low degrees of freedom parameter 1) reduce the probability that relevant parts of
the target density are not covered by the ‘naive’ candidate. Still, despite the optimized mode
and scale, this density is expected to lead to a relatively poor approximation in particular for
multi-modal target densities. In Section 3.2, we also compare the MitISEM method with the
AdMit method implemented in Ardia et al. (2017), which also aims to construct a candidate
density as a mixture of Student t densities, in terms of approximation accuracy and computing
time.

3.1. Approximating densities: The Gelman-Meng function

We continue the use of the MitISEM algorithm to approximate the Gelman-Meng density
presented in Section 2.4. Here we compare the MitISEM approximation’s speed and accuracy
with a ‘naive’ approximation of the Gelman-Meng density. Next, we show for the case of
a ‘distinctly’ bi-modal Gelman-Meng density, the failure of a simple Gibbs sampler to yield
accurate results even when the sample is relatively large.
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Gelman-Meng density with a banana shape

For the Gelman-Meng target density, we set A = 1, B = 0, C1 = C2 = 3 in Equation 12, where
this parameter setting leads to a non-elliptical banana shape in the target kernel, as shown in
the top-left panel in Figure 3. We compare the performance of the MitISEM approach with
a ‘naive’ density. We note that the MitISEM approximation to the target density is obtained
as before, using the target density function in Section 2.4 and function MitISEM:

R> set.seed(1111)

R> mu0 <- c(3, 4)

R> App.GM <- MitISEM(KERNEL = GelmanMeng, mu0 = mu0)

The output of the function MitISEM is a list. The first component is CV, a vector containing
the coefficient of variation at each step of the adaptive fitting procedure. The second com-
ponent is mit, a list consisting of the modes (mu), scale matrices (Sigma), degrees of freedom
parameters (df) and mixing probabilities (p) of the mixture of Student t densities constructed
by MitISEM. The third component is summary, a data frame containing information on the
adaptive fitting procedure, which will be explained in the GARCH example.

Similarly, the ‘naive’ approximation results are obtained by restricting the candidate density
in the MitISEM approximation to have a single multivariate Student t component where the
degrees of freedom parameter is 1 by default, where only the mode and scale are optimized
in the MitISEM algorithm:

R> control <- list(optim.df = FALSE, Hmax = 1)

R> app.Naive <- MitISEM(KERNEL = GelmanMeng, mu0 = mu0, control = control)

After obtaining the MitISEM approximation, the Student t components of the obtained can-
didate can be plotted as follows:

R> mit <- App.GM$mit

R> x1 <- seq(-2, 6, 0.05)

R> x2 <- seq(-2, 7, 0.05)

R> H <- length(mit$p)

R> Mitcontour <- function(x1, x2, mit, log = FALSE) {

+ dmvgt(cbind(x1, x2), mit = mit, log = log)

+ }

R> for (h in 1:H) {

+ mit.h <- mapply(function(x)(as.matrix(x)[h,]), mit, SIMPLIFY = FALSE)

+ mit.h$mu <- matrix(mit.h$mu, nrow = 1)

+ mit.h$Sigma <- matrix(mit.h$Sigma, nrow = 1)

+ it.h$p <- 1

+ z <- outer(x1, x2, FUN = Mitcontour, mit = mit.h)

+ contour(x1, x2, z, col = h, lty = h, labels = "", add = (h != 1),

+ xlab = expression(x[1]), ylab = expression(x[2]),

+ main = "MitISEM approximation")

+ }

R> legend("topright", paste("component", 1:H), lty = 1:H, col = 1:H,

+ bty = "n")
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Figure 3: Banana-shaped target density kernel, approximation by the naive Student t density
(achieved by step 0 and step 1 of the MitISEM algorithm), and optimal MitISEM candidate
for the Gelman-Meng density with A = 1, B = 0, C1 = C2 = 3.

For both approximations we use N = 104 draws to form the mixture components. Figure 3
shows the target density kernel and approximations by the naive and MitISEM approxi-
mations, the computational time and CoV measures for both approximations. The naive
Student t density captures only one mode of the target density while the MitISEM approx-
imation captures the banana shape in the target kernel, with 4 components. The accuracy
measure, the coefficient of variation (CoV) of the importance weights, is substantially different
for the two methods: the CoV is more than six times lower for the MitISEM candidate.
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Figure 4: Comparison of simulations using the MitISEM approximation and the Gibbs sam-
pler for Gelman-Meng density with A = 1, B = 0, C1 = C2 = 6. The left panel shows 500
draws from both samplers, the right panel shows 10000 draws from both samplers.

Gelman-Meng density with a distinctly bi-modal shape

In this subsection, we simulate draws from a Gelman-Meng distribution using the Metropolis-
Hastings algorithm with the MitISEM candidate, and compare these simulations with the
simulated draws from the Gibbs sampler. We specifically show that the simulated points
using the Gibbs sampler fail to cover the whole domain of the Gelman-Meng density. For this
comparison, we consider a Gelman-Meng density in Equation 12 with two distinct modes,
with parameters A = 1, B = 0, C1 = C2 = 6.

Figure 4 shows simulated points from this density using the MitISEM approximation and
using the Gibbs sampler, based on 500 draws (left panel) and 10000 draws (right panel). The
MitISEM approximation to the Gelman-Meng density is obtained using only 1000 draws.
Shaded areas in the figure correspond to the high-density regions of the Gelman-Meng func-
tion. The left panel of Figure 4 shows that using the MitISEM candidate and a relatively
small number of simulations, we obtain points from both modes of the density. In the left
panel of Figure 4, the Gibbs sampler fails to ‘cover’ the second mode. Note that the MitISEM
approximation is obtained using merely 1000 draws for the approximation. The MitISEM ap-
proximation would become even more accurate if a larger number of draws would be used for
density approximation. In this case, the outperformance of the MitISEM method compared
to the Gibbs sampler would be even more pronounced. From this comparison, we conclude
that simulated data points and inference based on these simulations are erroneous using the
Gibbs sampler even for a large number of draws from the density.

3.2. Approximating posterior densities: GARCH and IV models

In this subsection the MitISEM approach is applied to the posterior density of two GARCH
models and an instrumental variable (IV) model using data from Card (1995).

The standard GARCH model and its extensions may adequately capture changing volatility
patterns, but the likelihood function, hence the posterior density under an uninformative
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Figure 5: Daily log-returns of the S&P 500 index for the period from 1998-01-02 to 2002-12-26.

prior may have non-elliptical shapes (Zivot 2009). For the applications of GARCH models we
use the S&P 500 index percentage returns (100 times the change of the closing price) from
1998-01-02 to 2002-12-26. Figure 5 shows the returns data and their histogram. These data
are characterized by changing volatility patterns as well as fat tails. For this reason, several
extensions of the standard GARCH models are proposed to capture such data patterns.

Approximating posterior densities: A standard GARCH(1,1) model

We first illustrate the use of the MitISEM approach for the Bayesian estimation of the stan-
dard GARCH model (Bollerslev 1986) for the S&P 500 data. An extended two-component
Gaussian Mixture GARCH (1,1) model (Ausín and Galeano 2007), which possibly leads to
more irregular posterior densities, is considered afterwards.

The standard GARCH(1,1) model for a time series yt (t = 1, 2, . . . , T ) is given by

yt = µ+
√
ht εt, (13)

ht = ω + α(yt−1 − µ)2 + βht−1, (14)

εt ∼ N(0, 1) i.i.d. (15)

with ht the conditional variance of yt given the information set It−1 = {yt−1, yt−2, yt−3, . . .}.
In addition, h0 is treated as a known constant, set as the sample variance of the time series
yt, which will consist of daily stock index (log) returns in this example.

We restrict ω > 0, α ≥ 0 and β ≥ 0 to ensure positivity of ht. We specify flat priors for
the model parameters. Moreover, we truncate ω and µ such that these have proper (non-
informative) priors. For the k = 4 dimensional parameter vector θ = (ω, β, α, µ), we have
a uniform prior on [−1, 1] × (0, 1] × [0, 1) × [0, 1) with α + β < 1 which implies covariance
stationarity.

The posterior density for the GARCH(1,1) model is implemented as follows:

R> prior.GARCH <- function(omega, beta, alpha, mu, log = TRUE) {

+ c1 <- (omega > 0 & omega < 1 & beta >= 0 & alpha >= 0)
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+ c2 <- (beta + alpha < 1)

+ c3 <- (mu > -1 & mu < 1)

+ r1 <- c1 & c2 & c3

+ r2 <- rep.int(-Inf, length(omega))

+ r2[r1 == TRUE] <- 0

+ if (!log) r2 <- exp(r2)

+ cbind(r1, r2)

+ }

R> post.GARCH <- function(theta, data, h1, log = TRUE) {

+ if (is.vector(theta)) theta <- matrix(theta, nrow = 1)

+ omega <- theta[,1]

+ beta <- theta[,2]

+ alpha <- theta[,3]

+ mu <- theta[,4]

+ N <- nrow(theta)

+ pos <- 2:length(data)

+ prior <- prior.GARCH(omega = omega, beta = beta, alpha = alpha, mu = mu)

+ d <- rep.int(-Inf, N)

+ for (i in 1:N) {

+ if (prior[i,1] == TRUE) {

+ h <- c(h1, omega[i] + alpha[i] * (data[pos-1] - mu[i])^2)

+ for (j in pos) h[j] <- h[j] + beta[i] * h[j-1]

+ tmp <- dnorm(data[pos], mu[i], sqrt(h[pos]), log = TRUE)

+ d[i] <- sum(tmp) + prior[i,2]

+ }

+ }

+ if (!log) d <- exp(d)

+ as.numeric(d)

+ }

The function prior.GARCH is coded outside the kernel function to render the program more
readable and flexible. The function prior.GARCH tests whether the constraints are fulfilled,
and outputs a (N × 2) matrix whose first column indicates if the constraints are satisfied,
and the second column returns the value of the prior at the corresponding point. Given
the data vector/matrix and an initial point satisfying the prior parameter constraints, the
MitISEM approximation is obtained. Posterior parameter draws can then be obtained using
the Metropolis-Hastings or rejection sampling algorithm given the candidate constructed by
MitISEM, or one can estimate posterior moments using importance sampling. In order to use
the MitISEM candidate for importance sampling or the Metropolis-Hastings algorithm, one
can make use of the function AdMitIS or AdMitMH provided by the R package AdMit, since
these functions just perform IS or MH using a given candidate that is a mixture of Student t
distributions. Specifically, the mixture of Student t distribution obtained from the MitISEM
candidate is used as an input, mit, for functions AdMitIS or AdMitMH for posterior inference.
An R code to obtain posterior parameters of the GARCH model is provided below, where we
use the R package tseries (Trapletti and Hornik 2017) to extract S&P 500 data.

R> library("tseries")
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R> library("AdMit")

R> prices <- as.vector(get.hist.quote("^GSPC", quote = "AdjClose",

+ start = "1998-01-02", end = "2002-12-26"))

R> data <- 100 * (prices[-1] - prices[-length(prices)]) /

+ (prices[-length(prices)])

R> plot(data, xlab = "observation", ylab = "S&P500 % returns")

R> hist(data, xlab = "returns")

R> theta <- c(0.08, 0.86, 0.02, 0.03)

R> names(theta) <- c("omega", "beta", "alpha", "mu")

R> h1 <- var(data)

R> set.seed(1111)

R> app.GARCH <- MitISEM(KERNEL = post.GARCH, mu0 = theta, h1 = h1,

+ data = data, control = list(trace = TRUE))

1 1 BFGS 0.76 1.1352420 1.135242e-04

2 1 IS-EM 28.70 0.7567956 7.567956e-05

3 2 IS-EM 57.91 0.4105256 4.105256e-05

4 3 IS-EM 56.76 0.3864224 3.864224e-05

R> IS.GARCH <- AdMitIS(N = 10e4, KERNEL = post.GARCH,

+ mit = app.GARCH$mit, data = data, h1 = h1)

R> print(IS.GARCH)

$ghat

[1] 0.08884915 0.84851733 0.10637618 0.03354568

$NSE

[1] 1.158643e-04 1.133241e-04 7.695703e-05 1.187978e-04

$RNE

[1] 0.6974687 0.7058110 0.7292880 0.8363404

The summary output of the function MitISEM is a data frame containing information on
the adaptive fitting procedure: H is the number of Student t components; METHOD indicates
whether the IS-weighted EM algorithm has been used to optimize the candidate (where the
BFGS method has been used to compute the mode of the target density); TIME gives the
computing time required for this optimization; CV gives the coefficient of variation of the
importance sampling weights; std.dev. gives the standard deviation of the IS weights.
The output of the function AdMitIS is a list. The first component is ghat, the importance

sampling estimator Ĝ =

∑
N

i=1
W iG(θi)∑

N

i=1
W i

of the property of interest E[G(θ)], which is in our case

the posterior mean of the parameters. The second component is NSE, a vector containing the
numerical standard errors (i.e., the standard deviation of the estimates that can be expected
if the simulations were to be repeated) of the components of ghat. The third component is
RNE, a vector containing the relative numerical efficiencies of the components of ghat (i.e.,
the ratio between the estimated variance of a hypothetical estimator based on direct sampling
and the importance sampling estimator’s estimated variance with the same number of draws).
RNE is an indicator of the efficiency of the chosen importance density; if target and importance
densities coincide, RNE equals one, whereas a very poor importance density will have a RNE
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close to zero. Both NSE and RNE are estimated by the method given in Geweke (1989).
For estimating E[G(θ)] the N candidate draws are approximately as ‘valuable’ as RNE × N
independent draws from the target would be.

The MitISEM approximation of the posterior density consists of 3 Student t components. The
low CoV values and the high RNE values show that the MitISEM candidate approximates
the posterior density accurately.

Approximating posterior densities: A mixture GARCH(1,1) model

In this subsection the MitISEM approach is applied to the non-elliptical posterior density
in the two-component Gaussian Mixture GARCH (1,1) model of Ausín and Galeano (2007).
For the Bayesian estimation of this model, Ausín and Galeano (2007) propose a griddy Gibbs
sampler (Ritter and Tanner 1992), since the recursive structure of the likelihood in GARCH-
type models implies that a regular Gibbs sampling approach is not feasible.

The griddy Gibbs sampler is known to be very slow. As an alternative we use importance
sampling with a candidate density resulting from the MitISEM algorithm, and compare the
performance of the MitISEM candidate density with the naive Student t candidate density
and a candidate obtained from the AdMit method.

The two-component Gaussian mixture GARCH(1,1) model for the returns yt (t = 1, 2, . . . , T )
is given by

yt = µ+
√
ht εt, (16)

ht = ω + α(yt−1 − µ)2 + βht−1, (17)

εt ∼

{
N(0, σ2) with probability ρ,
N(0, σ2/λ) with probability 1 − ρ,

(18)

with ht the conditional variance of yt given the information set It−1 = {yt−1, yt−2, yt−3, . . .}.
In addition, 0 < λ < 1, and σ2 ≡ 1/(ρ + (1 − ρ)/λ) so that var(εt) = 1; h0 is treated as a
known constant, set as the sample variance of the return series. We restrict ω > 0, α ≥ 0 and
β ≥ 0 to ensure positivity of ht. We follow Ausín and Galeano (2007) by imposing the prior
restriction 0.5 < ρ < 1, so that it is ensured that the state with smaller variance has larger
probability than the state with larger variance. The mixture distribution in (18) has fatter
tails than a Gaussian distribution. We follow Ausín and Galeano (2007) also in specifying flat
priors for the model parameters. Moreover, we truncate ω and µ such that these have proper
(non-informative) priors. For the k = 6 dimensional parameter vector θ = (ω, λ, β, α, ρ, µ),
we have a uniform prior on (0, 1] × (0, 1) × [0, 1) × [0, 1) × (0.5, 1] × [−1, 1] with α + β < 1
which implies covariance stationarity.

The posterior density for the Gaussian mixture GARCH(1,1) model is implemented as follows:

R> prior.mGARCH <- function(omega, lambda, beta, alpha, rho, mu,

+ log = TRUE) {

+ c1 <- (omega > 0 & omega < 1 & beta >= 0 & alpha >= 0)

+ c2 <- (beta + alpha < 1)

+ c3 <- (lambda >= 0 & lambda <= 1)

+ c4 <- (rho > 0.5 & rho < 1)

+ c5 <- (mu > -1 & mu < 1)
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+ r1 <- c1 & c2 & c3 & c4 & c5

+ r2 <- rep.int(-Inf, length(omega))

+ tmp <- log(2)

+ r2[r1 == TRUE] <- tmp

+ if (!log) r2 <- exp(r2)

+ cbind(r1, r2)

+ }

R> post.mGARCH <- function(theta, data, h1, log = TRUE) {

+ if (is.vector(theta)) theta <- matrix(theta, nrow = 1)

+ omega <- theta[,1]

+ lambda <- theta[,2]

+ beta <- theta[,3]

+ alpha <- theta[,4]

+ rho <- theta[,5]

+ mu <- theta[,6]

+ N <- nrow(theta)

+ pos <- 2:length(data)

+ prior <- prior.mGARCH(omega = omega, lambda = lambda,

+ beta = beta, alpha = alpha, rho = rho, mu = mu)

+ d <- rep.int(-Inf, N)

+ for (i in 1:N) {

+ if (prior[i,1] == TRUE) {

+ h <- c(h1, omega[i] + alpha[i] * (data[pos-1] - mu[i])^2)

+ for (j in pos) {

+ h[j] <- h[j] + beta[i] * h[j-1]

+ }

+ sigma <- 1 / (rho[i] + ((1-rho[i]) / lambda[i]))

+ tmp1 <- dnorm(data[pos], mu[i], sqrt(h[pos] * sigma), log = TRUE)

+ tmp2 <- dnorm(data[pos], mu[i], sqrt(h[pos] * sigma /

+ lambda[i]), log = TRUE)

+ tmp <- log(rho[i] * exp(tmp1) + (1 - rho[i]) * exp(tmp2))

+ d[i] <- sum(tmp) + prior[i,2]

+ }

+ }

+ if (!log) d <- exp(d)

+ as.numeric(d)

+ }

Given the data vector/matrix data the MitISEM approximation is calculated starting from
an initial point satisfying the prior parameter constraints. Posterior parameter draws (or
appropriately weighted candidate draws) are then obtained using the Metropolis-Hastings
algorithm (or importance sampling) given the candidate constructed by MitISEM.

Given the MitISEM candidate, one can again obtain importance sampling results using the
AdMitIS function provided by the R package AdMit, where the MitISEM candidate is used
as an input to AdMitIS.

R> prices <- as.vector(get.hist.quote("^GSPC", quote = "AdjClose",

+ start = "1998-01-02", end = "2002-12-26"))
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R> data <- 100 * (prices[-1] - prices[-length(prices)]) /

+ (prices[-length(prices)])

R> mu0 <- c(0.08, 0.37, 0.86, 0.03, 0.82, 0.03)

R> names(mu0) <- c("omega", "lambda", "beta", "alpha", "rho", "mu")

R> h1 <- var(data)

R> set.seed(1234)

R> app.mGARCH <- MitISEM(KERNEL = post.mGARCH, mu0 = mu0, h1 = h1,

+ data = data)

R> app.mGARCH$summary

H METHOD TIME CV IS weights std.dev.

1 1 BFGS 2.03 2.1170292 2.117029e-04

2 1 IS-EM 25.97 1.5332795 1.533280e-04

3 2 IS-EM 56.01 1.0081923 1.008192e-04

4 3 IS-EM 60.32 0.8610536 8.610536e-05

5 4 IS-EM 58.75 0.7905704 7.905704e-05

R> IS.mGARCH <- AdMitIS(N = 10e4, KERNEL = post.mGARCH,

+ mit = app.mGARCH$mit, data = data, h1 = h1)

R> print(IS.mGARCH, 2)

$ghat

[1] 0.079 0.369 0.862 0.099 0.788 0.029

$NSE

[1] 1.4e-04 3.7e-04 1.3e-04 9.2e-05 5.8e-04 1.4e-04

$RNE

[1] 0.47 0.51 0.50 0.51 0.46 0.61

MitISEM method and the AdMit method (for which no output is shown above, since our
main focus is on the novel MitISEM package) yield an approximation that is a mixture of 7
and 4 Student t components. The conditional posterior density kernel of parameters (ρ, λ)
given that the other four parameters are equal to their (estimated) posterior means and the
approximations by three methods are shown in Figure 6. The MitISEM density is clearly
the best approximation of the posterior. Table 1 and Table 2 show that for this example,
both ‘naive’ and MitISEM candidates outperform the AdMit approximation in terms of the
importance weights’ CoV, and in terms of the NSEs of the estimated posterior means. There
are two reasons for the better performance of the ‘naive’ candidate compared with the AdMit
candidate. First, the IS-weighted EM algorithm implies that the ‘naive’ candidate’s single
Student t density is specified in an optimal way. Second, the novel robustification introduced
in this paper, discarding candidate draws outside the ‘allowed range’ from the number of
candidate draws during the construction of a new candidate, ensures that enough relevant,
‘allowed’ candidate draws are obtained for the construction of the ‘naive’ candidate. In par-
ticular for target densities with several parameter restrictions, such as the posterior in the
mixture GARCH model, this robustification is important. Further, the additional Student t
components of the MitISEM candidate imply that it has a higher accuracy than the ‘naive’
candidate. First, if we require simulation results with a certain very high precision, then
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Figure 6: Conditional posterior density kernel of (ρ, λ) given posterior means of the other
parameters (ω, β, α, µ) in the mixture GARCH(1,1) model together with the naive, AdMit
and MitISEM approximations.

MitISEM would obviously require much fewer draws than the ‘naive’ and AdMit approxima-
tions, so that the total computing time (for both the construction and the subsequent use
of the candidate density) would be shorter for MitISEM. Second, the higher quality of the
MitISEM approximation of the target density compared to ‘naive’ and AdMit approximations
implies that there is less risk that a relevant part of the target density is ‘missed’, for exam-
ple in case of a multi-modal target density, which would possibly cause substantially biased
results for the other methods.
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Algorithm # t Components Time (seconds) CoV

AdMit 4 144.30 2.61
Naive 1 19.40 2.47
MitISEM 7 358.57 0.72

Table 1: Summary of naive, AdMit and MitISEM candidates for the mixture GARCH(1,1)
model for S&P 500 data. The table reports the algorithm for obtaining the candidate distri-
bution, the number of Student t components (# t), time (in seconds) and CoV (coefficient of
variation of the IS weights) for all compared algorithms. Candidates are constructed using
104 draws.

Posterior mean NSE ×100

AdMit Naive MitISEM AdMit Naive MitISEM

ω 0.08 0.08 0.08 0.09 0.06 0.07
λ 0.38 0.37 0.37 0.25 0.24 0.12
β 0.86 0.86 0.86 0.09 0.06 0.06
α 0.10 0.10 0.10 0.06 0.04 0.03
ρ 0.78 0.78 0.78 0.43 0.32 0.21
µ 0.03 0.03 0.03 0.10 0.07 0.04

Table 2: Estimated posterior means of parameters in mixture GARCH(1,1) model and Nu-
merical Standard Errors (NSE) of the IS estimates using the naive, AdMit and MitISEM
candidates for the S&P 500 data. Candidate approximations and posterior results are based
on 104 and 103 draws, respectively.

Approximating posterior densities: An IV model

In this subsection we apply the MitISEM algorithm to an instrumental variables (IV) regres-
sion model. We first make use of a set of simulated data and report the accuracy of posterior
inference from the Metropolis-Hastings and importance sampling algorithms based on a Mi-
tISEM approximation to the posterior density and compare the results with those obtained
using the griddy Gibbs sampler of Ritter and Tanner (1992). The griddy Gibbs algorithm
that we specify uses the inverse CDF technique to obtain posterior draws for each parameter.3

Second, we use empirical data from Card (1995) and apply the MitISEM algorithm to an IV
model that describes the effect of years of education on earned income.

The IV model with one explanatory endogenous variable and p instruments is defined by
Bowden and Turkington (1990):

y = xβ + ε, (19)

x = zΠ + v, (20)

where the scalar β and the p × 1 vector Π are model parameters, y is the N × 1 vector
of observations on the dependent variable income, x is the N × 1 vector of observations
on the endogenous explanatory variable, education, z is the N × p matrix of observations
on the instruments. All variables are demeaned, i.e., both model equations do not in-
clude a constant term. The disturbances are assumed to come from a normal distribution:

3A replication routine for this simulation study is provided in replication materials of the paper.
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(ε⊤, v⊤)⊤ ∼ NID(0,Σ ⊗ I), where Σ =

(
σ2

11 ρσ11σ22

ρσ11σ22 σ2
22

)
is a positive definite and

symmetric 2 × 2 matrix, I denotes the N ×N identity matrix and ⊗ denotes the Kronecker
product operator.

‘Endogeneity’ of the variable x arises from possible correlation between the disturbances,
given as ρ ≡ cor (εi, vi) for i = 1, . . . , N . The effect of latent abilities (leading to both a
higher education and a higher income given a certain education level) may cause a positive
correlation ρ, whereas measurement errors in observed education may cause a negative ρ. We
note that in case the covariance matrix Σ is diagonal, the IV model simplifies to a simple
regression model, with elliptical posterior densities (Zellner 1971). Therefore the instruments
are only necessary if the correlation between the disturbances is different from zero.

Under conventional flat priors, it can be shown that the posterior density for the parameters
for the IV model is non-standard (Drèze 1976, 1977; Kleibergen and Van Dijk 1998). For
an exactly identified model with a single instrument, the posterior density resulting from
this model is improper. For more details on the derivation we refer to Zellner et al. (2014).
We specify a Jeffreys prior which leads to a proper posterior density, see e.g., Hoogerheide,
Kleibergen, and Van Dijk (2007a) for the derivation. The posterior density of the model in
Equations 19–20 under the Jeffreys prior can be implemented as follows:

R> Jeff.prior <- function(beta, Pi, Sigma11, rho, Sigma22) {

+ c1 <- (Sigma11 > 0)

+ c2 <- (Sigma22 > 0)

+ c3 <- (rho > -1)

+ c4 <- (rho < 1)

+ r1 <- c1 & c2 & c3 & c4

+ r2 <- rep.int(-Inf, length(Sigma11))

+ r2[r1 == TRUE] <- log(abs(Pi[r1 == TRUE])) - 2 * log(Sigma11[r1 == TRUE]

+ * Sigma22[r1 == TRUE] * (1 - rho[r1 == TRUE]^2))

+ return(cbind(r1, r2))

+ }

R> post.IV <- function(theta, data, log = TRUE) {

+ if (is.vector(theta)) theta <- matrix(theta, nrow = 1)

+ y <- data[,1]

+ x <- data[,2]

+ z <- data[,3]

+ if (is.vector(theta)) theta <- matrix(theta, nrow = 1)

+ logprior <- Jeff.prior(theta[,1], theta[,2], theta[,3], theta[,4],

+ theta[,5])

+ rcov <- (logprior[,1] == TRUE)

+ fn_aux <- function(theta_aug, y, x, z) {

+ tmp <- matrix(c(theta_aug[3], theta_aug[4], theta_aug[4],

+ theta_aug[5]), 2, 2)

+ detfac <- log(det(tmp))

+ beta <- theta_aug[1]

+ Pi <- theta_aug[2]

+ res <- cbind(y - x * beta, x - z * Pi)

+ SigmaInv <- solve(tmp)
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+ S <- SigmaInv %*% crossprod(res)

+ expfac <- -0.5 * sum(diag(S))

+ (c(detfac, expfac))

+ }

+ theta_aug <- theta[rcov,]

+ if (is.vector(theta_aug)) theta_aug <- matrix(theta_aug, nrow = 1)

+ Sigma12 <- theta[rcov,4] * sqrt(theta[rcov,3] * theta[rcov,5])

+ theta_aug[,4] <- Sigma12

+ T <- length(y)

+ d <- rep.int(-Inf, nrow(theta))

+ if(any(rcov)) {

+ tmp_1 <- t(apply(theta_aug, 1, FUN = fn_aux, y = y, x = x, z = z))

+ d[rcov] <- - (T / 2) * tmp_1[,1] + tmp_1[,2] + logprior[rcov,2]

+ }

+ if (!log) d <- exp(d)

+ as.numeric(d)

+ }

As mentioned, we first apply the MitISEM method to artificial data for the case of an IV
model. We simulate 300 observations from the IV model in Equations 19 and 20, with ‘true’
parameter values (β, π, σ2

11, ρ, σ
2
22) = (0.73, 0.06, 0.21,−0.43, 0.17). These values correspond

to the posterior means of the parameters in the real data application, using Card (1995).
Posterior results from MH and IS methods using the MitISEM approximation to the posterior
density are obtained using the functions AdMitMH and AdMitIS in the R package AdMit.
Specifically, the MitISEM candidate is used as an input to AdMitMH and AdMitIS functions.
These two functions perform sampling from the MitISEM candidate and posterior inference
using the MitISEM candidate. The MitISEM approximation to the posterior density is based
on 10000 draws, leading to a 3-component mixture of Student t densities, i.e., the posterior
density is highly non-elliptical. For the Metropolis-Hastings algorithm we use 10000 burn-in
draws and 10000 posterior draws. Importance sampling results are based on 10000 draws. The
alternative method, the griddy Gibbs sampler, is based on 10000 posterior draws, and 10000
burn-in draws. For each parameter draw using the griddy Gibbs sampler, 200 equi-distant
grid points are taken on the parameter space β ∈ [−2, 2], π ∈ [−2, 2], (σ2

11, σ
2
22) ∈ (0, 2]2 and

ρ ∈ (−1, 1).

Estimated posterior means and standard deviations for parameters using the three sampling
algorithms are shown in Table 3.4 The griddy Gibbs sampling results are very different
from the MH and IS results using the MitISEM candidate. In particular, posterior draws
of the correlation coefficient ρ are concentrated around 0.06 with a relatively small standard
deviation compared to results from MH and IS. This indicates that the griddy Gibbs sampler
fails to cover the whole domain of the posterior density and it is seen that the MitISEM
approximation substantially improves the simulation inference for this example. We also
computed two convergence test results for griddy Gibbs draws as well as for MH draws (that
are based on a MitISEM approximation to the posterior). Results are obtained using the R

package MCMCpack (Martin, Quinn, and Park 2011, 2017). The p values are based on a

4We emphasize that Bayesian posterior analysis, using a Jeffreys prior, does not necessarily yield posterior
means that are equal to the so-called ‘true’ parameter values. The difference may be due to a flat or skew
posterior and/or a relatively small sample.
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β π σ2
11 ρ σ2

22 Time

True values 0.73 0.06 0.21 -0.43 0.17

Posterior means and standard deviations

Griddy Gibbs Mean 0.13 0.05 0.15 0.10 0.16 2728
Std. dev. 0.09 0.02 0.01 0.10 0.01

MH Mean 0.76 0.06 0.22 -0.44 0.17 64
Std. dev. 0.33 0.02 0.07 0.22 0.01

IS Mean 0.76 0.06 0.21 -0.44 0.16 62
Std. dev. 0.30 0.02 0.06 0.20 0.01

Table 3: Estimated posterior means and standard deviations of parameters for simulated IV
data based on griddy Gibbs sampler and MH and IS algorithms using MitISEM approxima-
tion. MitISEM candidate is based on 10000 draws. MH and griddy Gibbs results are based
on 10000 posterior and 10000 burn-in draws. IS results are based on 10000 draws. For the
griddy Gibbs sampler we use 200 grid points for each parameter. The last column of the table
reports the elapsed time for each posterior sampler in minutes. For IS and MH algorithms
we report total time, including the time required to construct the MitISEM candidate.

convergence criterion presented in Geweke (1992), where the null hypothesis is the equality
of posterior means from the first and last parts of the Markov Chain. At the 5% level, the
null hypothesis is not rejected for griddy Gibbs draws as well as for the MH results although
the posterior mean estimates are numerically different. We additionally report results for
the Heidelberger and Welch (1981) test where the null hypothesis is that the samples of
posterior draws come from a stationary distribution. According to this test, β and ρ draws
from the griddy Gibbs sampler do not come from a stationary distribution while all draws
from MH ‘pass’ the test. These test results show that these tests are rather sensitive to the
exact specification of the test and we recommend the use of multiple tests for convergence
assessment.

The relatively poor performance of the griddy Gibbs sampler is clearly shown in Figure 7 and
8, where we present draws from (β, π, ρ) and the traceplot of all parameters from the MH
algorithm and the griddy Gibbs sampler. The left panel of Figure 7 shows that the griddy
Gibbs sampler leads to many draws of (β, π) that are far from the central part of the posterior
while draws from the MH algorithm using the MitISEM approximation are relatively more
concentrated in that center. Similarly, on the right panel of Figure 7, relatively more (β, ρ)
draws from the griddy Gibbs sampler are far from the important region of the posterior and
lie at the bottom right area of the figure compared to MH draws. A reason for this poor
performance is the much higher serial correlation between griddy Gibbs draws compared to
MH draws. This is shown in Figure 8. Griddy Gibbs draws are strongly serially correlated,
particularly for parameters (β, ρ), while MH draws using the MitISEM candidate have very
few consecutive draws with same parameter values. We conclude that the griddy Gibbs
sampler is much less accurate given the same number of draws compared to IS and MH
algorithms using the MitISEM approximation as the candidate density.5

We next apply the MitISEM algorithm to approximate the posterior density of the IV model

5When the number of draws is increased to 10000 burn-in and 20000 posterior draws, the slight difference
in MH and IS parameter estimates disappear, while posterior results for the griddy Gibbs sampler remain
similar to those in Table 3.
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Figure 7: Parameter (β, π) and (β, ρ) draws for simulated IV data based on the griddy Gibbs
sampler and the MH algorithm using MitISEM approximation. Horizontal and vertical lines
are the true parameter values. Posterior results are obtained as in Table 3.
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Figure 8: Posterior draws of all parameters for simulated IV data based on the griddy Gibbs
sampler and the MH algorithm using MitISEM approximation. Posterior results are obtained
as in Table 3.

in Equations 19 and 20 for the Card (1995) data on income and education, and compare the
results with those obtained from the griddy Gibbs sampler. In these data, income levels are
measured by hourly wage (in natural logarithms), education level is 1 if the individual at-
tended college and 0 otherwise. College proximity, which takes the value 1 if there is a nearby
college and 0 otherwise, is the proposed instrument for the education level of individuals.
The data further consist of other covariates such as gender, experience and area of residence
for 1030 men in 1976.6 For the analysis of the IV model, we first demean the income, edu-
cation and college proximity data, and transform these into residuals after regression on the
exogenous covariates in the dataset, which is equivalent to integrating out the corresponding
coefficients under a flat prior.

Similar to the simulation study, the griddy Gibbs sampling results are different from the
Metropolis-Hastings and importance sampling results using the MitISEM candidate, as seen

6Data can be obtained from http://davidcard.berkeley.edu/data_sets/proximity.zip. The data in-
cludes several additional covariates compared to the standard model outlined in this section. Relevant variables
need to be extracted using the authors’ codebook in the website. The R code to prepare the Card (1995) data
for the example IV model is supplied in the replication materials.

http://davidcard.berkeley.edu/data_sets/proximity.zip
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β π σ2
11 ρ σ2

22 Time

Griddy Gibbs Mean 0.11 0.05 0.15 0.12 0.16 23.7
Std. dev. 0.09 0.02 0.01 0.10 0.01

MH Mean 0.73 0.07 0.21 -0.43 0.17 1.1

Std. dev. 0.28 0.02 0.05 0.20 0.00(∗)

IS Mean 0.73 0.06 0.21 -0.43 0.17 1.1

Std. dev. 0.28 0.02 0.05 0.20 0.00(∗)

Table 4: Estimated posterior means and standard deviations of parameters for the IV model
for Card (1995) data obtained using the griddy Gibbs sampler, Metropolis-Hastings algorithm
based on the MitISEM candidate and importance sampling based on the MitISEM candidate.
MitISEM candidate is based on 104 draws. MH and griddy Gibbs results are based on 5000
posterior and 5000 burn-in draws. IS results are based on 10000 draws. For the griddy Gibbs
sampler we use 200 grid points for each parameter. The last column of the table reports the
elapsed time for each posterior sampler in minutes. For IS and MH algorithms we report total
time, including the time required to construct the MitISEM candidate. For values indicated
by (∗), the standard deviation is 0.0044 at the 4-digit level.

in Table 4. Here, posterior draws from the correlation coefficient ρ are concentrated around
0.12 with again a relatively small standard deviation. This small standard deviation confirms
that the griddy Gibbs sampler fails to cover the whole domain of the posterior density and
that the MitISEM approximation substantially improves the simulation inference for these
data.

3.3. Approximating model probabilities using predictive likelihoods

In this subsection we show how the candidate density obtained by the MitISEM method can
be used to accurately calculate a model’s predictive likelihood. The calculation of model
probabilities can be based on the models’ marginal likelihoods or the predictive likelihoods,
where the former are problematic under non-informative priors on parameters that only occur
in one of the models, in the sense that the ‘smaller’ model may be favored even if the ‘larger’
model is the true Data Generating Process (DGP, Bartlett 1957). The MitISEM package
provides functions to calculate the marginal or predictive likelihood of a model given its
posterior density kernel and a candidate density obtained by the MitISEM method. The
reason is that the computation of marginal or predictive likelihoods is an important ingredient
of many Bayesian analyses.

The predictive likelihood of a model M1 is obtained by splitting the data y = (y1, . . . yT ) into
y∗ = (y1, . . . ym) and ỹ = (ym+1, . . . yT ) (Gelfand and Dey 1994; Eklund and Karlsson 2007):

p(ỹ|y∗,M1) =

∫
p(ỹ|θ1, y

∗,M1)p(θ1|y∗,M1)dθ1, (21)

which is the marginal likelihood if we consider ỹ as ‘the data’ and p(θ1|y∗,M1), the exact
posterior density, i.e., density including the normalizing constant, and the posterior kernel,
after observing y∗, as the prior. Using Bayes’ rule for this exact posterior density p(θ1|y∗,M1)
and substituting into Equation 21 yields

p(ỹ|y∗,M1) =

∫
p(y|θ1,M1)p(θ1|M1)dθ1∫
p(y∗|θ1,M1)p(θ1|M1)dθ1

, (22)
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where p(θ1|M1) is the prior on model parameters θ1 for model M1. Hence this predictive like-
lihood is the ratio of the marginal likelihood for all observations over the marginal likelihood
for the first part of the data. The integral in Equation 22 can be evaluated by numerical in-
tegration using θ1 draws obtained from the Metropolis-Hastings algorithm in package AdMit

using the MitISEM candidate density.

Model probability for M1 is then calculated using the posterior density in Equation 22

p(M1|y) = p(M1|ỹ, y∗) =
p(M1|y∗)p(ỹ|y∗,M1)

p(ỹ|y∗)
∝ p(M1|y∗)p(ỹ|y∗,M1), (23)

where (p(ỹ|y∗))−1, which is independent of the model M1, is the normalizing constant and
p(M1|y∗) is the prior model probability conditional on prior data points y∗. In practice, this
prior model probability is often defined independent of prior data points and ensures equal
prior model weights.

Approximating model probabilities using predictive likelihood: Mixture GARCH(1,1)

As a first illustration, we apply the model in (16)–(18) to S&P 500 data and perform the
simulation-based computation of the predictive likelihoods. We also compare the performance
of the MitISEM candidate with a ‘naive’ candidate. The first half of the observations are
regarded as the ‘training sample’ y∗ = (y1, . . . ym). Predictive likelihood calculation using the
MitISEM approximation is implemented as:

R> source("PostmGARCH.R")

R> prices <- as.vector(get.hist.quote("^GSPC", quote = "AdjClose",

+ start = "1998-01-02", end = "2002-12-26"))

R> data <- 100 * (prices[-1] - prices[-length(prices)]) /

+ (prices[-length(prices)])

R> data.ss <- data[1:626]

R> h1 <- var(data)

R> mu0 <- c(0.08, 0.37, 0.86, 0.03, 0.82, 0.03)

R> names(mu0) <- c("omega", "lambda", "beta", "alpha", "p", "mu")

R> set.seed(1234)

R> mit.ss <- MitISEM(KERNEL = post.mGARCH, mu0 = mu0, data = data.ss,

+ h1 = h1, control = list(trace = TRUE))$mit

R> mit.fs <- MitISEM(KERNEL = post.mGARCH, mu0 = mu0, data = data,

+ h1 = h1, control = list(trace = TRUE))$mit

R> PL.mGARCH <- PredLik(N, mit.fs, mit.ss, post.mGARCH, data, data.ss,

+ h1 = h1)

where the posterior density function for the mixture of GARCH(1,1) is defined as in Sec-
tion 3.2, y.ss is the training sample of 626 observations for predictive likelihood calculations,
the initial variance h1 of the GARCH model is defined as the sample variance of the data,
initial parameters are defined as mu0 and predictive likelihood calculation is based on N draws.

In order to calculate the accuracy of the estimates, we replicate the predictive likelihood
calculation 50 times. Table 5 shows simulation results where the average predictive likelihoods
and Numerical Standard Errors are calculated from 50 replications. The candidates for all
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# t components Predictive likelihood
Training sample Full sample Mean NSE

4 3 1.68 ×10−470 1.28 ×10−472

Table 5: Approximation and predictive likelihood for the mixture of GARCH model. Can-
didate approximations and posterior results are based on 104 and 103 draws, respectively.
Mean and Numerical Standard Error (NSE) for each estimate are based on 50 replications.

cases are calculated using 104 draws, and the estimated predictive likelihood values are based
on 103 draws, where the latter was done to decrease the computing time of the 50 repetitions.

The MitISEM candidate consists of four and three mixture components for the training sample
and the full sample, respectively, indicating highly non-elliptical posterior shapes for both
datasets. Despite these irregularities in the posterior densities, the small NSE reported in
Table 5 shows that, even with the relatively small number of posterior draws, calculated
predictive likelihoods for this model are quite accurate given the MitISEM approximation to
the posterior density.

Computing a sequence of predictive likelihoods using sequential MitISEM

We next apply the sequential MitISEM algorithm to the two-component mixture GARCH
model with the S&P 500 data. Sequential MitISEM is used to efficiently construct a series of
candidates that approximate posteriors for increasing data sets, where the candidate can be
used for estimation of posterior moments, marginal likelihoods or predictive likelihoods. In
this example we consider the latter. We use the first half of the observations as the training
sample y∗ (for the marginal likelihood in the denominator of the predictive likelihood in
Equation 22). At each time t = 1204, . . . , 1252, the predictive likelihood is computed while
the training sample y∗ is kept fixed. Such a sequence of updated predictive likelihoods could
be used in an application of Bayesian model averaging (BMA), combining forecasts from
several models at each time t = 1204, . . . , 1252 by weighting these with the estimated model
probabilities. Once the posterior kernel is specified, the sequential MitISEM approximations
can be obtained as follows:

R> prices <- as.vector(get.hist.quote("^GSPC", quote = "AdjClose",

+ start = "1998-01-02", end = "2002-12-26"))

R> data <- 100 * (prices[-1] - prices[-length(prices)]) /

+ (prices[-length(prices)])

R> mu0 <- c(0.08, 0.37, 0.86, 0.03, 0.82, 0.03)

R> names(mu0) <- c("omega", "lambda", "beta", "alpha", "rho", "mu")

R> h1 = var(data)

R> data.ss <- data[1:floor(length(data) / 2)]

R> MitISEMapp.subsample <- MitISEM(KERNEL = post.mGARCH, mu0 = mu0, h1 = h1,

+ data = data.ss)

R> control.seq <- list(T0 = 1203, tau = 1:20)

R> app.mGARCH.SeqMitISEM <- SeqMitISEM(data, KERNEL = post.mGARCH, mu0 = mu0,

+ control.seq = control.seq, h1 = h1)

Table 6 presents the number of mixture components, CoV values and estimated predictive
likelihoods for each sequential algorithm, and provides more details about the results of the
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# Observations #t CoV Predictive likelihood

1204 3 0.98 3.76×10−435

1205 3 1.01 0.64×10−435

1206 3 0.95 0.83×10−436

1207 3 1.04 1.35×10−437

1208 6 0.99 2.36×10−438

1209 6∗ 0.72 3.57×10−439

1210 6 0.72 0.50×10−439

1211 6 0.72 1.04×10−440

1212 6 0.73 2.09×10−441

1213 6 0.85 3.93×10−442

1214 6 0.76 0.97×10−442

1215 6 0.76 1.27×10−443

1216 6 0.75 2.97×10−444

1217 6 0.81 0.75×10−444

1218 6 0.82 1.81×10−445

1219 6 0.72 1.17×10−446

1220 6 0.77 2.59×10−447

1221 6 0.73 2.22×10−448

1222 6 0.74 0.52×10−448

1223 6 0.74 1.43×10−449

Sequential MitISEM steps

# reused 18
# adapted 1
# adapted and extended 1

Table 6: Predictive likelihoods for the mixture GARCH model using sequential MitISEM.
Candidate approximations and posterior results are based on 104 and 103 draws, respectively.
#t denotes the number of Student t components in MitISEM approximation. (∗) indicates
that the candidate density from the previous approximation is adapted.

sequential MitISEM algorithm. Note that for the calculation of predictive likelihoods in
increased data samples, an ‘ad hoc’ MitISEM procedure would be applied 20 times, while
the sequential MitISEM ‘adopts’ the candidate density only once for sample size 1208 and
‘extends’ the candidate density only once for sample size 1209. In the remaining time periods,
the candidate is simply ‘reused’, with minimal computational time. Table 6 shows that
the MitISEM approximation using a subsample of the data is ‘reused’ 18 times, indication
approximately 18 times speed gains compared to the standard MitISEM approximation for
each sample. Similarly, one MitISEM candidate is only ‘adjusted’, again providing speed
gains compared to employing the whole MitISEM algorithm for each subsample. Note that
the CoV values remain low, so that the huge gains in computing time do not lead to a bad
quality of the candidate distribution.

Approximating model probabilities using predictive likelihood: IV model

As a third application of predictive likelihood approximations using the MitISEM algorithm,
we consider the IV model in Equation 19 and Equation 20 with the Jeffreys prior for the Card
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data on income and education described in Section 3.1. We define two models, one treating
education as an endogenous explanatory variable (i.e., the IV model in Equation 19 and
Equation 20, and the second model treating education as an exogenous explanatory variable
(i.e., the simple linear regression model). The linear regression model is a nested model
compared to the IV model in Equation 19 and Equation 20 with the parameter restriction
ρ = 0 and posterior inference for the effect of education on income, β, in this case is based
only on Equation 19. For a comparison of these two models under uninformative priors, we
use the predictive likelihoods. The predictive probability of the null model (which assumes
exogeneity) can be calculated using the Savage-Dickey density ratio (SDDR). Dickey (1971)
shows that the Bayes factor can be calculated using a single model if the null model is a
restricted version of the alternative model and the prior densities satisfy the condition that
the prior for the restricted model equals the corresponding conditional prior (conditional
upon satisfying the restriction) in the unrestricted model. Under that condition the model
probabilities can be simplified to:

p(M0 | y)

p(M1 | y)
=

p(ỹ | y∗,M0)

p(ỹ | y∗,M1)

p(M0)

p(M1)
=
p(ρ = 0 | ỹ, y∗,M1)

p(ρ = 0 | y∗,M1)
×
p (M0)

p (M1)
, (24)

hence the model probabilities can be calculated from the unrestricted model only, using
draws from the marginal posterior density of the endogeneity parameter ρ conditioning on
the training sample and the full sample to compute p(ρ = 0 | ỹ, y∗,M1) and p(ρ = 0 |
y∗,M1) using kernel density estimates. We get these parameter draws from the Metropolis-
Hastings sampler, using the MitISEM candidate and the AdMitMH function from the R package
AdMit. Then we calculate the predictive likelihoods using Equation 24, a random training
sample consisting of 5% of the original data points, and using the ‘naive’ and the MitISEM
approximations to the posterior density. The implementation of this predictive likelihood
approach is straightforward using MitISEM:

R> load("dataIV.Rdata")

R> data.fs <- dataIV

R> set.seed(1234)

R> mu0 <- c(0.8, 0.1, 0.5, 0, 0.5)

R> pc.train = 0.05

R> N <- nrow(data.fs)

R> M <- round(N * pc.train)

R> data.ss <- data.fs[sample(1:N, M),]

R> mit.fs <- MitISEM(KERNEL = post.IV, mu0 = mu0, df0 = 30, data = data.fs,

+ control = list(tol.pr = 0.02))

R> mit.ss <- MitISEM(KERNEL = post.IV, mu0 = mu0, df0 = 30, data = data.ss,

+ control = list(tol.pr = 0.02))

R> post.fs <- AdMitMH(N = N, post.IV, mit = mit.fs$mit, data = data.fs)

R> post.ss <- AdMitMH(N = N, post.IV, mit = mit.ss$mit, data = data.ss)

R> ind.post = (N / 5 + 1):N

R> rho.fs <- post.fs$draws[ind.post,4]

R> rho.ss <- post.ss$draws[ind.post,4]

R> Pred.Lik <- density(rho.fs, from = 0, to = 0)$y[1] / density(rho.ss,

+ from = 0, to = 0)$y[1]
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MitISEM candidate Naive candidate
CoV # t components CoV

Full Sample 1.33 2.9 14.4
Training Sample 2.61 2.8 13.4

MitISEM candidate Naive candidate
Mean NSE Mean NSE

p(M0|y) 0.65 0.10 0.65 0.10
p(M1|y) 0.35 0.10 0.35 0.10

Table 7: Model probabilities (p(M0|y) and p(M1|y), for models without/with endogeneity)
based on predictive likelihood Equation 24 using ‘naive’ and MitISEM approximations. ‘# t
components’ denotes the average number of Student t components in the MitISEM candidate
over the 20 repetitions. Mean, NSE and # t are also based on these 20 repetitions. The
candidate and posterior results at each repetition are based on 104 draws, respectively. For
the Metropolis-Hastings method, we use a burn-in sample size of 2000.

We repeat the whole predictive likelihood estimation 20 times, with 20 different random
seeds, so that also the random selection of the training sample and the approximation of the
posterior for the training data are different each time. We specify equal prior probabilities
p (M0) = p (M1) = 1

2 . Table 7 presents the details of the MitISEM and ‘naive’ density
approximations to the posterior, together with the predictive likelihoods. First, the average
number of Student t components is close to three in training samples and the full sample,
indicating non-elliptical posterior shapes for this model. Hence a flexible candidate density,
such as the MitISEM candidate, is motivated. Second, the obtained predictive likelihoods
are more accurate, as indicated by relatively smaller NSE values of the resulting estimated
posterior model probabilities, when the candidate density is obtained from the MitISEM
method. Note that 0.09 may seem only slightly smaller than 0.10, but since in this case most
of the variation is caused by the random selection of the training sample rather than the
finiteness of the number of candidate draws, the relative improvement of quality provided by
the MitISEM candidate is still considerable. In examples with a fixed training sample, the
relative outperformance of the MitISEM method is much stronger.

4. Concluding remarks

We presented the R package MitISEM which provides an automatic algorithm for the ap-
proximation of a possibly non-elliptical target density using an adaptive mixture of Student t
densities as approximating or candidate density. The obtained approximation can, in par-
ticular, be used for Bayesian analysis of models with non-elliptical posterior shapes, and for
Bayesian model comparison based on marginal or predictive likelihoods. The package also
provides the ‘sequential MitISEM’ algorithm, which decreases the computational time sub-
stantially if the candidate density is used to assess posterior densities or model probabilities
for increasing data samples, where the posterior density is updated using new observations.
For Bayesian estimation, the package provides an efficient method to calculate marginal and
predictive likelihoods, given a user-supplied kernel of a posterior density.

We illustrated the approximation properties of the MitISEM algorithm using two different,
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distinctly non-elliptical, Gelman-Meng (Gelman and Meng 1991) densities. After that, we
made use of posterior densities of two canonical econometric models: a mixture GARCH
model for S&P 500 data and an IV model for the Card (1995) data. The posterior densities of
these models are also characterized by non-elliptical shapes in which case Bayesian inference
of model parameters and model probabilities, using importance sampling and Metropolis-
Hastings algorithms, requires a flexible and appropriate candidate density. We illustrated
the use of the MitISEM method for forming such a flexible candidate density, and showed
that the obtained candidate can be used for efficient estimations of model parameters as
well as predictive likelihoods. Finally, we showed that the ‘sequential MitISEM’ algorithm
provides computational gains in subsequent estimation of the predictive likelihoods. In future
research we will explore the possibility of parallelized computation for the different steps of
the MitISEM method, so that one can utilize graphical cards or multi-core computer systems
to substantially speed up the calculations.
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