
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Robbins, Ed and King, Andy and Schrijvers, Tom (2015) Proof appendix to accompany the paper,
"From MinX to MinC: Semantics-Driven Decompilation of Recursive Datatypes". University
of Kent

DOI

Link to record in KAR

http://kar.kent.ac.uk/51459/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30710832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. Proof Appendix

A.1 Type Safety

We write Σ;Ψ ` σ;⇡ to signify that

8(a : ✓) 2 Ψ . Σ;Ψ;σ;⇡ ` a : ✓

We also write Γc; Σ;Ψ ` ⇢ to signify that

8(x : ✓) 2 Γc . Σ;Ψ ` ⇢(x) : ✓ ⇤ ^ ⇢(x) 6= 0

Moreover, we write Γc; Σ ` λc to signify that

8s 2 range(λc). Γc; Σ ` s

Proposition 8 (safety for lvalue evaluation).

1. Progress: if
• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• Γc; Σ ` ` : ✓

then

(a) Σ; ~⇢; ⇢ ` hσ, ⇡, `i
`
−! hσ0, ⇡0, ai or

(b) Σ; ~⇢; ⇢ ` hσ, ⇡, `i
`
−! err.

2. Preservation: if
• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• Γc; Σ ` ` : ✓

• Σ; ~⇢; ⇢ ` hσ, ⇡, `i
`
−! hσ0, ⇡0, ai

then for some Ψ0 ◆ Ψ
(a) Γc; Σ;Ψ

0 ` ⇢
(b) Σ;Ψ0 ` σ0;⇡0

(c) Σ;Ψ0 ` a : ✓⇤

Proposition 9 (safety for expression evaluation).

1. Progress: if
• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• Γc; Σ ` e : ✓

then

(a) Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! hσ0, ⇡0, vi or

(b) Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! err.

2. Preservation: if
• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• Γc; Σ ` e : ✓
• Σ; ~⇢; ⇢ ` hσ, ⇡, ei

e
−! hσ0, ⇡0, vi

then for some Ψ0 ◆ Ψ
(a) Γc; Σ;Ψ

0 ` ⇢
(b) Σ;Ψ0 ` σ0;⇡0

(c) Σ;Ψ0 ` v : ✓

Proposition 10 (safety for statement evaluation).

1. Progress: if
• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• Γc; Σ ` s
• Γc; Σ ` λc

then

(a) Σ;λc; ~⇢; ⇢ ` hσ, ⇡, si
s
−! hσ0, ⇡0, s0i or

(b) Σ;λc; ~⇢; ⇢ ` hσ, ⇡, si
s
−! err or

(c) s = return.

2. Preservation: if
• Γc; Σ ` s

• Σ;λc; ~⇢; ⇢ ` hσ, ⇡, si
s
−! hσ0, ⇡0, s0i

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡

then for some Ψ0 ◆ Ψ
(a) Γc; Σ;Ψ

0 ` ⇢
(b) Σ;Ψ0 ` σ0;⇡0

(c) Γc; Σ ` s0

Proposition 11 (safety for function definitions).

1. Progress: if

• Σ ` f(
−−!
x : ✓)h

−−−!
y : ✓0, l, λc, ji

• Σ;λc; ~⇢; ⇢ ` hσ, ⇡, λc(l)i
s
−!⇤hσ0, ⇡0, returni

• Γc = {
−−!
x : ✓,

−−−!
y : ✓0}

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡

then

(a) Σ;λc; ~⇢; ⇢ ` hσ, ⇡, λc(l)i
s
−!⇤hσ0, ⇡0, returni or

(b) Σ;λc; ~⇢; ⇢ ` hσ, ⇡, λc(l)i
s
−! ⇤err (we assume this sub-

sumes divergence).

2. Preservation: if

• Σ ` f(
−−!
x : ✓)h

−−−!
y : ✓0, l, λc, ji

• Σ;λc; ~⇢; ⇢ ` hσ, ⇡, λc(l)i
s
−!⇤hσ0, ⇡0, returni

• Γc = {
−−!
x : ✓,

−−−!
y : ✓0}

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡

then for some Ψ0 ◆ Ψ
(a) Γc; Σ;Ψ

0 ` ⇢
(b) Σ;Ψ0 ` σ0;⇡0

Proof 1. Propositions 8, 9, 10 and 11 proved together by mutual
structural induction on the typing judgements for `, e, s and dc.

• By case analysis on Γc; Σ ` ` : ✓ in Fig. 4. To show 1b or
conversely 1a, 2a, 2b and 2c hold for proposition 8. Observe
that 2a holds if Ψ0 ◆ Ψ.

1. Let ` = x. By rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

where a = ⇢(x) hence 1a holds. Put Ψ0 = Ψ. Since
Γc; Σ;Ψ ` ⇢ it follows Σ;Ψ0 ` ⇢(x) : ✓⇤ and 2c holds.
Moreover Σ;Ψ0 ` σ;⇡ and 2b holds.

2. Let ` : ✓ = ⇤x : ⌧ . Since Γc; Σ;Ψ ` ⇢ it follows a =

⇢(x) 6= 0. By rule l-ptr Σ; ~⇢; ⇢ ` hσ, ⇡, ⇤xi
`
−! hσ, ⇡, σ(a)i

thus 1a holds. Put Ψ0 = Ψ. By rule t-ptr Γc; Σ ` x : ⌧⇤
and by Γc; Σ;Ψ ` ⇢ it follows Σ;Ψ ` a : ⌧ ⇤ ⇤. By
rule vt-addr (a : ⌧⇤) 2 Ψ and by Σ;Ψ ` σ;⇡ it follows
Σ;Ψ;σ;⇡ ` a : ⌧⇤. By rule st-comp Σ;Ψ ` σ(a) : ⌧⇤ thus
Σ;Ψ0 ` σ(a) : ⌧⇤ and 2c holds. Moreover Σ;Ψ0 ` σ;⇡
and 2b holds.

3. Let ` : ✓ = x ! c : ✓c. Since Γc; Σ;Ψ ` ⇢ let
a = ⇢(x) 6= 0 and let v = σ(a) +? c. If ⇢(x) = 0 or
v 62 [⇡ then 1b holds. Otherwise Σ; ~⇢; ⇢ ` hσ, ⇡, x !

ci
`
−! hσ, ⇡, vi and 1a holds. Put Ψ0 = Ψ. By rule t-fld

Γc; Σ ` x : N⇤ and by rule t-var (x : N⇤) 2 Γc and
by Γc; Σ;Ψ ` ⇢ it follows Σ;Ψ ` ⇢(x) : N ⇤ ⇤. By
rule vt-addr (⇢(x) : N⇤) 2 Ψ and by Σ;Ψ ` σ;⇡ it follows
Σ;Ψ;σ;⇡ ` ⇢(x) : N⇤ and by rule st-comp Σ;Ψ `
σ(⇢(x)) : N⇤. By rule vt-addr (σ(⇢(x)) : N) 2 Ψ and by
Γc; Σ;Ψ ` ⇢ it follows Σ;Ψ;σ;⇡ ` σ(⇢(x)) : N and by
rule st-fld Σ;Ψ ` σ(σ(⇢(x)) + c) : ✓c. By rule st-comp
Σ;Ψ;σ;⇡ ` σ(⇢(x)) + c : ✓c and by Γc; Σ;Ψ ` ⇢
it follows (σ(⇢(x)) + c : ✓c) 2 Ψ and by rule vt-addr

Σ ` ✓
Σ ` short Σ ` long

Σ ` ⌧
Σ ` ⌧⇤

N 2 Σ
Σ ` N

Σ ` decls
d
−! Σ0

Σ ` ✏
d
−! Σ

Σ(N) = ? _N /2 dom(Σ)

Σ0 = Σ ◦ {N 7! ~✓}

8✓i 2 ~✓.(Σ0 ` ✓i)

Σ0 ` decls
d
−! Σ00

Σ ` struct N(~✓); decls
d
−! Σ00

N /2 dom(Σ) Σ0 = Σ ◦ {N 7! ?}

Σ0 ` decls
d
−! Σ00

Σ ` struct N ; decls
d
−! Σ00

Figure 13: Well-formed type declarations of MINC programs

Σ;Ψ ` σ(⇢(x)) + c : ✓c⇤ and 2c holds since Ψ0 = Ψ.
Moreover Σ;Ψ0 ` σ;⇡ and 2b holds.

4. Let ` = x[e0]. By rule t-ar Γc; Σ ` e0 : t hence by mutual
induction:

Either Σ; ~⇢; ⇢ ` hσ, ⇡, e0i
e
−! err. By rule e-lval-err

Σ; ~⇢; ⇢ ` hσ, ⇡, x[e0]i
e
−! err. Hence 1b.

Or Σ; ~⇢; ⇢ ` hσ, ⇡, e0i
e
−! hσ0, ⇡0, vi. If ⇢(x) = 0

then 1a holds by rule e-lval-err. Otherwise let a =
σ0(⇢(x)) +? v. If a 62 [⇡0 then 1a holds. Otherwise

by rule l-ar Σ; ~⇢; ⇢ ` hσ, ⇡, x[e0]i
`
−! hσ0, ⇡0, ai. Hence

1a holds.
By induction there exists Ψ0 ◆ Ψ such that Σ;Ψ0 `
σ0;⇡0. By rule t-ar Γc; Σ ` x : ✓[]⇤ and by rule t-var
(x : ✓[]⇤) 2 Γc and by Γc; Σ;Ψ

0 ` ⇢ it follows Σ;Ψ0 `
⇢(x) : ✓[]⇤⇤. By rule vt-addr (⇢(x) : ✓[]⇤) 2 Ψ0 and by
Σ;Ψ0 ` σ0;⇡0 it follows Σ;Ψ0;σ0;⇡0 ` ⇢(x) : ✓[]⇤
and by rule st-comp Σ;Ψ0 ` σ0(⇢(x)) : ✓[]⇤. By
rule vt-addr (σ0(⇢(x)) : ✓[]) 2 Ψ0 and by Γc; Σ;Ψ

0 `
⇢ it follows Σ;Ψ0;σ0;⇡0 ` σ0(⇢(x)) : ✓[] and by
rule st-ar Σ;Ψ0 ` σ0(σ0(⇢(x))+v) : ✓. By rule st-comp
Σ;Ψ0;σ0;⇡0 ` σ0(⇢(x)) + v : ✓ and by Γc; Σ;Ψ

0 ` ⇢
it follows (σ0(⇢(x)) + v : ✓) 2 Ψ0 and by rule vt-addr
Σ;Ψ0 ` σ0(⇢(x)) + v : ✓⇤ and 2c holds. Moreover
Σ;Ψ0 ` σ;⇡ and 2b holds.

• By case analysis on Γc; Σ ` e : ✓ in Fig. 4. To show that
either 1b or conversely 1a, 2a 2b and 2c of Proposition 9 hold.
Observe that 2a holds if Ψ0 ◆ Ψ.

1. Let e : ✓ = &x : ⌧⇤. By rule t-amp Γc; Σ ` x : ⌧ thus
(x : ⌧) 2 Γc and by Γc; Σ;Ψ ` ⇢ it follows Σ;Ψ `
a : ⌧⇤ where a = ⇢(x) 6= 0. By rule e-amp Σ; ~⇢; ⇢ `

hσ, ⇡,&xi
e
−! hσ, ⇡, ai hence 1a holds. Put Ψ0 = Ψ thus

Σ;Ψ0 ` a : ⌧⇤ and 2c holds whilst 2b is immediate.

2. Let e : ✓ = cl : long. By rule e-const Σ; ~⇢; ⇢ ` hσ, ⇡, cli
e
−!

hσ, ⇡, cli. Hence 1a.
Let Ψ0 = Ψ. By rule vt-l Σ;Ψ ` cl : long. Hence 2c. Also
2b.

3. Let e : ✓ = cs : short. By rule e-const Σ; ~⇢; ⇢ `
hσ, ⇡, csi

e
−! hσ, ⇡, csi. Hence 1a.

Let Ψ0 = Ψ. By rule vt-s Σ;Ψ ` cs : short. Hence 2c. Also
2b.

4. Let e : ✓ = 0l : ⌧⇤. By rule e-const Σ; ~⇢; ⇢ ` hσ, ⇡, 0li
e
−!

hσ, ⇡, 0li. Hence 1a.
Let Ψ0 = Ψ. By rule vt-null Σ;Ψ ` cs : ⌧⇤. Hence 2c.
Also 2b.

5. Let e : ✓ = new ⌧ : ⌧⇤. By rule e-new Σ; ~⇢; ⇢ `
hσ, ⇡, new ⌧i

e
−! hσ0, ⇡, ai where σ0 = σ ◦ {a 7! ?}.

Hence 1a.

Let Ψ0 = Ψ ◦ {a 7! ⌧}. By rule vt-addr Σ;Ψ ` a : ⌧⇤
hence 2c. Also by rule vt-bot Σ;Ψ0 ` ? : ⌧ by and rule
st-comp Σ;Ψ0;σ0;⇡ ` a : ⌧ hence Σ;Ψ0 ` σ0;⇡ and 2b
holds.

6. Let e : ✓ = new struct N : N⇤ and n = |Σ(N)|. By

rule e-str Σ; ~⇢; ⇢ ` hσ, ⇡, new struct Ni
e
−! hσ0, ⇡0, ai

where σ0 = σ ◦ {a 7! ?, . . . , a + n − 1 7! ?} and
⇡0 = ⇡ [{[a, a+ n− 1]}. Put Ψ0 = Ψ [{a : N, a+ 1 :
✓1, . . . , a+n− 1 : ✓n−1}. By rule vt-addr Σ;Ψ0 ` a : N⇤
hence 2c holds.
Let i 2 [0, n−1]. Then σ0(a+i) = ? hence Σ;Ψ0 ` σ0(a+
i) : ✓i by rule vt-bot therefore Σ;Ψ0;σ0;⇡0 ` a+ i : ✓i. By
rule st-fld Σ;Ψ0;σ0;⇡0 ` a : N hence 2b holds.

7. Let e : ✓ = new ✓[e] : ✓[]⇤. By rule t-new-ar Γc; Σ ` e : t
hence by induction:

Either Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! err. By rule e-ar-err

Σ; ~⇢; ⇢ ` hσ, ⇡, new ✓[e]i
e
−! err. Hence 1b.

Or Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! hσ0, ⇡0, vi. By rule e-ar

Σ; ~⇢; ⇢ ` hσ, ⇡, new ✓[e]i
e
−! hσ00, ⇡00, ai where σ00 =

σ0 ◦ {a 7! ?, . . . , a+ v − 1 7! ?}. Hence 1a.
By induction there exists Φ0 ◆ Φ such that Σ;Ψ0 `
σ0;⇡0. Put Ψ00 = Ψ0 ◦ {a 7! ✓[], . . . , a+ v− 1 7! ✓[]}.
By rule vt-addr it follows Σ;Ψ00 ` a : ✓[]⇤ hence 2c. By
rule vt-bot it follows Σ;Ψ00 ` ? : ✓[] and by st-comp it
follows Σ;Ψ00;σ00;⇡00 ` a+ i : ✓[] for all i 2 [0, v− 1]
hence 2b.

8. Let e : ✓ = (e1 ⊕ e2) : t. By rule t-⌦ Γc; Σ ` e1 : t and
Γc; Σ ` e2 : t. Hence by induction:

Either Σ; ~⇢; ⇢ ` hσ, ⇡, e1i
e
−! err. By rule e-op-err1

Σ; ~⇢; ⇢ ` hσ, ⇡, (e1 ⊕ e2)i
e
−! err. Hence 1b.

Or Σ; ~⇢; ⇢ ` hσ0, ⇡0, e2i
e
−! err. Like previous case.

Or Σ; ~⇢; ⇢ ` hσ, ⇡, e1i
e
−! hσ0, ⇡0, v1i and Σ; ~⇢; ⇢ `

hσ0, ⇡0, e2i
e
−! hσ00, ⇡00, v2i.

− Either v1 ⊕⇡ v2 = err. By rule e-op-err3 Σ; ~⇢; ⇢ `
hσ, ⇡, (e1 ⊕ e2)i

e
−! err. Hence 1b.

− Or v1⊕⇡ v2 = v. By rule e-op Σ; ~⇢; ⇢ ` hσ, ⇡, (e1⊕

e2)i
e
−! hσ0, ⇡, vi. Hence 1a.

By induction Σ;Ψ00 ` v1 : t and Σ;Ψ00 ` v2 : t.
If t = short then v = ? or v = ns where n 2
[−215, 215 − 1]. If v = ? then Σ;Ψ00 ` v : short.
by rule vt-bot. Otherwise if v = ns then Σ;Ψ00 `
v : short by rule vt-s. An analgous argument holds
if t = long hence 2c. Also 2b trivially by induction.

9. Let e : ✓ = (e1 ⊕ e2) : ⌧ []⇤. Similar to previous case.

10. Let e : ✓ = f(~e) : ✓j . By rule t-call Γc; Σ ` ei : ✓
0
i where

φc(f) = f(
−−!
x : ✓)h

−−−!
y : ✓00, l, λc, ji and Σ ` ~✓0 <: ~✓. With

respect to ei there are two possibilities:

Either for some i: Σ; ~⇢; ⇢ ` hσi−1, ⇡i−1, eii
e
−! err.

Then by rule e-call-err it follows that 1b holds.

Or for all i: Σ; ~⇢; ⇢ ` hσi−1, ⇡i−1, eii
e
−! hσi, ⇡i, vii

and by the inductive hypothesis Σ;Ψi ` ✓i : vi and

Σ;Ψi ` σi;⇡i. Let Ψ0 = Ψn [{
−−!
a : ✓,

−−−!
a0 : ✓0}. Then it

is easy to verify Σ;Ψ0 ` σ0;⇡n and Γc; Σ;Ψ
0 ` ⇢0. By

the progress induction hypothesis we then have for s:

− Either Σ;λc; ~⇢, ⇢; ⇢
0 ` hσ0, ⇡n, λc(l)i

s
−!⇤hσ00, ⇡0, returni.

Hence 1a.

− Otherwise 1b.

Preservation follows from the induction hyptheses for
all ei and s.

• By case analysis on Γc; Σ ` s in Fig. 4. To show that either 1b
or conversely 1a, 2a, 2b and 2c of Proposition 10 hold. Observe
that 2a holds if Ψ0 ◆ Ψ.

1. Let Γc; Σ ` (` := e); s. From the induction hypothesis

for `, either Σ; ~⇢; ⇢ ` hσ, ⇡, `i
`
−! err, and hence 1b, or

Σ; ~⇢; ⇢ ` hσ, ⇡, `i
`
−! hσ0, ⇡0, ai. In the latter case, we

have either Σ; ~⇢; ⇢ ` hσ0, ⇡0, ei
e
−! err, and hence 1b, or

Σ; ~⇢; ⇢ ` hσ0, ⇡0, ei
e
−! hσ00, ⇡00, vi. By s-assn we then

have Σ;λc; ~⇢; ⇢ ` hσ, ⇡, (` := e); si
s
−! hσ000, ⇡00, si where

σ000 = σ00 ◦ {a 7! v} and hence 1a.
We get Γc; Σ ` s from t-assn. Hence 2c. From the in-
duction hypotheses for ` and e we get type preservations
Σ;Ψ00 ` a : ✓1⇤ and Σ;Ψ00 ` v : ✓2 and type con-
sistency Σ;Ψ00 ` σ00;⇡00. Hence, through rule vt-addr we
know that (a : ✓1) 2 Ψ00. From rule t-assn we know Σ `
✓2 <: ✓1. Hence, through rule vt-subt we have Σ;Ψ00 `
v : ✓1. Since σ000(a) = v we have hence by rule st-comp
Σ;Ψ00;σ000;⇡00 ` a : ✓1. Hence Σ;Ψ00 ` σ000;⇡00. Thus 2b.

2. Let Γc; Σ ` (if e goto l); s. Then

Either Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! err. Hence 1b.

Or Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! hσ0, ⇡0, vi. Then

− Either v = ?. Hence 1b.

− Or v = 0. Then by rule s-if-false Σ;λc; ~⇢; ⇢ `
hσ, ⇡, (if e goto l); si

s
−! hσ0, ⇡s,0 i. Hence 1a. We

call this scenario 1.

− Or v 6= 0 ^ v 6= ?. Then

· Either l 62 dom(λc). Then 1b.

· Or s0 = λc(l). Then by rule s-if-true Σ;λc; ~⇢; ⇢ `

hσ, ⇡, (if e goto l); si
s
−! hσ0, ⇡s0,0 i. Hence 1a.

We call this scenario 2.

In scenario 1 we have from t-if Γc; Σ ` s. Hence 2c. In
scenario 2 we have that s0 2 range(λc). Hence Γc; Σ ` s0.
Hence 2c. In both scenarios we have from the induction
hypthesis for e that Σ;Ψ0 ` σ0;⇡0. Hence 2b.

3. Let Γc; Σ ` goto l. Then either l 62 dom(λc) and thus

Σ;λc; ~⇢; ⇢ ` hσ, ⇡, goto li
s
−! err. Hence 1b. Alter-

natively λc(l) = s. Then by rule s-goto Σ;λc; ~⇢; ⇢ `

hσ, ⇡, goto li
s
−! hσ, ⇡, si. Hence 1a.

From Γc; Σ ` λc it follows that Γc; Σ ` s. Hence 2c. Let
Ψ0 = Ψ. Then 2b.

4. Let Γc; Σ ` return. Hence 1c. Also vacuously 2c and 2b.

• Proposition 11 follows by the repeated application of Proposi-
tion 10 combining progress and preservation at every step.
Besides the givens of Proposition ??, Proposition 10 also re-
quires Γc; Σ ` λc. This is given by rule t-def which is the

only possible way that the well-typing of the function defini-
tion could have been constructed.

A.2 Well-Typed Decompilation

Proposition 12 (well-typed instruction decompilation). If µΓ; Γc; Σ `
◆

◆
 ` := e then for some ✓1 and ✓2

1. Γc; Σ ` ` : ✓1
2. Γc; Σ ` e : ✓2
3. Σ ` ✓2 <: ✓1

Proof 2. The proof proceeds by case analysis on the inference
rules of the instruction translation relation.

1. Case tr-⊕-r*1. Let ✓1 = ✓2 = ✓[]⇤. From tr-⊕-r*1 we have
(x : ✓[]⇤) 2 Γc. Then by rule t-var Γc; Σ ` x : ✓[]⇤. Hence 1.
From tr-⊕-r*1 we have Γc; Σ ` m : long. From tr-⊕-r*1 we
have (y : long) 2 Γc. Then by rule t-var Γc; Σ ` y : long.
From both of these we get by rule t-⌦ Γc; Σ ` y ⇤ m : long.
From that and the type of x we get through rule t-ptr-⊕ Γc; Σ `
x⊕ (y ⇤m) : ✓[]⇤. Hence 2. From rule sub-refl 3.

2. Case tr-⊕-r*2. Let ✓1 = ✓2 = t. From tr-⊕-r*2 we have
(x : t) 2 Γc. Then by rule t-var Γc; Σ ` x : t. Hence 1.
From tr-⊕-r*2 we have Γc; Σ ` c : t. From tr-⊕-r*1 we have
(y : t) 2 Γc. Then by rule t-var Γc; Σ ` y : t. From both of
these we get by rule t-⌦ Γc; Σ ` y ⇤ c : t. From that and the
type of x we get through rule t-⌦ Γc; Σ ` x⊕(y⇤c) : t. Hence
2. From rule sub-refl 3.

3. Case tr-⌦-rc. Let ✓1 = ✓2 = t. From tr-⌦-rc we have (x : t) 2
Γc. Then by rule t-var Γc; Σ ` x : t. Hence 1. From tr-⌦-rc we
have Γc; Σ ` c : t. From that and the previous Γc; Σ ` x : t we
have by rule t-⌦ Γc; Σ ` x⌦ c : t. Hence 2. From rule sub-refl
3.

4. Case tr-⌦-rr. Let ✓1 = ✓2 = t. From tr-⌦-rr we have (x :
t) 2 Γc. Then by rule t-var Γc; Σ ` x : t. Hence 1. From
tr-⌦-rr we have (y : t) 2 Γc. Then by rule t-var Γc; Σ ` y : t.
From that and the previous Γc; Σ ` x : t we have by rule t-⌦
Γc; Σ ` x⌦ y : t. Hence 2. From rule sub-refl 3.

5. Case tr-⊕-rc. Let ✓1 = ✓2 = ✓[]⇤. From tr-⊕-rc we have
(x : ✓[]⇤) 2 Γc. Then by rule t-var Γc; Σ ` x : ✓[]⇤.
Hence 1. From tr-⊕-rc we have Γc; Σ ` m : t. From that
and the previous Γc; Σ ` x : ✓[]⇤ we have by rule t-ptr-⊕
Γc; Σ ` x⊕m : ✓[]⇤. Hence 2. From rule sub-refl 3.

6. Case tr-mov-rc. Let ✓1 = ✓2 = t. From tr-mov-rc we have
(x : t) 2 Γc. Then by rule t-var Γc; Σ ` x : t. Hence 1. From
tr-mov-rc we have Γc; Σ ` c : t. Hence 2. From rule sub-refl 3.

7. Case tr-mov-r0. Let ✓1 = ✓2 = ⌧⇤. From tr-mov-r0 we have
(x : ⌧⇤) 2 Γc. Then by rule t-var Γc; Σ ` x : ⌧⇤. Hence
1. From t-null we have Γc; Σ ` 0 : ⌧⇤. Hence 2. From rule
sub-refl 3.

8. Case tr-mov-rr. From tr-mov-rr we have (x : ✓1) 2 Γc. Then
by rule t-var Γc; Σ ` x : ✓1. Hence 1. From tr-mov-rr we have
(y : ✓2) 2 Γc. Then by rule t-var Γc; Σ ` y : ✓2. Hence 2.
From tr-mov-rr we have Σ ` ✓2 <: ✓1. Hence 3.

9. Case tr-mov-ri1. From tr-mov-ri1 we have (x : ✓1) 2 Γc. Then
by rule t-var Γc; Σ ` x : ✓1. Hence 1. From tr-mov-ri1 we have
(y : ✓2⇤) 2 Γc. Then by rule t-var Γc; Σ ` y : ✓2⇤. Then by
rule t-ptr Γc; Σ ` ⇤y : ✓2. Hence 2. From tr-mov-ri1 we have
Σ ` ✓2 <: ✓1. Hence 3.

10. Case tr-mov-ir1. From tr-mov-ir1 we have (x : ✓1⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓1⇤. Then by rule t-ptr Γc; Σ `
⇤x : ✓1. Hence 1. From tr-mov-ir1 we have (y : ✓2) 2 Γc. Then
by rule t-var Γc; Σ ` y : ✓2. Hence 1. From tr-mov-ir1 we have
Σ ` ✓2 <: ✓1. Hence 3.

11. Case tr-mov-ri2. From tr-mov-ri2 we have (x : ✓1) 2 Γc. Then
by rule t-var Γc; Σ ` x : ✓1. Hence 1. From tr-mov-ri2 we have
(y : ✓2[]⇤) 2 Γc. Then by rule t-var Γc; Σ ` y : ✓2[]⇤. Also
by rule t-lΓc; Σ ` 0 : long. Then by rule t-arΓc; Σ ` y[0] : ✓2.
Hence 2. From tr-mov-ri2 we have Σ ` ✓2 <: ✓1. Hence 3.

12. Case tr-mov-ir2. From tr-mov-ir2 we have (x : ✓1[]⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓1[]⇤. Also by rule t-lΓc; Σ `
0 : long. Then by rule t-ar Γc; Σ ` x[0] : ✓1. Hence 1. From
tr-mov-ir2 we have (y : ✓2) 2 Γc. Then by rule t-var Γc; Σ `
y : ✓2. Hence 2. From tr-mov-ir2 we have Σ ` ✓2 <: ✓1. Hence
3.

13. Case tr-mov-ri3. From tr-mov-ri3 we have (x : ✓) 2 Γc. Then
by rule t-var Γc; Σ ` x : ✓. Hence 1. From tr-mov-ri3 we have
(y : N⇤) 2 Γc. Then by rule t-var Γc; Σ ` y : N⇤. Then by
rule t-fldΓc; Σ ` y ! 0 : ✓0. Hence 2. From tr-mov-ri3 we
have Σ ` ✓0 <: ✓. Hence 3.

14. Case tr-mov-ir3. From tr-mov-ir3 we have (x : N⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : N⇤. Then by rule t-fldΓc; Σ `
x ! 0 : ✓0. Hence 1. From tr-mov-ir3 we have (y : ✓) 2 Γc.
Then by rule t-var Γc; Σ ` y : ✓. Hence 2. From tr-mov-ir3 we
have Σ ` ✓ <: ✓0. Hence 3.

15. Case tr-mov-ri+1. From tr-mov-ri+1 we have (x : ✓1) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓1. Hence 1. From tr-mov-ri+1

we have (y : ✓2[]⇤) 2 Γc. Then by rule t-var Γc; Σ ` y : ✓2[]⇤.
Also from tr-mov-ri+1 we have Γc; Σ ` m : t. Then by rule
t-arΓc; Σ ` y[m] : ✓2. Hence 2. From tr-mov-ri+1 we have
Σ ` ✓2 <: ✓1. Hence 3.

16. Case tr-mov-i+r1. From tr-mov-i+r1 we have (x : ✓1[]⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓1[]⇤. Also from tr-mov-i+r1
we have Γc; Σ ` m : t. Then by rule t-arΓc; Σ ` x[m] : ✓1.
Hence 1. From tr-mov-i+r1 we have (y : ✓2) 2 Γc. Then by
rule t-var Γc; Σ ` y : ✓2. Hence 2. From tr-mov-i+r1 we have
Σ ` ✓2 <: ✓1. Hence 3.

17. Case tr-mov-ri+2. From tr-mov-ri+2 we have (x : ✓) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓. Hence 1. From tr-mov-ri+2 we
have (y : N⇤) 2 Γc. Then by rule t-var Γc; Σ ` y : N⇤. Then
by rule t-fldΓc; Σ ` y ! m : ✓m. Hence 2. From tr-mov-ri+2

we have Σ ` ✓m <: ✓. Hence 3.

18. Case tr-mov-i+r2. From tr-mov-i+r2 we have (x : N⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : N⇤. Then by rule t-fldΓc; Σ `
x ! m : ✓m. Hence 1. From tr-mov-i+r2 we have (y :
✓2) 2 Γc. Then by rule t-var Γc; Σ ` y : ✓2. Hence 2. From
tr-mov-i+r2 we have Σ ` ✓ <: ✓m. Hence 3.

19. Case tr-alloc-r*. From tr-alloc-r* we have (x : ✓[]⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓[]⇤. Hence 1. From tr-alloc-r*
we have Γc; Σ ` m : t. From tr-alloc-r* we have (y : t) 2 Γc.
Then by rule t-var Γc; Σ ` y : t. From both of these we get
by rule t-⌦ Γc; Σ ` y ⇤ m : t. Then from t-new-ar we get
Γc; Σ ` new ✓[y ⇤m] : ✓[]⇤. Hence 2. From rule sub-refl 3.

20. Case tr-alloc-rc1. From tr-alloc-rc1 we have (x : ✓⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓⇤. Hence 1. From t-new we get
Γc; Σ ` new ✓ : ✓⇤. Hence 2. From rule sub-refl 3.

21. Case tr-alloc-rc2. From tr-alloc-rc2 we have (x : N⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : N⇤. Hence 1. From t-new-str
we get Γc; Σ ` new N : N⇤. Hence 2. From rule sub-refl 3.

22. Case tr-alloc-rc3. From tr-alloc-rc3 we have (x : ✓[]⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓[]⇤. Hence 1. From tr-alloc-rc3
we have Γc; Σ ` m : t. Then from rule t-new-ar we have
Γc; Σ ` new ✓[m] : ✓[]⇤. Hence 2. From rule sub-refl 3.

23. Case tr-call. From tr-call we have (u : ✓u) 2 Γc. Then by rule
t-var Γc; Σ ` u : ✓u. Hence 1. We have:

• From tr-call we have φc(f) = f(
−−!
x : ✓)h

−−−!
y : ✓0, l, λc, ji.

• From tr-call we have
−−−−!
(v : ✓v) 2 Γc. Then by rule t-var

Γc; Σ ` ~v : ~✓v .

• From tr-call we have Σ ` ~✓v <: ~✓.
• By rule sub-reflwe have Σ ` ✓0j <: ✓0j .

Hence by rule t-call we have Γc; Σ `: ✓0j . Hence 2. From tr-call

we have Σ ` ✓0j <: ✓u. Hence 3.

Proposition 13 (well-typed block decompilation). If µλ;µΓ; Γc; Σ `

b
b
 s then Γc; Σ ` s.

Proof 3. This proof proceeds by structural induction on the block
translation relation.

1. Case tr-instr. From tr-instrwe have µΓ; Γc; Σ ` ◆
◆
 ` := e.

Hence, by Proposition 12 we haveΓc; Σ ` ` : ✓1, Γc; Σ `
e : ✓2 and Σ ` ✓2 <: ✓1. Also by rule tr-instr we have

µλ;µΓ; Γc; Σ ` b
b
 s. Hence by the induction hypothesis we

have Γc; Σ ` s. Then by rule t-assn we have Γc; Σ ` ` := e; s
2. Case tr-if. From tr-if we have (x : ✓) 2 Γc. Then by rule t-var

Γc; Σ ` x : ✓u. Also from tr-if we have µλ;µΓ; Γc; Σ ` b
b
 s.

Hence, from the induction hypothesis we have Γc; Σ ` s Then
the proposition follows from rule t-if.

3. Case tr-goto. This follows from rule t-goto.

4. Case tr-ret. This follows from rule t-ret.

Proposition 14 (well-typed definition decompilation). If Σ `
dx dc then Σ ` dc.

Proof 4. We show that the four preconditions to rule t-def are
satisfied:

1. From rule tr-def we know that Γc = {
−−!
x : ✓,

−−−!
y : ✓0}.

2. From rule tr-def we know that a 2 dom(λc) and l = µλ(a).
Hence l 2 range(µλ). From the rule we also know that
range(µλ) = dom(λc). Hence l 2 dom(λc).

3. From rule tr-def we know that ryj 2 −!ry . We also know that

yj = µΓ(ryj) and that −!y = µΓ(
−!ry). Hence yj 2 −!y .

4. From rule tr-def we know that 8(a 7! l) 2 µλ : µλ;µΓ; Γc; Σ `

λx(a)
b
 λc(l). From Proposition 13 we then know that

8l 2 range(µλ) : Γc; Σ ` λc(l). From rule tr-def we know
that range(µλ) = dom(λc). Hence 8l 2 dom(λc) : Γc; Σ `
λc(l).

Hence by rule t-def we conclude Σ ` f(
−−!
x : ✓)h

−−−!
y : ✓0, l, λc, ji.

A.3 Semantics Preservation

Instructions We prove Propositions 7 and 6 together.

Proof 5. The proof proceeds by case analysis on the derivation of

the judgement µΓ; Γc; Σ ` ◆
◆
 ` := e.

1. Case tr-⊕-r*1. Then ◆ = (op⊕4 ri, rj ⇤ c), ` = x and e =
x⊕ (y ⇤m).
(a) This case is not possible. Rule ex-⊕-r* always applies.

(b) In this case rules ex-⊕-r* is used for progress on ◆: ~R `
hH,R, op⊕4 ri, rj ⇤ ci

◆
−! hH,R0i. Here R0 = R ◦4 {ri 7!

~bi ⊕4 (~bj ⇤4 c)} where~bi = R0:4(ri) and~bj = R0:4(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-op, e-lval, l-var and

e-const we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, (x ⊕ (y ⇤ m))i
e
−!

hσ, ⇡, vi where v = vx⊕⇡(vy⇤⇡m), vx = σ(a), a0 = ⇢(y)
and vy = σ(a0).
From rule tr-⊕-r*1 we know (ri : x)4 2 µΓ. Hence from

the related registers we know µa ` ~bi ! vx. Similarly,

we know µa ` ~bj ! vy . Then from (x : ✓[]⇤) 2

Γc and the store typing of σ it follows that vx = n⇤

and from the success of the addition, it also follows that
[n⇤, n⇤⊕(vy⇤m)] ✓2 ⇡. Hence, also from the store typing
all m values at the addresses in this range have type ✓. From
the related heaps it then follows with c/m = sizeof (✓) that

µa ` (~bi ⊕4 (~bj ⇤4 c)) ! (v ⊕⇡ (vy ⇤ m)). Hence, the
update registers are still related.

2. Case tr-⊕-r*2. Then ◆ = (op⊕w ri, rj ⇤ c), ` = x and e =
x⊕ (y ⇤ c).
(a) This case is not possible. Rule ex-⊕-r* always applies.

(b) In this case rules ex-⊕-r* is used for progress on ◆: ~R `
hH,R, op⊕w ri, rj ⇤ ci

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~bi ⊕w (~bj ⇤w c)} where~bi = R0:w(ri) and~bj = R0:w(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-op, e-lval, l-var and

e-const we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, (x ⊕ (y ⇤ m))i
e
−!

hσ, ⇡, vi where v = vx⊕⇡(vy⇤⇡m), vx = σ(a), a0 = ⇢(y)
and vy = σ(a0).
From rule tr-⊕-r*2 we know (ri : x)w 2 µΓ. Hence from

the related registers we know µa ` ~bi ! vx. Similarly,

we know µa ` ~bj ! vy . It then follows that µa `

(~bi ⊕w (~bj ⇤w c))! (v ⊕⇡ (vy ⇤ c)). Hence, the update
registers are still related.

3. Case tr-⌦-rc. Then ◆ = (op⌦w ri, c), ` = x and e = x⌦ c.

(a) This case is not possible. Rule ex-⌦-rc always applies.

(b) In this case rules ex-⌦-rc is used for progress on ◆: ~R `
hH,R, op⌦w ri, ci

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~b⌦w c} where~b = R0:w(ri).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-op, e-lval, l-var and

e-const we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, (x ⌦ c)i
e
−! hσ, ⇡, v0i

where v0 = v ⌦⇡ c and v = σ(a).
From rule tr-⌦-rc we know (ri : x)w 2 µΓ. Hence from

the related registers we know µa ` ~b ! v. Then from
(x : t) 2 Γc and w = sizeof (t) it follows that µa `

(~b⌦w c)! (v ⌦⇡ c). Hence, the update registers are still
related.

4. Case tr-⊕-rc. Then ◆ = (op⊕4 ri, c), ` = x and e = x⊕m.

(a) This case is not possible. Rule ex-⌦-rc always applies.

(b) In this case rules ex-⌦-rc is used for progress on ◆: ~R `
hH,R, op⊕4 ri, ci

◆
−! hH,R0i. Here R0 = R ◦4 {ri 7!

~b⊕4 c} where~b = R0:4(ri).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-op, e-lval, l-var and

e-const we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, (x ⊕ m)i
e
−! hσ, ⇡, v0i

where v0 = v ⊕⇡ m and v = σ(a).
From rule tr-⊕-rc we know (ri : x)4 2 µΓ. Hence from

the related registers we know µa ` ~b ! v. Then from
(x : ✓[]⇤) 2 Γc and the store typing of σ it follows that
v = n⇤ and from the success of the addition, it also follows
that [n⇤, n⇤ ⊕m] ✓2 ⇡. Hence, also from the store typing
all m values at the addresses in this range have type ✓. From
the related heaps it then follows with c/m = sizeof (✓) that

µa ` (~b ⊕4 c) ! (v ⊕⇡ m). Hence, the update registers
are still related.

5. Case tr-⌦-rr. Then ◆ = (op⌦w ri, rj), ` = x and e = x⌦ y.

(a) This case is not possible. Rule ex-⌦-rr always applies.

(b) In this case rules ex-⌦-rc is used for progress on ◆: ~R `
hH,R, op⌦w ri, rji

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~bi ⊕w
~bj} where~bi = R0:w(ri) and~bj = R0:w(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-op, e-lval and l-var

we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, (x ⌦ y)i
e
−! hσ, ⇡, vi where

v = vx ⌦⇡ vy , vx = σ(a), a0 = ⇢(y) and vy = σ(a0).
From rule tr-⌦-rr we know (ri : x)w 2 µΓ. Hence from

the related registers we know µa ` ~bi ! vx. By similar

reasoning we know µa ` ~bj ! vy . Then from (x :
t) 2 Γc, (y : t) 2 Γc and w = sizeof (t) it follows that

µa ` (~bi⌦w
~bj)! (vx⌦⇡vy). Hence, the update registers

are still related.

6. Case tr-mov-rc. Then ◆ = (movw ri, c), ` = x and e = c.

(a) This case is not possible. Rule ex-mov-rc always applies.

(b) In this case rules ex-mov-rc is used for progress on ◆: ~R `
hH,R,movw ri, ci

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

c}.

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rule e-const we obtain

Σ; ~⇢; ⇢ ` hσ, ⇡, ci
e
−! hσ, ⇡, ci.

We know that µa ` c! c. Hence, the update registers are
still related.

7. Case tr-mov-r0. Then ◆ = (mov4 ri, 0), ` = x and e = 0.

(a) This case is not possible. Rule ex-mov-rc always applies.

(b) In this case rules ex-mov-rc is used for progress on ◆: ~R `
hH,R,mov4 ri, 0i

◆
−! hH,R0i. Here R0 = R◦4{ri 7! 0}.

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rule e-const we obtain

Σ; ~⇢; ⇢ ` hσ, ⇡, 0i
e
−! hσ, ⇡, 0i.

We know that µa ` 0! 0. Hence, the update registers are
still related.

8. Case tr-mov-rr. Then ◆ = (movw ri, rj), ` = x and e = y.

(a) This case is not possible. Rule ex-mov-rr always applies.

(b) In this case rules ex-mov-rr is used for progress on ◆: ~R `
hH,R,movw ri, rji

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~b} where~b = R0:w(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval and l-var we obtain

Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! hσ, ⇡, vi where v = σ(a0) and

a0 = ⇢(y).
From rule tr-mov-rr we know (rj : y)w 2 µΓ. Hence from

the related registers we know µa ` ~b! v. Also from rule
tr-mov-rr we know (ri : x)w 2 µΓ. Hence, the registers
are related. After the update we can see that they are still
related.

9. Case tr-mov-ri1. Then ◆ = (movw ri, [rj]), ` = x and e = ⇤y.

(a) This case is possible iff R(rj) = 0 or R(rj) = ?. Because
of the related registers and, from rule tr-mov-ri1, (rj : y)4 2
µΓ, we have µa ` R(rj)! σ(⇢(y)). In either of the cases

for R(rj) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! err.

(b) In this case rules ex-mov-ri is used for progress on ◆: ~R `
hH,R,movw ri, [rj]i

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~b2} where~b2 = Hw(~b1) and~b1 = R(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval, l-ptr and l-var

we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, ⇤yi
e
−! hσ, ⇡, v2i where v2 =

σ(v1), v1 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ri1 we know (rj : y)4 2 µΓ. Hence

from the related registers we know µa ` ~b1 ! v1. From

related stores, we also know µa ` ~b2 ! v2. Also from rule
tr-mov-ri1 we know (ri : x)w 2 µΓ. Hence, the registers

are related. After the update we can see that they are still
related.

10. Case tr-mov-ri2. Then ◆ = (movw ri, [rj]), ` = x and e =
y[0].
(a) This case is possible iff R(rj) = 0 or R(rj) = ?. Because

of the related registers and, from rule tr-mov-ri2, (rj : y)4 2
µΓ, we have µa ` R(rj)! σ(⇢(y)). In either of the cases

for R(rj) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! err.

(b) In this case rules ex-mov-ri is used for progress on ◆: ~R `
hH,R,movw ri, [rj]i

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~b2} where~b2 = Hw(~b1) and~b1 = R(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval, l-ar and e-const

we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, y[0]i
e
−! hσ, ⇡, v2i where v2 =

σ(v1), v1 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ri2 we know (rj : y)4 2 µΓ. Hence

from the related registers we know µa ` ~b1 ! v1. From

related stores, we also know µa ` ~b2 ! v2. Also from rule
tr-mov-ri2 we know (ri : x)w 2 µΓ. Hence, the registers
are related. After the update we can see that they are still
related.

11. Case tr-mov-ri3. Then ◆ = (movw ri, [rj]), ` = x and e =
y ! 0.

(a) This case is possible iff R(rj) = 0 or R(rj) = ?. Because
of the related registers and, from rule tr-mov-ri3, (rj : y)4 2
µΓ, we have µa ` R(rj)! σ(⇢(y)). In either of the cases

for R(rj) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! err.

(b) In this case rules ex-mov-ri is used for progress on ◆: ~R `
hH,R,movw ri, [rj]i

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~b2} where~b2 = Hw(~b1) and~b1 = R(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval and l-fldwe obtain

Σ; ~⇢; ⇢ ` hσ, ⇡, y ! 0i
e
−! hσ, ⇡, v2i where v2 = σ(v1),

v1 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ri3 we know (rj : y)4 2 µΓ. Hence

from the related registers we know µa ` ~b1 ! v1. From

related stores, we also know µa ` ~b2 ! v2. Also from rule
tr-mov-ri3 we know (ri : x)w 2 µΓ. Hence, the registers
are related. After the update we can see that they are still
related.

12. Case tr-mov-ir1. Then ◆ = (movw [ri], rj), ` = ⇤x and e = y.

(a) This case is possible iff R(ri) = 0 or R(ri) = ?. Because
of the related registers and, from rule tr-mov-ir1, (ri : x)4 2
µΓ, we have µa ` R(ri)! σ(⇢(x)). In either of the cases

for R(ri) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! err.

(b) In this case rules ex-mov-ir is used for progress on ◆:
~R ` hH,R,movw [ri], rji

◆
−! hH 0, Ri. Here H 0 =

H ◦ {~b1, . . . ,~b1 + (w − 1) 7! ~b2} where ~b1 = R(ri)

and~b = R0:w(rj).

Similarly, through rule l-ptr Σ; ~⇢; ⇢ ` hσ, ⇡, ⇤xi
`
−! hσ, ⇡, v1i

with v1 = σ(a) and a = ⇢(x). Also through rules e-lval

and l-varwe obtain Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! hσ, ⇡, v2i where

v2 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ir1 we know (rj : y)w 2 µΓ. Hence

from the related registers we know µa ` ~b2 ! v2. From

related stores, we also know µa ` ~b2 ! v2. Also from rule

tr-mov-ir1 we know (ri : x)w 2 µΓ. Hence, µa ` ~b1 !
v1. Since (x : ✓1⇤) 2 Γc, we know that v1 is an address.

Because of related heaps, we then know that (~b1, v1)inµa.
After the update we can see that they are still related.

13. Case tr-mov-ir2. Then ◆ = (movw [ri], rj), ` = x[0] and
e = y.

(a) This case is possible iff R(ri) = 0 or R(ri) = ?. Because
of the related registers and, from rule tr-mov-ir2, (ri : x)4 2
µΓ, we have µa ` R(ri)! σ(⇢(x)). In either of the cases

for R(ri) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! err.

(b) In this case rules ex-mov-ir is used for progress on ◆:
~R ` hH,R,movw [ri], rji

◆
−! hH 0, Ri. Here H 0 =

H ◦ {~b1, . . . ,~b1 + (w − 1) 7! ~b2} where ~b1 = R(ri)

and~b = R0:w(rj).

Similarly, through rule l-ar and e-const Σ; ~⇢; ⇢ ` hσ, ⇡, x[0]i
`
−!

hσ, ⇡, v1i with v1 = σ(a) and a = ⇢(x). Also through rules

e-lval and l-varwe obtain Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! hσ, ⇡, v2i

where v2 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ir2 we know (rj : y)w 2 µΓ. Hence

from the related registers we know µa ` ~b2 ! v2. From

related stores, we also know µa ` ~b2 ! v2. Also from rule

tr-mov-ir2 we know (ri : x)w 2 µΓ. Hence, µa ` ~b1 !
v1. Since (x : ✓1[]⇤) 2 Γc, we know that v1 is an address.

Because of related heaps, we then know that (~b1, v1)inµa.
After the update we can see that they are still related.

14. Case tr-mov-ir3. Then ◆ = (movw [ri], rj), ` = x ! 0 and
e = y.

(a) This case is possible iff R(ri) = 0 or R(ri) = ?. Because
of the related registers and, from rule tr-mov-ir3, (ri : x)4 2
µΓ, we have µa ` R(ri)! σ(⇢(x)). In either of the cases

for R(ri) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! err.

(b) In this case rules ex-mov-ir is used for progress on ◆:
~R ` hH,R,movw [ri], rji

◆
−! hH 0, Ri. Here H 0 =

H ◦ {~b1, . . . ,~b1 + (w − 1) 7! ~b2} where ~b1 = R(ri)

and~b = R0:w(rj).

Similarly, through rule l-fld Σ; ~⇢; ⇢ ` hσ, ⇡, x ! 0i
`
−!

hσ, ⇡, v1i with v1 = σ(a) and a = ⇢(x). Also through rules

e-lval and l-varwe obtain Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! hσ, ⇡, v2i

where v2 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ir3 we know (rj : y)w 2 µΓ. Hence

from the related registers we know µa ` ~b2 ! v2. From

related stores, we also know µa ` ~b2 ! v2. Also from rule

tr-mov-ir3 we know (ri : x)w 2 µΓ. Hence, µa ` ~b1 !
v1. Since (x : N⇤) 2 Γc, we know that v1 is an address.

Because of related heaps, we then know that (~b1, v1)inµa.
After the update we can see that they are still related.

15. Case tr-mov-ri+1. Then ◆ = (movw ri, [rj + c], ` = x and
e = y[m].
(a) This case is possible iff R(rj) = 0, R(rj) = ? or (R(rj)+

c) 62 dom(H). Because of the related registers and heaps,
and from rule tr-mov-ri+1(rj : y)4 2 µΓ, we have µa `
R(rj) ! σ(⇢(y)). In either of the first two cases for

R(rj) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, y[m]i
`
−! err. In the

last case, because of related heaps, it also has to be that

Σ; ~⇢; ⇢ ` hσ, ⇡, y[m]i
`
−! err.

(b) In this case rules ex-mov-r+ is used for progress on ◆: ~R `
hH,R,movw ri, [rj + c]i

◆
−! hH,R0i. Here R0 = R ◦w

{ri 7! ~b} where~b = Hw(~b0) and~b = R(rj) +4 c.

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval, l-arand e-const

we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, y[m]i
e
−! hσ, ⇡, vi where v =

σ(a00 +m), a00 = σ(a0) and a0 = ⇢(y).

From rule tr-mov-ri+1 we know (rj : y)4 2 µΓ. Hence

from the related registers we know µa ` ~b0 ! a00. From
the translation rule we also have (y : ✓[]⇤) 2 Γc. Because
of the progress, it means that [a00, a00 +m] ✓2 ⇡. Because
of the related heaps and well-typed store it follows that

µa ` ~b ! v. Also from rule tr-mov-ri+1 we know (ri :
x)w 2 µΓ. After the update we can see that they are still
related.

16. Case tr-mov-ri+2. Then ◆ = (movw ri, [rj + c], ` = x and
e = y ! m.

(a) This case is possible iff R(rj) = 0, R(rj) = ? or (R(rj)+
c) 62 dom(H). Because of the related registers and heaps,
and from rule tr-mov-ri+2(rj : y)4 2 µΓ, we have µa `
R(rj) ! σ(⇢(y)). In either of the first two cases for

R(rj) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, y[m]i
`
−! err. In the

last case, because of related heaps, it also has to be that

Σ; ~⇢; ⇢ ` hσ, ⇡, y ! mi
`
−! err.

(b) In this case rules ex-mov-r+ is used for progress on ◆: ~R `
hH,R,movw ri, [rj + c]i

◆
−! hH,R0i. Here R0 = R ◦w

{ri 7! ~b} where~b = Hw(~b0) and~b = R(rj) +4 c.

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval and l-fld we

obtain Σ; ~⇢; ⇢ ` hσ, ⇡, y ! mi
e
−! hσ, ⇡, vi where v =

σ(a00 +m), a00 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ri+2 we know (rj : y)4 2 µΓ. Hence

from the related registers we know µa ` ~b0 ! a00. From
the translation rule we also have (y : N⇤) 2 Γc and
Σ(N) = h✓0, . . . , ✓ni. Because of the progress, it means
that [a00, a00 + m] ✓2 ⇡. Because of the related heaps and

well-typed store it follows that µa ` ~b ! v. Also from
rule tr-mov-ri+1 we know (ri : x)w 2 µΓ. After the update
we can see that they are still related.

17. Case tr-mov-i+r1. Then ◆ = (movw [ri + c], rj , ` = x[m] and
e = y.

(a) This case is possible iff R(ri) = 0, R(ri) = ? or (R(ri)+
c) 62 dom(H). Because of the related registers and heaps,
and from rule tr-mov-i+r1(ri : x)4 2 µΓ, we have µa `
R(ri) ! σ(⇢(x)). In either of the first two cases for

R(ri) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, x[m]i
`
−! err. In the

last case, because of related heaps, it also has to be that

Σ; ~⇢; ⇢ ` hσ, ⇡, x[m]i
`
−! err.

(b) In this case rules ex-mov-+r is used for progress on ◆: ~R `
hH,R,movw [ri + c], rji

◆
−! hH 0, Ri. Here H 0 = H ◦

{H(R(ri)) +4 c+4 n 7! Rn:n+1(rj)}
w−1
n=0 .

Similarly, through rule l-ar Σ; ~⇢; ⇢ ` hσ, ⇡, x[m]i
`
−!

hσ, ⇡, ai with a = a0 + m and a0 = ⇢(x). Also through

rules e-lval and l-var we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−!

hσ, ⇡, vi where v = σ(a00) and a00 = ⇢(y).
From rule tr-mov-i+r1 we know (ri : x)4 2 µΓ. Hence
from the related registers we know µa ` R(ri) ! a0.
From the translation rule we also have (x : ✓[]⇤) 2 Γc.
Because of the progress, it means that [a0, a0 + m] ✓2 ⇡.
Because of the related heaps and well-typed store it follows
that (R(ri) + c, a0 +m) 2 µa. Also from rule tr-mov-ri+1

we know (rj : y)w 2 µΓ. Hence, µa ` R0:w(rj) ! v.
After the update we can see that (R(ri)+ c) and a0+m are
still related.

18. Case tr-mov-i+r2. Then ◆ = (movw [ri + c], rj , ` = x ! m
and e = y.

(a) This case is possible iff R(ri) = 0, R(ri) = ? or (R(ri)+
c) 62 dom(H). Because of the related registers and heaps,

and from rule tr-mov-i+r2(ri : x)4 2 µΓ, we have µa `
R(ri) ! σ(⇢(x)). In either of the first two cases for

R(ri) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, x ! mi
`
−! err. In

the last case, because of related heaps, it also has to be that

Σ; ~⇢; ⇢ ` hσ, ⇡, x ! mi
`
−! err.

(b) In this case rules ex-mov-+r is used for progress on ◆: ~R `
hH,R,movw [ri + c], rji

◆
−! hH 0, Ri. Here H 0 = H ◦

{H(R(ri)) +4 c+4 n 7! Rn:n+1(rj)}
w−1
n=0 .

Similarly, through rule l-ar Σ; ~⇢; ⇢ ` hσ, ⇡, x ! mi
`
−!

hσ, ⇡, ai with a = a0 + m and a0 = ⇢(x). Also through

rules e-lval and l-var we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−!

hσ, ⇡, vi where v = σ(a00) and a00 = ⇢(y).
From rule tr-mov-i+r2 we know (ri : x)4 2 µΓ. Hence
from the related registers we know µa ` R(ri) ! a0.
From the translation rule we also have (x : N⇤) 2 Γc.
Because of the progress, it means that [a0, a0 + m] ✓2 ⇡.
Because of the related heaps and well-typed store it follows
that (R(ri) + c, a0 +m) 2 µa. Also from rule tr-mov-ri+1

we know (rj : y)w 2 µΓ. Hence, µa ` R0:w(rj) ! v.
After the update we can see that (R(ri)+ c) and a0+m are
still related.

19. Case tr-alloc-r*. Then ◆ = (alloc ri, rj ⇤ c, ` = x and
e = new ✓[y ⇤m].
(a) Rule ex-alloc-* only fails iff R(rj) = ?. Similarly, while

rules l-var, e-const and e-op do not fail, rule e-ar fails iff
σ(⇢(y)) = ?. Since (rj : y) 2 µΓ, both failures coincide.

(b) This case is similar to that of tr-alloc-rc2.

20. Case tr-alloc-rc1. Then ◆ = (alloc ri, c, ` = x and e = new ✓.

(a) Rule ex-alloc cannot fail. Similarly, rules l-var and e-new do
not fail.

(b) In this case rules ex-alloc is used for progress on ◆: ~R `
hH,R, alloc ri, ci

◆
−! hH 0, R0i. Here R0 = R ◦4 ri 7! a.

Also H 0 = H ◦ {a+ i 7! ?}c−1
i=0 .

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, a0i

where a0 = ⇢(x). Also through rule e-new we obtain

Σ; ~⇢; ⇢ ` hσ, ⇡, new ✓i
e
−! hσ0, ⇡, a00i where σ0 =

σ ◦ {a00 7! ?}.
Then choose µ0

a = µa ◦ {(a : a00)c}. Since µa ` ?! ?
these fresh addresses are related. Also pick ⌫0

a = ⌫a ◦ {a+
i 7! (a, c)}c−1

i=0 .

21. Case tr-alloc-rc2. Then ◆ = (alloc ri, c, ` = x and e =
new struct N .

(a) Rule ex-alloc cannot fail. Similarly, rules l-var and e-str do
not fail.

(b) In this case rules ex-alloc is used for progress on ◆: ~R `
hH,R, alloc ri, ci

◆
−! hH 0, R0i. Here R0 = R ◦4 ri 7! a.

Also H 0 = H ◦ {a+ i 7! ?}c−1
i=0 .

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ,⇡, xi
`
−! hσ,⇡, a0i

where a0 = ⇢(x). Also through rule e-str we obtain

Σ; ~⇢; ⇢ ` hσ,⇡, new struct ✓i
e
−! hσ0,⇡, a00i where

σ0 = σ ◦ {a00 + i 7! ?}n−1
i=0 with n is the number of

fields in the struct.
The new memory relations are straightforward.

22. Case tr-alloc-rc3. Then ◆ = (alloc ri, c, ` = x and e =
new ✓[m].
(a) Rule ex-alloc cannot fail. Similarly, rules l-var,e-str and

e-const do not fail.

(b) In this case rules ex-alloc is used for progress on ◆: ~R `
hH,R, alloc ri, ci

◆
−! hH 0, R0i. Here R0 = R ◦4 ri 7! a.

Also H 0 = H ◦ {a+ i 7! ?}c−1
i=0 .

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ,⇡, xi
`
−! hσ,⇡, a0i

where a0 = ⇢(x). Also through rule e-ar we obtain

Σ; ~⇢; ⇢ ` hσ,⇡, new ✓[m]i
e
−! hσ0,⇡, a00i where σ0 =

σ ◦ {a00 + i 7! ?}m−1
i=0 .

The new memory relations are straightforward.

23. Case tr-call. This case follows coinductively.

Basic Blocks The two propositions for basic blocks are the fol-
lowing.

Proposition 15 (Preservation of Progress for Basic Blocks). If

• µλ;µΓ; Γc; Σ ` b
b
 s

• 8(a : l) 2 µλ : µλ;µΓ; Γc; Σ ` λx(a)
b
 λc(l)

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• µa; ⌫a;⇡; ~⇢, ⇢ ` H! σ

• µa; ~µΓ, µΓ;σ ` ~R,R! ~⇢, ⇢

• λx; ~R ` hH,R, bi
b
−! hH 0, R0, b0i

then

• Σ;λc; ~⇢; ⇢ ` hσ,⇡, si
s
−! err or

• Σ;λc; ~⇢; ⇢ ` hσ,⇡, si
s
−! hσ0,⇡0, s0i.

Proposition 16 (Preservation of Related Memory for Basic Blocks).
If

• µλ;µΓ; Γc; Σ ` b
b
 s

• 8(a : l) 2 µλ : µλ;µΓ; Γc; Σ ` λx(a)
b
 λc(l)

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• µa; ⌫a;⇡; ~⇢, ⇢ ` H! σ

• µa; ~µΓ, µΓ;σ ` ~R,R! ~⇢, ⇢

• λx; ~R ` hH,R, bi
b
−! hH 0, R0, b0i

• Σ;λc; ~⇢; ⇢ ` hσ,⇡, si
s
−! hσ0,⇡0, s0i

then for some µ0
a ◆ µa and ⌫0

a ◆ ⌫a:

• µ0
a; ~µΓ, µΓ;σ

0 ` ~R,R! ~⇢, ⇢
• µ0

a; ⌫
0
a;⇡

0; ~⇢, ⇢ ` H 0
! σ0

Proof 6. The proof is straightforward.

Function Definitions The two propositions for function defini-
tions are the following.

Proposition 17 (Preservation of Progress for Function Definitions).
If

• Σ ` hf,−!rx,
−!ry , a,λx, ji f(

−−!
x : ✓)h

−−−!
y : ✓0, l,λc, ji

• µΓ = {−−−−!rx 7! x,−−−−!ry 7! y}

• Γc = {
−−!
x : ✓,

−−−!
y : ✓0}

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• µa; ⌫a;⇡; ~⇢, ⇢ ` H! σ

• µa; ~µΓ, µΓ;σ ` ~R,R! ~⇢, ⇢

• λx; ~R ` hH,R,λx(a)i
b
−! hH 0, R0, b0i

then

• Σ;λc; ~⇢; ⇢ ` hσ,⇡,λc(l)i
s
−! err or

• Σ;λc; ~⇢; ⇢ ` hσ,⇡,λ(l)i
s
−! hσ0,⇡0, s0i.

Proposition 18 (Preservation of Related Memory for Function
Definitions). If

• µλ;µΓ; Γc; Σ ` b
b
 s

• µΓ = {−−−−!rx 7! x,−−−−!ry 7! y}

• Γc = {
−−!
x : ✓,

−−−!
y : ✓0}

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• µa; ⌫a;⇡; ~⇢, ⇢ ` H! σ

• µa; ~µΓ, µΓ;σ ` ~R,R! ~⇢, ⇢

• λx; ~R ` hH,R,λx(a)i
b
−! hH 0, R0, b0i

• Σ;λc; ~⇢; ⇢ ` hσ,⇡,λ(l)i
s
−! hσ0,⇡0, s0i.

then for some µ0
a ◆ µa and ⌫0

a ◆ ⌫a:

• µ0
a; ~µΓ, µΓ;σ

0 ` ~R,R! ~⇢, ⇢
• µ0

a; ⌫
0
a;⇡

0; ~⇢, ⇢ ` H 0
! σ0

Proof 7. The proof is straightforward.

