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A. Proof Appendix

A.1 Type Safety

We write Σ;Ψ ` σ;⇡ to signify that

8(a : ✓) 2 Ψ . Σ;Ψ;σ;⇡ ` a : ✓

We also write Γc; Σ;Ψ ` ⇢ to signify that

8(x : ✓) 2 Γc . Σ;Ψ ` ⇢(x) : ✓ ⇤ ^ ⇢(x) 6= 0

Moreover, we write Γc; Σ ` λc to signify that

8s 2 range(λc). Γc; Σ ` s

Proposition 8 (safety for lvalue evaluation).

1. Progress: if
• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• Γc; Σ ` ` : ✓

then

(a) Σ; ~⇢; ⇢ ` hσ, ⇡, `i
`
−! hσ0, ⇡0, ai or

(b) Σ; ~⇢; ⇢ ` hσ, ⇡, `i
`
−! err.

2. Preservation: if
• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• Γc; Σ ` ` : ✓

• Σ; ~⇢; ⇢ ` hσ, ⇡, `i
`
−! hσ0, ⇡0, ai

then for some Ψ0 ◆ Ψ
(a) Γc; Σ;Ψ

0 ` ⇢
(b) Σ;Ψ0 ` σ0;⇡0

(c) Σ;Ψ0 ` a : ✓⇤

Proposition 9 (safety for expression evaluation).

1. Progress: if
• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• Γc; Σ ` e : ✓

then

(a) Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! hσ0, ⇡0, vi or

(b) Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! err.

2. Preservation: if
• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• Γc; Σ ` e : ✓
• Σ; ~⇢; ⇢ ` hσ, ⇡, ei

e
−! hσ0, ⇡0, vi

then for some Ψ0 ◆ Ψ
(a) Γc; Σ;Ψ

0 ` ⇢
(b) Σ;Ψ0 ` σ0;⇡0

(c) Σ;Ψ0 ` v : ✓

Proposition 10 (safety for statement evaluation).

1. Progress: if
• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• Γc; Σ ` s
• Γc; Σ ` λc

then

(a) Σ;λc; ~⇢; ⇢ ` hσ, ⇡, si
s
−! hσ0, ⇡0, s0i or

(b) Σ;λc; ~⇢; ⇢ ` hσ, ⇡, si
s
−! err or

(c) s = return.

2. Preservation: if
• Γc; Σ ` s

• Σ;λc; ~⇢; ⇢ ` hσ, ⇡, si
s
−! hσ0, ⇡0, s0i

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡

then for some Ψ0 ◆ Ψ
(a) Γc; Σ;Ψ

0 ` ⇢
(b) Σ;Ψ0 ` σ0;⇡0

(c) Γc; Σ ` s0

Proposition 11 (safety for function definitions).

1. Progress: if

• Σ ` f(
−−!
x : ✓)h

−−−!
y : ✓0, l, λc, ji

• Σ;λc; ~⇢; ⇢ ` hσ, ⇡, λc(l)i
s
−!⇤hσ0, ⇡0, returni

• Γc = {
−−!
x : ✓,

−−−!
y : ✓0}

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡

then

(a) Σ;λc; ~⇢; ⇢ ` hσ, ⇡, λc(l)i
s
−!⇤hσ0, ⇡0, returni or

(b) Σ;λc; ~⇢; ⇢ ` hσ, ⇡, λc(l)i
s
−! ⇤err (we assume this sub-

sumes divergence).

2. Preservation: if

• Σ ` f(
−−!
x : ✓)h

−−−!
y : ✓0, l, λc, ji

• Σ;λc; ~⇢; ⇢ ` hσ, ⇡, λc(l)i
s
−!⇤hσ0, ⇡0, returni

• Γc = {
−−!
x : ✓,

−−−!
y : ✓0}

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡

then for some Ψ0 ◆ Ψ
(a) Γc; Σ;Ψ

0 ` ⇢
(b) Σ;Ψ0 ` σ0;⇡0

Proof 1. Propositions 8, 9, 10 and 11 proved together by mutual
structural induction on the typing judgements for `, e, s and dc.

• By case analysis on Γc; Σ ` ` : ✓ in Fig. 4. To show 1b or
conversely 1a, 2a, 2b and 2c hold for proposition 8. Observe
that 2a holds if Ψ0 ◆ Ψ.

1. Let ` = x. By rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

where a = ⇢(x) hence 1a holds. Put Ψ0 = Ψ. Since
Γc; Σ;Ψ ` ⇢ it follows Σ;Ψ0 ` ⇢(x) : ✓⇤ and 2c holds.
Moreover Σ;Ψ0 ` σ;⇡ and 2b holds.

2. Let ` : ✓ = ⇤x : ⌧ . Since Γc; Σ;Ψ ` ⇢ it follows a =

⇢(x) 6= 0. By rule l-ptr Σ; ~⇢; ⇢ ` hσ, ⇡, ⇤xi
`
−! hσ, ⇡, σ(a)i

thus 1a holds. Put Ψ0 = Ψ. By rule t-ptr Γc; Σ ` x : ⌧⇤
and by Γc; Σ;Ψ ` ⇢ it follows Σ;Ψ ` a : ⌧ ⇤ ⇤. By
rule vt-addr (a : ⌧⇤) 2 Ψ and by Σ;Ψ ` σ;⇡ it follows
Σ;Ψ;σ;⇡ ` a : ⌧⇤. By rule st-comp Σ;Ψ ` σ(a) : ⌧⇤ thus
Σ;Ψ0 ` σ(a) : ⌧⇤ and 2c holds. Moreover Σ;Ψ0 ` σ;⇡
and 2b holds.

3. Let ` : ✓ = x ! c : ✓c. Since Γc; Σ;Ψ ` ⇢ let
a = ⇢(x) 6= 0 and let v = σ(a) +? c. If ⇢(x) = 0 or
v 62 [⇡ then 1b holds. Otherwise Σ; ~⇢; ⇢ ` hσ, ⇡, x !

ci
`
−! hσ, ⇡, vi and 1a holds. Put Ψ0 = Ψ. By rule t-fld

Γc; Σ ` x : N⇤ and by rule t-var (x : N⇤) 2 Γc and
by Γc; Σ;Ψ ` ⇢ it follows Σ;Ψ ` ⇢(x) : N ⇤ ⇤. By
rule vt-addr (⇢(x) : N⇤) 2 Ψ and by Σ;Ψ ` σ;⇡ it follows
Σ;Ψ;σ;⇡ ` ⇢(x) : N⇤ and by rule st-comp Σ;Ψ `
σ(⇢(x)) : N⇤. By rule vt-addr (σ(⇢(x)) : N) 2 Ψ and by
Γc; Σ;Ψ ` ⇢ it follows Σ;Ψ;σ;⇡ ` σ(⇢(x)) : N and by
rule st-fld Σ;Ψ ` σ(σ(⇢(x)) + c) : ✓c. By rule st-comp
Σ;Ψ;σ;⇡ ` σ(⇢(x)) + c : ✓c and by Γc; Σ;Ψ ` ⇢
it follows (σ(⇢(x)) + c : ✓c) 2 Ψ and by rule vt-addr



Σ ` ✓
Σ ` short Σ ` long

Σ ` ⌧
Σ ` ⌧⇤

N 2 Σ
Σ ` N

Σ ` decls
d
−! Σ0

Σ ` ✏
d
−! Σ

Σ(N) = ? _N /2 dom(Σ)

Σ0 = Σ ◦ {N 7! ~✓}

8✓i 2 ~✓.(Σ0 ` ✓i)

Σ0 ` decls
d
−! Σ00

Σ ` struct N(~✓); decls
d
−! Σ00

N /2 dom(Σ) Σ0 = Σ ◦ {N 7! ?}

Σ0 ` decls
d
−! Σ00

Σ ` struct N ; decls
d
−! Σ00

Figure 13: Well-formed type declarations of MINC programs

Σ;Ψ ` σ(⇢(x)) + c : ✓c⇤ and 2c holds since Ψ0 = Ψ.
Moreover Σ;Ψ0 ` σ;⇡ and 2b holds.

4. Let ` = x[e0]. By rule t-ar Γc; Σ ` e0 : t hence by mutual
induction:

Either Σ; ~⇢; ⇢ ` hσ, ⇡, e0i
e
−! err. By rule e-lval-err

Σ; ~⇢; ⇢ ` hσ, ⇡, x[e0]i
e
−! err. Hence 1b.

Or Σ; ~⇢; ⇢ ` hσ, ⇡, e0i
e
−! hσ0, ⇡0, vi. If ⇢(x) = 0

then 1a holds by rule e-lval-err. Otherwise let a =
σ0(⇢(x)) +? v. If a 62 [⇡0 then 1a holds. Otherwise

by rule l-ar Σ; ~⇢; ⇢ ` hσ, ⇡, x[e0]i
`
−! hσ0, ⇡0, ai. Hence

1a holds.
By induction there exists Ψ0 ◆ Ψ such that Σ;Ψ0 `
σ0;⇡0. By rule t-ar Γc; Σ ` x : ✓[]⇤ and by rule t-var
(x : ✓[]⇤) 2 Γc and by Γc; Σ;Ψ

0 ` ⇢ it follows Σ;Ψ0 `
⇢(x) : ✓[]⇤⇤. By rule vt-addr (⇢(x) : ✓[]⇤) 2 Ψ0 and by
Σ;Ψ0 ` σ0;⇡0 it follows Σ;Ψ0;σ0;⇡0 ` ⇢(x) : ✓[]⇤
and by rule st-comp Σ;Ψ0 ` σ0(⇢(x)) : ✓[]⇤. By
rule vt-addr (σ0(⇢(x)) : ✓[]) 2 Ψ0 and by Γc; Σ;Ψ

0 `
⇢ it follows Σ;Ψ0;σ0;⇡0 ` σ0(⇢(x)) : ✓[] and by
rule st-ar Σ;Ψ0 ` σ0(σ0(⇢(x))+v) : ✓. By rule st-comp
Σ;Ψ0;σ0;⇡0 ` σ0(⇢(x)) + v : ✓ and by Γc; Σ;Ψ

0 ` ⇢
it follows (σ0(⇢(x)) + v : ✓) 2 Ψ0 and by rule vt-addr
Σ;Ψ0 ` σ0(⇢(x)) + v : ✓⇤ and 2c holds. Moreover
Σ;Ψ0 ` σ;⇡ and 2b holds.

• By case analysis on Γc; Σ ` e : ✓ in Fig. 4. To show that
either 1b or conversely 1a, 2a 2b and 2c of Proposition 9 hold.
Observe that 2a holds if Ψ0 ◆ Ψ.

1. Let e : ✓ = &x : ⌧⇤. By rule t-amp Γc; Σ ` x : ⌧ thus
(x : ⌧) 2 Γc and by Γc; Σ;Ψ ` ⇢ it follows Σ;Ψ `
a : ⌧⇤ where a = ⇢(x) 6= 0. By rule e-amp Σ; ~⇢; ⇢ `

hσ, ⇡,&xi
e
−! hσ, ⇡, ai hence 1a holds. Put Ψ0 = Ψ thus

Σ;Ψ0 ` a : ⌧⇤ and 2c holds whilst 2b is immediate.

2. Let e : ✓ = cl : long. By rule e-const Σ; ~⇢; ⇢ ` hσ, ⇡, cli
e
−!

hσ, ⇡, cli. Hence 1a.
Let Ψ0 = Ψ. By rule vt-l Σ;Ψ ` cl : long. Hence 2c. Also
2b.

3. Let e : ✓ = cs : short. By rule e-const Σ; ~⇢; ⇢ `
hσ, ⇡, csi

e
−! hσ, ⇡, csi. Hence 1a.

Let Ψ0 = Ψ. By rule vt-s Σ;Ψ ` cs : short. Hence 2c. Also
2b.

4. Let e : ✓ = 0l : ⌧⇤. By rule e-const Σ; ~⇢; ⇢ ` hσ, ⇡, 0li
e
−!

hσ, ⇡, 0li. Hence 1a.
Let Ψ0 = Ψ. By rule vt-null Σ;Ψ ` cs : ⌧⇤. Hence 2c.
Also 2b.

5. Let e : ✓ = new ⌧ : ⌧⇤. By rule e-new Σ; ~⇢; ⇢ `
hσ, ⇡, new ⌧i

e
−! hσ0, ⇡, ai where σ0 = σ ◦ {a 7! ?}.

Hence 1a.

Let Ψ0 = Ψ ◦ {a 7! ⌧}. By rule vt-addr Σ;Ψ ` a : ⌧⇤
hence 2c. Also by rule vt-bot Σ;Ψ0 ` ? : ⌧ by and rule
st-comp Σ;Ψ0;σ0;⇡ ` a : ⌧ hence Σ;Ψ0 ` σ0;⇡ and 2b
holds.

6. Let e : ✓ = new struct N : N⇤ and n = |Σ(N)|. By

rule e-str Σ; ~⇢; ⇢ ` hσ, ⇡, new struct Ni
e
−! hσ0, ⇡0, ai

where σ0 = σ ◦ {a 7! ?, . . . , a + n − 1 7! ?} and
⇡0 = ⇡ [ {[a, a+ n− 1]}. Put Ψ0 = Ψ [ {a : N, a+ 1 :
✓1, . . . , a+n− 1 : ✓n−1}. By rule vt-addr Σ;Ψ0 ` a : N⇤
hence 2c holds.
Let i 2 [0, n−1]. Then σ0(a+i) = ? hence Σ;Ψ0 ` σ0(a+
i) : ✓i by rule vt-bot therefore Σ;Ψ0;σ0;⇡0 ` a+ i : ✓i. By
rule st-fld Σ;Ψ0;σ0;⇡0 ` a : N hence 2b holds.

7. Let e : ✓ = new ✓[e] : ✓[]⇤. By rule t-new-ar Γc; Σ ` e : t
hence by induction:

Either Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! err. By rule e-ar-err

Σ; ~⇢; ⇢ ` hσ, ⇡, new ✓[e]i
e
−! err. Hence 1b.

Or Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! hσ0, ⇡0, vi. By rule e-ar

Σ; ~⇢; ⇢ ` hσ, ⇡, new ✓[e]i
e
−! hσ00, ⇡00, ai where σ00 =

σ0 ◦ {a 7! ?, . . . , a+ v − 1 7! ?}. Hence 1a.
By induction there exists Φ0 ◆ Φ such that Σ;Ψ0 `
σ0;⇡0. Put Ψ00 = Ψ0 ◦ {a 7! ✓[], . . . , a+ v− 1 7! ✓[]}.
By rule vt-addr it follows Σ;Ψ00 ` a : ✓[]⇤ hence 2c. By
rule vt-bot it follows Σ;Ψ00 ` ? : ✓[] and by st-comp it
follows Σ;Ψ00;σ00;⇡00 ` a+ i : ✓[] for all i 2 [0, v− 1]
hence 2b.

8. Let e : ✓ = (e1 ⊕ e2) : t. By rule t-⌦ Γc; Σ ` e1 : t and
Γc; Σ ` e2 : t. Hence by induction:

Either Σ; ~⇢; ⇢ ` hσ, ⇡, e1i
e
−! err. By rule e-op-err1

Σ; ~⇢; ⇢ ` hσ, ⇡, (e1 ⊕ e2)i
e
−! err. Hence 1b.

Or Σ; ~⇢; ⇢ ` hσ0, ⇡0, e2i
e
−! err. Like previous case.

Or Σ; ~⇢; ⇢ ` hσ, ⇡, e1i
e
−! hσ0, ⇡0, v1i and Σ; ~⇢; ⇢ `

hσ0, ⇡0, e2i
e
−! hσ00, ⇡00, v2i.

− Either v1 ⊕⇡ v2 = err. By rule e-op-err3 Σ; ~⇢; ⇢ `
hσ, ⇡, (e1 ⊕ e2)i

e
−! err. Hence 1b.

− Or v1⊕⇡ v2 = v. By rule e-op Σ; ~⇢; ⇢ ` hσ, ⇡, (e1⊕

e2)i
e
−! hσ0, ⇡, vi. Hence 1a.

By induction Σ;Ψ00 ` v1 : t and Σ;Ψ00 ` v2 : t.
If t = short then v = ? or v = ns where n 2
[−215, 215 − 1]. If v = ? then Σ;Ψ00 ` v : short.
by rule vt-bot. Otherwise if v = ns then Σ;Ψ00 `
v : short by rule vt-s. An analgous argument holds
if t = long hence 2c. Also 2b trivially by induction.

9. Let e : ✓ = (e1 ⊕ e2) : ⌧ []⇤. Similar to previous case.



10. Let e : ✓ = f(~e) : ✓j . By rule t-call Γc; Σ ` ei : ✓
0
i where

φc(f) = f(
−−!
x : ✓)h

−−−!
y : ✓00, l, λc, ji and Σ ` ~✓0 <: ~✓. With

respect to ei there are two possibilities:

Either for some i: Σ; ~⇢; ⇢ ` hσi−1, ⇡i−1, eii
e
−! err.

Then by rule e-call-err it follows that 1b holds.

Or for all i: Σ; ~⇢; ⇢ ` hσi−1, ⇡i−1, eii
e
−! hσi, ⇡i, vii

and by the inductive hypothesis Σ;Ψi ` ✓i : vi and

Σ;Ψi ` σi;⇡i. Let Ψ0 = Ψn [ {
−−!
a : ✓,

−−−!
a0 : ✓0}. Then it

is easy to verify Σ;Ψ0 ` σ0;⇡n and Γc; Σ;Ψ
0 ` ⇢0. By

the progress induction hypothesis we then have for s:

− Either Σ;λc; ~⇢, ⇢; ⇢
0 ` hσ0, ⇡n, λc(l)i

s
−!⇤hσ00, ⇡0, returni.

Hence 1a.

− Otherwise 1b.

Preservation follows from the induction hyptheses for
all ei and s.

• By case analysis on Γc; Σ ` s in Fig. 4. To show that either 1b
or conversely 1a, 2a, 2b and 2c of Proposition 10 hold. Observe
that 2a holds if Ψ0 ◆ Ψ.

1. Let Γc; Σ ` (` := e); s. From the induction hypothesis

for `, either Σ; ~⇢; ⇢ ` hσ, ⇡, `i
`
−! err, and hence 1b, or

Σ; ~⇢; ⇢ ` hσ, ⇡, `i
`
−! hσ0, ⇡0, ai. In the latter case, we

have either Σ; ~⇢; ⇢ ` hσ0, ⇡0, ei
e
−! err, and hence 1b, or

Σ; ~⇢; ⇢ ` hσ0, ⇡0, ei
e
−! hσ00, ⇡00, vi. By s-assn we then

have Σ;λc; ~⇢; ⇢ ` hσ, ⇡, (` := e); si
s
−! hσ000, ⇡00, si where

σ000 = σ00 ◦ {a 7! v} and hence 1a.
We get Γc; Σ ` s from t-assn. Hence 2c. From the in-
duction hypotheses for ` and e we get type preservations
Σ;Ψ00 ` a : ✓1⇤ and Σ;Ψ00 ` v : ✓2 and type con-
sistency Σ;Ψ00 ` σ00;⇡00. Hence, through rule vt-addr we
know that (a : ✓1) 2 Ψ00. From rule t-assn we know Σ `
✓2 <: ✓1. Hence, through rule vt-subt we have Σ;Ψ00 `
v : ✓1. Since σ000(a) = v we have hence by rule st-comp
Σ;Ψ00;σ000;⇡00 ` a : ✓1. Hence Σ;Ψ00 ` σ000;⇡00. Thus 2b.

2. Let Γc; Σ ` (if e goto l); s. Then

Either Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! err. Hence 1b.

Or Σ; ~⇢; ⇢ ` hσ, ⇡, ei
e
−! hσ0, ⇡0, vi. Then

− Either v = ?. Hence 1b.

− Or v = 0. Then by rule s-if-false Σ;λc; ~⇢; ⇢ `
hσ, ⇡, (if e goto l); si

s
−! hσ0, ⇡s,0 i. Hence 1a. We

call this scenario 1.

− Or v 6= 0 ^ v 6= ?. Then

· Either l 62 dom(λc). Then 1b.

· Or s0 = λc(l). Then by rule s-if-true Σ;λc; ~⇢; ⇢ `

hσ, ⇡, (if e goto l); si
s
−! hσ0, ⇡s0,0 i. Hence 1a.

We call this scenario 2.

In scenario 1 we have from t-if Γc; Σ ` s. Hence 2c. In
scenario 2 we have that s0 2 range(λc). Hence Γc; Σ ` s0.
Hence 2c. In both scenarios we have from the induction
hypthesis for e that Σ;Ψ0 ` σ0;⇡0. Hence 2b.

3. Let Γc; Σ ` goto l. Then either l 62 dom(λc) and thus

Σ;λc; ~⇢; ⇢ ` hσ, ⇡, goto li
s
−! err. Hence 1b. Alter-

natively λc(l) = s. Then by rule s-goto Σ;λc; ~⇢; ⇢ `

hσ, ⇡, goto li
s
−! hσ, ⇡, si. Hence 1a.

From Γc; Σ ` λc it follows that Γc; Σ ` s. Hence 2c. Let
Ψ0 = Ψ. Then 2b.

4. Let Γc; Σ ` return. Hence 1c. Also vacuously 2c and 2b.

• Proposition 11 follows by the repeated application of Proposi-
tion 10 combining progress and preservation at every step.
Besides the givens of Proposition ??, Proposition 10 also re-
quires Γc; Σ ` λc. This is given by rule t-def which is the

only possible way that the well-typing of the function defini-
tion could have been constructed.

A.2 Well-Typed Decompilation

Proposition 12 (well-typed instruction decompilation). If µΓ; Γc; Σ `
◆

◆
 ` := e then for some ✓1 and ✓2

1. Γc; Σ ` ` : ✓1
2. Γc; Σ ` e : ✓2
3. Σ ` ✓2 <: ✓1

Proof 2. The proof proceeds by case analysis on the inference
rules of the instruction translation relation.

1. Case tr-⊕-r*1. Let ✓1 = ✓2 = ✓[]⇤. From tr-⊕-r*1 we have
(x : ✓[]⇤) 2 Γc. Then by rule t-var Γc; Σ ` x : ✓[]⇤. Hence 1.
From tr-⊕-r*1 we have Γc; Σ ` m : long. From tr-⊕-r*1 we
have (y : long) 2 Γc. Then by rule t-var Γc; Σ ` y : long.
From both of these we get by rule t-⌦ Γc; Σ ` y ⇤ m : long.
From that and the type of x we get through rule t-ptr-⊕ Γc; Σ `
x⊕ (y ⇤m) : ✓[]⇤. Hence 2. From rule sub-refl 3.

2. Case tr-⊕-r*2. Let ✓1 = ✓2 = t. From tr-⊕-r*2 we have
(x : t) 2 Γc. Then by rule t-var Γc; Σ ` x : t. Hence 1.
From tr-⊕-r*2 we have Γc; Σ ` c : t. From tr-⊕-r*1 we have
(y : t) 2 Γc. Then by rule t-var Γc; Σ ` y : t. From both of
these we get by rule t-⌦ Γc; Σ ` y ⇤ c : t. From that and the
type of x we get through rule t-⌦ Γc; Σ ` x⊕(y⇤c) : t. Hence
2. From rule sub-refl 3.

3. Case tr-⌦-rc. Let ✓1 = ✓2 = t. From tr-⌦-rc we have (x : t) 2
Γc. Then by rule t-var Γc; Σ ` x : t. Hence 1. From tr-⌦-rc we
have Γc; Σ ` c : t. From that and the previous Γc; Σ ` x : t we
have by rule t-⌦ Γc; Σ ` x⌦ c : t. Hence 2. From rule sub-refl
3.

4. Case tr-⌦-rr. Let ✓1 = ✓2 = t. From tr-⌦-rr we have (x :
t) 2 Γc. Then by rule t-var Γc; Σ ` x : t. Hence 1. From
tr-⌦-rr we have (y : t) 2 Γc. Then by rule t-var Γc; Σ ` y : t.
From that and the previous Γc; Σ ` x : t we have by rule t-⌦
Γc; Σ ` x⌦ y : t. Hence 2. From rule sub-refl 3.

5. Case tr-⊕-rc. Let ✓1 = ✓2 = ✓[]⇤. From tr-⊕-rc we have
(x : ✓[]⇤) 2 Γc. Then by rule t-var Γc; Σ ` x : ✓[]⇤.
Hence 1. From tr-⊕-rc we have Γc; Σ ` m : t. From that
and the previous Γc; Σ ` x : ✓[]⇤ we have by rule t-ptr-⊕
Γc; Σ ` x⊕m : ✓[]⇤. Hence 2. From rule sub-refl 3.

6. Case tr-mov-rc. Let ✓1 = ✓2 = t. From tr-mov-rc we have
(x : t) 2 Γc. Then by rule t-var Γc; Σ ` x : t. Hence 1. From
tr-mov-rc we have Γc; Σ ` c : t. Hence 2. From rule sub-refl 3.

7. Case tr-mov-r0. Let ✓1 = ✓2 = ⌧⇤. From tr-mov-r0 we have
(x : ⌧⇤) 2 Γc. Then by rule t-var Γc; Σ ` x : ⌧⇤. Hence
1. From t-null we have Γc; Σ ` 0 : ⌧⇤. Hence 2. From rule
sub-refl 3.

8. Case tr-mov-rr. From tr-mov-rr we have (x : ✓1) 2 Γc. Then
by rule t-var Γc; Σ ` x : ✓1. Hence 1. From tr-mov-rr we have
(y : ✓2) 2 Γc. Then by rule t-var Γc; Σ ` y : ✓2. Hence 2.
From tr-mov-rr we have Σ ` ✓2 <: ✓1. Hence 3.

9. Case tr-mov-ri1. From tr-mov-ri1 we have (x : ✓1) 2 Γc. Then
by rule t-var Γc; Σ ` x : ✓1. Hence 1. From tr-mov-ri1 we have
(y : ✓2⇤) 2 Γc. Then by rule t-var Γc; Σ ` y : ✓2⇤. Then by
rule t-ptr Γc; Σ ` ⇤y : ✓2. Hence 2. From tr-mov-ri1 we have
Σ ` ✓2 <: ✓1. Hence 3.

10. Case tr-mov-ir1. From tr-mov-ir1 we have (x : ✓1⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓1⇤. Then by rule t-ptr Γc; Σ `
⇤x : ✓1. Hence 1. From tr-mov-ir1 we have (y : ✓2) 2 Γc. Then
by rule t-var Γc; Σ ` y : ✓2. Hence 1. From tr-mov-ir1 we have
Σ ` ✓2 <: ✓1. Hence 3.



11. Case tr-mov-ri2. From tr-mov-ri2 we have (x : ✓1) 2 Γc. Then
by rule t-var Γc; Σ ` x : ✓1. Hence 1. From tr-mov-ri2 we have
(y : ✓2[]⇤) 2 Γc. Then by rule t-var Γc; Σ ` y : ✓2[]⇤. Also
by rule t-lΓc; Σ ` 0 : long. Then by rule t-arΓc; Σ ` y[0] : ✓2.
Hence 2. From tr-mov-ri2 we have Σ ` ✓2 <: ✓1. Hence 3.

12. Case tr-mov-ir2. From tr-mov-ir2 we have (x : ✓1[]⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓1[]⇤. Also by rule t-lΓc; Σ `
0 : long. Then by rule t-ar Γc; Σ ` x[0] : ✓1. Hence 1. From
tr-mov-ir2 we have (y : ✓2) 2 Γc. Then by rule t-var Γc; Σ `
y : ✓2. Hence 2. From tr-mov-ir2 we have Σ ` ✓2 <: ✓1. Hence
3.

13. Case tr-mov-ri3. From tr-mov-ri3 we have (x : ✓) 2 Γc. Then
by rule t-var Γc; Σ ` x : ✓. Hence 1. From tr-mov-ri3 we have
(y : N⇤) 2 Γc. Then by rule t-var Γc; Σ ` y : N⇤. Then by
rule t-fldΓc; Σ ` y ! 0 : ✓0. Hence 2. From tr-mov-ri3 we
have Σ ` ✓0 <: ✓. Hence 3.

14. Case tr-mov-ir3. From tr-mov-ir3 we have (x : N⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : N⇤. Then by rule t-fldΓc; Σ `
x ! 0 : ✓0. Hence 1. From tr-mov-ir3 we have (y : ✓) 2 Γc.
Then by rule t-var Γc; Σ ` y : ✓. Hence 2. From tr-mov-ir3 we
have Σ ` ✓ <: ✓0. Hence 3.

15. Case tr-mov-ri+1. From tr-mov-ri+1 we have (x : ✓1) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓1. Hence 1. From tr-mov-ri+1

we have (y : ✓2[]⇤) 2 Γc. Then by rule t-var Γc; Σ ` y : ✓2[]⇤.
Also from tr-mov-ri+1 we have Γc; Σ ` m : t. Then by rule
t-arΓc; Σ ` y[m] : ✓2. Hence 2. From tr-mov-ri+1 we have
Σ ` ✓2 <: ✓1. Hence 3.

16. Case tr-mov-i+r1. From tr-mov-i+r1 we have (x : ✓1[]⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓1[]⇤. Also from tr-mov-i+r1
we have Γc; Σ ` m : t. Then by rule t-arΓc; Σ ` x[m] : ✓1.
Hence 1. From tr-mov-i+r1 we have (y : ✓2) 2 Γc. Then by
rule t-var Γc; Σ ` y : ✓2. Hence 2. From tr-mov-i+r1 we have
Σ ` ✓2 <: ✓1. Hence 3.

17. Case tr-mov-ri+2. From tr-mov-ri+2 we have (x : ✓) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓. Hence 1. From tr-mov-ri+2 we
have (y : N⇤) 2 Γc. Then by rule t-var Γc; Σ ` y : N⇤. Then
by rule t-fldΓc; Σ ` y ! m : ✓m. Hence 2. From tr-mov-ri+2

we have Σ ` ✓m <: ✓. Hence 3.

18. Case tr-mov-i+r2. From tr-mov-i+r2 we have (x : N⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : N⇤. Then by rule t-fldΓc; Σ `
x ! m : ✓m. Hence 1. From tr-mov-i+r2 we have (y :
✓2) 2 Γc. Then by rule t-var Γc; Σ ` y : ✓2. Hence 2. From
tr-mov-i+r2 we have Σ ` ✓ <: ✓m. Hence 3.

19. Case tr-alloc-r*. From tr-alloc-r* we have (x : ✓[]⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓[]⇤. Hence 1. From tr-alloc-r*
we have Γc; Σ ` m : t. From tr-alloc-r* we have (y : t) 2 Γc.
Then by rule t-var Γc; Σ ` y : t. From both of these we get
by rule t-⌦ Γc; Σ ` y ⇤ m : t. Then from t-new-ar we get
Γc; Σ ` new ✓[y ⇤m] : ✓[]⇤. Hence 2. From rule sub-refl 3.

20. Case tr-alloc-rc1. From tr-alloc-rc1 we have (x : ✓⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓⇤. Hence 1. From t-new we get
Γc; Σ ` new ✓ : ✓⇤. Hence 2. From rule sub-refl 3.

21. Case tr-alloc-rc2. From tr-alloc-rc2 we have (x : N⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : N⇤. Hence 1. From t-new-str
we get Γc; Σ ` new N : N⇤. Hence 2. From rule sub-refl 3.

22. Case tr-alloc-rc3. From tr-alloc-rc3 we have (x : ✓[]⇤) 2 Γc.
Then by rule t-var Γc; Σ ` x : ✓[]⇤. Hence 1. From tr-alloc-rc3
we have Γc; Σ ` m : t. Then from rule t-new-ar we have
Γc; Σ ` new ✓[m] : ✓[]⇤. Hence 2. From rule sub-refl 3.

23. Case tr-call. From tr-call we have (u : ✓u) 2 Γc. Then by rule
t-var Γc; Σ ` u : ✓u. Hence 1. We have:

• From tr-call we have φc(f) = f(
−−!
x : ✓)h

−−−!
y : ✓0, l, λc, ji.

• From tr-call we have
−−−−!
(v : ✓v) 2 Γc. Then by rule t-var

Γc; Σ ` ~v : ~✓v .

• From tr-call we have Σ ` ~✓v <: ~✓.
• By rule sub-reflwe have Σ ` ✓0j <: ✓0j .

Hence by rule t-call we have Γc; Σ `: ✓0j . Hence 2. From tr-call

we have Σ ` ✓0j <: ✓u. Hence 3.

Proposition 13 (well-typed block decompilation). If µλ;µΓ; Γc; Σ `

b
b
 s then Γc; Σ ` s.

Proof 3. This proof proceeds by structural induction on the block
translation relation.

1. Case tr-instr. From tr-instrwe have µΓ; Γc; Σ ` ◆
◆
 ` := e.

Hence, by Proposition 12 we haveΓc; Σ ` ` : ✓1, Γc; Σ `
e : ✓2 and Σ ` ✓2 <: ✓1. Also by rule tr-instr we have

µλ;µΓ; Γc; Σ ` b
b
 s. Hence by the induction hypothesis we

have Γc; Σ ` s. Then by rule t-assn we have Γc; Σ ` ` := e; s
2. Case tr-if. From tr-if we have (x : ✓) 2 Γc. Then by rule t-var

Γc; Σ ` x : ✓u. Also from tr-if we have µλ;µΓ; Γc; Σ ` b
b
 s.

Hence, from the induction hypothesis we have Γc; Σ ` s Then
the proposition follows from rule t-if.

3. Case tr-goto. This follows from rule t-goto.

4. Case tr-ret. This follows from rule t-ret.

Proposition 14 (well-typed definition decompilation). If Σ `
dx  dc then Σ ` dc.

Proof 4. We show that the four preconditions to rule t-def are
satisfied:

1. From rule tr-def we know that Γc = {
−−!
x : ✓,

−−−!
y : ✓0}.

2. From rule tr-def we know that a 2 dom(λc) and l = µλ(a).
Hence l 2 range(µλ). From the rule we also know that
range(µλ) = dom(λc). Hence l 2 dom(λc).

3. From rule tr-def we know that ryj 2 −!ry . We also know that

yj = µΓ(ryj ) and that −!y = µΓ(
−!ry). Hence yj 2 −!y .

4. From rule tr-def we know that 8(a 7! l) 2 µλ : µλ;µΓ; Γc; Σ `

λx(a)
b
 λc(l). From Proposition 13 we then know that

8l 2 range(µλ) : Γc; Σ ` λc(l). From rule tr-def we know
that range(µλ) = dom(λc). Hence 8l 2 dom(λc) : Γc; Σ `
λc(l).

Hence by rule t-def we conclude Σ ` f(
−−!
x : ✓)h

−−−!
y : ✓0, l, λc, ji.

A.3 Semantics Preservation

Instructions We prove Propositions 7 and 6 together.

Proof 5. The proof proceeds by case analysis on the derivation of

the judgement µΓ; Γc; Σ ` ◆
◆
 ` := e.

1. Case tr-⊕-r*1. Then ◆ = (op⊕4 ri, rj ⇤ c), ` = x and e =
x⊕ (y ⇤m).
(a) This case is not possible. Rule ex-⊕-r* always applies.

(b) In this case rules ex-⊕-r* is used for progress on ◆: ~R `
hH,R, op⊕4 ri, rj ⇤ ci

◆
−! hH,R0i. Here R0 = R ◦4 {ri 7!

~bi ⊕4 (~bj ⇤4 c)} where~bi = R0:4(ri) and~bj = R0:4(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-op, e-lval, l-var and

e-const we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, (x ⊕ (y ⇤ m))i
e
−!

hσ, ⇡, vi where v = vx⊕⇡(vy⇤⇡m), vx = σ(a), a0 = ⇢(y)
and vy = σ(a0).
From rule tr-⊕-r*1 we know (ri : x)4 2 µΓ. Hence from

the related registers we know µa ` ~bi ! vx. Similarly,

we know µa ` ~bj ! vy . Then from (x : ✓[]⇤) 2



Γc and the store typing of σ it follows that vx = n⇤

and from the success of the addition, it also follows that
[n⇤, n⇤⊕(vy⇤m)] ✓2 ⇡. Hence, also from the store typing
all m values at the addresses in this range have type ✓. From
the related heaps it then follows with c/m = sizeof (✓) that

µa ` (~bi ⊕4 (~bj ⇤4 c)) ! (v ⊕⇡ (vy ⇤ m)). Hence, the
update registers are still related.

2. Case tr-⊕-r*2. Then ◆ = (op⊕w ri, rj ⇤ c), ` = x and e =
x⊕ (y ⇤ c).
(a) This case is not possible. Rule ex-⊕-r* always applies.

(b) In this case rules ex-⊕-r* is used for progress on ◆: ~R `
hH,R, op⊕w ri, rj ⇤ ci

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~bi ⊕w (~bj ⇤w c)} where~bi = R0:w(ri) and~bj = R0:w(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-op, e-lval, l-var and

e-const we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, (x ⊕ (y ⇤ m))i
e
−!

hσ, ⇡, vi where v = vx⊕⇡(vy⇤⇡m), vx = σ(a), a0 = ⇢(y)
and vy = σ(a0).
From rule tr-⊕-r*2 we know (ri : x)w 2 µΓ. Hence from

the related registers we know µa ` ~bi ! vx. Similarly,

we know µa ` ~bj ! vy . It then follows that µa `

(~bi ⊕w (~bj ⇤w c))! (v ⊕⇡ (vy ⇤ c)). Hence, the update
registers are still related.

3. Case tr-⌦-rc. Then ◆ = (op⌦w ri, c), ` = x and e = x⌦ c.

(a) This case is not possible. Rule ex-⌦-rc always applies.

(b) In this case rules ex-⌦-rc is used for progress on ◆: ~R `
hH,R, op⌦w ri, ci

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~b⌦w c} where~b = R0:w(ri).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-op, e-lval, l-var and

e-const we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, (x ⌦ c)i
e
−! hσ, ⇡, v0i

where v0 = v ⌦⇡ c and v = σ(a).
From rule tr-⌦-rc we know (ri : x)w 2 µΓ. Hence from

the related registers we know µa ` ~b ! v. Then from
(x : t) 2 Γc and w = sizeof (t) it follows that µa `

(~b⌦w c)! (v ⌦⇡ c). Hence, the update registers are still
related.

4. Case tr-⊕-rc. Then ◆ = (op⊕4 ri, c), ` = x and e = x⊕m.

(a) This case is not possible. Rule ex-⌦-rc always applies.

(b) In this case rules ex-⌦-rc is used for progress on ◆: ~R `
hH,R, op⊕4 ri, ci

◆
−! hH,R0i. Here R0 = R ◦4 {ri 7!

~b⊕4 c} where~b = R0:4(ri).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-op, e-lval, l-var and

e-const we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, (x ⊕ m)i
e
−! hσ, ⇡, v0i

where v0 = v ⊕⇡ m and v = σ(a).
From rule tr-⊕-rc we know (ri : x)4 2 µΓ. Hence from

the related registers we know µa ` ~b ! v. Then from
(x : ✓[]⇤) 2 Γc and the store typing of σ it follows that
v = n⇤ and from the success of the addition, it also follows
that [n⇤, n⇤ ⊕m] ✓2 ⇡. Hence, also from the store typing
all m values at the addresses in this range have type ✓. From
the related heaps it then follows with c/m = sizeof (✓) that

µa ` (~b ⊕4 c) ! (v ⊕⇡ m). Hence, the update registers
are still related.

5. Case tr-⌦-rr. Then ◆ = (op⌦w ri, rj), ` = x and e = x⌦ y.

(a) This case is not possible. Rule ex-⌦-rr always applies.

(b) In this case rules ex-⌦-rc is used for progress on ◆: ~R `
hH,R, op⌦w ri, rji

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~bi ⊕w
~bj} where~bi = R0:w(ri) and~bj = R0:w(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-op, e-lval and l-var

we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, (x ⌦ y)i
e
−! hσ, ⇡, vi where

v = vx ⌦⇡ vy , vx = σ(a), a0 = ⇢(y) and vy = σ(a0).
From rule tr-⌦-rr we know (ri : x)w 2 µΓ. Hence from

the related registers we know µa ` ~bi ! vx. By similar

reasoning we know µa ` ~bj ! vy . Then from (x :
t) 2 Γc, (y : t) 2 Γc and w = sizeof (t) it follows that

µa ` (~bi⌦w
~bj)! (vx⌦⇡vy). Hence, the update registers

are still related.

6. Case tr-mov-rc. Then ◆ = (movw ri, c), ` = x and e = c.

(a) This case is not possible. Rule ex-mov-rc always applies.

(b) In this case rules ex-mov-rc is used for progress on ◆: ~R `
hH,R,movw ri, ci

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

c}.

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rule e-const we obtain

Σ; ~⇢; ⇢ ` hσ, ⇡, ci
e
−! hσ, ⇡, ci.

We know that µa ` c! c. Hence, the update registers are
still related.

7. Case tr-mov-r0. Then ◆ = (mov4 ri, 0), ` = x and e = 0.

(a) This case is not possible. Rule ex-mov-rc always applies.

(b) In this case rules ex-mov-rc is used for progress on ◆: ~R `
hH,R,mov4 ri, 0i

◆
−! hH,R0i. Here R0 = R◦4{ri 7! 0}.

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rule e-const we obtain

Σ; ~⇢; ⇢ ` hσ, ⇡, 0i
e
−! hσ, ⇡, 0i.

We know that µa ` 0! 0. Hence, the update registers are
still related.

8. Case tr-mov-rr. Then ◆ = (movw ri, rj), ` = x and e = y.

(a) This case is not possible. Rule ex-mov-rr always applies.

(b) In this case rules ex-mov-rr is used for progress on ◆: ~R `
hH,R,movw ri, rji

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~b} where~b = R0:w(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval and l-var we obtain

Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! hσ, ⇡, vi where v = σ(a0) and

a0 = ⇢(y).
From rule tr-mov-rr we know (rj : y)w 2 µΓ. Hence from

the related registers we know µa ` ~b! v. Also from rule
tr-mov-rr we know (ri : x)w 2 µΓ. Hence, the registers
are related. After the update we can see that they are still
related.

9. Case tr-mov-ri1. Then ◆ = (movw ri, [rj ]), ` = x and e = ⇤y.

(a) This case is possible iff R(rj) = 0 or R(rj) = ?. Because
of the related registers and, from rule tr-mov-ri1, (rj : y)4 2
µΓ, we have µa ` R(rj)! σ(⇢(y)). In either of the cases

for R(rj) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! err.

(b) In this case rules ex-mov-ri is used for progress on ◆: ~R `
hH,R,movw ri, [rj ]i

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~b2} where~b2 = Hw(~b1) and~b1 = R(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval, l-ptr and l-var

we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, ⇤yi
e
−! hσ, ⇡, v2i where v2 =

σ(v1), v1 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ri1 we know (rj : y)4 2 µΓ. Hence

from the related registers we know µa ` ~b1 ! v1. From

related stores, we also know µa ` ~b2 ! v2. Also from rule
tr-mov-ri1 we know (ri : x)w 2 µΓ. Hence, the registers



are related. After the update we can see that they are still
related.

10. Case tr-mov-ri2. Then ◆ = (movw ri, [rj ]), ` = x and e =
y[0].
(a) This case is possible iff R(rj) = 0 or R(rj) = ?. Because

of the related registers and, from rule tr-mov-ri2, (rj : y)4 2
µΓ, we have µa ` R(rj)! σ(⇢(y)). In either of the cases

for R(rj) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! err.

(b) In this case rules ex-mov-ri is used for progress on ◆: ~R `
hH,R,movw ri, [rj ]i

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~b2} where~b2 = Hw(~b1) and~b1 = R(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval, l-ar and e-const

we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, y[0]i
e
−! hσ, ⇡, v2i where v2 =

σ(v1), v1 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ri2 we know (rj : y)4 2 µΓ. Hence

from the related registers we know µa ` ~b1 ! v1. From

related stores, we also know µa ` ~b2 ! v2. Also from rule
tr-mov-ri2 we know (ri : x)w 2 µΓ. Hence, the registers
are related. After the update we can see that they are still
related.

11. Case tr-mov-ri3. Then ◆ = (movw ri, [rj ]), ` = x and e =
y ! 0.

(a) This case is possible iff R(rj) = 0 or R(rj) = ?. Because
of the related registers and, from rule tr-mov-ri3, (rj : y)4 2
µΓ, we have µa ` R(rj)! σ(⇢(y)). In either of the cases

for R(rj) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! err.

(b) In this case rules ex-mov-ri is used for progress on ◆: ~R `
hH,R,movw ri, [rj ]i

◆
−! hH,R0i. Here R0 = R ◦w {ri 7!

~b2} where~b2 = Hw(~b1) and~b1 = R(rj).

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval and l-fldwe obtain

Σ; ~⇢; ⇢ ` hσ, ⇡, y ! 0i
e
−! hσ, ⇡, v2i where v2 = σ(v1),

v1 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ri3 we know (rj : y)4 2 µΓ. Hence

from the related registers we know µa ` ~b1 ! v1. From

related stores, we also know µa ` ~b2 ! v2. Also from rule
tr-mov-ri3 we know (ri : x)w 2 µΓ. Hence, the registers
are related. After the update we can see that they are still
related.

12. Case tr-mov-ir1. Then ◆ = (movw [ri], rj), ` = ⇤x and e = y.

(a) This case is possible iff R(ri) = 0 or R(ri) = ?. Because
of the related registers and, from rule tr-mov-ir1, (ri : x)4 2
µΓ, we have µa ` R(ri)! σ(⇢(x)). In either of the cases

for R(ri) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! err.

(b) In this case rules ex-mov-ir is used for progress on ◆:
~R ` hH,R,movw [ri], rji

◆
−! hH 0, Ri. Here H 0 =

H ◦ {~b1, . . . ,~b1 + (w − 1) 7! ~b2} where ~b1 = R(ri)

and~b = R0:w(rj).

Similarly, through rule l-ptr Σ; ~⇢; ⇢ ` hσ, ⇡, ⇤xi
`
−! hσ, ⇡, v1i

with v1 = σ(a) and a = ⇢(x). Also through rules e-lval

and l-varwe obtain Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! hσ, ⇡, v2i where

v2 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ir1 we know (rj : y)w 2 µΓ. Hence

from the related registers we know µa ` ~b2 ! v2. From

related stores, we also know µa ` ~b2 ! v2. Also from rule

tr-mov-ir1 we know (ri : x)w 2 µΓ. Hence, µa ` ~b1 !
v1. Since (x : ✓1⇤) 2 Γc, we know that v1 is an address.

Because of related heaps, we then know that (~b1, v1)inµa.
After the update we can see that they are still related.

13. Case tr-mov-ir2. Then ◆ = (movw [ri], rj), ` = x[0] and
e = y.

(a) This case is possible iff R(ri) = 0 or R(ri) = ?. Because
of the related registers and, from rule tr-mov-ir2, (ri : x)4 2
µΓ, we have µa ` R(ri)! σ(⇢(x)). In either of the cases

for R(ri) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! err.

(b) In this case rules ex-mov-ir is used for progress on ◆:
~R ` hH,R,movw [ri], rji

◆
−! hH 0, Ri. Here H 0 =

H ◦ {~b1, . . . ,~b1 + (w − 1) 7! ~b2} where ~b1 = R(ri)

and~b = R0:w(rj).

Similarly, through rule l-ar and e-const Σ; ~⇢; ⇢ ` hσ, ⇡, x[0]i
`
−!

hσ, ⇡, v1i with v1 = σ(a) and a = ⇢(x). Also through rules

e-lval and l-varwe obtain Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! hσ, ⇡, v2i

where v2 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ir2 we know (rj : y)w 2 µΓ. Hence

from the related registers we know µa ` ~b2 ! v2. From

related stores, we also know µa ` ~b2 ! v2. Also from rule

tr-mov-ir2 we know (ri : x)w 2 µΓ. Hence, µa ` ~b1 !
v1. Since (x : ✓1[]⇤) 2 Γc, we know that v1 is an address.

Because of related heaps, we then know that (~b1, v1)inµa.
After the update we can see that they are still related.

14. Case tr-mov-ir3. Then ◆ = (movw [ri], rj), ` = x ! 0 and
e = y.

(a) This case is possible iff R(ri) = 0 or R(ri) = ?. Because
of the related registers and, from rule tr-mov-ir3, (ri : x)4 2
µΓ, we have µa ` R(ri)! σ(⇢(x)). In either of the cases

for R(ri) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! err.

(b) In this case rules ex-mov-ir is used for progress on ◆:
~R ` hH,R,movw [ri], rji

◆
−! hH 0, Ri. Here H 0 =

H ◦ {~b1, . . . ,~b1 + (w − 1) 7! ~b2} where ~b1 = R(ri)

and~b = R0:w(rj).

Similarly, through rule l-fld Σ; ~⇢; ⇢ ` hσ, ⇡, x ! 0i
`
−!

hσ, ⇡, v1i with v1 = σ(a) and a = ⇢(x). Also through rules

e-lval and l-varwe obtain Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−! hσ, ⇡, v2i

where v2 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ir3 we know (rj : y)w 2 µΓ. Hence

from the related registers we know µa ` ~b2 ! v2. From

related stores, we also know µa ` ~b2 ! v2. Also from rule

tr-mov-ir3 we know (ri : x)w 2 µΓ. Hence, µa ` ~b1 !
v1. Since (x : N⇤) 2 Γc, we know that v1 is an address.

Because of related heaps, we then know that (~b1, v1)inµa.
After the update we can see that they are still related.

15. Case tr-mov-ri+1. Then ◆ = (movw ri, [rj + c], ` = x and
e = y[m].
(a) This case is possible iff R(rj) = 0, R(rj) = ? or (R(rj)+

c) 62 dom(H). Because of the related registers and heaps,
and from rule tr-mov-ri+1(rj : y)4 2 µΓ, we have µa `
R(rj) ! σ(⇢(y)). In either of the first two cases for

R(rj) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, y[m]i
`
−! err. In the

last case, because of related heaps, it also has to be that

Σ; ~⇢; ⇢ ` hσ, ⇡, y[m]i
`
−! err.

(b) In this case rules ex-mov-r+ is used for progress on ◆: ~R `
hH,R,movw ri, [rj + c]i

◆
−! hH,R0i. Here R0 = R ◦w

{ri 7! ~b} where~b = Hw(~b0) and~b = R(rj) +4 c.

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval, l-arand e-const

we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, y[m]i
e
−! hσ, ⇡, vi where v =

σ(a00 +m), a00 = σ(a0) and a0 = ⇢(y).



From rule tr-mov-ri+1 we know (rj : y)4 2 µΓ. Hence

from the related registers we know µa ` ~b0 ! a00. From
the translation rule we also have (y : ✓[]⇤) 2 Γc. Because
of the progress, it means that [a00, a00 +m] ✓2 ⇡. Because
of the related heaps and well-typed store it follows that

µa ` ~b ! v. Also from rule tr-mov-ri+1 we know (ri :
x)w 2 µΓ. After the update we can see that they are still
related.

16. Case tr-mov-ri+2. Then ◆ = (movw ri, [rj + c], ` = x and
e = y ! m.

(a) This case is possible iff R(rj) = 0, R(rj) = ? or (R(rj)+
c) 62 dom(H). Because of the related registers and heaps,
and from rule tr-mov-ri+2(rj : y)4 2 µΓ, we have µa `
R(rj) ! σ(⇢(y)). In either of the first two cases for

R(rj) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, y[m]i
`
−! err. In the

last case, because of related heaps, it also has to be that

Σ; ~⇢; ⇢ ` hσ, ⇡, y ! mi
`
−! err.

(b) In this case rules ex-mov-r+ is used for progress on ◆: ~R `
hH,R,movw ri, [rj + c]i

◆
−! hH,R0i. Here R0 = R ◦w

{ri 7! ~b} where~b = Hw(~b0) and~b = R(rj) +4 c.

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, ai

with a = ⇢(x). Also through rules e-lval and l-fld we

obtain Σ; ~⇢; ⇢ ` hσ, ⇡, y ! mi
e
−! hσ, ⇡, vi where v =

σ(a00 +m), a00 = σ(a0) and a0 = ⇢(y).
From rule tr-mov-ri+2 we know (rj : y)4 2 µΓ. Hence

from the related registers we know µa ` ~b0 ! a00. From
the translation rule we also have (y : N⇤) 2 Γc and
Σ(N) = h✓0, . . . , ✓ni. Because of the progress, it means
that [a00, a00 + m] ✓2 ⇡. Because of the related heaps and

well-typed store it follows that µa ` ~b ! v. Also from
rule tr-mov-ri+1 we know (ri : x)w 2 µΓ. After the update
we can see that they are still related.

17. Case tr-mov-i+r1. Then ◆ = (movw [ri + c], rj , ` = x[m] and
e = y.

(a) This case is possible iff R(ri) = 0, R(ri) = ? or (R(ri)+
c) 62 dom(H). Because of the related registers and heaps,
and from rule tr-mov-i+r1(ri : x)4 2 µΓ, we have µa `
R(ri) ! σ(⇢(x)). In either of the first two cases for

R(ri) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, x[m]i
`
−! err. In the

last case, because of related heaps, it also has to be that

Σ; ~⇢; ⇢ ` hσ, ⇡, x[m]i
`
−! err.

(b) In this case rules ex-mov-+r is used for progress on ◆: ~R `
hH,R,movw [ri + c], rji

◆
−! hH 0, Ri. Here H 0 = H ◦

{H(R(ri)) +4 c+4 n 7! Rn:n+1(rj)}
w−1
n=0 .

Similarly, through rule l-ar Σ; ~⇢; ⇢ ` hσ, ⇡, x[m]i
`
−!

hσ, ⇡, ai with a = a0 + m and a0 = ⇢(x). Also through

rules e-lval and l-var we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−!

hσ, ⇡, vi where v = σ(a00) and a00 = ⇢(y).
From rule tr-mov-i+r1 we know (ri : x)4 2 µΓ. Hence
from the related registers we know µa ` R(ri) ! a0.
From the translation rule we also have (x : ✓[]⇤) 2 Γc.
Because of the progress, it means that [a0, a0 + m] ✓2 ⇡.
Because of the related heaps and well-typed store it follows
that (R(ri) + c, a0 +m) 2 µa. Also from rule tr-mov-ri+1

we know (rj : y)w 2 µΓ. Hence, µa ` R0:w(rj) ! v.
After the update we can see that (R(ri)+ c) and a0+m are
still related.

18. Case tr-mov-i+r2. Then ◆ = (movw [ri + c], rj , ` = x ! m
and e = y.

(a) This case is possible iff R(ri) = 0, R(ri) = ? or (R(ri)+
c) 62 dom(H). Because of the related registers and heaps,

and from rule tr-mov-i+r2(ri : x)4 2 µΓ, we have µa `
R(ri) ! σ(⇢(x)). In either of the first two cases for

R(ri) we also have Σ; ~⇢; ⇢ ` hσ, ⇡, x ! mi
`
−! err. In

the last case, because of related heaps, it also has to be that

Σ; ~⇢; ⇢ ` hσ, ⇡, x ! mi
`
−! err.

(b) In this case rules ex-mov-+r is used for progress on ◆: ~R `
hH,R,movw [ri + c], rji

◆
−! hH 0, Ri. Here H 0 = H ◦

{H(R(ri)) +4 c+4 n 7! Rn:n+1(rj)}
w−1
n=0 .

Similarly, through rule l-ar Σ; ~⇢; ⇢ ` hσ, ⇡, x ! mi
`
−!

hσ, ⇡, ai with a = a0 + m and a0 = ⇢(x). Also through

rules e-lval and l-var we obtain Σ; ~⇢; ⇢ ` hσ, ⇡, yi
e
−!

hσ, ⇡, vi where v = σ(a00) and a00 = ⇢(y).
From rule tr-mov-i+r2 we know (ri : x)4 2 µΓ. Hence
from the related registers we know µa ` R(ri) ! a0.
From the translation rule we also have (x : N⇤) 2 Γc.
Because of the progress, it means that [a0, a0 + m] ✓2 ⇡.
Because of the related heaps and well-typed store it follows
that (R(ri) + c, a0 +m) 2 µa. Also from rule tr-mov-ri+1

we know (rj : y)w 2 µΓ. Hence, µa ` R0:w(rj) ! v.
After the update we can see that (R(ri)+ c) and a0+m are
still related.

19. Case tr-alloc-r*. Then ◆ = (alloc ri, rj ⇤ c, ` = x and
e = new ✓[y ⇤m].
(a) Rule ex-alloc-* only fails iff R(rj) = ?. Similarly, while

rules l-var, e-const and e-op do not fail, rule e-ar fails iff
σ(⇢(y)) = ?. Since (rj : y) 2 µΓ, both failures coincide.

(b) This case is similar to that of tr-alloc-rc2.

20. Case tr-alloc-rc1. Then ◆ = (alloc ri, c, ` = x and e = new ✓.

(a) Rule ex-alloc cannot fail. Similarly, rules l-var and e-new do
not fail.

(b) In this case rules ex-alloc is used for progress on ◆: ~R `
hH,R, alloc ri, ci

◆
−! hH 0, R0i. Here R0 = R ◦4 ri 7! a.

Also H 0 = H ◦ {a+ i 7! ?}c−1
i=0 .

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ, ⇡, xi
`
−! hσ, ⇡, a0i

where a0 = ⇢(x). Also through rule e-new we obtain

Σ; ~⇢; ⇢ ` hσ, ⇡, new ✓i
e
−! hσ0, ⇡, a00i where σ0 =

σ ◦ {a00 7! ?}.
Then choose µ0

a = µa ◦ {(a : a00)c}. Since µa ` ?! ?
these fresh addresses are related. Also pick ⌫0

a = ⌫a ◦ {a+
i 7! (a, c)}c−1

i=0 .

21. Case tr-alloc-rc2. Then ◆ = (alloc ri, c, ` = x and e =
new struct N .

(a) Rule ex-alloc cannot fail. Similarly, rules l-var and e-str do
not fail.

(b) In this case rules ex-alloc is used for progress on ◆: ~R `
hH,R, alloc ri, ci

◆
−! hH 0, R0i. Here R0 = R ◦4 ri 7! a.

Also H 0 = H ◦ {a+ i 7! ?}c−1
i=0 .

Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ,⇡, xi
`
−! hσ,⇡, a0i

where a0 = ⇢(x). Also through rule e-str we obtain

Σ; ~⇢; ⇢ ` hσ,⇡, new struct ✓i
e
−! hσ0,⇡, a00i where

σ0 = σ ◦ {a00 + i 7! ?}n−1
i=0 with n is the number of

fields in the struct.
The new memory relations are straightforward.

22. Case tr-alloc-rc3. Then ◆ = (alloc ri, c, ` = x and e =
new ✓[m].
(a) Rule ex-alloc cannot fail. Similarly, rules l-var,e-str and

e-const do not fail.

(b) In this case rules ex-alloc is used for progress on ◆: ~R `
hH,R, alloc ri, ci

◆
−! hH 0, R0i. Here R0 = R ◦4 ri 7! a.

Also H 0 = H ◦ {a+ i 7! ?}c−1
i=0 .



Similarly, through rule l-var Σ; ~⇢; ⇢ ` hσ,⇡, xi
`
−! hσ,⇡, a0i

where a0 = ⇢(x). Also through rule e-ar we obtain

Σ; ~⇢; ⇢ ` hσ,⇡, new ✓[m]i
e
−! hσ0,⇡, a00i where σ0 =

σ ◦ {a00 + i 7! ?}m−1
i=0 .

The new memory relations are straightforward.

23. Case tr-call. This case follows coinductively.

Basic Blocks The two propositions for basic blocks are the fol-
lowing.

Proposition 15 (Preservation of Progress for Basic Blocks). If

• µλ;µΓ; Γc; Σ ` b
b
 s

• 8(a : l) 2 µλ : µλ;µΓ; Γc; Σ ` λx(a)
b
 λc(l)

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• µa; ⌫a;⇡; ~⇢, ⇢ ` H! σ

• µa; ~µΓ, µΓ;σ ` ~R,R! ~⇢, ⇢

• λx; ~R ` hH,R, bi
b
−! hH 0, R0, b0i

then

• Σ;λc; ~⇢; ⇢ ` hσ,⇡, si
s
−! err or

• Σ;λc; ~⇢; ⇢ ` hσ,⇡, si
s
−! hσ0,⇡0, s0i.

Proposition 16 (Preservation of Related Memory for Basic Blocks).
If

• µλ;µΓ; Γc; Σ ` b
b
 s

• 8(a : l) 2 µλ : µλ;µΓ; Γc; Σ ` λx(a)
b
 λc(l)

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• µa; ⌫a;⇡; ~⇢, ⇢ ` H! σ

• µa; ~µΓ, µΓ;σ ` ~R,R! ~⇢, ⇢

• λx; ~R ` hH,R, bi
b
−! hH 0, R0, b0i

• Σ;λc; ~⇢; ⇢ ` hσ,⇡, si
s
−! hσ0,⇡0, s0i

then for some µ0
a ◆ µa and ⌫0

a ◆ ⌫a:

• µ0
a; ~µΓ, µΓ;σ

0 ` ~R,R! ~⇢, ⇢
• µ0

a; ⌫
0
a;⇡

0; ~⇢, ⇢ ` H 0
! σ0

Proof 6. The proof is straightforward.

Function Definitions The two propositions for function defini-
tions are the following.

Proposition 17 (Preservation of Progress for Function Definitions).
If

• Σ ` hf,−!rx,
−!ry , a,λx, ji f(

−−!
x : ✓)h

−−−!
y : ✓0, l,λc, ji

• µΓ = {−−−−!rx 7! x,−−−−!ry 7! y}

• Γc = {
−−!
x : ✓,

−−−!
y : ✓0}

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• µa; ⌫a;⇡; ~⇢, ⇢ ` H! σ

• µa; ~µΓ, µΓ;σ ` ~R,R! ~⇢, ⇢

• λx; ~R ` hH,R,λx(a)i
b
−! hH 0, R0, b0i

then

• Σ;λc; ~⇢; ⇢ ` hσ,⇡,λc(l)i
s
−! err or

• Σ;λc; ~⇢; ⇢ ` hσ,⇡,λ(l)i
s
−! hσ0,⇡0, s0i.

Proposition 18 (Preservation of Related Memory for Function
Definitions). If

• µλ;µΓ; Γc; Σ ` b
b
 s

• µΓ = {−−−−!rx 7! x,−−−−!ry 7! y}

• Γc = {
−−!
x : ✓,

−−−!
y : ✓0}

• Γc; Σ;Ψ ` ⇢
• Σ;Ψ ` σ;⇡
• µa; ⌫a;⇡; ~⇢, ⇢ ` H! σ

• µa; ~µΓ, µΓ;σ ` ~R,R! ~⇢, ⇢

• λx; ~R ` hH,R,λx(a)i
b
−! hH 0, R0, b0i

• Σ;λc; ~⇢; ⇢ ` hσ,⇡,λ(l)i
s
−! hσ0,⇡0, s0i.

then for some µ0
a ◆ µa and ⌫0

a ◆ ⌫a:

• µ0
a; ~µΓ, µΓ;σ

0 ` ~R,R! ~⇢, ⇢
• µ0

a; ⌫
0
a;⇡

0; ~⇢, ⇢ ` H 0
! σ0

Proof 7. The proof is straightforward.


