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Abstract. We present an artificial synaptic plasticity (ASP) mechanism
that allows artificial systems to make associations between environmental
stimuli and learn new skills at runtime. ASP builds on the classical neural
network for simulating associative learning, which is induced through a
conditioning-like procedure. Experiments in a simulated mobile robot
demonstrate that ASP has successfully generated conditioned responses.
The robot has learned during environmental exploration to use sensors
added after training, improving its object-avoidance capabilities.
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1 Introduction

Natural environments change often, which makes adaptation an essential survival
skill for most organisms. Like animals, robotic systems may also find themselves
in ever-changing environments. The need for more effective artificial intelligence,
capable to overcome environmental changes, has led researchers to find inspira-
tion in nature’s solutions for adaptation, such as animals’ reflexive behaviors
[2,5], and the human brain [1] and its hormonal mechanisms [7,9].

In nature, the ability to learn new behaviors by means of associations between
external stimuli is known to be essential for adaptation in a variety of animals,
including humans [4]. However, to date, most works on adaptive systems seem
to ignore this fact, seeking to adapt only the system’s native behaviors and
overlooking the need of a system that autonomously learn new ones [1,2,5,7,9].

In this paper, we propose a mechanism for allowing artificial systems to
autonomously learn new skills based on environmental feedback and on its pre-
existing skills. Our approach consists in an artificial synaptic plasticity (ASP)
mechanism that builds on the classical artificial neural network (ANN) [3] for
simulating associative learning. The system learns at runtime, through a proce-
dure analogous to classical conditioning [8], to associate different environmental
stimuli and use newly available information to solve problems in ways it was
not trained for. We have evaluated ASP in a simulated mobile robot, which has
successfully expressed conditioned responses.
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This paper is organized as follows: Section 2 introduces ASP’s biological
inspiration, followed by its implementation in Section 3. We present experimental
results in Section 4 and conclude in Section 5.

2 Biological Background

2.1 Classical Conditioning

Classical conditioning, first documented by Pavlov [8], is an important form of
learning that involves the association of a behavioral response with an event that
normally does not trigger that response. In his most famous experiment, Pavlov
conditioned a dog to salivate on the ringing of a bell, after repeatedly ringing
the bell whenever he presented food to the dog.

Pavlov argued that some reflexes are “hard-wired” and, therefore, do not need
to be learned. For example, dogs do not need to learn to salivate when they smell
food. This kind of reflex, which is native and automatic, is called unconditioned
response (UR) and is triggered by an unconditioned stimulus (US). In Pavlov’s
dog example, the smell of food is an US that triggers salivation as an UR.

By contrast, the ringing of a bell is considered a neutral stimulus (NS),
because it naturally produces no salivation in dogs. After pairing the bell sound
with food smell, association occurs and it becomes a conditioned stimulus (CS),
being able to trigger salivation by itself as a conditioned response (CR). Unlike
URs, a CR can be extinguished after learned, for example, the dog will diminish
its salivation response to the bell if food is repeatedly presented on the absence
of the bell sound and vice-versa.

2.2 Synaptic Plasticity

At neural level, associative learning happens when a neuron is simultaneously
excited by a strong and a weak electrical stimulus. This process gives rise to
a phenomenon known as long-term potentiation (LTP), which strengthens the
communication between two neurons [4]. LTP takes place at the synapse, which
is the structure that connects two neurons and allows neural communication.
However, LTP is not the only process that affects synapses’ efficiency. Long-term
depression (LTD) is a process similar to LTP, but instead of strengthening, it
weakens synapses capability to transmit signals between neurons.

Synapses’ ability to change their strength in signal transmission according to
neural activity level, called synaptic plasticity or Hebbian plasticity, is known to
play an important role in classical conditioning [4]. As a simplified example of
this relation, a weak electrical stimulus could come from a CS, such as the ringing
of a bell for Pavlov’s dog, whereas a strong electrical stimulation could come from
an US, such as the smell of food for Pavlov’s dog. The target neuron (i.e., the
one receiving these stimulations), in turn, could be a neuron that meaningfully
contributes for triggering the dog’s salivation response.

The pairing of both weak (from the bell) and strong (from the food) electrical
stimulus generates LTP, which makes the target neuron more responsive to the
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weak stimulus. In the future, the weak stimulus will be able to activate the target
neuron by itself, allowing the bell’s sound to trigger the salivation response. If
CS and US are repeatedly presented in the absence of each other, LTD occurs,
leading the dog to no longer respond to the bell sound.

3 Artificial Synaptic Plasticity

We propose to simulate the neural mechanism of classical conditioning in the
classical feedforward ANN [3]. As discussed in Section 2, the neural mecha-
nism of classical conditioning consists in strengthening the signaling efficiency
of synapses, which are represented as weights in the classical ANN. We argue
that it is possible to generate an artificial synaptic plasticity (ASP) for artifi-
cial systems by gradually changing the ANN’s weights according to the activity
coincidence of its inputs.

In feedforward ANNs, the input value of a neuron i, known as net input, is
given by Equation 1, where xj is the output of neuron j, wij is the weight that
connects neurons j and i, and bi is the bias of neuron i.

neti = bi +
∑

j

xjwij . (1)

The association process induced by ASP takes place after the ANN’s training
phase, during the system’s operational cycle. Each input of the ANN is consid-
ered an external stimulus, which may be an artificial conditioned stimulus (ACS)
or an artificial unconditioned stimulus (AUS). Therefore, the ANN’s inputs are
divided into two groups: the AUS group, depicted by the vector u, of size p; and
the ACS group, depicted by the vector c, of size q. Together, these two stimuli
vectors compose the input vector x of the ANN, with size p + q. A particular
ACS cannot be an AUS at the same time and vice-versa. Therefore

x = [u1, u2, ..., up, c1, c2, ..., cq]T ;

neti = bi +
p∑

k=1

ukwik +
q∑

j=1

cjwij .

Consider, for now on, that the variables k ∈ {1, 2, ..., p} and j ∈ {1, 2, ..., q}
are reserved for indexing AUS and ACS elements, respectively. Also, for the
following explanation, we assume that the ANN’s inputs are normalized in the
range [0,1] and that the higher the value of an input, the higher its influence for
generating the behavior of interest.

ASP’s methodology consists in gradually changing the first-layer weights of
ACSs, so that they become able to activate neurons of the second layer by
themselves with the same pattern that AUSs would. Thus, each weight wij con-
necting ACS inputs to the second layer should be updated by a delta Δwij , so
that wij(t+1) = wij(t)+Δwij(t), where wij(t) is the value of wij at time t. Note
that this updating rule excludes weights wik that are related to AUS inputs.
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The value of Δwij should consider not only the amount by which a given pat-
tern is associated, determined by LTP, but also the amount by which the same
pattern is extinguished/dissociated, determined by LTD. The variables Δa (asso-
ciation amount) and Δd (dissociation amount) control the level of association,
reinforcing it (if Δa > Δd) or diminishing it (if Δd > Δa), so that

Δwij = αj(Δaij − Δdij) , (2)

where αj ∈ [0, 1] is the constant that determines the rate at which the ANN
associates or dissociates stimulus cj , and is called as the association rate (AR)
of stimulus cj . Hence, αj = 0 means that no association will occur, and the
closer αj is to 1 the faster the system associates cj .

The value of wij cannot be increased/decreased indefinitely, because the
ANN’s outcome could be very different from the outcome produced by AUSs,
diverging from the concept of classical conditioning. To avoid that, wij must be
kept in a range [w′

ij , w
′′
ij ], where w′

ij is the initial value of wij and w′′
ij is the

desired conditioned value of wij . Hence, the closer wij is from a w′′
ij , the closer

it is from a complete association. Analogously, the closer wij is from w′
ij , the

closer it is from a complete dissociation. Therefore

Δaij = (w′′
ij − wij) × assocj , (3)

Δdij = (wij − w′
ij) × dissocj , (4)

where the variables assocj (association factor) and dissocj (dissociation factor),
both in the interval [0,1], dictate the degree of synaptic-activity coincidence
between cj and u. We will return to these variables later on.

According to our definition, the value of w′′
ij should allow cj to activate

neuron i of the second layer with the same pattern that vector u would, which
implies in Equation 5 (remember that {x ∈ x | 0 < x < 1}). The constant
sjk ∈ [0, 1] is the sensitivity of stimulus cj to stimulus uk. The matrix that maps
the sensitivity between vectors c and u should be calibrated according to the
designer’s judgment, depending on the purpose of the associative learning and
the architecture of the ANN. If correctly calibrated, the SM (sensitivity matrix)
can prevent the system from learning “superstitions”, i.e., patterns that are no
more than random coincidences.

w′′
ij =

∑

k

sjkwik . (5)

In biological synaptic plasticity, association between a pair of CS and US
occur when their values are simultaneously high, and it is analogous for ASP.
Therefore, the higher the values of an ACS cj and an AUS uk, the higher the
association between both (i.e., the higher the association factor assocj). How-
ever, cj may be associated with more than one AUS, at different sensitivity
values. Thereafter, it is more correct to state that assocj is proportional to the
average signal strength of u weighted by the respective sensitivities. This implies
that

assocj = cj
∑

k

s′
jkuk , (6)
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where s′
jk = sjk/

∑
k sjk. Analogously, the dissociation (i.e., the extinction of an

association) of an ACS cj with an AUS uk should occur when these stimuli are
no longer paired. Therefore, the smaller the value of cj and the higher the mean
of u weighted by the respective sensitivities, the higher the dissociation between
both (i.e., the higher the dissociation factor dissocj):

dissocj = (1 − cj)
∑

k

s′
jkuk . (7)

Also, according to classical conditioning, the higher the ACS and the smaller
the AUS, the higher the dissociation; however, we have omitted it in the first
version of ASP and considered it as future work. By replacing Equations 3, 4, 6
and 7 in Equation 2 and simplifying, we find

Δwij = αj

[
cj(w′′

ij − wij) − (wij − w′
ij)(1 − cj)

] ∑

k

s′
jkuk , (8)

where w′′
ij is given by Equation 5. If a particular pair of associated stimuli, say cj

and uk, have high input values at the same time, a net-input extrapolation may
occur. This is because after being associated with uk, cj is able to mimic the
effect of uk in the ANN. Therefore, if both inputs are high, the neural network
will receive a total input twice as high as it would if association had not occurred.
So, the net input value must be restricted according to Equation 9, where v and
v are, respectively, the minimum and maximum values that v can assume.

bi +
∑

j

xjw
′
ij < neti < bi +

∑

j

xjw′
ij . (9)

4 Experimental Evaluation

In this section, we evaluate ASP in a multi-stimulus association case. A robot
is equipped with distance and touch sensors, but is trained (by means of the
backpropagation algorithm [3]) to recognize and avoid obstacles using only touch
sensors. Environmental exploration provides a natural conditioning, since it is
probable that at least one distance sensor will measure high proximity to obsta-
cles whenever a collision occur. By means of ASP, the robot is expected to
gradually associate collision with proximity at runtime and eventually start to
use information from the distance sensors to avoid obstacles before colliding.

4.1 Experimental Setup

We have used the robot simulator Webots [6] to simulate the Pioneer 2 robot1,
which is equipped with 16 distance sensors plus 5 custom touch-sensors. Figure 1a
shows the architecture of the ANN that controls the robot’s movements, whose
inputs come from the sensors depicted in Figure 1b. The first five inputs,
1 http://www.mobilerobots.com

http://www.mobilerobots.com
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· · ·

c16
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Left

Right

(a) Neural network that controls the robot.
Inputs are divided into unconditioned (vector
u) and conditioned (vector c) stimuli. Out-
puts provide the speeds for the left and right
wheels in radians per second.

(b) Aerial view of robot’s sen-
sors disposition. Red lines repre-
sent distance-sensor rays and blue
spheres represent the contact area of
touch sensors.

Fig. 1. Robot controller setup

representing AUS, come from the touch sensors and assume only binary val-
ues, where one means that a collision has been detected and zero means the
opposite. The last 16 inputs, representing ACS, come from the distance sensors
and assume integer values from 0 to 1024, where the higher the input value
the closer the robot is to an obstacle. The robot’s maximum detection range is
0.5 meters.

The robot was placed in a 4m2 box with a narrow and curved corridor leading
to two dead ends, where it was initialized in three different positions and evalu-
ated for five ARs: 0, 0.001, 0.01, 0.1 and 1. AR zero represents the execution of
the pure ANN implementation, i.e., when there is no associative learning at all.
In order to investigate performance variation deriving from noise error (simu-
lated by Webots), we have executed each setup combination (3 initial positions
and 5 ARs) 30 times, each for 5 minutes.

The SM has been configured to prevent the robot from associating random
coincidences. For example, if the robot occurs to be near the left wall while
touching the wall at its front, it may associate its left distance sensors with its
frontal touch sensors, which is a mistake. Therefore, for this particular experi-
ment, the SM should map the disposition of the robot’s sensors, so that distance
sensors are associated with the nearest touch sensor. Table 1 depicts the SM used
in this experiment. Some distance sensors, such as c3, are close to two touch sen-
sors and, thus, have their sensitivity divided between them. By contrast, c6 and
c11 are relatively far from all touch sensors, so they have no sensitivity mapping.
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Table 1. Sensitivity matrix (zeroed cells were omitted)

Touch Distance Sensors
Sensors c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

u1 0.2 0.4 0.4 - - - - - - - - - - - - -
u2 - - 0.4 0.4 0.2 - - - - - - - - - - -
u3 - - - - - - 0.1 0.4 0.4 0.1 - - - - - -
u4 - - - - - - - - - - - 0.2 0.4 0.4 - -
u5 - - - - - - - - - - - - - 0.4 0.4 0.2

4.2 Results

Figure 2 counts all detected collisions during a complete run for each initial
position of the robot. The number of collisions when ASP is used with AR 0.01
is about 70% smaller than when it is not used. The difference is even greater for
AR 1.0, when the number of collisions is about 96% smaller than without ASP.

Outcomes for AR 0.001, however, are not as good as the results observed for
the other ARs. This is because, when under AR 0.001, the robot got trapped in
a corner from where it could not easily escape due to the disposition of its touch
sensors. The trapping was persistent in runs starting from position 3 (causing the
high collision count) and more occasional for runs starting from positions 1 and
2 (causing the high standard deviations). Despite trapping, results for the other
ARs (0.01, 0.1 and 1.0) present a consistent decrease in number of collisions, with
low standard deviation. Also, the lines are very close to each other, suggesting
that outcomes are the same regardless the robot’s start position.
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Fig. 2. Count of all detected collisions during an complete run

The robot’s behavioral changes were beyond our expectations. Because of
locomotion difficulty in the dead ends of the narrow corridor, the robot had
to move more “carefully” in order to make a turn without touching the walls.
As consequence, the more we increased the AR, the more time the robot spent



220 C. Rizzi Raymundo and C.G. Johnson

making the turn in the dead ends, and the less it collided. This “cautiousness” is
a positive collateral-effect that was neither deliberately designed, nor predicted.

The explored area is another unexpected and positive collateral-effect. When
running without ASP, the robot’s vision-range was limited to touch, so it could
not perceive alternative (and perhaps better) paths to avoid an obstacle. As
consequence, the robot kept doing laps in a small space. By contrast, when using
ASP, the increased vision-range of the distance sensors improved the robot’s
space-awareness, which doubled the robot’s explored area.

In addition to this experiment, we have also performed experiments for eval-
uating ASP regarding the dissociation process, i.e., when the robot forgets the
association learned. Videos of all experiments are available on-line2.

5 Conclusion and Future Work

We have presented an artificial mechanism of synaptic plasticity for generat-
ing associative learning in artificial systems through a conditioning-like process.
Experiments with ASP successfully generated a conditioned response, allowing
the robot to learn a new skill at runtime: use its distance sensors to avoid obsta-
cles before bumping into them. This improved the robot’s locomotion efficiency,
allowing it to explore a bigger area and preventing physical damage.

For future work, we plan to use ASP for triggering and memorizing artificial
emotions in computer systems. Neuroscientific findings indicate that emotions
are essential for intelligent behavior and fast decision making in humans [4].
As for animals, emotions may be also valuable for artificial intelligence [5,7,9].
We hypothesize that ASP could be used for generating emotive conditioned
responses, so that the system could adapt its behavior according to its past
“emotional experiences” in relation to a particular place, entity or object.

In addition, we plan to test ASP with a real mobile robot in a physical
environment in order to provide more realistic evaluation on its efficacy.
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