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Bifurcation of critical points along

gap�continuous families of subspaces

Anna Maria Candela∗ and Nils Waterstraat†

Abstract

We consider the restriction of twice di�erentiable functionals on a Hilbert space to fami-

lies of subspaces that vary continuously with respect to the gap metric. We study bifurcation

of branches of critical points along these families and apply our results to semilinear systems

of ordinary di�erential equations.

2010 Mathematics Subject Classi�cation. 47J15, 58E07, 14M15, 34B15, 34C23.
Keywords. Bifurcation, gap metric, Grassmannian, spectral �ow, semilinear ordinary di�erential equation.

1 Introduction

Let H be a real separable Hilbert space and J : H → R a C2�functional. We denote the
derivative of J at u ∈ H by duJ ∈ L(H,R) and in what follows we assume that d0J = 0, i.e.
0 ∈ H is a critical point of J . Usually, critical points of functionals J on Hilbert spaces H are
studied as they can be solutions of di�erential equations. Correspondingly, critical points of a
restriction J |H′ : H ′ → R to a subspace H ′ ⊂ H may yield solutions of di�erential equations
under additional constraints.
In [2] Abbondandolo and Majer studied the Grassmannian of a Hilbert space H, i.e. the set of all
closed subspaces of H. As there is a canonical metric on this set, which is induced by orthogonal
projections, we can de�ne paths {Ht}t∈[a,b] in it. Clearly, for each t ∈ [a, b] the element 0 ∈ Ht

is a critical point of the restriction J |Ht
: Ht → R as d0J = 0, and the aim of this paper is

to investigate bifurcation from this branch of critical points in a sense that we will introduce
below in De�nition 3.1. Our main results show the existence of bifurcation in terms of the second
derivative of J at the critical point 0, which are based on [9] and [16]. To this aim, we introduce
a family of functionals ft : H → R, t ∈ [a, b], such that each ft involves the orthogonal projection
onto the space Ht, and such that its critical points are the critical points of the restriction J |Ht

.
Consequently, 0 ∈ H is a critical point of any ft : H → R, t ∈ [a, b], and by considering the second
derivative d20ft of ft at 0 we can de�ne a path {Lt}t∈[a,b] of bounded selfadjoint operators by the
Riesz representation theorem. The assumptions of our theorems ensure that each Lt is actually
a Fredholm operator, and we prove that bifurcation of critical points of f along {Ht}t∈[a,b] arises
if the spectral �ow of L : t 7→ Lt does not vanish. Let us recall that the spectral �ow is an integer
valued homotopy invariant for paths of selfadjoint Fredholm operators that was introduced by
Atiyah, Patodi and Singer in [4]. Its relevance to bifurcation theory was discovered in [9]. For
example, if all operators Lt have a �nite Morse index µMorse(Lt), then the spectral �ow of L is
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just the di�erence of the Morse indices at the endpoints, i.e. µMorse(La)− µMorse(Lb). Hence a
non�vanishing spectral �ow of L corresponds to a jump in the Morse indices of L, which implies
bifurcation of critical points of f by a well known theorem in bifurcation theory (cf. [15, �8.9]
or also [12, �II.7.1]). However, if µMorse(Lt) = +∞ for some t ∈ [a, b], then the spectral �ow
may depend on the whole path L and not only on its endpoints, which makes the theory more
complicated.
The paper is structured as follows. In Section 2, we introduce some preliminaries that we need in
order to state our theorems. We recall some facts about the Grassmannian of a Hilbert space H,
essentially following Abbondandolo and Majer's paper [2]. However, we also state and prove a
folklore result which shows that the kernels of families of surjective bounded operators on H yield
paths in the Grassmannian and which we use in the �nal section in our examples. In Section 2
we brie�y recall the de�nition of the spectral �ow from [9]. In the third section, we introduce the
path L and state our main theorems and a corollary, which we prove in Section 4. Finally, we
apply our theory to a Dirichlet problem for semilinear ordinary di�erential operators in Section
5.

2 Grassmannians and spectral �ows

As before, we let H be a real separable Hilbert space of in�nite dimension, we denote by L(H)
the Banach space of all linear bounded operators on H equipped with its standard norm ‖ ·‖ and
by IH ∈ L(H) the identity operator. Let us recall that a Fredholm operator T on a Hilbert space
H is an operator T ∈ L(H) such that both its kernel and its cokernel are of �nite dimension.
We denote the open subset of all Fredholm operators in L(H) by Φ(H).

2.1 The Grassmannian of a Hilbert space

In this section, we recall brie�y the de�nition and some properties of the Grassmannian G(H)
of H, i.e. the set of all closed linear subspaces of H, where we refer for more details to the
comprehensive exposition [2].
For every U ∈ G(H), there exists a unique orthogonal projection PU : H → H onto U and the
distance

d(U, V ) := ‖PU − PV ‖, U, V ∈ G(H),

makes G(H) a complete metric space (cf. also [11]). Moreover, one can show that G(H) is an
analytic Banach manifold, and the map

G(H) ∋ V 7→ PV ∈ L(H)

embeds G(H) analytically into L(H) (cf. [2, Proposition 1.1]). In what follows, we denote by
{Vt}t∈[a,b] paths in G(H), i.e. continuous maps [a, b] → G(H), t 7→ Vt.

Lemma 2.1. The connected components of G(H) are the sets

Gnk(H) = {V ∈ G(H) : dimV = n, codimV = k},

with n, k ∈ N ∪ {+∞} such that k + n = +∞.

Proof. Let us �rst recall that if ‖PU − PV ‖ < 1 for U, V ∈ G(H), then dimU = dimV and
dimU⊥ = dimV ⊥ (cf. [11, I.4.6]). Consequently, if U and V belong to the same component of
G(H), then they must have both the same dimension and the same codimension.
Now, let us assume that U, V ∈ Gnk(H) for some k, n such that k + n = +∞. Since H is
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separable, it is easy to construct an orthogonal operator O : H → H such that O(U) = V .
Denoting by O(H) the subspace of L(H) consisting of all orthogonal operators, it is easily seen
from functional calculus that O(H) is connected1. Hence, there is a path M : [0, 1] → O(H)
joining the identity operator IH to O. Finally, since PMt(U) = MtPUM

−1
t for each t ∈ [0, 1], we

have that {Mt(U)}t∈[0,1] is continuous and so a path in G(H) that joins U to V .

Remark 2.2. A computation of all homotopy groups πi(Gnk(H)), i ∈ N, can be found in [2,
Section 2].

The following lemma is essentially well known (cf. e.g. [7, Appendix A]), but as we are not
aware of a proof in the literature, we include it here for the sake of completeness. The reader
may compare it with a related assertion on Banach bundles, which can be found e.g. in [25] and
also [23], and on which our argument is based.

Lemma 2.3. Let A : [a, b] → L(H,X) be a continuous family of bounded surjective operators,
where X is a Banach space and L(H,X) denotes the Banach space of all bounded linear operators.
Then

{kerAt}t∈[a,b] := {u ∈ H : Atu = 0}t∈[a,b]

is a path in Gnk(H), where k = dimX and n = dimH − dimX.

Proof. Let us �rst �x some t0 ∈ [a, b]. Since At0 is surjective, there exists M0 ∈ L(X,H) such
that At0M0 = IX , with IX the identity operator on X. From the fact that the invertible elements
in L(X) are open, we see that AtM0 is invertible for all t in a neighbourhood I0 of t0.
Now, if we set M0,t := M0(AtM0)

−1 for t ∈ I0, then AtM0,t = IX .
Note that if M1,M2 ∈ L(X,H) are such that AtMi = IX , then At(αM1 + (1− α)M2) = IX for
all 0 ≤ α ≤ 1. Consequently, by using a partition of unity, we may conclude that there exists a
path M : [a, b] → L(X,H) such that AtMt = IX for all t ∈ [a, b].
De�ning Rt := MtAt ∈ L(H), we note that Rt is a projection since

R2
t = MtAtMtAt = MtAt = Rt.

Moreover, since Mt is clearly injective, we infer that

ker(Rt) = ker(MtAt) = ker(At)

so that Qt := IH − Rt is a continuous family of projections such that im(Qt) = ker(At). Thus,
taking

Pt = QtQ
∗
t (QtQ

∗
t + (IH −Q∗

t )(IH −Qt))
−1,

it follows by [6, Lemma 12.8 a)] that {Pt}t∈[a,b] is a continuous family of orthogonal projections
such that im(Pt) = ker(At). Hence, {ker(At)}t∈[a,b] is a continuous family of subspaces in G(H).
Finally, that ker(At) ∈ Gnk(H) with k = dimX and n = dimH − dimX is an immediate
consequence of the rank�nullity theorem in linear algebra.

1Actually, even more is true: in [13] Kuiper proved that O(H) is contractible.
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2.2 The spectral �ow

We denote by ΦS(H) ⊂ Φ(H) the subspace of all selfadjoint Fredholm operators, which is well
known to consist of three connected components (cf. [5]). Two of them are given by

Φ+
S (H) = {L ∈ ΦS(H) : σess(L) ⊂ (0,+∞)},

Φ−

S (H) = {L ∈ ΦS(H) : σess(L) ⊂ (−∞, 0)},

where σess(L) = {λ ∈ R : L − λIH /∈ ΦS(H)} is the essential spectrum of an operator L ∈
ΦS(H). Their elements are called essentially positive or essentially negative, respectively, and it
is readily seen that both of these spaces are contractible. Elements of the remaining component
Φi

S(H) = ΦS(H)\(Φ+
S (H)∪Φ−

S (H)) are called strongly inde�nite, and in contrast to Φ+
S (H) and

Φ−

S (H), this space has a non�trivial topology. Indeed, Φi
S(H) has the same homotopy groups

as the stable orthogonal group (cf. [22]) and the spectral �ow provides an explicit isomorphism
between its fundamental group and the integers. There are several di�erent, but equivalent,
constructions of the spectral �ow in the literature. Here, we follow the approach developed by
Fitzpatrick, Pejsachowicz and Recht in [9], and we refer to the introduction of [16] for further
references on the subject.
We call two selfadjoint invertible operators in L(H) Calkin equivalent if S − T is compact. It is
well known that in this case the relative Morse index

µrel(S, T ) = dim(E−(S) ∩ E+(T ))− dim(E+(S) ∩ E−(T ))

is well de�ned and �nite, where E−(·) and E+(·) denote the negative and positive subspaces of
a selfadjoint operator for which 0 is an isolated point of the spectrum.
From the second resolvent identity it follows that for Calkin equivalent operators S, T , also the
di�erence of the associated resolvent operators

(λ− T )−1 − (λ− S)−1 = (λ− T )−1(T − S)(λ− S)−1, λ /∈ σ(T ) ∪ σ(S),

is compact whenever it is de�ned, where σ(T ) and σ(S) denote the spectrum of T and S,
respectively. Finally, since the set of compact operators is closed in L(H), it follows that also
the di�erence of the spectral projections

P[a,b](T )− P[a,b](S) = Re

(

1

2πi

∫

Γ

[

(λ− TC)−1 − (λ− SC)−1
]

dλ

)

is compact, where a, b do not belong to σ(S)∪σ(T ) and Γ is the circle around a+b
2 in C intersecting

the real axis at a and b. Here, SC and TC denote the complexi�cation of operators and Re the real
part of an operator on a complexi�ed Hilbert space (cf. [24, Subsection 2.1] for more details).
The group GL(H) of all invertible operators on H acts on ΦS(H) by mapping M ∈ GL(H)
and L ∈ ΦS(H) to M∗LM , which is called the cogredient action. One of the main theorems in
[9] states that for any path L : [a, b] → ΦS(H) there exist a path M : [a, b] → GL(H) and a
selfadjoint invertible operator J ∈ ΦS(H), such that M∗

t LtMt = J +Kt with Kt selfadjoint and
compact for each t ∈ [a, b].

De�nition 2.4. Let L : [a, b] → ΦS(H) be a path such that La and Lb are invertible. The
spectral �ow of L is the integer

sf(L, [a, b]) = µrel(J +Ka, J +Kb),

where J +K : [a, b] → ΦS(H) is any path of compact selfadjoint perturbations Kt, t ∈ [a, b], of
a selfadjoint invertible operator J ∈ ΦS(H) which is cogredient to L.
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It follows from well known properties of the relative Morse index that the spectral �ow does not
depend on the choice of the path J +K, and moreover it has the following properties:

(i) If Lt is invertible for all t ∈ [a, b], then sf(L, [a, b]) = 0.

(ii) If H1 and H2 are separable Hilbert spaces and the paths L1 : [a, b] → ΦS(H1) and L2 :
[a, b] → ΦS(H2) have invertible endpoints, then

sf(L1 ⊕ L2, [a, b]) = sf(L1, [a, b]) + sf(L2, [a, b]).

(iii) Let h : [0, 1] × [a, b] → ΦS(H) be a homotopy such that h(s, a) and h(s, b) are invertible
for all s ∈ [0, 1]. Then,

sf(h(0, ·), [a, b]) = sf(h(1, ·), [a, b]).

(iv) If Lt ∈ Φ+
S (H), t ∈ [a, b], and La, Lb are invertible, then the spectral �ow of L is the

di�erence of the Morse indices at its endpoints:

sf(L, [a, b]) = µMorse(La)− µMorse(Lb),

where
µMorse(Lt) = sup dim{V ⊂ H : 〈Ltu, u〉H < 0 for all u ∈ V \ {0}}. (2.1)

Finally, let us note that the spectral �ow is actually uniquely characterised by the properties
(i)�(iv) above (cf. [8]). A further uniqueness theorem for the spectral �ow, which is based on
the di�erent but equivalent construction [17], can be found in [14, �5.2].

3 Bifurcation along gap continuous paths of subspaces

As before, let H be a real Hilbert space and J : H → R a C2-functional having 0 as a critical
point. We denote by duJ ∈ L(H,R) the derivative of J at u ∈ H, and we let T be the Riesz
representation of the Hessian d20J : H ×H → R of J at 0, i.e. the unique selfadjoint operator
T ∈ L(H) which satis�es

d20J [u, v] = 〈Tu, v〉H , u, v ∈ H. (3.1)

Let {Ht}t∈[a,b] ⊂ G(H) be a gap continuous path of closed subspaces of H for some real numbers
a < b, and let us point out that 0 ∈ H is in any Ht, t ∈ [a, b]. In what follows we denote by
J |Ht

: Ht → R the restriction of the functional J to the closed subspace Ht ⊂ H. Note that
0 ∈ H is a critical point of all J |Ht

, t ∈ [a, b], which is a direct consequence of the uniqueness
of the derivative.

De�nition 3.1. We say that t∗ ∈ [a, b] is a bifurcation point of J along {Ht}t∈[a,b] if there exist
two sequences (tn)n ⊂ [a, b] and (un)n ⊂ H such that

(i) tn → t∗ in [a, b] and un → 0 in H as n → +∞;

(ii) un ∈ Htn and un 6= 0 for all n ∈ N;

(iii) un is a critical point of J |Htn
for all n ∈ N.
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Since {Ht}t∈[a,b] is a continuous path of subspaces, there exists a family Pt, t ∈ [a, b], of orthog-

onal projections such that imPt = Ht. We set P⊥
t := IH − Pt, and de�ne

Lt = PtTPt + P⊥
t for each t ∈ [a, b], (3.2)

which is a continuous path of selfadjoint operators in L(H). We call {Ht}t∈[a,b] admissible if
both operators

PaTPa : Ha → Ha and PbTPb : Hb → Hb

are invertible. Since Ht and H⊥
t reduce Lt, and Lt |H⊥

t

= IH⊥

t

is invertible, we see at once that
La and Lb are invertible if {Ht}t∈[a,b] is admissible.
Now, let us state our main theorems and a corollary, which we are proving in the next section.

Theorem 3.2. Let {Ht}t∈[a,b] be an admissible path in Gnk(H) such that either n 6= +∞ or
k 6= +∞, and let us assume that the operator T introduced in (3.1) is Fredholm.
Then the operators Lt in (3.2) are Fredholm, and if sf(L, [a, b]) 6= 0, then there is a bifurcation
point of J along {Ht}t∈[a,b]. Moreover, if n 6= +∞ and {Ht}t∈[a,b] is analytic, then there are at
least

⌊

| sf(L, [a, b])|

n

⌋

(3.3)

distinct bifurcation points (here, ⌊·⌋ denotes the integer part of a positive real number).

Note that the case in which the path {Ht}t∈[a,b] is in the connected component G∞,∞(H) of
G(H) is excluded in Theorem 3.2. Our second theorem deals with this setting, but we have to
impose a restriction on the form of the operator T .

Theorem 3.3. We assume that T = IH+K for some compact operator K, and that {Ht}t∈[a,b] is
an admissible path in G∞,∞(H). Then the operators Lt in (3.2) are Fredholm, and if sf(L, [a, b]) 6=
0, then there is a bifurcation point of J along {Ht}t∈[a,b].

Let us point out that Lt ∈ Φ+
S (H), t ∈ [a, b], and so

sf(L, [a, b]) = µMorse(La)− µMorse(Lb) = µMorse(T |Ha
)− µMorse(T |Hb

),

in each of the following cases:

• if n 6= +∞ in Theorem 3.2, since each Lt is positive on the subspace H⊥
t which is of �nite

codimension;

• if T ∈ Φ+
S (H) in Theorem 3.2, as µMorse(Lt) ≤ µMorse(T ) for all t ∈ [a, b];

• for all compact operators K in Theorem 3.3 by the same argument as in the previous item.

Finally, in the next section we will prove a corollary of the proof of Theorem 3.2, which rephrases
a well known fact from bifurcation theory in our setting. Let us point out that both Theorem
3.2 and Theorem 3.3 do not give any information about the location of the bifurcation point in
the interval (a, b).

Corollary 3.4. We assume that either the assumptions of Theorem 3.2 or the ones of Theorem
3.3 hold. If t∗ is a bifurcation point, then

im(T |Ht∗
) ∩H⊥

t∗ 6= {0}.
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4 Proofs of the main theorems

Our proofs are based on the main theorem of [16], which deals with the relation between the
spectral �ow and the bifurcation theory that was previously established in [9]. Let us �rst brie�y
recall this theorem: We assume that f : [a, b] × H → R is a continuous map such that each
ft := f(t, ·) is C2 and all its derivatives depend continuously on t ∈ [a, b]. In what follows, if
0 ∈ H is a critical point of all ft, we call t

∗ a bifurcation point of critical points of the functional
f if there exist two sequences (tn)n ⊂ [a, b] and (un)n ⊂ H \ {0} such that tn → t∗ in [a, b],
un → 0 in H and un is a critical point of ftn for all n ∈ N. The second derivatives d20ft of ft,
t ∈ [a, b], de�ne selfadjoint operators Lt by the Riesz representation theorem, i.e.

d20ft[u, v] = 〈Ltu, v〉H , u, v ∈ H, t ∈ [a, b].

The following theorem is the main result of [16] (cf. also [1]):

Theorem 4.1. If each Lt, t ∈ [a, b], is a Fredholm operator, both La and Lb are invertible and
sf(L, [a, b]) 6= 0, then there is a bifurcation point of critical points of the functional f in (a, b).
Moreover, if there are only �nitely many t ∈ (a, b) such that ker(Lt) 6= 0 and

m := sup
t∈(a,b)

dimker(Lt) < +∞,

then the number of bifurcation points is at least

⌊

| sf(L, [a, b])|

m

⌋

.

Now, in the setting of Section 3, we de�ne a one�parameter family of functionals by

ft : H ∋ u 7→ ft(u) = J (Ptu) +
1

2
‖P⊥

t u‖2 ∈ R.

Lemma 4.2. The critical points of ft are precisely the critical points of J |Ht
, t ∈ [a, b].

Proof. If u is a critical point of ft, then

duft(v) = dPtuJ (Ptv) + 〈P⊥
t u, P⊥

t v〉 = 0 for all v ∈ H. (4.1)

In particular, taking v = P⊥
t u, it follows that

0 = dPtuJ (PtP
⊥
t u) + ‖P⊥

t u‖2 = dPtuJ (0) + ‖P⊥
t u‖2

as PtP
⊥
t u = 0. Hence, P⊥

t u = 0 and we see that u ∈ Ht. Consequently, from (4.1) we obtain
that

0 = dPtuJ (Ptv) = duJ (v) for all v ∈ Ht,

which shows that u is a critical point of the restriction of J to Ht.
Conversely, if u is a critical point of the restriction of J to Ht, then u ∈ Ht and

duft(v) = dPtuJ (Ptv) + 〈P⊥
t u, P⊥

t v〉 = duJ (Ptv)

which vanishes for all v ∈ H as Ptv ∈ Ht.

7



Consequently, it follows from De�nition 3.1 and Lemma 4.2 that t∗ ∈ [a, b] is a bifurcation point
of J along {Ht}t∈[a,b] if and only if it is a bifurcation point for the family of functionals ft.
By applying Theorem 4.1, for each t ∈ [a, b] we have to consider the Hessian of ft at the critical
point 0 ∈ H, which is given by

d20ft[u, v] = d20J [Ptu, Ptv] + 〈P⊥
t u, P⊥

t v〉 for all u, v ∈ H.

Using that P ∗
t = Pt and (P⊥

t )∗ = (P⊥
t )2 = P⊥

t , we see that the corresponding Riesz representa-
tion is given by

Lt = PtTPt + P⊥
t .

Note that these are exactly the operators introduced in (3.2).
Now, we deduce Theorems 3.2 and 3.3 from Theorem 4.1 but before we note for later reference
the following immediate consequence of the de�nition of Fredholm operators.

Lemma 4.3. If H1, H2 are Hilbert spaces and T1 : H1 → H1, T2 : H2 → H2 are Fredholm
operators, then

T1 ⊕ T2 : H1 ⊕H2 ∋ u1 + u2 7→ (T1 ⊕ T2)(u1 + u2) = T1u1 + T2u2 ∈ H1 ⊕H2

is a Fredholm operator of index ind(T1 ⊕ T2) = ind(T1) + ind(T2).

In what follows, we will apply Lemma 4.3 to Lt |Ht
: Ht → Ht and Lt |H⊥

t

: H⊥
t → H⊥

t .

Proof of Theorem 3.2. Let us �rst assume that n 6= +∞. Then, by Lemma 4.3 the operator
Lt is Fredholm as it is invertible on the subspace H⊥

t and Fredholm on the �nite dimensional
space Ht. Furthermore, La and Lb are invertible by assumption and so Theorem 3.2 follows from
Theorem 4.1. This shows the �rst part of the assertion of Theorem 3.2. Now, if {Ht}t∈[a,b] is
analytic, then Pt and so Lt depends analytically on t. As in [16, Section 2], this implies that the
set of all t such that ker(Lt) 6= {0} is discrete. Moreover, it is readily seen that

kerLt = im(T |Ht
) ∩H⊥

t (4.2)

for any t ∈ [a, b], and so

dimker(Lt) ≤ dim im(T |Ht
) ≤ dimHt = n.

Hence, also (3.3) follows from Theorem 4.1.
Let us now assume that k 6= +∞. Since La and Lb are again invertible by assumption, in order
to apply Theorem 4.1 it is enough to show that Lt is Fredholm for all t ∈ (a, b). However, by
Lemma 4.3 we just need to prove that PtTPt is Fredholm on Ht. Now the kernel and cokernel
of the projection Pt are H⊥

t , which is of �nite dimension k < +∞, and so Pt is a Fredholm
operator. This shows that indeed PtTPt is Fredholm as the composition of Fredholm operators
is again Fredholm (cf. [10, Theorem 3.2]).

Proof of Theorem 3.3. Our aim is again to apply Theorem 4.1, for which we need to prove that
Lt is Fredholm for all t ∈ [a, b]. However, as k = n = +∞, none of the arguments used in
the proof of Theorem 3.2 can be applied here. Instead, by the assumption that T is a compact
perturbation of the identity, we see that

Lt = PtTPt + P⊥
t = Pt(IH +K)Pt + P⊥

t = Pt + PtKPt + P⊥
t = IH + PtKPt,

which is a compact perturbation of IH as the set of compact operators is an ideal in L(H). Now,
Lt is Fredholm by a classical result of Riesz and Schauder saying that compact perturbations of
the identity are Fredholm operators (cf. [10, Corollary XII.2.5]).
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Proof of Corollary 3.4. We have already shown that a bifurcation point t∗ ∈ (a, b) exists under
the assumptions of Theorem 3.2 or Theorem 3.3, respectively. Now we assume for a contradiction
that im(T |Ht∗

) ∩ H⊥
t∗ = {0}. Then ker(Lt∗) = {0} by (4.2), and so Lt∗ is invertible as it is

Fredholm of index 0 by Theorem 3.2 and Theorem 3.3.
We now consider the map

F : [a, b]×H ∋ (t, u) 7→ F (t, u) = duft ∈ L(H,R)

and we note that F (t, 0) = 0 for all t ∈ [a, b] by assumption. Since d0Ft∗(u)[v] = 〈Lt∗u, v〉,
u, v ∈ H, and as Lt∗ is invertible, we see that d0Ft∗ : H → L(H,R) is invertible. Consequently,
by the implicit function theorem all solutions of the equation F (t, u) = 0 in a neighbourhood of
(t∗, 0) ∈ [a, b] ×H are of the form (t, 0) and so t∗ is not a bifurcation point of critical points of
ft. This is a contradiction, as the bifurcation points of critical points of ft are the bifurcation
points of J along {Ht}t∈[a,b].

5 An example

Throughout this section, we set I := [0, 1] and we denote by H1
0 (I,R

n) the Hilbert space of all
absolutely continuous functions u : I → R

n such that the derivative u′ is square integrable.
Our aim is to investigate the existence of nontrivial solutions for the semilinear system of ordinary
di�erential equations

{

−(A(x)u′(x))′ +∇ξg(x, u(x)) = 0, x ∈ I,
u(0) = u(1) = 0,

(5.1)

where A : I → GLS(n,R) is a smooth family of invertible symmetric matrices, and g : I ×R
n →

R, g = g(x, ξ), is a C2 function such that ∇ξg(x, 0) = 0 for all x ∈ I.
Let us consider the functional J : H1

0 (I,R
n) → R such that

J (u) =
1

2

∫ 1

0

〈A(x)u′(x), u′(x)〉 dx +

∫ 1

0

g(x, u(x)) dx. (5.2)

It is well known (see, e.g., [21, Proposition B.34]) that J is of class C2 in H1
0 (I,R

n) and

duJ (v) =

∫ 1

0

〈A(x)u′(x), v′(x)〉 dx+

∫ 1

0

〈∇ξg(x, u(x)), v(x)〉 dx (5.3)

for any u, v ∈ H1
0 (I,R

n). Hence the critical points of J are precisely the weak solutions of
problem (5.1).
In particular, 0 ∈ H1

0 (I,R
n) is a critical point and one can show that the corresponding Hessian

is given by

d20J [u, v] =

∫ 1

0

〈A(x)u′(x), v′(x)〉 dx+

∫ 1

0

〈S(x)u(x), v(x)〉 dx for all u, v ∈ H1
0 (I,R

n),

where S(x) = D2
ξg(x, 0) is a family of symmetric matrices which is continuous with respect to x.

Let us recall that for every t ∈ I there is the evaluation map

evt : H
1
0 (I,R

n) ∋ u 7→ evt(u) = u(t) ∈ R
n,
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which is a bounded linear operator that is surjective if t ∈ (0, 1). Moreover, evt depends contin-
uously on t in (0, 1). Indeed, for every t0 ∈ (0, 1) and u ∈ H1

0 (I,R
n), we have

u(t) = u(t0) +

∫ t

t0

u′(s) ds, t ∈ I,

which implies that
‖evt − evt0‖ ≤

√

|t− t0|.

Now, Lemma 2.3 shows that for every 0 < a < b < 1 we get a continuous family of subspaces
{Ht}t∈[a,b] by

Ht = ker(evt) = {u ∈ H1
0 (I,R

n) : u(t) = 0},

and moreover, it follows by a straightforward computation that the orthogonal projection in
H1

0 (I,R
n) onto Ht is given by

(Ptu)(x) = u(x)−
min{t, x} − tx

t(1− t)
u(t), x ∈ I. (5.4)

De�nition 5.1. We say that t∗ ∈ (a, b) is a bifurcation point for (5.1) if there exist two sequences
(tk)k ⊂ [a, b] and (uk)k ⊂ H1

0 (I,R
n) such that

(i) tk → t∗ in [a, b] and uk → 0 in H1
0 (I,R

n) as k → +∞;

(ii) uk 6≡ 0 for each k ∈ N;

(iii) for every k ∈ N, the restriction u0,k := uk |[0,tk] satis�es

−(A(x)u′
0,k(x))

′ +∇ξg(x, u0,k(x)) = 0, x ∈ [0, tk];

(iv) for every k ∈ N, the restriction u1,k := uk |[tk,1] satis�es

−(A(x)u′
1,k(x))

′ +∇ξg(x, u1,k(x)) = 0, x ∈ [tk, 1],

(v) u0,k(tk) = u1,k(tk) = 0 for each k ∈ N.

Let us note that the two restrictions u0,k and u1,k in De�nition 5.1 de�ne a global solution of
(5.1) if and only if u′

0,k(tk) = u′
1,k(tk).

Lemma 5.2. There is a bifurcation point of (5.1) at t∗ ∈ (a, b) if and only if t∗ is a bifurcation
point of J along {Ht}t∈[a,b].

Proof. If t∗ ∈ (a, b) is a bifurcation point of (5.1), then there are sequences (tk)k ⊂ [a, b] and
(uk)k ⊂ H1

0 (I,R
n) which satisfy the properties (i)�(v) in De�nition 5.1. Hence, for all v ∈ Htk

we have that

∫ tk

0

〈A(x)u′
0,k(x), v

′(x)〉 dx+

∫ tk

0

〈∇ξg(x, u0,k(x)), v(x)〉 dx = 0

and
∫ 1

tk

〈A(x)u′
1,k(x), v

′(x)〉 dx+

∫ 1

tk

〈∇ξg(x, u1,k(x)), v(x)〉 dx = 0.
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It follows from (5.3) that uk ∈ H1
0 (I,R

n) is a non�trivial critical point of J |Htk
, and as uk → 0,

we see that t∗ is a bifurcation point of J along {Ht}t∈[a,b] (see De�nition 3.1).
Conversely, let (tk)k ⊂ [a, b] and (uk)k ⊂ H1

0 (I,R
n) \ {0} be such that uk ∈ Htk is a critical

point of J |Htk
, with tk → t∗ and uk → 0 in H1

0 (I,R
n). Setting u0,k and u1,k as in (iii) and (iv)

of De�nition 5.1, we get that

∫ tk

0

〈A(x)u′
0,k(x), v

′(x)〉 dx+

∫ tk

0

〈∇ξg(x, u0,k(x)), v(x)〉 dx = 0 for all v ∈ H1
0 ([0, tk],R

n)

and

∫ 1

tk

〈A(x)u′
1,k(x), v

′(x)〉 dx+

∫ 1

tk

〈∇ξg(x, u1,k(x)), v(x)〉 dx = 0 for all v ∈ H1
0 ([tk, 1],R

n).

Hence uk satis�es (iii) and (iv) in De�nition 5.1, while (v) is an immediate consequence of the
de�nition of Htk . Thus t

∗ is a bifurcation point of (5.1).

In summary, from Lemma 5.2 the existence of bifurcation points of (5.1) can be reduced to the
study of bifurcation points of the functional J on {Ht}t∈[a,b]. One may wonder if our approach
is really necessary to study bifurcation points as in De�nition 5.1, or whether there is a simple
transformation from J |Ht

to some functional Jt : H
1
0 (I,R

n) → R whose form is similar to that
of J in (5.2). If so, Theorem 4.1 might be directly applied to obtain bifurcation points. However,
this is not possible, as the functions uk ∈ H1

0 (I,R
n) in De�nition 5.1 do not belong to H2(I,Rn)

in general, whereas critical points of Jt would be in this space by elliptic regularity.
For applying Theorem 3.2, we now assume that the bilinear form d20J is non�degenerate on Ha

and Hb, which implies that the path {Ht}t∈[a,b] is admissible. A straightforward computation
shows that, in our example, the operator T : H1

0 (I,R
n) → H1

0 (I,R
n) from (3.1) is given by

Tu(x) =

∫ x

0

A(s)u′(s) ds− x

∫ 1

0

A(s)u′(s) ds

−

∫ x

0

∫ s

0

S(τ)u(τ) dτds+ x

∫ 1

0

∫ s

0

S(τ)u(τ) dτds.

Consequently, by using (5.4) we can write down the path Lt in (3.2) explicitly and so we have
everything at hand in order to claim the existence of a bifurcation point for (5.1) by Theorem
3.2 if we just can show that sf(L, [a, b]) 6= 0.
In what follows, we restrict to the special case of positive de�nite matrices A(x) in which our
theory turns out to be particularly applicable. For t ∈ [a, b] and λ ∈ R, let us introduce the
following linear spaces

E(t−, λ) = {u ∈ Ht : −(A(x)u′(x))′ + S(x)u(x) = λu(x), x ∈ [0, t]}

E(t+, λ) = {u ∈ Ht : −(A(x)u′(x))′ + S(x)u(x) = λu(x), x ∈ [t, 1]}

as well as the non-negative integer

µ(t) =
∑

λ<0

(dimE(t−, λ) + dimE(t+, λ) + (dimE(t−, λ)) · (dimE(t+, λ))).

Note that µ(t) < +∞ as A(x) is positive de�nite for all x ∈ I.

Proposition 5.3. Assume that the matrices A(x), x ∈ I, are positive de�nite. If

11



(i) E(a−, 0) ∩ E(a+, 0) = E(b−, 0) ∩ E(b+, 0) = {0},

(ii) µ(a) 6= µ(b),

then there is a bifurcation point for (5.1).

Proof. It follows in our setting by (2.1), (3.1) and (3.2) that

µMorse(Lt) = sup dim{V ⊂ Ht : d
2
0J [u, u] < 0, u ∈ V \ {0}} for any t ∈ I

and so in view of Theorem 3.2 we need to show that:

(1) the restrictions of d20J to Ha and Hb are non-degenerate,

(2) µMorse(La) 6= µMorse(Lb).

We note at �rst that if there exists u ∈ Ht such that d20J [u, v] = 0 for all v ∈ Ht, then
u ∈ E(t−, 0) ∩ E(t+, 0), which proves (1) by assumption (i).
Now, in order to show (2), we choose α > 0 such that the matrix αIn + S(x) is positive de�nite
for all x ∈ [0, 1], where In is the identity matrix on R

n. Then, we get a scalar product on Ht by

〈u, v〉t,α =

∫ 1

0

〈A(x)u′(x), v′(x)〉 dx+

∫ 1

0

〈(αIn + S(x))u(x), v(x)〉 dx, u, v ∈ Ht,

and by the Riesz representation theorem there exists a bounded operator M on Ht such that

d20J [u, v] = 〈Mu, v〉t,α, u, v ∈ Ht. (5.5)

Hence µMorse(Lt) is the number of negative eigenvalues of M counted with multiplicities. Now
Mu = γu for some γ < 0 if and only if

〈Mu, v〉t,α = γ〈u, v〉t,α

= γ

∫ 1

0

〈A(x)u′(x), v′(x)〉 dx+ γ

∫ 1

0

〈S(x)u(x), v(x)〉 dx+ γα

∫ 1

0

〈u(x), v(x)〉 dx

for all v ∈ Ht. By (5.5), this is equivalent to

−(A(x)u′(x))′ + S(x)u(x) =
γα

1− γ
u(x), x ∈ [0, t) ∪ (t, 1],

and consequently, we see that

µMorse(Lt) =
∑

λ<0

dim{u ∈ Ht : −(A(x)u′(x))′ + S(x)u(x) = λu(x), x ∈ [0, t) ∪ (t, 1]}.

Finally, there is a canonical isomorphism H1
0 ([0, t],R

n) ⊕H1
0 ([t, 1],R

n) → Ht which shows that
the right hand side of the previous equality is indeed µ(t).

In addition, let us mention that a related bifurcation problem is studied in [18, 19, 24] and [20],
where the authors consider the Dirichlet problem for elliptic partial di�erential equations

{

−∆u+ g(x, u) = 0 in Ω
u = 0 on ∂Ω
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on a smooth bounded domain Ω ⊂ R
N which is assumed to be star�shaped with respect to

0 ∈ R
N . Denoting

Ωt := {tx ∈ R
N : x ∈ Ω} ⊂ Ω for all t ∈ [a, 1],

for some 0 < a < 1, they study bifurcation of functionals on H1
0 (Ω,R) along the subspaces

{H1
0 (Ωt,R)}t∈[a,1]. However, our Theorems 3.2 and 3.3 cannot be applied in this setting as the

spaces H1
0 (Ωt,R) do not vary continuously with respect to the metric of G(H1

0 (Ω,R)). Indeed,
if 0 < s < t < 1, then there is a function u ∈ H1

0 (Ωt,R) such that ‖u‖ = 1 and with support in
Ωt \ Ωs (here, ‖ · ‖ is the standard norm in H1

0 (Ω,R)). Consequently, 〈u, v〉H1

0
(Ω,R) = 0 for all

v ∈ H1
0 (Ωs,R) and so

‖PH1

0
(Ωt,R) − PH1

0
(Ωs,R)‖ ≥ ‖PH1

0
(Ωt,R)u− PH1

0
(Ωs,R)u‖ = ‖PH1

0
(Ωt,R)u‖ = ‖u‖ = 1,

which clearly contradicts the continuity.
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