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Abstract—In heterogeneous cloud, the provision of quality of
service (QoS) guarantees for on-line parallel analysis jobs is much
more challenging than off-line ones, mainly due to the many
involved parameters, unstable resource performance, various job
pattern and dynamic query workload. In this paper we propose
an entropy-based scheduling strategy for running the on-line
parallel analysis as a service more reliable and efficient, and
implement the proposed idea in Spark.

Entropy, as a measure of the degree of disorder in a system,
is an indicator of a system’s tendency to progress out of order
and into a chaotic condition, and it can thus serve to measure a
cloud resource’s reliability for jobs scheduling. The key idea of
our Entropy Scheduler is to construct the new resource entropy
metric and schedule tasks according to the resources ranking with
the help of the new metric so as to provide QoS guarantees for
on-line Spark analysis jobs. Experiments demonstrate that our
approach significantly reduces the average query response time
by 15% - 20% and standard deviation by 30% - 45% compare
with the native Fair Scheduler in Spark.
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I. INTRODUCTION

As Cloud computing continues to evolve, an increasing
number of companies are exploiting the Spark framework [8]
as an online web analysis platform with sub-second query
latency on the cloud. The analysis applications range in
functionality, complexity, resource needs and service delivery
deadlines. This diversity creates competing requirements for
program design, job scheduling and resource management
policies on cloud environments. In spite of different user objec-
tives one goal is common: to provide low-latency and reliable
web service to the service consumers. However, scheduling
low-latency parallel jobs under heterogeneous cloud poses a
number of challenges.

Scheduling is an NP-complete problem, the complexity of
which increase substantially in heterogeneous cloud environ-
ment. Developers who construct scheduling system must cope
with the world’s natural tendency to disorder. In Spark, jobs are
scheduled on a set of cloud resources that are local active (in
the sense that each resource was determined to be assigned
jobs based its own state and the state of the environment

and its productivity are affected by the amount of jobs that
assigned to it), and corporately structured. We want resource
local activity to yield coherent global schedule system order.
However, widespread experience warns us that optimizing
systems that exhibit both local activity [17] and global order
are not easy. The experience that anything that can go wrong
will go wrong and at the worst possible moment is summarized
informally as ”Murphy’s Law” [18]. Scheduling systems are
not immune to Murphy. In cloud scheduling system, after an
enough power strikes one of the resources, which leads to its
productivity reduced or collapsed, the whole system collapsed.
In the real world scenario, such resource productivity reduced
or collapsed may cause by hardware/software failures, resource
CPU overload, resource over- or under-provisioning, or appli-
cation misbehaviors. Thus, the system is failed to execute and
complete jobs as expected.

At the root of the ubiquity of disordering tendencies is
the Second Law of Thermodynamics, ”Energy spontaneously
tends to flow only from being concentrated in one place to
becoming diffused or dispersed and spread out” [19]. In cloud
scheduling system, allocating the ”right” type of resources to
jobs may overcome the Second Law ”spontaneous tendency”
and lead to increasing the system’s order. However, the way
to decide which resource is ”right” for the jobs is critical.
Especially when resources are local activity, which is the
origin of complexity [17], the scheduling system become more
complex under heterogeneous cloud environment.

In the literature, a lot of scheduling algorithms were
proposed in the past. Braun et al [20] have studied the
relative performance of eleven heuristic algorithms for task
scheduling such as First Come First Served (FCFS), Min-
Min, Max-Min, Genetic Algorithm (GA), etc. A family of
14 scheduling heuristics for concurrently executing BoTs in
cloud environments are proposed recently [21]. Most of the
past works are the focus in shortening project’s completion
time and enhancing the system throughput without considering
the reliability factor. A theoretical scheduling paper address
the reliability problem of scheduling system by analyzing
the entropy [4]. However, it calculates the entropy base on
jobs instead of resources. We argue that such technique has
limited capacity for modeling the complex cloud system that



resources’ performance are highly dynamic and nonlinear.

Both efficiency and reliability are particularly important for
processing online production queries when a given set of Spark
jobs needs to be executed simultaneously on the cloud. The
reduced efficiency and reliability of the global cloud system
is a direct consequence of the disorder caused as a result of
the local active resources and the difficulty in managing these
resources. Thus, the resulting scheduling problem is also an
entropy-optimization problem: how to schedule jobs to the
”right” resources with the help of local resource entropy to
keep the global cloud system working in ”order” state. The
fundamental claim of this paper is to solve the above cloud
scheduling problem based on Entropy Theory.

The remainder of this paper is organized as follows: Section
2 describes the Spark analysis as a service framework and
the related scheduling problem; Section 3 covers Entropy
Scheduler’s architecture and implementation details; Section 4
presents empirical results from benchmarking Entropy Sched-
uler with the native Spark FAIR scheduler; Section 5 contains
concluding remarks, lessons learned and possible future re-
search direction.

II. SCHEDULING CHALLENGE IN SPARK
ANALYSIS AS A SERVICE

This section provides a brief overview of Spark and dis-
cusses the current scheduling challenge for deploying Spark
analysis as a service.

A. Spark

Spurred by demand for lower-latency distributed data anal-
ysis, efforts in research and industry alike have produced
engines such as MapReduce, Hive, Dremel, Impala and Spark
that run cloud analysis jobs across thousands of resources
in short time, as shown in Figure 1. Spark is part of the
Apache Software Foundation and claims speedups up to 100x
faster than Hadoop MapReduce in-memory, or 10x faster on
disk. The ability to bring response times into sub-second
range has enabled powerful new application development -
Spark Analysis as a service. In such case, user-facing services
will be able to run sophisticated parallel computation, such
as language translation, voice reorganization, highly search
personalizations and context recommendation, on a per-query
basis.

Fig. 1. Cloud engines can run parallel analysis jobs with ever lower latency.

B. SAAAS:Spark analysis as a service

SAAAS provides spark analysis query requests and re-
sponse over HTTP web service, which support multi-threaded
querying. Figure 2 illustrates the flow of sending an HTTP
requests. Spark Web Server allocates a thread to route the
HTTP request to a specify Spark analysis job. Jobs are then
processed with a long run global Spark Context and scheduled
by the Spark Master to run on the predefined amount of Spark
Workers.

Fig. 2. SAAAS:Spark analysis as a service.

C. Scheduling in Spark : Fair Scheduler with Random Re-
source Sorting

The Spark Context supports multi-threading and offers
FIFO and FAIR scheduling options for concurrent queries.
Typically, the FAIR scheduler is used for processing multiple
parallel jobs simultaneously to minimize overall latency. The
purpose of FAIR scheduler is to assign resources to queries
such that all queries get an equal share of resources over time
on average. By default, the scheduler bases fairness decisions
only on the number of resource cores and memory and assign
jobs to the resource offers with random sorting. The FAIR
scheduler does not consider the core speed and CPU utilization
of the resource, which have a direct impact on the completion
time of the jobs. Thus, it is hard to guarantee the QoS for
the on-line query. If the scheduling strategy cannot provide
an optimal way to guarantee the QoS, it will be difficult to
popularize the web service.

D. Problem Statement

Scheduling low-latency parallel analysis jobs on the het-
erogeneous cloud is a challenging, multifaceted problem. Al-
though motivated by and designed for the Cloud, Spark engines
have not yet addressed the problem of resource scheduling for
high concurrent jobs on the heterogeneous cloud. Spark’s per-
formance is closely tied to its job scheduler, which implicitly
assume that cloud resources are homogeneous and resource’s
performance is never changed during run-time, and use these
assumptions to decide how to allocate jobs to resources. In
practice, the homogeneity assumptions do not always hold, and
the performance of the resource is highly dynamic. Although
the current scheduler works well in homogeneous environment,
we show it can lead to severe performance degradation when
its underlying assumptions are broken: the performance of re-
sources with potentially uncontrollable variance and the server
collapse when meeting high concurrent requests. Furthermore,



we expect heterogeneous environments to become the com-
mon case as organizations often use multiple generations of
hardware for building their private cloud.

In this paper, we address the question of how to efficiently
and reliably schedule query jobs on Spark analysis cloud.
In particular, we focus on the following problems: Resource
allocation to a given job according to resource core speed,
CPU utilization and Entropy Level rather than treating the
resource as a homogeneous array of cores. The goal is to find
a deployment that improve the service performance and QOS
guarantees.

III. ENTROPY SCHEDULER : A MORE RELIABLE
AND EFFICIENT SOLUTION

Optimized resource management and scheduling must take
into consideration: (1) the characteristics and activity of the
individual resource, and (2) the reliability of information gain
from the resource. In this section, We propose to use resource
activity vector to characterize the behaviour of individual
resource and calculate the resource entropy level based on that
vector to measure how reliable such information is. We then
present a resource ranking algorithm that uses the resource
activity vector and entropy level together to guide the jobs
scheduling to improve system’s performance and stability.

A. Entropy Theory

Entropy is an important statistical quantity that measures
the disorder degree and the amount of wasted energy in the
transformation from one state to another in a system [12]. Al-
though the concept of entropy was originally a thermodynamic
construct, it has been adapted in other fields of study, including
information theory, production planning, resource manage-
ment, computer modeling, and simulation [3] [5] [13] [14]
[15] [16]. We will use this measure to quantify the reliability
degree associated with the information gain from the resources
under Spark scheduling strategy on the heterogeneous cloud.
We introduce the Entropy measure in general content. Given a
dynamic system X of finite mutually exclusive state variable
set S = s1, s2, s3, . . . , sn with probabilities p1, p2, p3, . . . , pn
respectively, entropy H(X) is defined as:

H(X) = −
n∑

i=1

pi ∗ log pi (1)

B. Resource Activity Vector & Entropy Level

Good jobs scheduling requires awareness of the resource
characteristics. In the heterogeneous cloud, the system’s per-
formance have become more sensitive to the resources they
have at hand, and poor scheduling can lead to performance
degradation. However, the native Spark Fair scheduler only
considers the static characteristics of the resource, such as
number of available cores, while ignores the dynamic char-
acteristics like core performance. In such situation, jobs are
’unfairly’ scheduled on the cores with different performance,
which highly impact on the completion time of the jobs and
predictable of system performance.

In order to capture the relevant dynamic core performance
characteristic, we introduce resource activity vector (RAV) and

Algorithm 1 Calculate Resource Entropy Level
Require: RAV ← ResourceActivityV ector
Ensure: RAV.size ≥ 0
Avg ← AverageChangedOfCPUUtilization
REL← ResourceEntropyLevel
Count1 = 0
Count0 = 0
for all V alue in RAV do

if V alue ≥ Avg then
Count1 = Count1 + 1

else
Count0 = Count0 + 1

end if
end for
P1 = Count1/RAV.size
P0 = Count0/RAV.size
REL = −(P1 ∗ log2 P1 + P0 ∗ log2 P0)

resource entropy level (REL). In the current implementation,
we concentrate on the most important part of resource infor-
mation, CPU utilization, which represents how efficiently the
operator thread uses the CPU throughout the jobs execution.
This is highly relevant for making scheduling decision as it
is directly related to the core’s performance during run-time.
To obtain the RAV values, we run a resource monitor on
each worker node. The resource monitor captures the worker’s
CPU utilization and updates the RAV with the CPU utilization
difference every second. The REL is updated according to the
algorithm 1 on every heartbeat interval. Then the worker node
sent the heartbeat to the master node with its current CPU
utilization value and entropy level for making jobs scheduling
decision.

C. Schedule Jobs by the Ranking of Resource

Spark assumes that all the resource are homogeneous and
randomly assign cores to jobs under Fair Scheduler. However,
even in the homogeneous cloud, resources with ’homogeneous’
setting will always running under ’heterogeneous’ performance
during run-time. Especially in heterogeneous cloud, such
assumption will easily result in poor jobs completion time
and overall unstable cloud performance due to the following
reason:

• Job completion time is decided by the completion time
of its slowest task.

• Random cores allocation will increase the chance of al-
locating cores with different performances to tasks inside
a single job.

• Cores are not released for scheduling other jobs until the
current running job is completed. When a job is waiting
for its slowest task to be completed, the computing power
of other cores with completed tasks are wasted.

• Monitoring and re-scheduling slow tasks (performs the
speculative execution of tasks) is expensive.

In our proposed Entropy Scheduler, instead of randomly
pickup resources, we first calculate the performance ranking
of all offered resources (Algorithm 2), and then schedule tasks
inside a job according to the ranking. Tasks are scheduled
with similar ranking resource so as to improve overall jobs
completion time and reliability of cloud performance.



Algorithm 2 Calculate Resource Performance Ranking
Require: RCU ← ResourceCPUUtilization
Require: REL← ResourceEntropyLevel
Require: NumCores← NumberofAvailableCores
Require: CpuSpeed← CPUclockspeed
Rank ← Resourceperformanceranking
Rank = NumCores∗CpuSpeed∗(1−RCU)∗(1−REL)

IV. EMPIRICAL EVALUATION OF ENTROPY
SCHEDULER

A. Experimental Platform

All experiments leverage a heterogeneous 3 node produc-
tion cluster of HP ProLiant DL360 G5 blades. The nodes
specifications are shown on Table I. Furthermore, each node
has Ubuntu Server 14.04.2 LTS, Spark 1.3.0, sbt 0.13.5. Each
Spark worker uses all the available cores and 8g of memory.

Section II-B describes SAAAS’s ability to process con-
current queries with multi-threading since many users will use
the analysis service concurrently. Users will request a different
type of queries concurrently as well, but for simplicity, these
experiments only benchmark the same query to calculate Pi
with 4 cores. We use Apache Bench to load testing the query
on the Spark Web Server under different schedulers (Entropy
Scheduler and native Fair Scheduler). The load testing will
spawn a number of threads which continuously execute the
same query. Each thread remains loaded and continues pro-
cessing queries until all threads have finished, and the query
response time of all requests from every thread will be used
for performance comparison.

TABLE I. EXPERIMENTAL PLATFORM:RESOURCE SPECIFICATION

Specification Node 1 Node 2 Node 3

Spark Role Master&Worker Worker Worker

CPU Xeon 3Ghz x 2 Xeon 2.8Ghz x 2 Xeon 1.8Ghz

Number of Cores 8 8 4

RAM 16GB 12GB 12GB

B. Experiment 1 : Performance under Different Concurrent
Level of HTTP Request Workload

This experiment is used to verify the query response time
and degree of satisfying of QoS requirement with Entropy
Scheduler and Fair Scheduler under different concurrent level
of request workload. The results are shown as follows in Fig.
3, Fig. 4 and Fig. 5.

Fig. 3 show that Entropy Scheduler has better performance
and a higher degree of satisfying of QoS requirement, which
result in improvement of the overall spark analysis server
throughput as well (Fig. 4).

However, increasing workload concurrency pose various
challenges to the Spark analysis cloud. The cloud experience
performance degradation with increasing workload concur-
rency. There are mainly two reason behind such unstable
performance:

Fig. 3. Experiment 1 : Response time statistics result.

Fig. 4. Experiment 1 : Spark analysis server throughput result.

• First, the loss in cloud performance and stability is due
to contention and load interaction among concurrently
executing queries [21]. These effects will become worse
with more complex workloads.

• Second, the cloud, due to its parallelism and hetero-
geneity, is a difficult target for achieving low-latency
response since poor deployments and/or scheduling lead
to performance penalties.

As seen from Fig. 5, although Entropy Scheduler reduce
a significant amount of failed requests compared with Fair
Scheduler, it still has same performance bottlenecks inhibiting
sub-second query response time which motivates future work
of other optimization options.

C. Experiment 2 : Load Testing with 100,000 Query Requests
at the Concurrent Level of 10

Table II compare the various aspects of load testing result
by each scheduler. Our results throughout the Evaluation sec-
tion show Entropy Scheduler outperform native Fair Scheduler
in respect of both efficiency and reliability. On average, in this
heterogeneous cluster experiment, Entropy Scheduler shorten
the load testing completion time by 23%, reduce the average
response time by 23% and standard deviation by 35%, and
improve the overall server throughput by 30% compared with
native Fair Scheduler.



Fig. 5. Experiment 1 : HTTP request failure rate result.

TABLE II. EXPERIMENT 2:LOAD TESTING WITH 100,000 QUERY
REQUESTS AT THE CONCURRENT LEVEL OF 10

Load Testing Result Fair Scheduler Entropy Scheduler

Testing Completion Time (Seconds) 951.52 732.15 ( - 23%)

Throughput (Request/Second) 10.51 13.66 ( + 30%)

Number of failed request 75 0

Average Response Time (Million Seconds) 951 732 ( - 23%)

Standard Deviation 298.9 194.7 ( - 35%)

Fig. 6 indicates that 90% of queries are completed within
1 second under Entropy Scheduler, while only 50% under Fair
Scheduler. Such result shows that Entropy Scheduler is more
capable for running SAAAS that providing web service with
QoS guarantee.

D. Analysis of Results

Our experiments on 3 resources with 18 cores is small-
scale, but the experimental results provide intuition for de-
veloping new scheduler based on entropy with large-scale
of heterogeneous resources. From experiment 1, we have
learned the critical bottleneck in current Spark Jobs Scheduling
causing by handling high concurrent queries. Compare with
native Spark FAIR scheduler, Entropy Scheduler reduces the
query Failure Rate by around 7%. The results in Experiment
2 show Entropy Scheduler out-perform FAIR Scheduler for
Spark analysis as a service, which will be a starting point for
future work, where we hope to run the low-latency query more
reliable and efficient.

V. CONCLUSIONS

With the results in the paper, we provide both a concrete
solution for a class of emerging systems, as well as a number of
ideas valuable for conventional engines running on the cloud.

Based on this, the paper makes the following contributions:

• We show that scheduling low-latency parallel analysis
jobs on the Cloud is a nontrivial problem. We identify its

Fig. 6. Experiment 2 : Percentage of the requests served within a certain
time (Million Seconds).

performance implications and characterize the elements
needed to solve it.

• We introduce the concept of Entropy as a means to
characterize and quantify the reliability requirements of
the resource.

• We present a novel scheduler that performs three im-
portant tasks: (i) Capture the resource CPU utilization
and entropy level, (ii) computes the ranking of resource
according to both CPU utilization and entropy, and (iii)
suggest a scheduling consider the ranking of resource.

Resource allocation in cloud scheduling system is a com-
plex problem, the solution of which requires suitable modeling
and complex optimization calculations. The Entropy Scheduler
proposed in this paper puts forward an optimization method
that is different from the traditional approach. Experiments
show that the Entropy Scheduler outperform native Fair Sched-
uler in respect of both efficiency and reliability. Since the
approach of applying Entropy Theory to guide the cloud
jobs scheduling is the first attempt in the related literature.
Many problems may arise, and many issues remain open.
Future work should further examine and expand the entropy
method presented in this paper: a) We would like to load test
the Entropy Scheduler with larger scale of cloud and more
complex query workload to ensure it is robust to more complex
environment; b) We would also like to learn the idea from
Omega, Mesos, Sparrow ..., and then transform the Entropy
Scheduler from centralized to decentralized to solve the bot-
tleneck problem when meeting with high concurrent query
workload; c) Also we are currently developing a simulation
tools to benchmark all the scheduler supported by Spark, such
as YARN and MESOS; d) Finally, we plan to research on its
application in other similar cloud engines, e.g. MapReduce,
Hive, Dremel, Impala.
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