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Abstract

Multilocus haplotype analysis of candidate variants with genome wide association studies
(GWAS) data may provide evidence of association with disease, even when the individual loci
themselves do not. Unfortunately, when a large number of candidate variants are investigated,
identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches
have been put forward in recent years. However, most of them are not directly linked to the
disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a
mixture model-based approach for detecting risk haplotypes. Under the mixture model, hap-
lotypes are clustered directly according to their estimated disease penetrances. A theoretical
justification of the above model is provided. Furthermore, we introduce a hypothesis test for
haplotype inheritance patterns which underpin this model. The performance of the proposed ap-
proach is evaluated by simulations and real data analysis. The simulation results show that the
proposed approach outperforms an existing multiple testing method in terms of average speci-
ficity and sensitivity. We apply the proposed approach to analyzing two datasets on coronary
artery disease and hypertension in the Wellcome Trust Case Control Consortium, identifying

many more disease associated haplotype blocks than does the existing method.

KEY WORDS: Genome wide association studies; haplotype mixture model; testing for inheritance

patterns; odds ratios.



1 Introduction

The advanced genotyping technology and the availability of a large number of dense single nucleotide
polymorphisms (SNPs) across human genome have enabled the design of genome-wide association
studies (GWAS) for complex diseases. These studies have progressed from genotyping the SNPs
over thousands of case and control subjects [Hindorff et al., 2009], producing large, high-dimensional
genotype datasets. The rapid increase in the number of GWAS provides an unprecedented oppor-
tunity to examine the effects of rare SNPs on disease susceptibility by the integrative analysis of
these data under the assumption that both common and rare SNPs contribute to the underlying
genetic mechanisms of complex diseases [Li et al., 2010; Zhu et al., 2010]. It is generally believed
that jointly analyzing rare SNPs within a region of strong linkage disequilibrium can be more infor-
mative and effective than individual SNP analysis, as multiple SNPs influence the risk of complex
diseases in aggregate [Schaid et al., 2002; Tzeng et al., 2005; Morris, 2006; Li et al., 2011;Stranger
et al., 2011]. The multilocus haplotype, the ordered allele sequences on a chromosome, provides a
nature unit of analysis for capturing linear and non-linear correlations in SNPs [Zhang et al., 2003].
Unfortunately, the multi-SNP analysis discussed above can suffer from high-dimensional problems
that are associated with many predictors, some of which are highly correlated. A popular strategy,
suggested by the block-like structure of the human genome, is to divide each chromosome into
a list of genetically meaningful regions to reduce the dimensions of these genotype data. Direct,
laboratory-based haplotyping to infer the unknown phase are expensive ways to obtain haplotypes.
So, in a typical haplotype-based association analysis, people infer haplotypes together with their
population frequencies in cases and controls from observed genotypes by using the software such
as PHASE [Stephens et al., 2001; Scheet et al., 2006]. The empirical evidence suggests that the
majority of the polymorphism is concentrated on a relatively small number of haplotypes while the
rest is sparsely spread over a number of categories. These non-common haplotypes can be rare and
thus hard to assess their disease-susceptibility [Schaid et al., 2002;Tzeng et al., 2005].

Haplotype clustering offers a promising avenue for addressing the above issue. Over the past
decade, enormous progress has been made in this direction and various methods of clustering have
been developed on the basis of haplotype similarity and evolution characteristics [Molitor et al.,
2003; Tzeng et al., 2006; Browning and Browning, 2007; and references therein]. However, none
of them except Zhu et al. [2010] has explored advantage of the haplotype similarity in terms of

their contributions to disease risks. Zhu et al. [2010] implemented a method for clustering rare



risk haplotypes by performing multiple mariginal Z-tests for the significant differences between
retrospective haplotype frequencies in cases and controls, on the basis that rare risk haplotypes can
be enriched in cases. The method of Zhu et al. [2010] may be too naive to be efficient. Therefore,
it is desirable to develop a model-guided approach for haplotype clustering. Here, we propose a
prospective model for haplotype counts in cases and controls, where given the marginal counts of
haplotypes, the disease status of each haplotype follows a binomial mixture distribution. The main
advantage of the proposed model over the other existing methods is that it allows the clustering
to be directly linked to the haplotype disease-penetrances. Our intuition is as follows. We arrange
the haplotype frequencies derived from a case-control study by a contingency table, where rows
stand for the disease status (case or control) and columns for haplotypes. Then, we can directly
assess whether two haplotypes belong to the same group by their column similarity in the table. To
do that, we fit each column by a binomial distribution with the disease-penetrance as the success
probability and group these columns by use of a binomial mixture. To account for the variation
of disease-penetrances of haplotypes within risk and non-risk groups, the disease-penetrances are
assumed to be random factors following certain prior distributions. Note that using the estimated
prospective haplotype frequencies derived from a retrospective study to estimate disease odds ratio
is known to be asymptotically consistent even though the disease-penetrance estimators may not
be [Prentice and Pyke, 1979].

We employ the expectation-maximization (EM) algorithm to calculate the maximum likelihood
estimator for the proposed mixture model. The EM algorithm can guarantee monotone convergence
to a local maximum. In this paper, taking advantage of the fact that the disease-penetrance can be
varying across different risk haplotypes, we propose a Bayesian regularization procedure to improve
the proposed mixture model and the corresponding EM algorithm by posterior sampling. We show
its superior performance over the existing EM algorithm by simulations. We also conduct a large
scale simulation studies on the proposed clustering method in both prospective and retrospective
design settings, showing that the proposed method can outperform the approach of Zhu et al. [2010]
in most cases. We apply both the proposed method and the method of Zhu et al. [2010] to the
Coronary Artery Disease (CAD) and Hypertension (HT) data in the Wellcome Trust Case Control
Consortium (WTCCC), identifying potential risk haplotypes for each pre-specified chromosomal
region.

The rest of the paper is organized as follows. The proposed methodology and some theory are

introduced in Section 2. The simulation studies and real data applications are presented in Sections



3 and 4. Discussions and conclusion are made in Section 5. Some technical details can be found in

the Online Supplementary Material.

2 Methodology

Consider a case-control sample with Ny controls and N7 cases, typed at a list of pre-specified SNP
markers in a candidate region, yielding unphased genotype set G. Let H;,1 < j < J denote the
distinct haplotypes inferred from G with haplotype counts ng;,1 < j < J in controls summing
to 2Np, and nyj,1 < j < J in cases summing to 2/N7 respectively. The respective frequencies of
the jth haplotype in controls and cases can be estimated by ro; = no;/(2No) and r1; = ny1;/(2N1)
respectively. Similarly, letting n; = ngj + n1;, the prospective frequencies of the jth haplotype in
cases and controls can also be estimated by po; = noj/n; and p1; = ni;j/n; respectively.

When a haplotype is unevenly distributed between cases and controls, its odds ratio (OR) will
be deviated from one and it is likely to be a risk haplotype. Therefore, multiple OR tests can be
used for detecting risk haplotypes. Here, we opt for multiple OR testing, because risk haplotypes
can directly be assessed by using their disease-penetrances via the OR values [Jewell, 2004]. The
main thrust of our proposal below is to perform a model-based clustering on haplotypes before
the OR testing. This can help reduce the number of haplotypes to be tested and thus reduce the

multiple OR testing error.

2.1 Two-stage standard mixture approach

Our standard two-stage approach is processed as follows.

Stage 1 (Model-based clustering): We hypothesize that haplotypes are either risk or non-risk,
where non-risk means neutral or protective to the disease. Under this assumption, given the
haplotypes H;,1 < j < J and their the marginal counts (n1,...,ny), the conditional distribution of

the counts n = {(ngj,n1;)7 : 1 < j < J} are modeled by the two-component binomial mixture,

F((noj, ) e, pry ) = 7 f ((nog, n) " pr) + (1= 7) f((nog, naj) " [pr),

where p, = P(affected|H,) and p; = P(affected|H7) are the disease-penetrances of risk haplotype
H, and non-risk haplotype Hj respectively, and

ng; + nij ; .

F((nog my)Tlpr) = ( ” ﬂ)pfhu—mnoa
nlj

ng; + Nnij . .

L B A P
J



The unknown parameter 6 = (p,, pr,7)" can be estimated by maximizing the log-likelihood

1(0n) = Zlog wf ((noj, 1) o) + (1= ) f ((nog,m15) pr)) -

J=1
Note that the direct calculation of the above maximum likelihood estimator (MLE) is difficult.

Instead, we calculate it indirectly by the EM algorithm [McLachlan and Basford, 1988]. For this
purpose, we introduce the following group membership indicators I;. and Iz,

1, H; in the risk group

Ijr: ! 5 ijzl_ljr

0, otherwise

for1<j<J. SetI= {(Ijr,Ij,—,)T : 1 < j < J}. Then, the so-called complete-data log-likelihood

can be written as

J

(O, 1) =~ {TI; log(r f ((noj, m1;) " Ipr)) + Lir log((1 — m) f((noj, n1;) ") } -
j=1
Given the current value () = (p (t), p£ ),7r( )) and the data n, we first calculate the current
log-likelihood 1(A®)|n). Then, in the E-step, we calculate the expectation of the complete-data

log-likelihood with respect to I,
Q(6,6) = E[(8[n,T)n,6")]

J
_ Z( D og(m) + 7. log(1 — ))

J
+ (71 log(f(naj,ma) pr)) + 748 log(£((n0j, m17)7 pr))),
j=1
where
O 7 f((nog, 1))
" 7® f((nog, 1) T[p) + (1 = 7®) f((nog, n)TIpl)
ONN 70 f((nog, n1;)7 )
ar

70 f((noj, na)TIp) + (1 = 7®) £ ((nog, ma))T|p\)
In the M-step, we update 8(Y) by solving the partial derivatives equations

0 0 0
9Q _, 99 _, 9

= = =0.
on © Opr " Opr
We obtain
J J @, J @O,
A+ 2j=1Tjr (t+1) _ 2 =1 Tjr M P 2 =1 Tjr '
d Z}] 1 ](:) (n1; + noj) Z}]:1 TJ(? (n1j + noy)
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We calculate the updated log-likelihood 1(6(*+)|n) and its absolute distance to the previous I(()|n)
and err(t+1),

Start with the initial value ), we alternatively run the E-step and the M-step for t = 0,1, ...,
till err®*1) is less than a pre-specified value dj (we set dp = 0.0001 in our codes). Suppose that the

algorithm stops at (¢ + 1)th iteration. Note that T](:—H) and 7_](;+1) are the posterior probabilities of
the j-th haplotype being in risk and non-risk haplotype clusters respectively. So, based on these

quantities, the estimated risk and non-risk haplotype clusters can be defined by

SHD = (H; oY 5 0y U g (D <

T Vi Jr

We consider the two methods to choose the initial values for the EM algorithm: random ini-
tialization and data initial partition. See the Online Supplemental Material (Appendix I) for the
details.

Stage 2 (Multiple OR testing): We are going to refine the above selected risk haplotype set on
the basis of their odds ratios. Let ngyg and nig be control- and case-counts of the haplotype H.
Let ngr = ZH*eS?“) nog, and niz = ZH*GS?“) n1g,. The corrected OR statistic is defined by

(n1g + 0.5)(nor + 0.5)
(nom + 0.5)(n1r + 0.5)°

ORpy =

where adding 0.5 to the counts before computing the odds ratio was suggested by Agresti [1999] for
continuity correction. Note that under the null hypothesis that the haplotype is evenly distributed

between cases and controls,

log(ORp) ~ N(0, ¢(nom, nim, nor, nar)?),

where

1 1 1 1
nog + 0.5 + nig + 0.5 + nor + 0.5 + niz+ 0.5

¢(n0Ha ni1H, Nor, n]f) — \/

Then, the risk haplotype set Sty (which are significant in the OR test) is updated by
S, = {H € SUH L ORy > exp(e1d(nom, nm, n%“ﬁ))}

where ¢ is a pre-specified critical value for testing (invoking the Bonferroni adjustment, we set
¢1 = 2.6 in the later simulations and ¢; = 5.3 in the real data analysis). The non-risk haplotype
set is updated by

A

Sr=S:U (S, —5,).



Given the clusters S, and 5}, the estimators of 7, p,, and pr are updated by

’ﬁ' — |g7" ]3 — EHGST niH ]37 — EHGSF nin
Sl + 18" 7 Xges, (mm +mon)” T Yges, (mum + non)

The population frequencies of S, and S; (i.e., P(H € Sr) and P(H € S;) are estimated by their
retrospective frequencies in controls,
A A Z & NMoH A A A A
P(§,) = FHE——— P(S) =1 P(S,).
2 HeS U8, OH
Note that according to the theory of Prentice and Pyke [1979], the OR based on p, and pr above

is asymptotically insensitive to the case-control sample ratio although p, and pr can be affected by

the ratio.

2.2 Two-stage hybrid mixture approach

In the previous mixture model, risk haplotypes are assumed to have the same disease-penetrance
and so are non-risk haplotypes. Such a homogenous assumption may not hold in reality. To allow
for the disease-penetrance variations within each group, we take p, and pr as random factors by
imposing prior distributions on them. The resulting model is called a Bayesian regularized mixture
model. The details are as follows.

Bayesian regularization. We first randomly generate ig (say igp = 100) initial values at which
we calculate the log-likelihoods, and take the one, which attains the maximum and is denoted by
600 = ( 510),p(0),7r(0))T, as the initial value for the posterior sampling. Motivated by the Gibbs

>
sampling, we employ the posterior of  to improve each iteration of the EM. Here, we draw q,(ﬂt) and

qq(:t) from the posteriors of p, and pr at the iteration ¢. Start with the initial 6(©) and set qﬁo) = pﬁﬂo)

and q7(70) = p,(;o). At the iteration ¢ + 1, given () = (pgt), p,(:t),w(t))T, we have the expected values of

I, and Iz, say T(t) and T(t)

it g Haplotype clusters can be defined by

Sr(=t) = {Hj : T](i) > T;;)}v Sg) = {Hj : T](f,) < T](;)}.

Collapse haplotypes in S, and calculate the counts of the collapsed S, in controls and cases, sq,
and sp,. Similarly, collapse Sz and calculate the counts of the collapsed S7 in controls and cases,

sor and s17. Based on these counts, the likelihood functions of p, and pr can be written as

Upr|(sors 810)7) 0 P (1 = pr)®0m,  U(pr|(sor, s17) ) o pE7 (1 — pr)®or.

Let p%1 (1 — p,)% and péo(l — p7)?t denote the conjugate priors for p, and p; respectively, with the

7

pre-specified pseudo-counts g and d;. We expect that a risk haplotype appears more frequently in



cases than does any non risk haplotype. So, the pseudo-counts should satisfy the constrain §; > .
They should also be small compared to the number of cases. In this paper, we set §; = 8 and §y = 2.
In our simulations, we found the results are not very sensitive to the choice of these constants.

After setting the above priors, we then derive the posteriors,

p(pr|(s0r, 517)7) o Beta(d1 + s1r, 00 + S0r),  p(pr|(s0r, 517)7) o Beta(do + sor, 1 + s17)

We draw q,(ntﬂ) from p(p,|(sor, s1+)7) and qffﬂ) from p(pr|(sor, s17)7 ). We update the estimates of

pr, pr and m by posterior averaging,

o+ = L ti NORMCE N f oB ) EX
A e 1591+ 15371
Finally, we repeat the above procedure until the absolute difference between the estimates of 6 in
two consecutive iterations is less than a pre-specified value, say 0.0001.

In the Online Supplementary Material (Appendix II), we show the superiority of the Bayesian
regularized M-step over the standard M-step by simulations. In light of this, we replace the M-step
in the EM by the Bayesian regularized M-step to form a hybrid EM algorithm. In summary, we
opt for the following two-stage hybrid mizture approach for association analysis in the remaining
paper:

Stage 1 (Clustering): Use the hybrid EM algorithm to estimate the two-component binomial

mixture model.

Stage 2 (OR testing): Use the OR statistic to test for risk haplotypes further as before.

2.3 Model justification

To make the proposed model identifiable, we need to assume that the disease-penetrance ratio
pr/pr > 1, that is, risk haplotypes are more enriched in cases than non-risk haplotypes. In this
section, under the commonly used inheritance models, we prove the above hypothesis holds when
the so-called relative risk measure is larger than one.

For this purpose, let S, and S7 denote the risk and non-risk haplotype sets in the population.
Suppose that the disease-penetrance of a genotype depends only on the number of risk haplotypes

contained in that genotype. Then, we have three types of penetrance:
fo = P(affected|H;H7), fi1 = P(affected|H,H5), fo = P(affected|H,H,),

where H, € S, and Hy € Sr. Denote the relative risk measures \y = f1/fo and A = f2/fp. In the

Online Supplementary Material (Appendix III), we show that the haplotype disease-penetrances,



P(affected|H,) and P(affected|Hy) are linear functions of the relative risk measures of genotypes

and the population haplotype frequencies, namely

P(affected, H,) = fo{\P(H € S,)+ M P(H € S7)},

P(affected|Hr) = fo{MP(H € S,)+ P(H € Sr)},

where P(H,), P(H € S,) and P(H € S;) are the population frequencies of H,, S, and Ss.
The disease-penetrance ratio between risk and non-risk haplotypes,

P(affected|H,) M{AP(H € S;)/M\ + P(H € S;)}

P(affected|Hr) MP(H € S,)+P(H € S;)

We can further show that under the commonly used models of inheritance (multiplicative,
dominant, and recessive), the haplotype relatively risk (i.e., the the disease-penetrance ratio between
the risk and non-risk haplotypes) is larger than one if and only if the corresponding genotype relative
risk is larger than one.

The above results imply that when the genotype relative risk A > 1, the individuals carrying
the risk haplotype H, will have more chance of getting the disease than do non-risk haplotype
carriers; when A < 1, the individuals carrying H, have the less chance of getting the disease than

do non-risk haplotype carriers and thus H, plays a disease-protective role.

2.4 Testing for haplotype inheritance modes

In the previous subsection, we develop a theory on the identification of the proposed model under
certain inheritance assumption on hyplotypes. However, the biological justification for the choice
of an inheritance model is seldom available and lack of a statistical justification for the specific
genetic model is customary practice. To address the issue, we introduce a statistical test as follows.

We begin with deriving non-parametric estimators of the genotype disease-penetrances. Suppose
that we have obtained S, and Sy, the estimated risk and non-risk haplotype sets from our hybrid
mixture approach. Let Gg be the set containing the observed genotypes which consist of two
haplotypes in 5’7:, G the set containing the observed genotypes which consist of one haplotype in
S, and one in SF, and Gg containing the observed genotypes which consist of two haplotypes in
S,. For k = 0,1,2, we then calculate the total haplotype frequencies of G in controls and cases,
denoted by (ng2,n12), (no1, n11), (Poo, noo) respectively. Then the disease-penetrances of genotypes
can be estimated non-parametrically by

;o 110 ;o n11 ;o n12
fO - 5 fl — 5 f2 - .
n10 + oo no1 + n11 np2 + N2

10



Let A denote the set of the above three inheritance modes: the multiplicative, the dominant,
and the recessive. We assume that genotypes are linked their underlying haplotype pairs via the
Hardy-Weinberg equilibrium. To test for an inheritance mode, for a € A and k£ = 0, 1,2, we first
derive a parametric estimator of f%, say f,ga) by using the estimators p,, pr, P(S’r) obtained in the

previous subsection. We then calculate the statistic
Do = fo= £+ 11 = 21+ 1 = £

We calculate the minimum D4 = mingec4 D, and record a at which D, attains the minimum. We
expect that D4 takes small values when one of modes in A is true. We can quantitatively justify
the significance by use of the following parametric bootstrap test: We re-sampling genotypes M
times on the basis of the estimated mode & with the estimated penetrances f,gd), k=0,1,2. We
set M = 100 in our simulation. Each bootstrap dataset contains the original genotypes (and their
haplotype pairs) but with new sets of case and control counts. We apply the two-stage hybrid
mixture approach to these datasets respectively, obtaining M bootstrap values D, m =1, ..., M.
The empirical p-value 2%21 I(Dy > D) /M can be used to judge the significance of the test.
To conclude this section, we now state the formulas for estimating the relative risk measures
under the three inheritance models. The proofs are straightforward and thus omitted. We use the

notations A\ = fo/fo and Ay = f1/fo introduced before.

e Multiplicative model, where A = \3. We have

N 2 ~
f= p) fy = br C h=Me =V
<p7= fo (\[;\—1)15(5})—1—1 fo=XAfo, fi fo

e Dominant model, where A = A1. We have

PG N

5\ = T 2 A
pf/p'r - P(Sr)

e Recessive model, where Ay = 1. We have

~ A A A~ ~ A A A A

A= (pr/pr — P(S7))/P(Sr), f1=fo=0pr f2=Afo.

3 Simulation studies

In this section, via simulations we will examine the performance of the proposed methods in terms

of the estimated L, bias and the average of sensitivity and specificity under various scenarios. Let

11



6 be the estimator of 0, and S, and S; the estimators of the true risk and non-risk haplotype sets

S, and S7 respectively. Then, by the L; bias we mean the L; distance between 6 and 0. The

sensitivity and specificity of S, and S; are defined as sen = |S|Tsm *|9’”| and spe = ‘Srgflgf‘. We take the

average AVSS = (sen + spe)/2 to assess the performance of the haplotype classification above. As
pointed out before, in light of our simulation study reported in the Online Supplementary Material
(Appendix IT), we adopted the two-stage hybrid mixture approach in the simulations and real data

analysis below.

3.1 Performance of the proposed hybrid mixture approach

Note that the proposed hybrid mixture method is based on the prospective likelihood model al-
though real data can be from retrospective studies. By the simulations below, we addressed whether
the proposed hybrid mixture approach could outperform the multiple-testing procedure of Zhu et
al. [2010] in both prospective (i.e., cohort) and retrospective (i.e., case-control) studies. See the
Online Supplementary Material (Appendix IV) for the details of the procedure of Zhu et al. [2010].

Setting 1 (cohort design): We generated 30 datasets, each with N case-genotypes and Ny
control-genotypes. They were obtained by the following steps. In the first two steps, we adopted
the same approach for generating Ny + N; genotypes which contained m,. risk haplotypes as we did
in the Online Supplementary Material (Appendix II). In the third step, we simulated the disease
status of each genotype by sampling from a Bernoulli distribution. The Bernoulli distribution
took fp, or A1fo, or Afy as a success probability according to whether the genotype contained
zero, one or two risk haplotypes. We considered the three inheritance models coded by IM: the
multiplicative (IM = 1), the dominant (IM = 2) and the recessive (IM = 3). Note that the values of
(No, N1) may vary across different datasets. We considered the scenarios with various combinations
of (No + N1, m,,IM, fo, A), where Ny + N7 = 3000, 5000, m, = 5,10,20, IM = 1,2,3, fo = 0.1,
A=1,1.4,1.8,2.2,2.6, 3,3.4, and 3.8 respectively.

For each scenario, we applied both the hybrid mixture method and the multiple testing method
to 30 datasets and calculated their AVSS values respectively. For each of the three inheritance
models, we plotted the means of these AVSS values over 30 datasets against A\. The results in
Figure 1 show that on the cohort data, the hybrid mixture method performed substantially better
than the multiple testing method in all the scenarios defined above.

[Put Figure 1 here.]

Setting 2 (case-control design): We generated 30 datasets, each of which were simulated

12



by the following two steps. Step 1, to generate N; case-genotypes, we first drew 2/N; haplotypes by
the software MS with mutation rate of 2, of which m, haplotypes were labeled as risk haplotypes.
We then randomly paired these haplotypes to form N case-genotypes. Let Gj, 1 < j < J be all the
different genotypes contained in the N cases and r1;,1 < j < J be the retrospective frequencies.
These case-genotypes formed three groups according to the number of risk haplotypes which each
genotype contained: Each genotype in Groups 0, 1 and 2 contained two non-risk haplotypes,
only one risk-haplotype, and two risk haplotypes respectively. Step 2, we generated Ny control-
genotypes, which also had genotypes G, 1 < j < J but with population retrospective frequencies

qoj, 1 <7 < J. We first let go;,1 < j < J depend on the pre-specified constant d by

r1;(1 —d/r1g,), G belongs to Group 2
qoj = § 71;(1 —0.5d/r14,), G; belongs to Group 1
r1;(1+1.56d/r1g,), G; belongs to Group 0

where rig, = ZG]E Group, i for Kk = 0,1,2,, and d > 0 is a parameter to reflect the effects
of risk haplotypes on genotype frequencies. We simulated Ny control-genotype counts from the
multinomial model MN (N, (qo1, ..., gos)" ) and calculated the corresponding retrospective frequen-
cies 19,1 < j < J. We considered the cases where m, = 5,10,20, and d = 0,0.05,0.1,0.1,
0.15,0.2,0.25,0.3, and 0.35 respectively.

For each dataset, the cumulative genotype frequencies of Groups 0, 1, and 2 in controls are
rgo + 1.5d, 74, — 0.5d, and 1y, — d respectively, whereas the corresponding frequencies in cases are
Tgo» T, and rg, respectively. This implies that due to the impacts of risk haplotypes, the cumulative
frequencies of Groups 2 and 1 in cases have been increased compared to those in controls. The
odds ratios between Groups 2 and 0 and between Group 1 and Group 0, (1 +1.5d/ry,)/(1 —d/rg,)
and (1 +1.5d/rg,)/(1 — 0.5d/rg,), are larger than one. Similarly, the odds ratio between the risk
haplotype group and the non-risk haplotype group can be expressed as (14 2.5d/(2rg, +14,))/(1 —
2.5d/(rg, + 2ry,)). All these ratios are increasing in d.

We applied the hybrid mixture method and the multiple testing method to these case-control
data. The mean curves of the AVSS values with one standard error up and down were plotted
against the d values in Figure 2. The results again demonstrate that the hybrid mixture method
can be more powerful than the multiple testing method in detecting risk haplotypes.

[Put Figure 2 here.]
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3.2 Performance of the proposed inheritance mode test

For each of the three inheritance models, we generated 30 datasets. Each dataset was simulated as
follows. Following the cohort design, we first simulated Ng + N; genotypes, where the underlying
haplotypes contained m, = 10 risk-haplotypes and followed the Hardy-Weinberg equilibrium. We
then simulated their disease status by use of the inheritance models with fy = 0.1 and A =
1,1.4,1.8,2.2,2.6, 3,3.4, and 3.8 respectively as we did in the previous subsection.

For each dataset, we calculated D4 and the optimal mode a. We generated 100 parametric boot-
strap samples of the genotype frequencies based on the mode & and calculated the corresponding
values of the inheritance testing statistic, DXC), k =1,...,100. Based on these values, we obtained
the empirical p-value.

We calculated the success rates by counting how many times that a is the true mode over the
30 datasets for each X\. These success rates and the empirical p-values are displayed in Figure 3.
The results indicate that the success rates are increasing as A is increasing. The box-whisker plots
in Figure 3 show that almost all the empirical p-values are above 0.20, suggesting that almost all
the tests are not significant. Therefore, the bootstrap test has a very high power in finding the true
inheritance modes in the data.

[Put Figure 3 here.]

4 Real data analysis

We applied the proposed hybrid mixture approach to the GWAS genotype datasets on coronary
artery disease (CAD) and hypertension (HT) obtained by Affymetrix 500K SNP chips in the
WTCCC study [WTCCC, 2007]. Each dataset contained 2000 unrelated cases as well as 3000
unrelated controls. The controls came from two sources: 1500 from the 1958 British Birth Cohort
(58C) and 1500 from the three National UK Blood Services (NBS). There were about 500600 SNPs
across the human genome. These data were downloaded from the WTCCC website. We first pre-
processed the data by excluding the SNPs which meet one of the following criteria: (1) the HWE
Fisher test p-value is less than 10~% in controls; (2) the chi-square test p-value between 58C and
NBS is less than 107%; (3) the minor allele frequency is less than 1%; (4) the calling score is less
than 95%. After the exclusion, around 4897746 SNPs remained for the analysis. We divided the
genome into regions (or blocks) of around 8 SNPs according to their positions on the chromosomes,

obtaining 61218 regions. Note that the long block will dilute the effects of risk SNPs whereas the
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short block will miss interactions between SNPs. The block length of 8 was chosen to achieve a
compromise between the above aspects. Also note that as we excluded the SNPs with bad callings,
the numbers of cases and controls are varying across the different regions.

For all regions, we first reconstructed the haplotype pairs of genotypes by use of the software
PHASE, to which we applied Stage 1 of the hybrid procedure. It led to 902909 haplotypes and
961942 haplotypes to be declared as risk haplotypes at Stage 1 for the CAD and the HT respectively.
We then calculated the OR tests on these haplotypes at Stage 2. At Stage 2, According to the Bon-
ferroni adjustment, the individual significance level was set at the levels of 0.05/902909 = 5.5 x 1078
and 0.05/961942 = 5.2 x 10~® for the CAD and the HT respectively. These individual significance
levels were then used to determine the thresholding level ¢; in the multiple OR thresholding, which
is ¢; = 5.3.

After performing the proposed hybrid mixture procedure on the datasets, we obtained the
estimated risk and non-risk haplotype sets, S, and 5’;), for the CAD and the HT respectively.

Note that there were two sub-populations in controls. Any estimated risk haplotype which is
significant in differing two control sub-populations should be viewed as an artifact. By using this,
we made further quality control on the selected haplotypes by running the chi-square tests on the
association of two control sub-populations with each selected risk haplotype. We eliminated these
risk haplotypes whose p-values for the above chi-square tests were < 30%. Here, 30% was chosen
by the simulations in the Supplementary Web Material, aiming to filter out these artificial risk
haplotypes with parameter d > 0.05. From the simulations, we can see that when d = 0.05, these
p-values would be less than or equal to 0.30 most times.

Finally, we calculated the ORs for all the estimated haplotypes and thresholded them by using
the bound

exp(c1v/1/(nom +0.5) +1/(n1g +0.5) + 1/(nor + 0.5) + 1/(ny17 + 0.5))

with ¢; = 5.3. This gave the final risk-haplotype set as displayed in Tables 1, 2, 3 and 4 be-
low. In the tables, each haplotype has been assigned to a physically closest gene on the basis of
the information provided the GWAS catalog and the genetic information from the British 1958
Birth cohort. See Welter et al. (2014) and the web page at http://www2.le.ac.uk/projects /birth-
cohort/1958bc. In the CAD case, we did rediscover the CAD risk gene CDKN2B and the risk
haplotype “GGTGCCAG” found by the previous study (WTCCC, 2007; Zhu et al., 2010). We also

tested the inheritance modes for these risk haplotypes. Taking the gene CDKN2B as an example,
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we obtained D4 = 0.4087 with @ = ”dominant mode” and the empirical p-value of 0.97, suggesting
that the hyplotype “GGTGCCAG” in the gene followed the dominant inheritance mode.
[Put Tables 1, 2, 3 and 4 here.]

5 Discussion and conclusion

The GWAS and sequencing studies have produced a huge amount of high-dimensional data. An-
alyzing these data offers many challenges to statistical inference. Several empirical studies have
demonstrated the superiority of SNP region-based association analysis over single-SNP strategy
[see Zakharov et al., 2013 and reference therein]. However, even restricted to a region, we may
still obtain many sparsely distributed haplotypes derived from phasing the genotypes. In this case,
the traditional generalized linear model-based approach [Schaid et al., 2002] may not be effective
in detecting rare disease-associated haplotypes. In the presence of sparsely distributed haplotypes,
haplotype clustering is very useful for performing statistical analysis on such kinds of data. Most
of the existing methods of haplotype clustering are heuristic and not disease-penetrance based. To
overcome this drawback, we have proposed a hybrid mixture model-based approach for grouping
and identifying risk haplotypes. The key ingredient of the approach is a prospective mixture model
with priors. The proposal includes two stages: in the stage 1, one groups haplotypes and therefore
reduce the haplotype sparsity, while in the second stage, one conducts a two-sample Z-test based
screening on the haplotypes derived from the previous stage. We have also provided a test for ge-
netic inheritance modes. We have hypothesized that haplotypes are either risk or non-risk, where
non-risk means neutral or protective to the disease. However, if we are also interested in identifying
protective haplotypes, we can easily extend the current framework to address the issue by use of a
three-component binomial mixture model.

We have examined the performance of the proposed procedure by a theoretical analysis, sim-
ulations and a real data analysis. We have showed that under the Hardy-Weinberg equilibrium,
the risk haplotype group is identifiable if genotype relative risk is not equal to one. Compared
to the standard multiple Z-testing method, the proposed procedure is more efficient in terms of
sensitivity and specificity. We applied our procedures to the WTCCC CAD and hypertension data,
rediscovering some existing risk gene and haplotypes and identifying many more risk haplotypes
than did the multiple Z-test based approach. This is not surprising as the simulations have already

demonstrated that the model-based clustering often performs better than does the multiple Z-test
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approach.
We note that the proposed mixture model can be combined with haplotype-based logistic re-

gression to account for covariates. However, further studies are beyond the scope of the paper.

Description of online supplementary materials

Online supplementary material contains further information about the initialization of the EM algo-
rithm, the performance of the proposed Bayesian regularization, the proof of the disease-penetrance

formulas, and the multiple Z-testing method.
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Figure 1: Performances of the proposed hybrid mixture method and the multiple testing method on the
cohort-design data with multiplicative or dominant or recessive inheritance models. In these plots, the red and
the blue solid curves, showing means of the AVSS values (i.e., the values of (specificity and sensitivity)/2))
over 30 datasets, were plotted against the values of A for the hybrid mixture method and the multiple testing
method respectively. The two red dash curves are one standard deviation up and down from the red mean
curves. Similarly, the two blue dash curves are one standard deviation up and down for blue mean curves.
The plots in the columns from the left to the right are for the cases where there were 5, 10, and 20 risk
haplotypes in the underlying haplotypes. The top two rows, the middle two rows and the bottom two rows
are the results for (Ny, N1) = (2000, 1000) and (3000, 2000) under the multiplicative, the dominant and the

recessive inheritance models respectively.
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Figure 2: Performances of the proposed hybrid mixture and the multiple testing method on the case-control
data. The plots in the columns from the left to the right are for the scenarios, where the underlying number
of risk haplotypes m, = 5,10, and 20. The top row stands for the cases, where (Ny, N1) = (2000, 1000),
while the bottom row stands for the cases, where (Ny, N1) = (3000,2000). In these plots, the red and the
blue solid curves show mean curves of the AVSS values over 30 datasets as functions of d = 0,0.05,0.1,0.1,
0.15,0.2,0.25,0.3, and 0.35 for the hybrid mixture method and the multiple testing method respectively. The

dash curves are one standard error up or down from the mean curves.
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Figure 3: Performances of the proposed test for inheritance patterns. The plots in the columns from the
left to the right are for the dominant, the multiplicative and the recessive models respectively. The top row
show the success rate of identifying the true inheritance mode against A over 30 datasets, while the bottom
row show the box-whisker plots of the empirical p-values (based on 100 bootstrap samples) against A for the

inheritance test statistic D, ;;, over 30 datasets.
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Table 1: The predicted risk haplotypes for CAD by use of the WTCCC data. In the table, the P-
values were derived from the chi-square test of the frequencies of H; against the collapsed frequencies

of the estimated non-risk haplotypes.

‘ Chr ‘ Region ‘ SNP range ‘ Haplotype P(H,|case) P(Hj|control) ‘ OR ‘ P-Value ‘ Gene ‘
‘ 1 ‘ 202166400 — 202187685 | 756692041 — 51041311 ‘ AAATGGGA ‘ 0.07815 ‘ 0.05083 ‘ 1.95856 ‘ 2.8 x 10713 ‘ LOC284577 ‘
‘ 1 ‘ 237650028 — 237672617 | 56683639 — rs10802930 ‘ TCAAATGC ‘ 0.05256 ‘ 0.02763 ‘ 2.57538 ‘ 6.1 x 10713 ‘ RGST ‘
‘ 3 ‘ 102073696 — 102093722 ‘ 75973309 — 154928094 ‘ TAACCTTT ‘ 0.07591 ‘ 0.06898 ‘ 7.73184 | 5.6 x 1071 |  ABI3BP ‘
‘ 3 ‘ 142488272 — 142537277 ‘ 157643346 — 152871887 ‘ CGCCCATC ‘ 0.05008 ‘ 0.03809 ‘ 11.90617 ‘ 2.0x 1071 | ACPL2 ‘
‘ 3 ‘ 147806667 — 147828893 | 7517433833 — 7517434589 ‘ CCGGGGGC ‘ 0.03363 ‘ 0.01291 ‘ 3.14753 ‘ 3.2x 107! | PLSCR5 ‘
‘ 4 ‘ 132550 — 344051 rs11735742 — rs17719492 ‘ TGGCACTC ‘ 0.05993 ‘ 0.04793 ‘ 1.9902 ‘ 7.6 x 1071 ‘ LOC654254 ‘
4 4464610 — 4499426 7516835627 — 754234727 | TCGAGCAT | 0.04072 0.0251 3.92994 | 1.1x 107 | ZNF509
CTAAGCAT | 0.09413 0.07343 3.10696 | 1.2 x 10713
‘ 4 ‘ 180659963 — 180699763 | rs6811556 — 7517090633 ‘ CCCCCACT ‘ 0.01782 ‘ 0.00755 ‘ 7.33583 ‘ 5.5 x 10719 ‘ LOC391719 ‘
‘ 5 ‘ 157267571 — 157303032 ‘ 7510071157 — 7517055168 ‘ GTGAGCAA ‘ 0.02135 ‘ 0.00701 ‘ 3.93074 ‘ 4.0x 10713 ‘ CLINT1 ‘
7 | TTT25471 — 77739291 | rs10485891 — rs7803705 | AACATGCG | 0.03652 0.04027 3.67364 | 6.8 x 10713 |  MAGI2
AACATGTA | 0.01312 0.01117 4.76163 | 2.1 x 10711
AGTGCACA | 0.01312 0.00846 6.27027 | 1.2 x 107
‘ 7 ‘ 130749877 — 130784667 ‘ 754728224 — 154728225 ‘ AGAACCGG | 0.14061 ‘ 0.13197 ‘ 4.05796 ‘ 1.0 x 1012 ‘ LOC647030 ‘
‘ 8 ‘ 104190450 — 104202402 ‘ 752515173 — 753019159 ‘ GGCCATCT ‘ 0.14195 ‘ 0.08768 2.20746 ‘ 2.5 x 10727 ‘ BAALC ‘
‘ 9 ‘ 22088619 — 22120515 ‘ 752891168 — 7510965245 ‘GGTGCCAG‘ 0.34939 ‘ 0.29298 ‘ 1.90115 ‘2A7x 10—“‘ CDKN2B ‘
9 | TT341767 — 77366988 | rs2889774 — rs3780296 | ATGAGAGT | 0.01936 0.01072 5.31687 | 5.0 x 10718 |  GNA14
ATGAAGAC | 0.03898 0.03923 2.93116 | 4.5 x 10713
ATGGAAAT | 0.06672 0.042 4.68028 | 4.9 x 1073
GCGAAGAT | 0.14207 0.14656 2.85712 | 4.9 x 10719
9 | 131714465 — 131751663 | 753012758 — rs11243551 | CGAATTGC |  0.06641 0.04652 241478 | 6.2 x 10713 | RAPGEF1
CGAACTGC | 0.02448 0.01227 3.36929 | 4.4 x 10712
‘ 10 ‘ 64409674 — 64442476 ‘ 751509952 — 752842286 ‘ TTTCTTAC ‘ 0.02299 ‘ 0.0073 ‘ 9.37291 ‘1A6><10’16‘ NRBF2 ‘
10 | 112527724 — 112597595 | rs17763100 — 751341055 | GCCTCCOCG | 0.07752 0.07383 1.85031 | 6.2x 10711 |  RBM20
ACCTCCCG | 0.24688 0.21703 2.00368 | 6.7 x 10723
‘ 10 ‘ 129835144—129894934‘ 511016102 — rs1335014 ‘ AAGAACTT ‘ 0.02987 ‘ 0.01529 ‘ 4.40461 ‘ 6.2 x 10714 ‘ MKI67 ‘
‘ 11 ‘ 36361306 — 36410807 ‘ 75330255 — 15331485 ‘ GCGATTAA ‘ 0.0309 ‘ 0.00779 ‘ 4.87953 ‘1A5x 10*21‘ FLJ14213 ‘
11 | 133079508 — 133113640 | rs4937817 — 154937826 | GTAGTGCC | 0.04216 0.02425 2.69929 | 5.9 x 10717 | LOC646522
CCGGCCCG | 0.05747 0.04018 2.22186 | 1.4 x 10~1°
GTAGCCCG | 0.04001 0.02779 2.23683 | 8.3 x 10712
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Table 2: The continuation of Table 1.

‘ Chr ‘ Region SNP range ‘ Haplotype ‘ IAD(H7 [case) ‘ P(H,,\(:ont’rol) ‘ OR ‘ P-Value Gene
11 | 133914862 — 133953680 | 7512417998 — 510894845 | GTTAGCCC |  0.12907 0.13389 3.70503 | 1.4 x 1072 | IQSEC3
GTTAATCC | 0.09778 0.09576 3.92451 | 3.3 x 10713
GTCAGCTC | 0.06932 0.07079 3.76457 | 7.6 x 10712
12 | 24250132 — 24288211 | 783922562 — 517412555 | CTGTGCCT | 0.07253 0.06027 5.51363 | 6.0 x 107! SOX5
TCGCGCCC | 0.05454 0.03857 6.47638 | 9.9 x 10717
TCGCGTCC | 0.02399 0.01788 6.14651 | 1.0 x 10712
‘ 12 ‘ 51469295 — 51501190 ‘ 517738862 — 75876407 ‘ CACCCTCG ‘ 0.14455 ‘ 0.13704 ‘ 2.25981 ‘ 2.6 x 10713 ‘ KRT3 ‘
‘ 12 ‘ 127083338 — 127105747 ‘ 57960047 — 759668398 ‘ GTGCGTCT ‘ 0.06573 ‘ 0.06076 ‘ 3.67491 ‘ 2.7x 1071 ‘ TMEM132C ‘
‘ 15 ‘ 37962389 — 38014169 ‘ 7511633436 — 15534757 ‘ TTACAACC ‘ 0.07798 ‘ 0.03763 ‘ 2.66998 ‘ 3.9x 1072 ‘ EIF2AK4 ‘
‘ 16 ‘ 79852394 — 79892297 ‘ 756564863 — 7511639552 ‘ TTCGTTAT ‘ 0.02663 ‘ 0.01053 5.1576 ‘77><10 '0‘ BCMO1 ‘
‘ 17 ‘ 20052246 — 29089136 ‘ 752046899 — 7517783280 ‘ AGTCAATC ‘ 0.11305 ‘ 0.0966 ‘ 2.10899 | 5.7 x 1071 ‘ LOC646202 ‘
‘ 17 ‘ 52973696 — 53057256 ‘ 517834557 — 153744089 ‘ TGGTTAAC ‘ 0.05825 ‘ 0.03915 ‘ 2.15515 ‘ 8.7 x 1071 ‘ MST2 ‘
‘ 18 ‘ 9649377 — 9700554 ‘ 751965881 — 151455587 ‘ TCACATGT ‘ 0.06243 ‘ 0.04149 ‘ 2.15776 ‘ 6.3x10713 ‘ RAB31 ‘
‘ 18 ‘ 60647495 — 60688045 ‘ 751595904 — 7517678507 ‘ CAGTAT AT ‘ 0.09403 ‘ 0.0848 ‘ 2.55691 ‘ 1.2x 1071 ‘ C180rf20 ‘
‘ 18 ‘ 72313651 — 72356779 ‘ 517059443 — rs8084536 ‘GCGAGACC‘ 0.08958 ‘ 0.08373 ! ‘ FLJ44313 ‘
‘ 19 ‘ 4625799 — 4746342 ‘ 511670570 — 751044409 ‘ AGCAACCG ‘ 0.05419 ‘ 0.02332 ‘ 3.3426 ‘ 6.7 x 1072 ‘ DPPY ‘
‘ 19 ‘ 56075162 — 56127664 ‘ 75187930 — 751654545 ‘ ACATGTGA ‘ 0.03532 ‘ 0.02898 ‘ 7.24575 13 ‘ KLK2 ‘
‘ 19 ‘ 58460745 — 58519652 ‘ 751978611 — 57408137 ‘ AGGTAGTG ‘ 0.05628 ‘ 0.042 ‘ 1.99812 ‘ 4.0 x 10712 ‘ VNI1R4 ‘
22 | 35324014 — 35335429 | rs7410412 — rs12160203 | TCCTAGGG | 0.44488 0.50199 3.09116 | 1.6 x 102! | CACNG2
GCCTAGAG | 0.03358 0.02891 4.05372 | 6.2 x 10717
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Table 3: The predicted risk haplotypes of hypertension by use of WI'CCC data. In the table,
the P-values were derived from the chi-square test of the frequencies of H; against the collapsed

frequencies of the estimated non-risk haplotypes.

‘ Chr Region ‘ SNP range ‘ Haplotype P(Hj|case) ‘ P(H;|control) ‘ OR ‘ P-Value ‘ Gene ‘
‘ 1 ‘ 1586208 — 1753641 ‘ 756603791 — 752272908 ‘ AACCCATC ‘ 0.03406 ‘ 0.01973 ‘ 2.45812 ‘2A7x 10712 ‘ SSU72 ‘
‘ 1 ‘ 227569611 — 227620956 ‘ rs7514972 — 759431663 ‘ CGTATAGG | 0.03377 ‘ 0.00926 ‘ 7.08695 ‘ 2.8 x 10732 ‘ TRIM67 ‘
‘ 1 ‘ 227914995 — 228040530 ‘ 516854388 — 151655296 ‘ CAAGGTAG ‘ 0.04372 ‘ 0.04622 ‘ 2.90643 ‘ 1.9 x 10713 ‘ TSNAX ‘
1 | 236986859 — 237020204 | 7512137158 — 7516840310 | GCTGTGGG |  0.02424 0.01534 2.95857 | 1.7x 107" | GREM?2
ATTTAGGG | 0.08733 0.05437 3.00646 | 3.0 x 10726
GCTTTGAG |  0.0756 0.06745 2.09936 | 1.1 x 10712
‘ 3 ‘ 101569551 — 101696774 ‘ 75277640 — 754928098 ‘ CCCAGGCG ‘ 0.02137 ‘ 0.00908 ‘ 6.27332 ‘ 1.9 x 10713 ‘ TOMMT70A ‘
‘ 3 ‘ 142488272 — 142537277 ‘ 757643346 — 152871887 ‘ AGCTCATC ‘ 0.17323 ‘ 0.17868 ‘ 2.2344 ‘4.4>< 101 ‘ ACPL2 ‘
‘ 3 ‘ 142878508 — 142912781 ‘ 7512485838 — 7516851691 ‘ GCATAGAG ‘ 0.02089 ‘ 0.00902 ‘ 5.09818 ‘ 1.3 x 10713 ‘ LOC646730 ‘
4 | 21080985 — 21131665 751495517 — rs358574 | GTCGCACG | 0.05716 0.04649 7.36766 | 4.2 x 1071 | KCNIP4
GTTGCACG | 0.06033 0.04669 7.74264 | 7.1 x 10714
‘ 4 ‘ 23359572 — 23389742 ‘ 510008808 — 751976201 ‘ AGTTCTTA ‘ 0.03874 ‘ 0.01347 ‘ 3.68417 ‘ 1.5 x 10720 ‘ PPARGC1A ‘
‘ 5 ‘ 10695437 — 10746687 ‘ 752062200 — 756891527 ‘ GTCACACG ‘ 0.16002 ‘ 0.14866 ‘ 6.18799 ‘zsx 1072 ‘ LOC651746 ‘
‘ 5 ‘ 32084851 — 32103155 ‘ 5438834 — 1510065850 ‘ TGCTCCCA ‘ 0.02254 ‘ 0.01065 ‘ 14.40157 ‘ 1.6 x 10~ ‘ PDZD2 ‘
6 | 139560239 — 139612833 | rs7765885 — rs9495394 | GOGCAACG | 0.0487 0.01774 4.54602 | 2.2 x 107 HECA
ACGAAATG | 0.01641 0.00709 3.82046 | 6.4 x 10712
GTACAATA | 0.14141 0.13391 1.75292 | 4.9 x 10716
6 | 139693238 — 139758634 | rs11155050 — rs9373237 | TTGCGGCT | 0.01924 0.00686 5.16669 | 1.1 x 107 | TXLNB
CTAAGATT | 0.25795 0.24508 1.9524 | 6.6 x 10711
7 | 48232027 — 48237897 | rs17729647 — rs2362301 | AGACTGGT | 0.07901 0.07156 3.41729 | 47x 107 | ABCAIL3
AGATTGAC | 0.03345 0.02897 3.57621 | 3.7 x 10712
AGATTGGC | 0.35755 0.38319 2.88725 | 3.0 x 10714
7 | 77695246 — TTT17237 | rs2215379 — rs4515471 | CTTAAAAA | 0.03102 0.01998 4.32524 | 2.1 x 1072 MAGI2
TCTAAAAA | 0.02943 0.01786 4.58962 | 5.0 x 1022
CTTGGAAA | 0.02094 0.01061 5.49009 | 8.4 x 10721
CCTAGAAA | 0.05541 0.05534 2.79199 | 2.4 x 10716
CCGAAAAA | 0.13203 0.13667 2.6926 | 4.0 x 1072
‘ 9 ‘ 77269212 — 77301387 ‘ rs17063627 — rs7032444 ‘GCGGACAG‘ 0.03393 ‘ 0.01858 ‘ 3.58867 ‘LBXIO’IZ‘ GNA14 ‘
‘ 10 ‘ 119535731 — 119568729 | 754752106 — rs10787797 ‘ TATTCACA ‘ 0.09968 ‘ 0.06304 ‘ 2.91842 ‘ 4.8 x 10719 | RAB11FIP2 ‘
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Table 4: The continuation of Table 3.

‘ Chr Region ‘ SNP range ‘ Haplotype ‘ P(H|case) ‘ P(H;|control) ‘ OR ‘ P-Value ‘ Gene ‘
‘ 11 ‘ 125683058 — 125763272 ‘ 752096915 — 757118117 ‘ CACACGAG ‘ 0.07736 ‘ 0.04727 ‘ 2.42988 ‘ 4.9 x 10712 ‘ ST3GAL4 ‘
‘ 12 ‘ 27155055 — 27179334 ‘ 15841636 — rs841613 ‘ TAAAGGGT ‘ 0.05414 ‘ 0.04075 ‘ 2.81343 ‘ 7.5 x 1071% | LOCT29222 ‘
‘ 12 ‘ 112703139 — 112738033 ‘ rs11066758 — rs7137339 ‘ GGGGTCCC | 0.06128 ‘ 0.04048 ‘ 2.52574 ‘ 2.3 x 10718 ‘ RBM19 ‘
12 | 114038450 — 114074493 |  rs1828384 — 535346 | TGTACCTG | 0.09952 0.10526 3.07564 | 1.5 x 10711 TBX3
TCCAATTG | 0.04718 0.03821 4.01761 | 2.2 x 10713
13 | 23708179 — 23726596 75881428 — 152760374 | AGAAGTTT | 0.12142 0.07922 1.89748 | 5.7 x 10719 | SPATA13
GAAAGCTT 0.2454 0.19993 1.51979 | 6.8 x 1071°
13 | 70170848 — 70209722 | rs17087430 — 512876111 | CGGGTTAT | 0.13996 0.13226 3.39099 | 3.0 x 10714 | ATXNSOS
CGGGTCCT | 0.02217 0.01356 5.23473 | 1.9 x 1071
CGGGTCAT | 0.13141 0.13526 3.11367 | 2.3 x 10712
CGGACTCT | 0.04728 0.0398 3.8075 | 1.9x 10713
‘ 14 ‘ 21674996 — 21704333 ‘ 7512050442 — 751894369 ‘ GGGGTTAC ‘ 0.03075 ‘ 0.00968 ‘ 6.13598 ‘ 8.7x 1071 ‘ TRAGQ ‘
14 | 36411583 — 36421982 | rs10872897 — 152564848 | ATCCACTT | 0.02299 0.00637 4.45891 | 8.9 x 10716 | SLC25A21
TACCTCCC | 0.02712 0.01101 3.05584 | 1.8 x 10712
‘ 16 ‘ 4881048 — 4960784 ‘ 75760117 — 159937749 ‘ CTTCCCCA ‘ 0.0847 ‘ 0.08126 ‘ 4.18237 ‘ 1.8 x 10712 ‘ SEC14L5 ‘
‘ 16 ‘ 17231173 — 17272606 ‘ rs754067 — 1517277691 ‘ CGGACCCT ‘ 0.02658 ‘ 0.02179 ‘ 3.37015 ‘ 1.1x 1071 ‘ XYLT1 ‘
‘ 17 ‘ 69565860 — 69595387 ‘ rs7406930 — rs8080915 ‘ CTGTACGC ‘ 0.0413 ‘ 0.02484 ‘ 2.54279 ‘ 8.3 x 1071 ‘ RPL38 ‘
‘ 19 ‘ 3315188 — 3432578 ‘ 75758257 — 151860192 ‘ GTTTGATT ‘ 0.27769 ‘ 0.23516 ‘ 1.99935 ‘ 3.4 %1078 ‘ NFIC ‘
‘ 19 ‘ 8475735 — 8540766 ‘ 752967603 — 7511259990 ‘ CCGCTCTT ‘ 0.06824 ‘ 0.04351 ‘ 3.23984 ‘ 2.1 x 10717 ‘ ZNF414 ‘
19 | 17595848 — 17649789 | rs10419511 — 57252308 | TTGGTGTG | 0.07791 0.05267 2.40001 | 1.9 x 10723 | UNC13A
TTGGTATG | 0.04536 0.01971 3.72872 | 2.3 x 10728
‘ 19 ‘ 38822176 — 38857206 ‘ 752059876 — 7516968366 ‘ CAAATGCG ‘ 0.06455 ‘ 0.05252 ‘ 2.83486 ‘ 6.2 x 10720 ‘ CHSTS ‘
20 | 10019135 — 10038764 75552048 — 15670562 | TATGAGGG | 0.04043 0.02307 7.32891 | 4.5 x 1072 | ANKRD5
TATAAGAA | 0.03726 0.03549 4.39728 | 2.7 x 10712
TGTGAGGG | 0.27299 0.294 3.88507 | 1.0 x 10713
TGTATGGG | 0.19239 0.1808 4.4523 | 3.1 x 10716
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