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Abstract

Chaput, Manivel and Perrin proved in [3] a formula describing the quantum product by
Schubert classes associated to cominuscule weights in a rational projective homogeneous space
X. In the case where X has Picard rank one, we relate this formula to the stratification of
X by P -orbits, where P is the parabolic subgroup associated to the cominuscule weight. We
deduce a decomposition of the Hasse diagram of X, i.e the diagram describing the cup-product
with the hyperplane class. For all classical Grassmannians, we give a complete description of
parabolic orbits associated to cominuscule weights and we make the decomposition of the
Hasse diagram explicit.
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1 Introduction

Let G be a semisimple algebraic group over C, B be a Borel subgroup and T ⊂ B be a maximal
torus. We denote by Φ the set of roots of G with respect to T , Φ+ the subset of positive roots
with respect to B, ∆ = {α1, . . . , αn} the subset of simple roots and W the Weyl group of G. A
fundamental weight ω is said to be minuscule if |〈α∨, ω〉| ≤ 1 for all α ∈ Φ, where α∨ is the coroot
of α. It is said to be cominuscule if it is minuscule for the dual root system. Fundamental weights
will be denoted ω1, . . . , ωn, in the same order as in [1].

Let Q ⊃ B be a parabolic subgroup of G and denote by X the homogeneous space G/Q. In
[3], Chaput, Manivel and Perrin proved a formula describing the quantum product in X by special
Schubert classes associated to cominuscule weights. These classes correspond to the elements
of the image of Seidel’s representation π1(Gad) → QH∗(G/Q)×loc [11], where Gad = G/Z(G) and
QH∗(G/Q)×loc is the group of invertible elements in the small quantum cohomology ring QH∗(G/Q)
localized in the quantum parameters. Before stating this formula, we introduce some notation for
the quantum cohomology of X.

The (small) quantum cohomology ring QH∗(X) of a homogeneous variety X = G/Q is a defor-
mation of its cohomology ring. Consider the parameter ring

Λ =

∑
β

aβq
β

∣∣∣∣∣∣ β ∈ H+
2 (X,Z), aβ ∈ Z

 ,

where the sums are finite, H+
2 (X,Z) denotes the set of effective cycles in H2(X,Z) and the qβ are

formal parameters such that qβqβ
′

= qβ+β′ . As a Z-module, the quantum cohomology ring QH∗(X)
is isomorphic to H∗(X,Z)⊗ZΛ. Moreover, it admits a ring structure defined by the quantum product
?, which is a deformation of the cup-product. A precise definition for the quantum product can be
found in [5]. The group H2(X,Z) contains Φ∨/Φ∨Q, where Φ∨ denotes the coroot lattice of G and

Φ∨Q the coroot lattice of Q, hence positive coroots can be seen as effective classes β ∈ H+
2 (X,Z).

Now let I be the set of vertices of the Dynkin diagram of G corresponding to cominuscule
weights. If i ∈ I, let vi be the shortest element of the Weyl group W such that viω

∨
i = w0ω

∨
i ,

where ω∨i is the fundamental coweight associated to i and w0 is the longest element of W . Then
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the quantum product in X by the Schubert class σvi Poincaré dual to the Schubert cycle [Xviw0 ]
is given by the following formula :

Theorem 1 ([3, Thm.1]). For all w ∈W and for all i ∈ I, we have :

σvi ? σw = qηQ(ω∨i −w
−1(ω∨i ))σviw,

where ηQ : Φ∨ → Φ∨/Φ∨Q is the natural surjection.

The aim of this paper is to relate the above theorem to a stratification of X = G/Q by Pi-orbits
when Q is a maximal parabolic and Pi is the maximal parabolic associated to the weight ωi. In
Section 2, we recall some well-known facts about parabolic orbits and we describe the parabolic
orbits associated to cominuscule weights in the classical Grassmannians. Then in Section 3, we
explain the link between Thm. 1 and the stratification by parabolic orbits in X. We deduce in
Section 4 a decomposition of the Hasse diagram of the classical Grassmannians.

2 Parabolic orbits

In 2.1 we recall some classical facts about parabolic orbits in (generalized) flag varieties, and in
2.2, we give a more explicit description of parabolic orbits associated to cominuscule weights in the
classical Grassmannians.

2.1 Parabolic orbits in generalized flag varieties

A generalized flag variety is a variety of the form X = G/Q, where G is a semisimple algebraic
group, B a Borel subgroup and Q ⊃ B a parabolic subgroup. Now consider a second parabolic
subgroup P ⊃ B. We call P -orbits or parabolic orbits the orbits of X under the action of P by
left multiplication. Here are some elementary properties of parabolic orbits, which can be found
in [10, Sec. 2.1] :

Proposition 2. 1. Every P -orbit can be written as PwQ/Q with w ∈W .

2. The P -orbits are smooth and locally closed, indexed by double cosets WP \W/WQ, where WP

and WQ denote the Weyl groups associated to P and Q. Moreover, they define a stratification
of X :

X =
⊔

WPwWQ∈WP \W/WQ

PwQ/Q.

3. The P -orbits are B-stable, hence they are a union of Schubert cells :

PwQ/Q =
⋃

(wP ,wQ)∈WP×WQ

BwPwwQQ/Q.

We denote by WQ the set of minimal length representatives of cosets in W/WQ, which inherits
the Bruhat order of W . Let us describe the double cosets indexing parabolic orbits :

Proposition 3. Let E = WPwWQ be a double coset in WP \W/WQ. Then E∩WQ contains unique
minimal and maximal elements wmin and wmax. Moreover, it is equal to the interval [wmin, wmax]
for the Bruhat order in WQ.

This statement in proved in [7]. In particular, we see that parabolic orbits correspond to some
sub-intervals of WQ. The next result describes them as the total space of a vector bundle over
another generalized flag variety.

First of all, consider the Levi decomposition P = Ln U , where L is a Levi subgroup and U is
the unipotent radical of P . If O is a P -orbit associated to a double coset WPwminWQ, then we
define the following subset of the set ∆ of simple roots of G :

Kwmin =
{
s ∈ ∆(P ) | w−1

minswmin ∈ ∆(Q)
}
,

where for any parabolic subgroup R ⊂ G, ∆(R) ⊂ ∆ is such that the associated reflections, together
with B, generate R. Denote by Rwmin

the parabolic subgroup of L generated by Kwmin
and B∩L.

We have the following geometric description of parabolic orbits :
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Theorem 4 ([9], Thm. 1.1). Consider the P -orbit O associated to a double coset WPwminWQ,
where P is a parabolic subgroup associated to a cominuscule weight. Then there exists a represen-
tation Vwmin

of Rwmin
such that O ∼= L ×Rwmin

Vwmin
and the map O → L/Rwmin

is a vector
bundle.

Remark 5. • An analogous result is proved in [10, Prop. 5].

• Note that if P is not associated to a cominuscule weight, we still have a locally trivial map
with affine fibers, but it is no longer a vector bundle.

A consequence of Thm. 4 is that the cohomology ring of the parabolic orbit O and of the
generalized flag variety L/Rwmin

are isomorphic (see [4, Chap. 3]), which will help us to find
decompositions of the Hasse diagrams in Section 4.

2.2 Parabolic orbits associated to cominuscule weights in the classical
Grassmannians

For us, a classical Grassmannian will be a homogeneous space X = G/Q, where G is of type An,
Bn, Cn or Dn and Q is a maximal parabolic subgroup of G. In type An, it corresponds to the usual
Grassmannians G(m,n+1) for 1 ≤ m ≤ n, while in type Cn, we get the symplectic Grassmannians
IG(m, 2n) with 1 ≤ m ≤ n. Finally, in type Bn (resp. in type Dn), we obtain the odd orthogonal
(resp. even orthogonal) Grassmannians OG(m, 2n + 1) (resp. OG(m, 2n)), where 1 ≤ m ≤ n. In
type Dn, we furthermore exclude the case where m = n− 1, since it corresponds to a variety with
Picard number two.

We start by giving the list of cominuscule weights, including the exceptional cases :

Table 1: Cominuscule weights

Type Classical Grassmannians Cominuscule weights

An G(m,n+ 1) 1 ≤ m ≤ n ωi (1 ≤ i ≤ n)
Bn OG(m, 2n+ 1) 1 ≤ m ≤ n ω1

Cn IG(m, 2n) 1 ≤ m ≤ n ωn
Dn OG(m, 2n) 1 ≤ m ≤ n, m 6= n− 1 ω1, ωn−1, ωn
E6 E6/Pj 1 ≤ j ≤ 6 ω1, ω6

E7 E7/Pj 1 ≤ j ≤ 7 ω7

In the following sections, following Thm. 4, we describe the parabolic orbits associated to the
above cominuscule weights for classical Grassmannians. We will not treat the exceptional cases in
general since in these examples, flags and Schubert varieties are not so easily described. We will
only mention the case of the Cayley plane E6/P1 in Section 4. However, it would probably be
possible to get similar results for all exceptional cases, using the description of flags introduced by
Iliev and Manivel in [8] for type E6 and by Garibaldi in [6] for type E7.

We will denote by Pωi
the maximal parabolic subgroup containing the Borel subgroup B and

associated to the cominuscule fundamental weight ωi. In 2.2.1, we give a geometric description of
the Pωi-orbits, whereas in 2.2.2, we give a combinatorial description of the double cosets indexing
them.

2.2.1 Geometric description of parabolic orbits

First we need to recall the characterization of the flag stabilized by the Borel subgroup B in each
of the classical types :

Type An : B is the stabilizer of a (uniquely defined) complete flag

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ En+1 = Cn+1,

the element Ei being an i-dimensional subspace of Cn+1.
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Type Bn : B is the stabilizer of a type Bn complete isotropic flag

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ En+1 ⊂ · · · ⊂ E2n ⊂ E2n+1 = C2n+1,

where the vector spaces E1, . . . , En are isotropic and for each 1 ≤ i ≤ n, we have
En+i = E⊥n+1−i.

Type Cn : B is the stabilizer of a type Cn complete isotropic flag

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ En+1 ⊂ · · · ⊂ E2n = C2n,

where the Ei are isotropic and for each 0 ≤ i ≤ n, we have En+i = E⊥n−i.

Type Dn : B is the stabilizer of a type Dn complete isotropic flag

0 = E0 ⊂ . . . ⊂En−2
⊂
⊂

En

E′n

6=
⊂

⊂
En+1⊂ . . . ⊂ E2n = C2n

where the vector spaces E1, . . . , En−2 are isotropic, En is a type 1 maximal isotropic
subspace, E′n a type 2 isotropic subspace, En+1 = (En∩E′n)⊥ and for each 1 ≤ i ≤ n−1,
En+1+i = E⊥n−1−i.

Now we prove that P -orbits associated to cominuscule weights in the classical Grassmannians
can be described by the relative position of their elements with respect to a certain partial flag
associated to the cominuscule weight defining P . In the following proposition, the unique complete
flag stabilized by the Borel subgroup will be denoted as above .

Proposition 6. 1. If X = G(m,n+ 1) and P = Pωi
for 1 ≤ i ≤ n, then the P -orbits are the

Od := {Σ ∈ X | dim(Σ ∩ Ei) = d} ,

for max(0, i+m− n− 1) ≤ d ≤ min(m, i).

2. a) If X = OG(m, 2n+ 1) with m < n and P = Pω1
, then the P -orbits are

O0 :=
{

Σ ∈ X | Σ 6⊂ E⊥1
}
,

O1 :=
{

Σ ∈ X | Σ ⊂ E⊥1 and Σ 6⊃ E1

}
,

O2 := {Σ ∈ X | Σ ⊃ E1} .

b) If X = OG(n, 2n+ 1) and P = Pω1
, then the P -orbits are

O0 := {Σ ∈ X | Σ 6⊃ E1} ,
O1 := {Σ ∈ X | Σ ⊃ E1} .

3. If X = IG(m, 2n) and P = Pωn
, then the P -orbits are the

Od := {Σ ∈ X | dim(Σ ∩ En) = d}

for 0 ≤ d ≤ m.

4. a) If X = OG(m, 2n) with m < n− 1 and P = Pω1
, then the P -orbits are defined as in case

2a.

b) If X = OG(m, 2n) with m < n− 1 and P = Pωn−1
, then the P -orbits are the

Od := {Σ ∈ X | dim(Σ ∩ E′n) = d}

for 0 ≤ d ≤ m.
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c) If X = OG(m, 2n) with m < n− 1 and P = Pωn , then the P -orbits are defined as in case
4b, with E′n replaced by En.

d) If X = OG(n, 2n) ∼= OG(n− 1, 2n− 1) and P = Pω1
, then the P -orbits are defined as in

case 2b.

e) If X = OG(n, 2n) and P = Pωn−1
, then the P -orbits are the

Od := {Σ ∈ X | dim(Σ ∩ E′n) = 2d+ ε′}

for 0 ≤ d ≤ bn−1
2 c, where ε′ = 0 if n is odd and 1 if n is even.

f) If X = OG(n, 2n) and P = Pωn , then the P -orbits are defined as in case 4e, with E′n
replaced by En and ε′ replaced by ε := 1− ε′.

Proof. The parabolic subgroup P is the stabilizer of the following partial flags :

• Ei in case 1 ;

• E1 ⊂ E⊥1 in cases 2, 4a and 4d ;

• En = E⊥n in cases 3, 4c and 4f ;

• E′n = E′n
⊥

in cases 4b and 4e.

Hence the dimensions of the intersections with each element of these partial flags are constant
on the P -orbits, and conversely, the sets where these dimensions are constant are exactly the
P -orbits.

We conclude the section by giving in each classical type an explicit description of the fibration
introduced in Thm. 4. In the following result, the orbits Od are the ones defined in Prop. 6.

Proposition 7. 1. If X = G(m,n+ 1) and P = Pωi
for 1 ≤ i ≤ n, then the fibrations are the

Od → G(d,Ei)×G(m− d,Cn+1/Ei)
Σ 7→ (Σ ∩ Ei,Σ/(Σ ∩ Ei))

2. a) If X = OG(m, 2n+ 1) with m < n and P = Pω1 , then the fibrations are the

Od → OG(m− ε, E⊥1 /E1)
Σ 7→

[
Σ ∩ E⊥1

]
where ε = 1 if d = 0, 2 and ε = 0 if d = 1.

b) If X = OG(n, 2n+ 1) and P = Pω1
, then the fibrations are the

Od → OG(n− 1, E⊥1 /E1)
Σ 7→

[
Σ ∩ E⊥1

]
3. If X = IG(m, 2n) and P = Pωn

, then the fibrations are the

Od → F(d, n−m+ d;En)
Σ 7→

(
(Σ ∩ En) ⊂ (Σ⊥ ∩ En)

)
4. a) If X = OG(m, 2n) with m < n− 1 and P = Pω1 , then the fibrations are defined as in case

2a.

b) If X = OG(m, 2n) with m < n− 1 and P = Pωn−1
, then the fibrations are

Od → F(d, n−m+ d;E′n)
Σ 7→

(
(Σ ∩ E′n) ⊂ (Σ⊥ ∩ E′n)

)
c) If X = OG(m, 2n) with m < n−1 and P = Pωn

, then the fibrations are defined as in case
3.
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d) If X = OG(n, 2n) ∼= OG(n− 1, 2n− 1) and P = Pω1 , then the fibrations are defined as in
case 2b.

e) If X = OG(n, 2n) and P = Pωn−1
, then the fibrations are

Od → G(2d+ ε′, E′n)
Σ 7→ Σ ∩ E′n

where ε′ = 0 if n is odd and 1 if n is even.

f) If X = OG(n, 2n) and P = Pωn
, then the fibrations are defined as in case 4e, with E′n

replaced by En and ε′ replaced by ε := 1− ε′.

Proof. We only describe Cases 1, 2a, 3 and 4f with n even. The other cases are very similar.
1. Since Od = {Σ ∈ X | dim(Σ ∩ Ei) = d}, the map is well defined. Moreover, the fiber at a

pair (Σ1,Σ2) ∈ G(d,Ei)×G(m− d,Cn+1/Ei) is

{Σ1 ⊕ Σ′ | dim Σ′ = m− d,Σ′ = Σ2 mod Ei} ∼= Cdim Σ2×dimEi = C(m−d)i.

2a) For d = 0, the fiber over Σ1 ∈ OG(m− 1, E⊥1 /E1) is{
Σ′ ⊕ L | Σ′ = Σ1 mod E1, L ⊂ Σ⊥1 \ E⊥1 , L isotropic

}
∼=Cdim Σ1×dimE1 × Cdim Σ⊥1 −dim Σ1−dimL−1 = C2n−m.

For d = 1, the fiber over Σ1 ∈ OG(m,E⊥1 /E1) is

{Σ′ | Σ′ = Σ1 mod E1} ∼= CdimE1 dim Σ1 = Cm.

Finally, for d = 2, the map is an isomorphism.
3. The fiber over (Σ1 ⊂ Σ2) ∈ F(d, n−m+ d;En) is{

Σ1 ⊕ Σ′ | dim Σ′ = m− d,Σ′ = Σ⊥2 mod En,Σ
′ ⊂ Σ⊥1 isotropic

}
∼=Cdim Σ′(dimEn−dim Σ1)− dim Σ′(dim Σ′−1)

2 = C(m−d)(n−d)− (m−d)(m−d−1)
2 .

4f) We assume n is even. The fiber over Σ1 ∈ G(2d,En) is{
Σ1 ⊕ Σ′ | dim Σ′ = m− 2d,Σ′ = Σ⊥1 mod EnΣ′ ⊂ Σ⊥1 ,Σ

′ isotropic
}

∼=Cdim Σ′2− dim Σ′(dim Σ′−1)
2 = C(n−2d)2− (n−2d)(n−2d−1)

2 .

Remark 8. In Thm. 4, the fibrations for parabolic orbits are described combinatorially. Tedious
but straightforward calculations show that these fibrations are indeed the same as those described
in the above proposition.

2.2.2 Combinatorial description of parabolic orbits

We begin by recalling the description of the elements of the Weyl group in type An (respectively
in types Bn, Cn and Dn) as permutations (resp. signed permutations) of {1, . . . , n}. We do not
have such a description in the exceptional cases.

In type A, the Weyl group is W = Sn, and we denote w ∈ W as w = (a1, . . . , an) where
{1, . . . , n} = {a1, . . . , an}, which means that w(i) = ai.

In types Bn and Cn, the Weyl group is W = SnnZn2 , and we denote w ∈W as w = (b1, . . . , bn),
where bi = ai or −ai and {1, . . . , n} = {a1, . . . , an}, which means that w(i) = ai if bi = ai and
w(i) = ai if bi = −ai.

Finally, in type Dn, the Weyl group is W = Sn n Zn−1
2 , and we denote elements of W as in

the previous case, with the additional condition that the number of negative parts −ai should be
even.

We can now state a proposition describing, for all the classical types, the double coset Ed ∈
WP \W/WQ indexing the P -orbit Od defined in Prop. 6 :
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Proposition 9. 1. If X = G(m,n+ 1) and P = Pωi for 1 ≤ i ≤ n, then

Ed = {w ∈W | # {1 ≤ j ≤ m | w(j) ≤ i} = d} .

2. a) If X = OG(m, 2n+ 1) with m < n and P = Pω1 , then

E0 = {w ∈W | ∃1 ≤ j ≤ m,w(j) = −1}
E1 = {w ∈W | @1 ≤ j ≤ m,w(j) ∈ {1,−1}}
E2 = {w ∈W | ∃1 ≤ j ≤ m,w(j) = 1} .

b) If X = OG(n, 2n+ 1) and P = Pω1 , then

E0 = {w ∈W | ∃1 ≤ j ≤ n,w(j) = −1}
E1 = {w ∈W | ∃1 ≤ j ≤ n,w(j) = 1} .

3. If X = IG(m, 2n) and P = Pωn , then

Ed = {w ∈W | # {1 ≤ j ≤ m | w(j) > 0} = d} .

4. a) If X = OG(m, 2n) with m < n− 1 and P = Pω1 , then Ed is defined as in case 2a.

b) If X = OG(m, 2n) with m < n− 1 and P = Pωn−1 , then

Ed = {w ∈W | # {j ≤ m | w(j) > 0} = d,w(j) 6= n,−n ∀j ≤ m}
∪ {w | # {j ≤ m | w(j) > 0} = d− 1,∃j ≤ m,w(j) = −n}
∪ {w | # {j ≤ m | w(j) > 0} = d+ 1,∃j ≤ m,w(j) = n} .

c) If X = OG(m, 2n) with m < n− 1 and P = Pωn
, then Ed is defined as in case 3.

d) If X = OG(n, 2n) ∼= OG(n− 1, 2n− 1) and P = Pω1
, then Ed is defined as in case 2b.

e) If X = OG(n, 2n) and P = Pωn−1
, then

Ed = {w ∈W | # {j | w(j) > 0} = 2d+ ε′ − 1 and ∃j, w(j) = −n}
∪ {w ∈W | # {w(j) > 0} = 2d+ ε′ + 1 and ∃j, w(j) = n} ,

where ε′ = 0 if n is odd and 1 if n is even.

f) If X = OG(n, 2n) and P = Pωn
, then

Ed = {w ∈W | # {j | w(j) > 0} = 2d+ ε} ,

where ε = 1− ε′.

Proof. The arguments for each case being similar, we only prove the proposition in Case 4b, which
is a little more complicated than the others.

Here the Weyl groups are W = SnnZn−1
2 , WP = Sn and WQ = Sm×(Sn−mnZn−m−1

2 ). As in
the beginning of the section, we will denote elements of W as signed permutations w = (b1, . . . , bn).

The action of WQ on the right permutes the m first entries b1, . . . , bm of w on one hand, and
the n −m last entries bm+1, . . . , bn on the other hand, and changes the sign of these last entries
while keeping the total number of minus signs even. Hence the minimal length representatives of
classes in W/WQ are of the form :

w =
(
u1 < · · · < ul,−zm−l < · · · < −z1, v1 < · · · < vn−m−1, (−1)m−lvn−m

)
,

where 0 ≤ l ≤ m, {ui} ∪ {zr} ∪ {vj} = {1, . . . , n} and vn−m−1 < vn−m.
Moreover, the action of WP on the right permutes the n− 1 values 1, . . . , n− 1 and exchanges

n− 1 and n while changing their signs. Hence the minimal length representatives of double cosets
in WP \W/WQ are of the form :

w0 = id or wd = (1 < · · · < d− 1 < n,−n+ 1 < · · · < −n+m− d, v) ,
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where 1 ≤ d ≤ m and

v =
(
d < · · · < n−m+ d− 2, (−1)m−d(n−m+ d− 1)

)
.

Now it is enough to prove that all elements of the set Ed defined in the statement of the proposition
are in the same double coset as wd.

First suppose w ∈ W is such that # {j ≤ m | w(j) < 0} = d and w(j) 6= n,−n for all j ≤ m.
Using the action of WQ on the right, we see that w is in the same double coset as

w1 =
(
a1 < · · · < ad,−bm−d < · · · < −b1, c1 < · · · < cn−m−1, (−1)m−dn

)
.

Using (several times) the action of the simple reflections s1, . . . , sn−1 of WP on the left (which
together permute the values from 1 to n− 1), we deduce that w1 is in the same double coset as

w2 = (1 < · · · < d,−n+ 1 < · · · < −n+m− d, v) ,

where v =
(
d+ 1 < · · · < n−m+ d− 1, (−1)m−dn

)
. Then applying the simple reflection sn ∈WP

on the left, we get

w3 = (1 < · · · < d < n,−n+ 2 < · · · < −n+m− d, v) ,

where v =
(
d+ 1 < · · · < n−m+ d− 1, (−1)m−d+1(n− 1)

)
.

Finally, using the action of the simple reflections s1, . . . , sn−1 of WP on the left, we obtain the
element w4 = wd, which proves that w is in the same double coset as wd.

The reasoning in the two other situations (# {j ≤ m | w(j) > 0} = d−1 and ∃j ≤ m,w(j) = −n
on one hand, # {j ≤ m | w(j) > 0} = d + 1 and ∃j ≤ m,w(j) = n on the other hand) being very
similar, this concludes the proof.

Notation 10. Let w ∈ W be an element of the Weyl group. Then w belongs to one of the double
cosets Ed defined in the statement of the proposition, and we define the integer d(w) := d.

3 Link between P -orbits and the quantum product

Here we describe the link between Thm. 1 and parabolic orbits for homogeneous spaces X = G/Q,
where Q is a maximal parabolic subgroup. Since Q is maximal, we have Φ∨/Φ∨Q

∼= Z. Hence for
each w ∈W , we may define an integer

δ(w) := ηQ(ω∨i − w−1(ω∨i )).

In the following sections, we will prove that the loci where δ(w) is constant correspond to the double
cosets E indexing P -orbits. For classical Grassmannians, this proves that for every w ∈WQ, δ(w)
equals the integer d(w) introduced in Notation 10.

3.1 The integer δ(w) is constant on parabolic orbits.

We start by proving that δ is constant on the double cosets E = WPwWQ. Consider w′ ∈ E . From
the definition of E , it follows that w′ can be written as wPwwQ for some wP ∈WP and wQ ∈WQ.
Denote by ωi the cominuscule weight defining P . Reflections associated to the simple roots will be
denoted by sl for 1 ≤ l ≤ n.

If l 6= i, we have
sl(ω

∨
i ) = ω∨i − (αl, ω

∨
i )α∨l = ω∨i ,

hence
w−1
P (ω∨i ) = ω∨i . (1)

Now consider e := ηQ(w−1(ω∨i )). Then by definition of ηQ,

w−1(ω∨i ) = eα∨m +
∑
p 6=m

cpα
∨
p ,
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where the cp are some coefficients. But if l 6= m, we have

sl(α
∨
m) = α∨j − (αl, α

∨
m)α∨l .

Similarly, for p 6= m and l 6= p,m :

sl(α
∨
p ) = α∨p − (αl, α

∨
p )α∨l ,

and if p 6= m and l = p :
sp(α

∨
p ) = −α∨p .

Hence if we apply the reflection sl for l 6= m, the coefficient of α∨m does not change. We conclude

that ηQ

(
w−1
Q w−1ω∨i

)
= ηQ

(
w−1ω∨i

)
. Using Equation (1), we obtain

ηQ(w−1
Q w−1w−1

P ω∨i ) = ηQ(w−1ω∨i ).

3.2 The integer δ(w) changes on different parabolic orbits.

It is enough to prove that if w′ ∈ E ′ ∩WQ is a successor of w ∈ E ∩WQ for the Bruhat order in
WQ, where E and E ′ are two different P -orbits, then δ(w′) > δ(w).

Since w and w and w′ do not belong to the same P -orbit, we know that w′ = sα0
w for some

positive root α0 ∈ Φ+ \
(

Φ+
P ∩ Φ+

Q

}
. Indeed, if α ∈ Φ+

P , then the reflection sα is in WP , hence

stabilizes E and if α ∈ Φ+
Q, then w′ = w in W/WQ. Moreover, we have lQ(w′) = lQ(w) + 1, where

lQ is the length function of WQ.

We set LQ(w) :=
{
α ∈ Φ+ \ Φ+

Q | w(α) ∈ Φ−
}

. There exists β0 ∈ Φ+ \ Φ+
Q such that w(β0) =

α0. Indeed, if it were not the case, then for all α ∈ LQ(w′), we would have sα0
w(α) ∈ Φ− and

w(α) 6= α0, hence w(α) ∈ Φ− and α ∈ LQ(w). This would mean that lQ(w′) ≤ lQ(w), which is
absurd.

Let us now compute δ(w′) :

δ(w′) = ηQ
(
ω∨i − w−1sα0(ω∨i )

)
= δ(w) + (α0, ω

∨
i )ηQ

(
w−1α∨0

)
.

Since α0 ∈ Φ+ \ Φ+
P , we have (α0, ω

∨
i ) > 0. Moreover, w(β0) = α0 implies that w−1(α∨0 ) = β∨0 ,

and ηQ(β0) > 0 since β0 ∈ Φ+ \ Φ+
Q. Finally δ(w′) > δ(w) as required.

We conclude that the loci {
w ∈WQ | δ(w) = d

}
coincide with the sets E ∩WQ.

4 Decomposition of the Hasse diagram

In [2], Chaput, Manivel and Perrin relate the quantum product by the point class in minuscule
varieties with a decomposition of their Hasse diagram. The Hasse diagram H of a homogeneous
space with Picard rank one is the diagram of the multiplication by the hyperplane class h. More
precisely, its vertices are the Schubert classes σw for w ∈ WQ and σv and σw are related by an
arrow of multiplicity r if and only if σw appears with multiplicity r in the cup-product σv ∪ h.

The results of previous sections enable us to find decompositions of the Hasse diagram in the
non-minuscule case, corresponding to the quantum product by the Schubert classes σvi associated
to cominuscule weights introduced in the statement of Thm. 1.

Let O be a P -orbit of X. It is the union of the Schubert cells Cw ⊂ X for all w in the
associated double coset E . The set E ∩ WQ being an interval (cf Prop. 3), we denote it as
E ∩WQ = [wmin, wmax]. From Thm. 1, we know that O is a vector bundle over the generalized
flag variety F := L/Rwmin .

Here we state a result relating the Hasse diagrams of the parabolic orbit O with a similar
diagram for the flag variety F :
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Theorem 11. Let ψ : O → F be the fibration, i : O ↪→ X the natural embedding and h the
hyperplane class of X. Then :

1. There exists a class h′ ∈ H2(F ) such that i∗h = ψ∗h′ ;

2. The Hasse diagram of O is isomorphic to the diagram of the multiplication by h′ in F .

Proof. 1. Since i∗h ∈ H2(O) ∼= H2(F ), there exists a (unique) h′ ∈ H2(F ) such that i∗h = ψ∗h′.

2. There exists an isomorphism WF ∼= E ∩WQ, where WF is the set of minimal length rep-
resentatives of WL/WRwmin

. Indeed, let CFu be a Schubert cell of F . Since ψ is a vector

bundle, its inverse image ψ−1(CFu ) is a Schubert cell of X, which we denote by CXφ(u), where

φ(u) ∈ WQ. Since CXφ(u) ⊂ O, we have φ(u) ∈ E ∩WQ, and φ is the desired isomorphism.
It yields a correspondence between the vertices of the Hasse diagram of O and those of the
diagram of the multiplication by the class h′ in F .

Now we study the correspondence between the edges of both diagrams. Assume that

[Yw] ∪ h′ =
∑
v

av[Yv],

where Yv denotes the Schubert variety of F associated to the element v. This means that a
generic hyperplane section of Yw is rationally equivalent to the union of the Yv with multi-
plicities av. Let Yu be a Schubert variety of F . Its inverse image ψ−1(Yu) is the closure in O
of the Schubert cell CXφ(u), hence it is the intersection of O with the Schubert variety Xφ(u).

Thus Xφ(w) ∩O is rationally equivalent to the union of the Xφ(v) ∩O with multiplicities av.
As a consequence, if H is a generic hyperplane, a section Xφ(w)∩O∩H is rationally equivalent

to the union of the Xφ(v) ∩O ∩H with multiplicities av. If we consider the closure in O, we
deduce that Xφ(w)∩H is rationally equivalent to the sum of the Xφ(v) with multiplicities av,

plus a class Z supported in the boundary O \ O. But such a class is rationally equivalent
to the union of some Schubert varieties Xu contained in O \ O, with some multiplicities bu.
This rational equivalence stays true in the whole of X = G/PJ . Taking cohomology classes,
it means that

σφ(w) ∪ h =
∑
v

avσφ(v) +
∑
u

buσu.

Since the Schubert varietiesXu are contained inO\O, the elements u ∈WQ are not contained
E ∩WQ. Hence they do not contribute to the arrows of the Hasse diagram of O. This proves
that the Hasse diagram of O has the same arrows as the diagram of the multiplication by
the class h′ in F .

We may now conclude by combining the previous results to describe the Hasse diagrams of the
classical Grassmannians :

Theorem 12. 1. In types An, Cn, Dn, and in type Bn for odd orthogonal Grassmannians
OG(m, 2n + 1) with m 6= n− 1, if O is a parabolic orbit associated to a cominuscule weight
ωi, the Hasse diagrams HO and HF of O and the corresponding flag variety F described in
Prop. 6 are isomorphic.

2. In type Bn for the odd orthogonal Grassmannian OG(n− 1, 2n+ 1), if we denote by O0, O1

and O2 the parabolic orbits associated to the weight ω1 and F0, F1 and F2 the corresponding
flag varieties, we have HO0

∼= HF0
and HO2

∼= HF2
, but HO1

corresponds to HF1
with the

multiplicities of the arrows doubled.

Proof. In both cases, we apply Thm. 11 to the map ψ : O → F from Prop. 7 and the natural
embedding i : O → X = G/Q, denoting by h the hyperplane class of X. It follows that there
exists a unique h′ ∈ H2(F ) such that i∗h = ψ∗(h′), and that the Hasse diagram of O is isomorphic
to the diagram of the multiplication by h′ in F . So to prove Thm. 12, we only need to prove that
h′ is equal to the hyperplane class of F in types An, Cn, Dn , and in type Bn for odd orthogonal
Grassmannians OG(m, 2n+1) with m 6= n−1, and that it is equal to twice the hyperplane class of
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F otherwise. In ‘hyperplane class of F ’, we refer of course to the minimal embedding of F inside
projective space.

In type An, denote by S the tautological bundle on X and S1,S2 the tautological bundles on
the product of Grassmannians F . By definition h = c1(detS). Moreover

0→ ψ∗S1 → i∗S → ψ∗S2 → 0,

hence ψ∗c1(detS1 ⊗ detS2) = i∗h. It follows that h′ = c1(detS1 ⊗ detS2), which is indeed the
hyperplane class of F .

In type Bn for X = OG(m, 2n + 1) with m < n, we will prove for each of the three P -orbits
Od for d = 0, 1, 2 that i∗(detS) = ψ∗(detS1), where S1 is the tautological bundle on F . Since
c1(detS) = h, it will follow that h′ = c1(detS1). For d = 0, we have the exact sequences

0→ Σ ∩ E⊥1 → Σ→ Σ/(Σ ∩ E⊥1 )→ 0

0→ Σ′ → E⊥1 /E1 → E⊥1 /(Σ ∩ E⊥1 ⊕ E1)→ 0

0→ Σ ∩ E⊥1 → Σ ∩ E⊥1 ⊕ E1 → (Σ ∩ E⊥1 ⊕ E1)/(Σ ∩ E⊥1 )→ 0,

which give the following equalities of determinant bundles

det(Σ) = det(Σ ∩ E⊥1 )⊗ det(Σ/(Σ ∩ E⊥1 ))

det(Σ′) = det(Σ ∩ E⊥1 ⊕ E1)

det(Σ ∩ E⊥1 ⊕ E1) = det(Σ ∩ E⊥1 )⊗ det((Σ ∩ E⊥1 ⊕ E1)/(Σ ∩ E⊥1 )).

We conclude by using the fact that the quadratic form induces a duality

Σ/(Σ ∩ E⊥1 )× (Σ ∩ E⊥1 ⊕ E1)/(Σ ∩ E⊥1 )→ C.

For d = 1, we use the same method, only replacing Σ∩E⊥1 with Σ, and for d = 2, the result follows
from the exact sequence

0→ E1 → Σ→ Σ/E1 → 0.

Now we have proved that h′ = c1(detS1), it remains to relate it to the hyperplane class H of F .
There are two cases :

c1(detS1) =

{
H if m < n− 1

2H if m = n− 1.

Indeed, OG(n− 1, 2n− 1) is projectively isomorphic to OG(n− 1, 2n− 2), which is embedded in
P(Vωn−1

), where Vωn−1
is the half-spin representation. Hence the hyperplane class H is equal to the

first Chern class of the line bundle associated to the weight ωn−1, while detS1 is the line bundle
associated to the weight 2ωn−1.

In type Bn for X = OG(n, 2n + 1), we prove as in the non-maximal case that h′ = c1(detS1)
is the hyperplane class of F .

In type Cn, denote by S the tautological bundle on X and S1,S2 the tautological bundles on
F . Since h = c1(detS) and

0→ Σ ∩ En → Σ→ Σ/(Σ ∩ En)→ 0

0→ Σ⊥ ∩ En → En → En/(Σ
⊥ ∩ En)→ 0,

we have h′ = c1(detS1 ⊗ detS2), which is indeed the hyperplane class of F .
In type Dn for X = OG(m, 2n) with m < n or for X = OG(n, 2n) with P = Pω1 , the

result is proven in an analogous way as in types Bn and Cn. This leaves us with the case where
X = OG(n, 2n) and P = Pωn

or Pωn−1
. Here we treat the case P = Pωn

, the other being very
similar. We use the two exact sequences

0→ Σ ∩ En → Σ→ Σ/(Σ ∩ En)→ 0

0→ Σ ∩ En → En → En/(Σ ∩ En)→ 0

and the duality Σ/(Σ ∩ En)× En/(Σ ∩ En)→ C to prove that h′ = c1(detS1).
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Figure 1: Pω4-orbits in IG(2, 8)

G(2, 4)

F(1, 3; 4)

G(2, 4)

Figure 2: Pω1
-orbits in OG(3, 9)

OG(2, 7)

OG(3, 7)

OG(2, 7)

Finally, we give some pictures illustrating Thm. 12. We start with a type Cn example : the
symplectic Grassmannian IG(2, 8) in Figure 1. There are three orbits, two being vector bundles
over the Grassmannian G(2, 4) and another over the two-step flag variety F(1, 3; 4).

Then we consider a type Bn example : the odd orthogonal Grassmannian OG(3, 9) in Figure 2.
There are again three orbits. The first and last are vector bundles over OG(2, 7). For the middle
orbit, which is a vector bundle over OG(3, 7), we see as expected that the multiplicity of all arrows
is multiplied by 2.

Finally, let us recall an exceptional example, computed in [2] : the Cayley plane X = E6/Pω1
=

OP2 (see Figure 3). There are three Pω1
orbits. Indeed, we know that a partial E6-flag associated

to Pω1 simply consists in a point p0 ∈ X. The Pω1 -orbits are

O0 = {p ∈ X | p 6∈ line through p0}
O1 = {p ∈ X | p ∈ line through p0, p 6= p0}
O2 = {p0} .

We can also describe these orbits as vector bundles over generalized flag varieties

O0 → Q8

O1 → S10

O2 → pt,

where Q8
∼= OP1 is the 8-dimensional quadric and S10

∼= OG(5, 10) is the 10-dimensional spinor
variety. Indeed, the last fibration is trivial and the second stems from the description ofO1 as a cone
over S10 (see [8, Lemma 4.1]). Finally, we know from [8] that the Cayley plane also parametrises the
family of Q8’s it contains, hence to p0 is associated an 8-dimensional quadric Q0. The same goes
for p, to which corresponds a quadric Q. These quadrics are isomorphic to projective octonionic
lines OP1, and two general such lines meet in one point in OP2, hence the first fibration.
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Figure 3: Pω6-orbits in E6/Pω1

Q8

OG(5, 10)

pt
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