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Abstract We consider series of the form

p

q
+

∞∑

j=2

1

x j
,

where x1 = q and the integer sequence (xn) satisfies a certain non-autonomous recur-
rence of second order, which entails that xn|xn+1 for n ≥ 1. It is shown that the terms
of the sequence, and multiples of the ratios of successive terms, appear interlaced in
the continued fraction expansion of the sum of the series, which is a transcendental
number.

Keywords Continued fraction · Non-autonomous recurrence · Transcendental
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1 Introduction

In recent work [5], we considered the integer sequence

1, 1, 2, 12, 936, 68408496, 342022190843338960032, . . . (1.1)
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(sequence A112373 in Sloane’s Online Encyclopedia of Integer Sequences), which is
generated from the initial values x0 = x1 = 1 by the nonlinear recurrence relation

xn+2 xn = x2n+1(xn+1 + 1), (1.2)

and proved some observations of Hanna, namely that the sum

∞∑

j=1

1

x j
(1.3)

has the continued fraction expansion

[x0; y0, x1, y1, x2, . . . , y j−1, x j , . . .], (1.4)

where y j = x j+1/x j ∈ N and we use the notation

[a0; a1, a2, a3, . . . , an, . . .] = a0 + 1

a1 + 1

a2 + 1

a3 + . . .
1

an + . . .

for continued fractions. Furthermore, we generalized this result by obtaining the
explicit continued fraction expansion for the sum of reciprocals (1.3) in the case of a
sequence (xn) generated by a nonlinear recurrence of the form

xn+1 xn−1 = x2n F(xn), (1.5)

with F(x) ∈ Z≥0[x] and F(0) = 1; so (1.2) corresponds to the particular case
F(x) = x + 1.

All of the recurrences (1.5) exhibit the Laurent phenomenon [4], and starting from
x0 = x1 = 1 they generate a sequence of positive integers satisfying xn|xn+1. The
latter fact means that the sum (1.3) is an Engel series (see Theorem 2.3 in Duverney’s
book [3], for instance).

The purpose of this note is to present a further generalization of the results in [5],
by considering a sum

S = p

q
+

∞∑

j=2

1

x j
, (1.6)

with the terms xn satisfying the recurrence

xn+1 xn−1 = x2n (znxn + 1), (1.7)

for n ≥ 2, where (zn) is a sequence of positive integers, x1 = q, and x2 is specified
suitably. Observe that, in contrast to (1.5), the recurrence (1.7) can be viewed as a
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non-autonomous dynamical system for xn , because the coefficient zn can vary inde-
pendently (unless it is taken to be G(xn), for some function G). The same argument
as used in [5], based on Roth’s theorem, shows the transcendence of any number S
defined by a sum of the form (1.6) with such a sequence (xn).

2 The main result

We start with a rational number written in lowest terms as p/q, and suppose that the
continued fraction of this number is given as

p

q
= [a0; a1, a2, a3, . . . , a2k] (2.1)

for some k ≥ 0. Note that, in accordance with a comment on p. 230 of [7], there is
no loss of generality in assuming that the index of the final coefficient is even. For the
convergents we denote numerators and denominators by pn and qn , respectively, and
use the correspondence between matrix products and continued fractions, which says
that

Mn :=
(
pn pn−1
qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an 1
1 0

)
, (2.2)

yielding the determinantal identity

detMn = pnqn−1 − pn−1qn = (−1)n+1. (2.3)

Now for a given sequence (zn) of positive integers, we define a new sequence (xn) by

x1 = q, xn+1 = xn yn−1(xnzn + 1) for n ≥ 1, (2.4)

where
y0 = q2k−1 + 1, yn = xn+1

xn
for n ≥ 1. (2.5)

It is clear from (2.4) and (2.5) that (xn) is an increasing sequence of positive integers
such that xn|xn+1 for all n ≥ 1; (yn) also consists of positive integers, and is an
increasing sequence as well. The recurrence (1.7) for n ≥ 2 follows immediately from
(2.4) and (2.5).

Theorem 2.1 The partial sums of (1.6) are given by

Sn := p

q
+

n∑

j=2

1

x j
= [a0; a1, . . . , a2(k+n−1)]

for all n ≥ 1, where the coefficients appearing after a2k are

a2k+2 j−1 = y j−1z j , a2k+2 j = x j f or j ≥ 1.

123



A. N. W. Hone

Proof For n = 1, S1 is just (2.1), and we note that q2k−1 = y0 − 1 and q2k = q = x1.
Proceeding by induction, we suppose that q2k+2n−3 = yn−1 − 1 and q2k+2n−2 = xn ,
and calculate the product

M2k+2n = M2k+2n−2

(
a2k+2n−1 1

1 0

) (
a2k+2n 1

1 0

)

= M2k+2n−2

(
yn−1zn 1

1 0

) (
xn 1
1 0

)

=
(
p2k+2n−2 p2k+2n−3
q2k+2n−2 q2k+2n−3

) (
xn yn−1zn yn−1zn

xn 1

)
.

By making use of (2.4) and (2.5), this gives p2k+2n = (xn yn−1zn + 1)p2k+2n−2 +
xn p2k+2n−3,

q2k+2n−1 = yn−1zn q2k+2n−2 + q2k+2n−3 = xn yn−1zn + yn−1 − 1

= xn+1

xn
− 1 = yn − 1,

and

q2k+2n = (xn yn−1zn + 1)q2k+2n−2 + xnq2k+2n−3

= (xn yn−1zn + 1)xn + xn(yn−1 − 1) = xn+1,

which are the required denominators for the (2k + 2n − 1)th and (2k + 2n)th conver-
gents. Thus we have

Sn+1 = Sn + 1

xn+1
= p2k+2n−2

q2k+2n−2
+ 1

q2k+2n
= 1

q2k+2n

(
xn+1

xn
p2k+2n−2 + 1

)
.

From (2.3) and (2.4), the bracketed expression above can be rewritten as

(
yn−1(xnzn + 1) − q2n+2k−3

)
p2k+2n−2 + q2n+2k−2 p2k+2n−3

=
(
yn−1(xnzn + 1) − yn−1 + 1

)
p2k+2n−2 + xn p2k+2n−3,

giving

Sn+1 = 1

q2k+2n

(
(xn yn−1zn + 1)p2k+2n−2 + xn p2k+2n−3

)
= p2k+2n

q2k+2n
,

which is the required result. ��
Upon taking the limit n → ∞ we obtain the infinite continued fraction expansion

for the sum S, which is clearly irrational. To show that S is transcendental, we need
the following growth estimate for xn :
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Lemma 2.2 The terms of a sequence defined by (2.4) satisfy

xn+1 > x5/2n

for all n ≥ 3.

Proof Since (xn) is an increasing sequence, the recurrence relation (1.7) gives

xn+1 >
x3n
xn−1

> x2n

for n ≥ 2. Hence xn−1 < x1/2n for n ≥ 3, and putting this back into the first inequality
above yields xn+1 > x3n/x

1/2
n = x5/2n , as required. ��

The preceding growth estimate for xn means that S can be well approximated by
rational numbers.

Theorem 2.3 The sum

S = p

q
+

∞∑

j=2

1

x j
= [a0; a1, . . . , a2k, y0z1, x1, y1z2, . . . , y j−1z j , x j , . . .]

is a transcendental number.

Proof This is the same as the proof of Theorem 4 in [5], which we briefly outline
here. Let Pn = p2k+2n−2 and Qn = q2k+2n−2. Approximating the irrational number
S by the partial sum Sn = Pn/Qn , then using Lemma 2.2 and a comparison with a
geometric sum, gives the upper bound

∣∣∣∣S − Pn
Qn

∣∣∣∣ =
∞∑

j=n+1

1

x j
<

1

x5/2−ε
n

= 1

Q5/2−ε
n

for any ε > 0, whenever n is sufficiently large. Roth’s theorem [6] (see also chapter
VI in [1]) says that, for an arbitrary fixed κ > 2, an irrational algebraic number α has

only finitely many rational approximations P/Q for which
∣∣∣α − P

Q

∣∣∣ < 1
Qκ ; so S is

transcendental. ��
For other examples of transcendental numbers whose continued fraction expansion

is explicitly known, see [2] and references therein.

3 Examples

The autonomous recurrences (1.5) considered in [5], where the polynomial F has
positive integer coefficients and F(0) = 1, give an infinite family of examples. In
that case, one has p = 1 and x1 = q = 1, so that k = 0, y0 = 1 and zn =
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(F(xn) − 1)/xn . More generally, one could take zn = G(xn) for any non-vanishing
arithmetical function G.

In general, it is sufficient to take the initial term in (1.6) lying in the range 0 <

p/q ≤ 1, since going outside this range only alters the value of a0. As a particular
example, we take

p

q
= 2

7
= [0; 3, 2], zn = n for n ≥ 1,

so that k = 1, and q1 = 3 which gives y0 = 2. Hence x1 = 7, x2 = 112, and the
sequence (xn) continues with

403200, 1755760043520000, 53695136666462381094317154204367872000000, . . . .

The sum S is the transcendental number

2

7
+ 1

112
+ 1

403200
+ 1

1755760043520000
+ · · · ≈ 0.2946453373015879,

with continued fraction expansion

[0; 3, 2, 2, 7, 32, 112, 10800, 403200, 17418254400, 1755760043520000, . . .].
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