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Abstract

We consider a family of integer sequences generated by nonlinear re-
currences of the second order, which have the curious property that the
terms of the sequence, and integer multiples of the ratios of successive
terms (which are also integers), appear interlaced in the continued frac-
tion expansion of the sum of the reciprocals of the terms. Using the rapid
(double exponential) growth of the terms, for each sequence it is shown
that the sum of the reciprocals is a transcendental number.

1 Introduction

For some time there has been considerable interest in rational recurrences which
surprisingly generate integer sequences. Such sequences were made popular by
the articles of Gale [7, 8], who discussed some particular nonlinear recurrence
relations of the form

xn+N xn = f(xn+1, . . . , xn+N−1), (1.1)

where f is a polynomial in N − 1 variables. Observe that the above recurrence
is rational, in the sense that each new iterate xn+N is a rational function of the
N previous terms xn, . . . , xn+N−1. Starting from N initial values x0, . . . , xN−1
which are all integers, there is no reason to expect that subsequent terms will
be, because one must divide by xn at each step. However, a very wide variety
of examples are now known, for which the recurrence (1.1) has the Laurent
property: if the initial values are viewed as variables, then for certain special
choices of f , all of the iterates belong to the ring Z[x±10 , . . . , x±1N−1], consisting of
Laurent polynomials in the initial values with integer coefficients. In particular,
the Laurent property implies that if all the initial values are taken to be 1 (or
±1), then xn ∈ Z for all n.
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The Laurent property is a key feature of Fomin and Zelevinsky’s cluster
algebras [5], which are generated by birational iterations of the same shape as
(1.1), that is

old variable× new variable = exchange polynomial,

in the particular case that the exchange polynomial f is a binomial. The main
tool available for proving the Laurent property is the Caterpillar Lemma due to
Fomin and Zelevinsky [6], which also applies to more general choices of f , fitting
into the broader framework of Laurent Phenomenon (LP) algebras [14]. Within
the axiomatic setting of cluster algebras or LP algebras, there is a requirement
that the exchange polynomials should not be divisible by any of the variables.
However, this requirement is not necessary for the Laurent property to hold.
Indeed, even for the case of a recurrence of second order, of the form

xn+2 xn = f(xn+1), (1.2)

the requirement that x 6 | f(x) is not necessary. In work by the author [12, 13]
it was shown that recurrences of the form (1.2) having the Laurent property
fit into three classes, depending on the form of f : (i) f(0) 6= 0, in which case
the recurrence belongs within the framework of cluster algebras (when it is
a binomial) or LP algebras (when it is not); (ii) f(0) = 0, f ′(0) 6= 0; (iii)
f(0) = f ′(0) = 0. In classes (i) and (ii) there are additional requirements on f ,
but in class (iii) one can take f(x) = x2F (x) with arbitrary F ∈ Z[x].

The simplest non-trivial example of the form (1.2) belonging to the third of
the classes identified in previous work by the author [12] is the recurrence

xn+2 xn = x2n+1(xn+1 + 1). (1.3)

Due to the Laurent property, the initial values x0 = x1 = 1 generate an integer
sequence:

1, 1, 2, 12, 936, 68408496, 342022190843338960032, . . . ; (1.4)

this is sequence A112373 in the Online Encyclopedia of Integer Sequences (OEIS).
As one might expect from the first few terms, this sequence grows very rapidly:
log xn ∼ Cλn with C ≈ 0.146864 and λ = (3 +

√
5)/2. Another feature of se-

quence A112373 is that the ratios yn = xn+1/xn also form an integer sequence,
that is

1, 2, 6, 78, 73086, 4999703411742, 1710009514450915230711940280907486, . . . ,
(1.5)

which is sequence A114552 in the OEIS, and the same is true for the ratios
of ratios, i.e., zn = yn+1/yn = xn+1 + 1 by (1.3); this property of the ratios
is common to all recurrences in class (iii). Hanna made some very interesting
empirical observations about the sequence (1.4) [9], by considering S, the sum
of reciprocals of the terms:

S =

∞∑
j=0

1

xj
= 1 + 1 +

1

2
+

1

12
+

1

936
+ · · · ≈ 2.5844017240. (1.6)
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In the OEIS, the digits of this number appear as sequence A114550, yet it is not
the decimal expansion of S that is interesting, but rather its continued fraction
representation; with the notation

[a0; a1, a2, a3, . . . , an, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
1

an + · · ·

,

one finds that

S = [2; 1, 1, 2, 2, 6, 12, 78, 936, 73086, 68408496, 4999703411742, . . .]. (1.7)

What appears to be the case from the above is that (apart from the initial value
a0 = 2) the sequence of an in (1.7), which is number A114551, is obtained by
interlacing the original sequence (1.4) with the ratios (1.5). As observed by
Shallit [16], and shown by Harris [11], this implies that the even/odd terms
satisfy

a2n = a2n−1a2n−2, a2n+1 = a2n−1(a2n + 1), (1.8)

respectively, where the first formula holds for n ≥ 2 and the second for n ≥ 1.
The purpose of this short note is to prove Hanna’s observations concerning

the continued fraction expansion (1.7), and generalize them to an infinite family
of integer sequences generated by recurrences belonging to class (iii) in the
author’s previous work [12]. At the same time we show that the number S
given by (1.6) is transcendental, and the same is true for the sums of reciprocals
obtained from the other sequences in this family.

The results presented here are similar in spirit to those in a paper by Davison
and Shallit, who found some continued fractions whose partial quotients (coef-
ficients) are explicitly related to the denominators of their convergents, and
used this to prove the transcendence of Cahen’s constant [3]. For references to
examples of other transcendental numbers whose complete continued fraction
expansion is known, the reader should consult the latter paper.

2 Continued fractions for sums of reciprocals

Before we proceed with presenting a family of sequences which generalizes (1.4),
we present some facts about this particular example, to motivate the proof of
the main result. When taking the sum of reciprocals (1.6), it is more convenient
to exclude the index j = 0 from the sum, and then consider the partial sums

SN =

N∑
j=1

1

xj
.
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Calculating the finite continued fractions of these partial sums, we find that

S1 = 1, S2 =
3

2
= 1 +

1

2
, S3 = 1 +

1

1 +
1

1 +
1

2 +
1

2

,

S4 = [1; 1, 1, 2, 2, 6, 12], S5 = [1; 1, 1, 2, 2, 6, 12, 78, 936], and

S6 = [1; 1, 1, 2, 2, 6, 12, 78, 936, 73086, 68408496]

are the first few partial sums. As will be proved in due course, the pattern is

SN = [x0; y0, x1, y1, x2, . . . , yN−2, xN−1], (2.1)

so that the even/odd coefficients are a2n = xn and a2n+1 = yn respectively, and
as we have chosen to start the sum with 1/x1 = 1 we now have a0 = x0 = 1
which ensures that both formulae (1.8) hold for all n ≥ 1. The result for S2

looks anomalous, but in fact (2.1) is seen to hold for N = 2 upon noting that

S2 = [1; 2] = [1; 1, 1].

The continued fraction for the infinite sum S∞ =
∑∞
j=1

1
xj

is obtained in the

limit N →∞, and compared with (1.6) we have S = S∞ + 1.
We now wish to generalize these observations to integer sequences generated

by recurrences of the form

xn+2 xn = x2n+1 F (xn+1), (2.2)

where F (x) ∈ Z[x], and we assume that d = degF ≥ 1 to avoid a trivial case.
If we take such a recurrence with the initial values x0 = x1 = 1, and set

yn =
xn+1

xn
, zn =

yn+1

yn
=
xn+2xn
x2n+1

= F (xn+1),

then we have y0 = 1, x2 = y1 = z0 = F (1), and by induction we see that
xn, yn, zn ∈ Z for all n ≥ 0, so we have three integer sequences, as long as
the recurrence (2.2) does not reach a singularity (division by zero), which can
happen if F (x) = 0 for some x ∈ Z. Indeed, suppose that for some positive
integer m we have 0 6= xn ∈ Z for 0 ≤ n ≤ m, but F (xm) = 0; then at the next
step xm+1 = 0, followed by xm+2 = 0, and then xm+3 is undefined. The analysis
of these recurrences near to a singularity has been performed previously [12].

To avoid the possibility of reaching a singularity from the initial conditions
x0 = x1 = 1, we choose F to have only positive integer coefficients (F (x) ∈
Z≥0[x]), so that F (x) > 0 whenever x > 0, and then all three sequences, (xn),
(yn) and (zn), consist of positive integers. In order for the continued fraction
expansion of the sum of reciprocals to behave in the right way, we must make
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the further assumption that F (0) = 1, which (since the degree of F is positive)
implies F (1) > 1, and hence xn+1 > xn for n ≥ 1, and the sequences (yn) and
(zn) are strictly increasing as well. The precise rate of growth of these sequences
will be considered in the next section, but for now we proceed with the main
result on continued fractions.

Theorem 2.1. For a sequence (xn) generated from the initial values x0 = x1 =
1 by the recurrence (2.2) with F (x) ∈ Z≥0[x] and F (0) = 1, the partial sums of
reciprocals have the continued fraction expansions

SN =

N∑
j=1

1

xj
= [a0; a1, a2, . . . , a2N−2] (2.3)

for all N ≥ 1, where

a2n = xn, a2n+1 =
F (xn+1)− 1

xn
∈ Z>0. (2.4)

Corollary 2.2. The infinite sum of the reciprocals of the terms of the sequence
(xn) is given by

S∞ =

∞∑
j=1

1

xj
= [a0; a1, a2, . . . , an, . . .], (2.5)

where the coefficients of the continued fraction are as in (2.4).

The latter result on the infinite sum follows immediately from (2.3) by taking
the limit N → ∞. Note that the convergence of the sum is guaranteed since
the infinite continued fraction makes sense for any sequence of positive integer
coefficients (an); the convergence of the infinite sum can also be proved directly
by using estimates for the growth of (xn), as given in the next section.

Remark 2.3. We may write

S∞ − 1 =

∞∑
j=1

1

y1y2 · · · yj

and observe that (yn) is a non-decreasing sequence of positive integers, with
yn ≥ 2 for n ≥ 1, so this is an example of an Engel expansion (see Theorem 2.3
in Duverney’s book [4]).

To prove Theorem 2.1, we start by recalling some general facts about conver-
gents of continued fractions, which are well known; for a brief summary of these
results, the reader is referred to the first chapter of Manin and Panchishkin’s
book [15], or for more details see the book by Cassels [2]. The nth convergent
of the continued fraction [a0; a1, a2, . . .] is given by

pn
qn

= [a0; a1, a2, . . . , an],
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where the numerators pn and denominators qn are given in terms of the coeffi-
cients according to the matrix identity(

a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an 1
1 0

)
=

(
pn pn−1
qn qn−1

)
, (2.6)

and both pn and qn are obtained recursively via the same linear three-term
recurrence relation, that is

pn+1 = an+1pn + pn−1,
qn+1 = an+1qn + qn−1,

(2.7)

with the initial values

q−1 = 0, p−1 = q0 = 1, p0 = a0. (2.8)

Taking the determinant of both sides of (2.6) gives the formula

pnqn−1 − pn−1qn = (−1)n+1, (2.9)

valid for n ≥ 0, and the identity

pnqn−2 − pn−2qn = (−1)nan (2.10)

for n ≥ 1 follows by combining (2.7) with (2.9).
Now consider the convergents of the continued fraction whose coefficients

an are given in terms of the sequence (xn) by (2.4). First of all, note that if
we write F (x) = 1 + xG(x) for G ∈ Z≥0[x], then a2n+1 = xn+1G(xn+1)/xn =
ynG(xn+1) ∈ Z>0 as claimed; so in general the coefficients with odd index are
integer multiples of the ratios yn. We prove by induction that

q2N−1 = yN − 1 =
xN+1

xN
− 1, q2N = xN+1. (2.11)

For N = 0 we have q−1 = x1/x0 − 1 = 0 and q0 = x1 = 1 in agreement with
(2.8), and assuming that (2.11) holds for some N , from (2.7) we have

q2N+1 = a2N+1q2N + q2N−1 = (F (xN+1)− 1)
xN+1

xN
+
xN+1

xN
− 1 =

xN+2

xN+1
− 1,

by (2.2), and hence

q2N+2 = a2N+2q2N+1 + q2N = xN+1

(
xN+2

xN+1
− 1

)
+ xN+1 = xN+2

as required. Now (2.3) is clearly true for N = 1, and if it holds for some index
N then, by using the second equation in (2.11) as well as (2.10) and (2.4), we
find

SN+1 = SN +
1

xN+1
=
p2N−2
q2N−2

+
1

q2N
=
p2Nq2N−2 − a2N + q2N−2

q2N−2q2N
=
p2N
q2N

which means that the partial sum SN+1 is the 2Nth convergent of the continued
fraction [a0; a1, a2, . . .] with coefficients (2.4), so (2.3) holds for the index N + 1.
This completes the proof of Theorem 2.1.
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3 Transcendence of the sums

We now prove the following

Theorem 3.1. The infinite sum S∞, as in (2.5), is a transcendental number.

The proof is based on Roth’s theorem, which says that if α is an irrational
algebraic number then for an arbitrary fixed δ > 0 there are only finitely many
rational approximations p/q for which∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+δ
(3.1)

(see Manin and Panchishkin’s book for a brief discussion [15], and for a proof
see the book by Cassels [2]). Note that the number S∞ is irrational, since its
continued fraction expansion (2.5) consists of an infinite sequence of coefficients
an 6= 0. In order to make use of Roth’s theorem, it is enough for the integer
sequence (xn) to satisfy the growth condition

xn+1 > xκn for some κ > 2, (3.2)

for all sufficiently large n. Supposing that this is so, it follows that

xn+j > xκ
j

n for j ≥ 1

whenever n is large enough. Then from Theorem 2.1 we have∣∣∣∣S∞ − p2n
q2n

∣∣∣∣ =

∞∑
j=n+2

1

xj
<

∞∑
j=1

1

xκ
j

n+1

.

Now the function g(j) = j
1

j−1 is monotone decreasing with g(2) = 2, so κj > jκ
for j ≥ 2 and κ > 2, which together with (2.11) implies∣∣∣∣S∞ − p2n

q2n

∣∣∣∣ < ∞∑
j=1

1

xjκn+1

=
(1− x−κn+1)−1

xκn+1

<
1

xκ−εn+1

=
1

qκ−ε2n

for any ε > 0 and n sufficiently large. So if ε is chosen such that κ−ε = 2+δ > 2,
then α = S∞ has infinitely many rational approximations satisfying (3.1), and
hence must be transcendental.

To show that (3.2) holds for any sequence (xn) defined by the recurrence
(2.2) with x0 = x1 = 1 and F (0) = 1, F (x) ∈ Z≥0[x] as in Theorem 2.1, we
can use a very crude estimate. Indeed, we have F (x) = 1 + . . . + cxd for some
integer c ≥ 1, so F (x) > xd for all x > 0, and then from (2.2) we obtain

xn+1 >
xd+2
n

xn−1
≥ xd+1

n (3.3)

for all n ≥ 1, since the ratios yn = xn+1/xn form an increasing sequence. The
above growth condition is sufficient for (3.2) when the degree d ≥ 2, but not
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when d = 1, which is the case relevant to the original sequence (1.4). However,

this estimate can be improved upon by using xn−1 < x
1

d+1
n in the first inequality

in (3.3), to yield

xn+1 > x
d+2− 1

d+1
n ≥ x5/2n (3.4)

for d ≥ 1.
In fact, we can get a more accurate measure of growth from asymptotic

arguments. Upon taking the logarithm of (2.2) we find that Λn = log xn satisfies

Λn+1 − (d+ 2)Λn + Λn−1 = log c+ αn, with αn = log

(
F (xn)

cxdn

)
. (3.5)

Note that αn = log(1 + O(x−1n )) = O(x−1n ) as n → ∞, which means that, to
leading order, the growth of Λn is governed by a homogeneous linear equation
with constant coefficients, given by the vanishing of the left-hand side of (3.5).
The characteristic equation is λ2− (d+ 2)λ+ 1 = 0, with the largest root being

λ =
d+ 2 +

√
d(d+ 4)

2
> 2. (3.6)

Thus we find that
Λn ∼ Cλn, (3.7)

for some C > 0. Hence Λn+1/Λn → λ as n→∞, and so for any ε > 0 it follows
that Λn+1 > (λ − ε)Λn for all sufficiently large n, giving the required growth
condition

xn+1 > xλ−εn .

The asymptotic properties of the sequence (xn) can be determined more
precisely by adapting the methods of Aho and Sloane [1], leading to the following
result, which is easy to verify directly from (3.5).

Proposition 3.2. For the initial conditions x0 = x1 = 1, the logarithm Λn =
log xn of each term of the sequence satisfying (2.2) is given by the formula

Λn =

(
(1− λ−1)λn − (1− λ)λ−n

λ− λ−1
− 1

)
log c

1
d +

n−1∑
k=1

(
λn−k − λk−n

λ− λ−1

)
αk, (3.8)

where αk is defined as in (3.5) and λ as in (3.6).

Corollary 3.3. To leading order, the asymptotic approximation of the logarithm
Λn is given by (3.7), where

C =

(
1− λ−1

λ− λ−1

)
log c

1
d +

1

λ− λ−1
∞∑
k=1

λ−kαk,

and for the terms of the sequence

xn ∼ c−
1
d exp(Cλn).
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Remark 3.4. The form of the expression (3.8) is the discrete analogue of the so-
lution of a linear inhomogeneous differential equation as obtained via the method
of variation of parameters [10]; if αk were given in advance, then it would pro-
vide the exact solution of (3.5), viewed as a linear equation with initial values
Λ0 = Λ1 = 0. However, as was pointed out for a different example by Aho and
Sloane [1], a formula such as (3.8) only represents the solution of the corre-
sponding nonlinear equation (in this case the equation (2.2) for xn) in a tau-
tologous sense, because αk depends explicitly on the terms of the sequence (xn).
Nevertheless, this formula does yield useful asymptotic information about the
sequence.
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