
PROVENANCE-AWARE CXXR

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of doctor of philosophy.

By

Christopher Anthony Silles

January 2014

Abstract

A provenance-aware computer system is one that records information about the operations

it performs on data to enable it to provide an account of the process that led to a particular

item of data. These systems allow users to ask questions of data, such as “What was the

sequence of steps involved in its creation?”, “What other items of data were used to create

it?”, or “What items of data used it during their creation?”.

This work will present a study of how, and the extent to which the CXXR statistical

programming software can be made aware of the provenance of the data on which it

operates. CXXR is a variant of the R programming language and environment, which

is an open source implementation of S. Interestingly S is notable for becoming an early

pioneer of provenance-aware computing in 1988.

Examples of adapting software such as CXXR for provenance-awareness are few and

far between, and the idiosyncrasies of an interpreter such as CXXR—moreover the R

language itself—present interesting challenges to provenance-awareness: such as receiving

input from a variety of sources and complex evaluation mechanisms. Herein presented

are designs for capturing and querying provenance information in such an environment,

along with serialisation facilities to preserve data together with its provenance so that they

may be distributed and/or subsequently restored to a CXXR session. Also presented is a

method for enabling this serialised provenance information to be interoperable with other

provenance-aware software.

This work also looks at the movement towards making research reproducible, and con-

siders that provenance-aware systems, and provenance-aware CXXR in particular, are

well-positioned to further the goal of making computational research reproducible.

ii

Acknowledgements

I owe a tremendous debt of gratitude to my supervisor, Andrew Runnalls, whose expertise,

patience, and guidance has made this feasible for me; and whose generosity, kindness, and

warmth has made it an absolute pleasure. I will forever be grateful.

I am grateful to my formal panel members, both past: Ursula Fuller and Tim Hopkins;

and present: Andy King, Eerke Boiten, and Sally Fincher, for their searching questions

and invaluable advice.

A special thank you to Prof. Roger Peng, of John Hopkins Bloomberg School of Public

Health for his input.

Thanks, also, to my original officemates, Patrick and Radu, who initially made me feel

so welcome and who subsequently became such good friends.

Thank you to all of my friends and family, for showing understanding during the

more testing times and during my periods of self-imposed reclusion. In particular, I am

incredibly grateful for the support my parents have always given me.

It would be absolutely uncharacteristic and entirely without precedent for me to thank

Dr. Beulah “Snoofy” Mc̲Kenzie without consummate levity; but I’ll do my best. To

say that this—and so much more besides—would not have been possible for me without

her friendship, support, and encouragement over the last decade would be an egregious

understatement.

Finally, an enormous thank-you to my darling Jasmine1 for her love, support, spirit,

and companionship (and not to mention patience and tolerance) throughout the last year.

I feel so fortunate that our friendship has become something so special, and at such a

wonderful time.

1I hope you find my colour selection to be to your liking!

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures xi

List of Algorithms xii

List of Code Listings xvi

1 Introduction 1

1.1 Exploratory Data Analysis . 1

1.2 Provenance . 2

1.2.1 Definition and Characterisation . 3

1.2.2 Early Provenance-Aware Computing 4

1.2.3 Modern Provenance-Aware Computing 5

1.2.4 Vocabularies, Ontologies and Representations 6

1.2.5 Open Provenance Model . 7

1.2.6 W3C Provenance Incubator and Working Group 8

1.3 Provenance-Aware Software . 12

1.3.1 Classification . 12

1.3.2 System-Level Provenance . 13

1.3.3 Versioning File-Systems . 13

1.3.4 Adapting Software . 14

1.3.5 Automatically Adapting Source Code 15

1.4 Reproducible Research . 17

1.4.1 Introduction . 17

1.4.2 Terminology . 19

1.4.3 Journal Interest, Policy and Practice 21

iv

1.4.4 Benefits . 23

1.4.5 Resistance . 24

1.4.6 Existing Approaches . 25

1.4.7 Approaches in R . 27

1.5 Motivation and Research Goals . 28

1.5.1 Research Goals . 31

1.6 Overview of this Thesis . 33

2 CXXR 34

2.1 History . 34

2.2 R . 34

2.2.1 Expressions . 35

2.2.2 Objects . 36

2.2.3 Flow Control . 44

2.2.4 Language . 46

2.2.5 Packages . 47

2.2.6 Bindings and Environments . 47

2.3 CXXR . 52

2.3.1 Introduction . 52

2.3.2 Progressive Development . 52

2.3.3 Layers . 53

2.3.4 Class Hierarchy . 53

2.3.5 Memory Management . 55

2.3.6 Other aspects of CXXR . 60

3 Provenance in CXXR 61

3.1 Provenance Questions . 61

3.2 Design - Recording . 62

3.2.1 Entity . 62

3.2.2 Activity . 65

3.2.3 Algorithm . 74

3.3 Design - Querying . 74

3.3.1 In-interpreter Interface . 74

3.4 Implementation . 75

3.4.1 Monitors . 75

v

3.4.2 Containers . 78

3.4.3 ProvenanceTracker . 80

3.4.4 Querying . 84

3.5 Example . 85

3.6 Evaluation . 88

3.6.1 Provenance Questions . 88

3.6.2 Performance . 89

3.6.3 PROV Characterisation . 90

3.6.4 Further Work . 91

4 Serialisation 93

4.1 Introduction . 93

4.1.1 Use Case . 94

4.1.2 Serialisation of Provenance . 95

4.2 Design . 95

4.2.1 Interpreter State . 95

4.2.2 Design Objectives . 97

4.2.3 Algorithms . 97

4.3 Implementation . 98

4.3.1 boost::serialization . 98

4.3.2 Provenance Containers . 108

4.3.3 User-Level Functions . 111

4.3.4 Session-dependent Objects . 111

4.4 Evaluation . 115

4.4.1 Illustrative Example . 115

4.4.2 Real-World Example . 115

4.5 Provenance Interchange . 118

4.5.1 Design . 118

4.5.2 Algorithm . 123

4.5.3 Implementation . 123

4.5.4 Evaluation . 129

5 Further Provenance 132

5.1 Expressions from Outside . 132

5.1.1 Introduction . 133

vi

5.1.2 Use Case . 134

5.1.3 Design . 135

5.1.4 Implementation . 137

5.1.5 Evaluation . 140

5.2 Lazy Loading . 145

5.2.1 Use Case . 145

5.2.2 Promises . 145

5.2.3 Lazy-Loading . 148

5.2.4 Problem . 148

5.2.5 Design . 151

5.2.6 Implementation . 152

5.2.7 Evaluation . 153

5.3 Values from Outside . 154

5.3.1 Use Case . 154

5.3.2 Xenogenesis . 154

5.3.3 Design . 156

5.3.4 Implementation . 157

5.3.5 Evaluation . 163

5.4 Functions with State . 166

5.4.1 Introduction . 167

5.4.2 Functions with State . 168

5.4.3 Design . 176

5.4.4 Implementation . 176

5.4.5 Example . 182

5.4.6 Discussion . 184

6 Reproducible Research 187

6.1 Provenance as the means to Reproducible Research 187

6.2 Reproducible Research in R . 188

6.2.1 Literate Programming . 188

6.2.2 Non-literate Programming . 191

6.3 Reproducible Research in CXXR . 192

7 Conclusions 194

7.1 Contributions . 195

vii

7.2 Further Work . 196

7.2.1 Provenance-Aware CXXR . 196

7.2.2 Reproducible Research . 198

Bibliography 199

A Exploring R 210

A.1 Operators in R . 210

B XML Serialization 212

C Air Quality Analysis 215

viii

List of Figures

1.1 UML Use Case for exploratory data analysis in computational statistics

package . 2

1.2 S AUDIT audit plot for example session, reproduced from [11]. 5

1.3 Victoria Sponge Cake Provenance [76] . 8

1.4 Key concepts of PROV illustrated by exemplifying John’s process of baking

a cake, which was previously encountered as OPM exemplar. 11

1.5 Reproducibility spectrum illustration, reproduced from [88]. 20

1.6 UML activity diagram depicting an EDA of fine air particle pollution in the

United States between 1999 and 2012 . 30

1.7 UML Use Case depicting scenario following EDA in CXXR 32

2.1 Bindings exist within environments and connect symbols to values. In this

case, the symbol ‘three’ with a singleton integer vector ‘3’ 48

2.2 Each environment is enclosed by another. 51

2.3 Layers within CXXR . 53

2.4 CXXR version 0.26 RObject class hierarchy 56

3.1 UML class diagram depicting attribute relationships of the binding class . . 63

3.2 UML class diagram depicting attributes of the Provenance class 63

3.3 UML class diagram showing attribute relationships surrounding the Proven-

ance class . 64

3.4 Example of a Provenance hierarchy . 66

3.5 UML sequence digram illustrating the Read-Evaluate-Print-Loop mechanism 67

3.6 Activity diagram depicting occurrence of read operation on a binding 70

3.7 Activity diagram depicting occurrence of write operation on a binding . . . 70

3.8 Activity diagram depicting when the read monitor is triggered 71

3.9 Activity diagram depicting when the write monitor is triggered 71

ix

3.10 UML class diagram depicting attributes and operations of the Provenan-

ceTracker class . 72

3.11 UML sequence digram illustrating the Read-Evaluate-Print-Loop mechan-

ism augmented to incorporate the provenance-tracking strategy 72

3.12 Activity diagram depicting the behaviour of the read monitor 73

3.13 Activity diagram depicting the behaviour of the write monitor 73

3.14 Class collaboration diagram of new/old CXXR classes. 79

3.15 Example CXXR session as depicted in PROV. 91

4.1 A graphical depiction of the XML elements of a serialised CXXR session,

annotated to show those elements of interest 121

4.2 Activity diagram overview of RDF extraction from XML document 123

4.3 Activity diagram showing processing of XML ‘start node’ event 126

4.4 Activity diagram showing processing of XML ‘end node’ event 127

4.5 Invocation and (verbose) output of cxxr2prov 129

4.6 PROV-O-VIZ sankey diagram of exemplar session 130

5.1 Class Diagram of ProvenanceTracker augmented to allow specification of

current expression . 135

5.2 Sequence diagram depicting REPL which has been augmented to override

the top-level expression . 136

5.3 The Promise class . 146

5.4 Sequence diagram depicting initial binding state of seq in base environment 149

5.5 Sequence diagram depicting the first evaluation of seq resulting in its lazy-

loading . 150

5.6 View of the text editor launched by edit in which the body of the function

has been defined, immediately prior to saving and exiting. 156

5.7 Provenance class diagram showing new attributes and operations for xeno-

genesis . 157

5.8 Provenance Tracker class diagram showing new attributes and operations

for xenogenesis . 157

5.9 Sequence diagram depicting how evaluation of a xenogenetic function would

flag ProvenanceTracker, and when a xenogenous binding state is created,

how this is recorded and its value is retained 158

5.10 Sequence diagram of creating and subsequently evaluating a Closure 169

x

5.11 Sequence diagram of establishing the makecounter closure, and then eval-

uating it and binding the result (another closure) to counter 171

5.12 Class diagram depicting interpreter state following creation of makecounter 172

5.13 Class diagram depicting interpreter state following creation of makecounter

and binding the result of its evaluation to counter 173

5.14 Sequence diagram of evaluating the counter closure 174

5.15 Sequence diagram showing frame monitoring 177

5.16 Class diagram showing new attributes and operations in class Frame 177

6.1 example.pdf generated using Sweave . 190

7.1 Example dependencies, depicting relationships between (a) bindings, and

(b) expressions . 197

xi

List of Algorithms

3.1 Provenance-aware CXXR recording algorithm 74

3.2 Determine the ancestors of a (set of) binding state(s) 76

4.1 CXXR session serialisation algorithm . 97

4.2 CXXR session deserialisation algorithm . 98

4.3 Import bindings algorithm . 98

4.4 Object Serialisation/Deserialisation algorithms 99

4.5 Serialise/Deserialise Environment . 100

4.6 Serialise/Deserialise Symbol . 101

4.7 Serialise/Deserialise CachedString . 102

4.8 The cxxr2prov algorithm . 124

4.9 cxxr2prov: symbol_stop handler . 125

4.10 cxxr2prov: provenance_stop handler . 128

4.11 cxxr2prov: chronicle_stop handler . 128

5.1 Refined granularity of provenance in source 135

5.2 An updated write monitor to allow overriding of inclusion in the seen set . 152

5.3 The ProvenanceTracker flagXenogenesis operation 157

5.4 Functionality added to write monitor to, depending on ProvenanceTracker

state, declare a Provenance xenogenous and preserve the present value of

the binding . 159

5.5 The Frame enableFrameMonitoring operation 177

5.6 The Frame disableFrameMonitoring operation 178

xii

List of Code Listings

1.1 Example S audit file [11] . 4

1.2 Example PROV-N notation for baking a Victoria sponge cake 11

1.3 List of data objects in CXXR workspace after execution of EDA use case . 31

2.1 Example R statements . 35

2.2 Dynamic Typing example . 36

2.3 Basic Vector Manipulation . 37

2.4 Example of R’s list . 39

2.5 Use of R function search to inspect the current search path and how this

is affected by the attachment of a data frame 51

2.6 Trivial R Example . 52

2.7 The do_abs function which implements R’s primitive function abs 57

2.8 Example usage of GCStackRoot in a function that returns a reversed copy

of a PairList . 59

2.9 Traditional CR garbage collection mechanism example 59

3.1 Trivial R Example (reprise) . 62

3.2 Example loop in R . 67

3.3 Expansion of loop given in Listing 3.2 . 68

3.4 The findVar function from envir.cpp . 76

3.5 The findBinding function from envir.cpp 77

3.6 Frame::Binding::value() . 77

3.7 The Frame::Binding::assign method . 78

3.8 class CXXR::Provenance::CompTime . 79

3.9 Methods for resetting in preparation for new REPL iteration 81

3.10 ProvenanceTracker::readMonitor . 81

3.11 ProvenanceTracker::writeMonitor . 82

3.12 Provenance::announceBirth() . 83

3.13 Provenance::announceDeath() . 83

xiii

3.14 The Provenance::ancestors(Set*) method 85

3.15 Example R code for demonstrating provenance recording and query 85

3.16 Output of provenance(three) . 86

3.17 Output of provenance(sq) . 86

3.18 Output of provenance(nine) . 87

3.19 Output of pedigree(nine) . 87

3.20 Output of pedigree(four) . 87

3.21 Output of pedigree(ls()) . 88

3.22 Answering provenance questions of air quality audit data objects 89

3.23 Example CXXR session represented in PROV-N 90

4.1 Cross-session R session example . 94

4.2 Example definition of a class that de/serialises its member variables 102

4.3 Constructing an XML archive for output and then input 104

4.4 Split save and load from Club serialize . 105

4.5 Serialize a superclass . 106

4.6 The Provenance::save method . 108

4.7 The Provenance::load method . 109

4.8 The Parentage::save method . 109

4.9 The Parentage::load method . 110

4.10 The StdFrame::import method . 110

4.11 The GCEdgeBase::serializationType() method 112

4.12 The GCEdgeBase::save method . 112

4.13 The saveEnvironment method . 113

4.14 The GCEdgeBase::load method . 114

4.15 XML extract to illustrate parsing events . 120

4.16 Trivial R examplar for cxxr2prov . 129

5.1 example.R file contents . 133

5.2 source function parameters . 133

5.3 Selected source code from R’s source function 137

5.4 The ProvenanceTracker::expression() method 138

5.5 The C function do_eval . 139

5.6 Example of white-box source in action . 140

5.7 Example of white-box source within a source 141

5.8 The Frame::forcedValue method from envir.cpp 152

xiv

5.9 Provenance tracking pseudo-RNG . 155

5.10 Using edit to define a function sq. 155

5.11 Extract from class Provenance header file showing relevant additions to

track provenance of xenogenous values . 159

5.12 Extract from soure file of class Provenance, illustrating mutator method . . 159

5.13 Extracts from header file for class ProvenanceTracker 160

5.14 Extracts from source file for class ProvenanceTracker 161

5.15 The write monitor ProvenanceTracker::CommandScope::writeMonitor

which identifies xenogenous bindings . 161

5.16 Extract of code from function do_pedigree which underlies the R function

pedigree . 162

5.17 Provenance interrogation using the pedigree() function. Illustrates the

way in which corresponding list elements describe a particular binding. . . . 164

5.18 Example of granularity issue when R code is defined within a code block . . 166

5.19 The ‘counter’ example . 170

5.20 The ‘counter’ example, augmented to assign results to variables 173

5.21 Result of the ‘counter’ example illustrating the omission of provenance

tracking in local environments . 175

5.22 Additions to definition of class Frame to enable it to maintain a collection

of its instances . 178

5.23 The constructor of Frame modified to register this Frame instance with the

set of frames . 180

5.24 The destructor of Frame modified to deregister this Frame instance with the

set of frames . 180

5.25 The Frame::enableFrameMonitoring(bool) method 180

5.26 Outline of Rf_ReplIteration function with control of frame monitoring . . 181

5.27 Result of the ‘counter’ example illustrating the inclusion of provenance

tracking in local environments . 182

5.28 Illustration of side-effect of local environment provenance tracking 182

Graphics/Chapter6/example.Rnw . 189

6.1 Trivial R Code for cacher() example . 192

A.1 Extract a list of primitive functions from R-2.15.1 210

A.2 Distinguish between builtin and special primitive functions 211

bserializeEx.xml . 212

xv

appendices/peng.R . 215

xvi

Chapter 1

Introduction

1.1 Exploratory Data Analysis

CXXR is a variant of the R environment, which is an open source implementation of the

S programming language for statistical analysis and visualisation. The development and

usage of statistical computing packages, in particular S, was encouraged during the 1970s

by a shift in approach to statistical analysis towards Exploratory Data Analysis (EDA),

championed by John W. Tukey [114] whose belief it was that traditional use of statistics

for only confirmatory data analysis (i.e. hypothesis testing) was insufficient:

“We often forget how science and engineering function. Ideas come from

previous exploration more often than from lightning strokes. Important ques-

tions can demand the most careful planning for confirmatory analysis. Broad

general inquiries are also important. Finding the question is often more im-

portant than finding the answer”

Pre-dating the widespread availability of computers, Tukey’s philosophy of EDA was

originally proposed with the intention that its techniques employed physical means and

would equip the analyst with ability to see in data not only what was being expressly

searched for, but for whatever the data could reveal [115]:

“If we need a short suggestion of what exploratory data analysis is, I would

suggest that 1. It is an attitude, AND 2. A flexibility, AND 3. Some graph

paper (or transparencies, or both).

No catalog of techniques can convey a willingness to look for what can be

seen, whether or not anticipated. Yet this is at the heart of exploratory data

analysis. The graph paper—and transparencies—are there, not as a technique,

1

CHAPTER 1. INTRODUCTION 2

but rather as a recognition that the picture-examining eye is the best finder we

have of the wholly unanticipated.”

Statistical software, especially S, brought with it an expansion to the data analyst’s

“picture-examining eye”: the means for readily manipulating and visualising data in a

manner far more efficient than with the graph paper originally suggested by Tukey.

Figure 1.1 depicts a UML use case of a typical exploratory data analysis conducted

using software such as CXXR.

Exploratory Data Analysis in CXXR

Alice

Load
Dataset

Analysis

Table

Summarise

Plot

Save
Session

Stem-and-
leaf

Scatterplot
matrix

Boxplot

Five number
summary

Bagplot
Residual

Plot

Median
Polish

Subset Data

Figure 1.1: UML Use Case for exploratory data analysis in computational statistics pack-

age

1.2 Provenance

The term provenance has, according to the Oxford English Dictionary, been used since

the 18th century to mean “The fact of coming from some particular source or quarter;

origin, derivation.” and since the late 19th century to refer to “The history of the ownership

CHAPTER 1. INTRODUCTION 3

of a work of art or an antique, used as a guide to authenticity or quality; a documented

record of this.”

Today, provenance is a well-understood concept in many different areas including art,

antiques and memorabilia. However, it is only relatively recently that the term has been

used in the context of computing, in particular in its application to data, the provenance

of which we consider to be “the process that led to that piece of data” [44]. This type

of information is becoming not only of increased use but also of necessity as computer

systems have taken on significant roles in many disciplines where it is critical to provide

an evidential trail of how data has been managed throughout its lifetime. While these

software computer systems are able to cope with producing, collating and manipulating

vast quantities of data, for instance by means of complex modelling and simulation, fa-

cilities to provide provenance information to accompany this data have not always kept

pace.

When a system is able to determine, record and interrogate the provenance of the

data on which it operates, we consider it to be provenance-aware. There is currently

significant interest in creating provenance-aware computer systems for use in areas as

diverse as e-science; medical physics (CT, MRI, fMRI, PET etc.); proteomics; finance;

and weather monitoring.

1.2.1 Definition and Characterisation

The definition of provenance given in the introduction may be generalised as “Provenance

of a resource is a record that describes entities and processes involved in producing and

delivering or otherwise influencing that resource” [41].

Provenance information naturally qualifies as metadata—some data that describes

data; although this is not a symmetric relationship—not all metadata is provenance.

One of the initial motivators for research in the area of provenance-aware computing

was Romeu, who contended that information about data (i.e. metadata) is critical for

distinguishing good data from bad [95]. Further to this, Goble summarises the main uses

of provenance information as follows [43]:

• Quality. Using evidence of the data’s derivation to support its integrity.

• Auditing. Prove that a data underwent a particular process.

• Reproducibility. By having access to information about derivation of data, pro-

cesses can be repeated for purposes of establishing accuracy; updating result data

CHAPTER 1. INTRODUCTION 4

with respect to source data; and allowing validation by way of reproducing results.

• Ownership. Provenance can be used to attribute ownership, or establish liability.

1.2.2 Early Provenance-Aware Computing

The role assumed by “New S” in early provenance-aware computing is one of particular

pertinence in the context of this work because “New S” is a distant relation of CXXR (as

Chapter 2 will describe).

“New S” was the sequel to the ‘S’ statistical language and environment, which was

released in 1988 and sported a new feature entitled S AUDIT [11]. While an S session

was in operation a record was maintained of the expressions that had been entered by the

user and then evaluated by the interpreter; as well as objects read from and written to

during the evaluation of an expression. The accompanying S AUDIT program was able to

process this record and allow the user to ask questions about it, discovering details about

the session which previously would not have been known. S AUDIT was able to perform a

number of queries on the audit record, such as displaying the full sequence of statements;

those statements responsible for reading from, or writing to, a specific object; or simply

providing a list of all objects in the session.

Listing 1.1 shows an example audit file generated by S. The lines beginning with

indicate an action; such as beginning a session, reading (‘get’) objects, and writing

(‘put’) objects. The ‘get’ and ‘put’ lines show the path of the object’s data file, a timestamp

of when the action took place, and its data mode which was used for maintaining accurate

type information while data was serialised.

One advantage of this method was that lines beginning with # were treated as com-

ments by the S interpreter and thus ignored, therefore the S audit file could be used

directly as a source file to re-execute the statements it contained.

Listing 1.1: Example S audit file [11]

1 #~New session: Time: 542034997; Version: "S Tue Mar 3 10:14:20 EST 1987"

2 m<-matrix(read("brain.body"),byrow=T,ncol=2)

3 #~put "/usr/rab/.Data/m" 542035057 "structure"

4 brain<-m[,1]

5 #~get "/usr/rab/.Data/m" 542035057 "any"

6 #~put "/usr/rab/.Data/brain" 542035066 "real"

7 body<-m[,2]

CHAPTER 1. INTRODUCTION 5

8 #~get "/usr/rab/.Data/m" 542035057 "any"

9 #~put "/usr/rab/.Data/body" 542035072 "real"

10 pic()

11 #~get "/usr/rab/.Data/pic" 542035048 "any"

12 plot(body,brain)

13 #~get "/usr/rab/.Data/body" 542035072 "any"

14 #~get "/usr/rab/.Data/brain" 542035066 "any"

A more intriguing feature of S AUDIT was its audit plot facility, which plotted a

directed-acyclic graph with statements as nodes arranged in a circle (anti-clockwise in

order of occurrence); and edges representing an object written by one statement, later

being read by another. The audit plot for the example session given above is shown in

Figure 1.2.

Figure 1.2: S AUDIT audit plot for example session, reproduced from [11].

Therefore New S became the first provenance-aware software application, long be-

fore the phrase had been coined.

1.2.3 Modern Provenance-Aware Computing

Provenance-aware computer systems have been developed in different disciplines in slightly

different ways: a sort of parallel evolution. Although this is primarily concerned with the

type of data whose provenance is to be recorded, it also has implications for how data

is stored and queried. At a very coarse classification, distinct approaches to creating

provenance-aware systems can be seen in fields such as the semantic web; workflows;

CHAPTER 1. INTRODUCTION 6

service-oriented architectures; databases and data warehouses; automatic provenance col-

lection at the file system.

The primary forum for discussion of provenance-aware computing has been the Inter-

national Provenance and Annotation Workshop (IPAW), which began in 2006 [77]

and has since been held bi-annually, at which numerous papers are presented detailing

different systems for collecting, querying, characterising and understanding provenance

information.

One of the outcomes of the first IPAW was the need to gain greater understanding of the

similarities and differences of these systems, and thus the First Provenance Challenge

was established [78]. Participating teams were given the same pre-defined workflow for

aggregating fMRI images and were required to execute this workflow in their own systems.

Following this, each team answered the same set of questions relating to the output: such

as finding the process that led to the output of a particular image, and all invocations of

a particular process.

One of the main conclusions drawn from the First Provenance Challenge was that

comparing each system’s recorded provenance information was impossible. To ensure that

the evolution of the various systems did not diverge, a second Provenance Challenge was

established, with a focus on interoperability of provenance data. Participating teams

performed the same workflow as in the first challenge, but then made the results (i.e.

all recorded provenance information) publicly available. Each system then operated on

provenance data collected by a different system as if it had been produced by itself. This

allowed insight to be gained into how well data in one system can be translated for use

in another, as well as how different systems can aggregate provenance over a number of

individual processes. As a result of the experiment conducted in the Second Provenance

Challenge, it became clear that a common model for representing provenance information

was necessary, and there was agreement on how provenance should be represented. In

particular it became clear that that provenance was naturally representable by a directed

acyclic graph (DAG).

1.2.4 Vocabularies, Ontologies and Representations

The need to represent provenance information in diverse application domains led to par-

allel creation of provenance models, some of which are general-purpose, others are less

domain-agnostic. Some examples of these include: Dublin Core Terms [117], Provenir on-

tology [100], Provenance Vocabulary [48], Proof Markup Language [30], PREMIS (PRE-

CHAPTER 1. INTRODUCTION 7

servation Metadata: Implementation Strategies) [4], SWAN Provenance Ontology [26],

WOT Schema [15], Semantic Web Publishing Vocabulary [19], and Changeset Vocabu-

lary [116].

The discussion process that followed the first provenance challenge in 2006 made clear

the need for a standardised model to represent provenance information, and work started

towards reaching this objective. The result of this was the Open Provenance Model (OPM)

which was published in 2008 [75] (later refined in 2009 [76]), which defined the following

objectives:

• Exchange of provenance information between systems;

• Allow development of tools for provenance data;

• Precise definition of a technology-agnostic model;

• Define how provenance graphs may be interpreted.

1.2.5 Open Provenance Model

The OPM conceptually represents provenance information as a directed graph, whose

nodes represent entities of the following types:

• Artifact. An immutable piece of state. Either a physical object, or item of data.

• Process. Actions performed on artifacts, resulting in new artifacts.

• Agent. A catalyst for initiating and controlling processes.

The graph’s edges represent the following dependencies or causal relationships:

• used. A process used an artifact;

• wasGeneratedBy. An artifact was generated by a process;

• wasControlledBy. A process was controlled by an agent;

• wasTriggeredBy. One process triggering another;

• wasDerivedFrom. One artifact being derived from another.

Accounts allow for an OPM graph to incorporate alternative explanations for a given

execution, perhaps at different levels of detail such that one account is said to refine

another. Roles in the OPM are annotations on edges to provide a context for dependencies

between entities.

CHAPTER 1. INTRODUCTION 8

Bake

wasControlledBy(cook)

wasGeneratedBy(cake)

used(butter)used(egg)

used(sugar)

use
d(f

lou
r)

Cake

100g
butter

2 eggs

100g
sugar

100g
flour

John

Figure 1.3: Victoria Sponge Cake Provenance [76]

Figure 1.3 shows the provenance of the task of creating a Victoria Sponge Cake. Central

to this is the Bake process, which was controlled by John, in the role of cook. The Bake

process used four artifacts in various different roles: 100g Butter, 2 Eggs, 100g Sugar, and

100g Flour. The result of this process is the generation of the Cake artifact.

1.2.6 W3C Provenance Incubator and Working Group

In response to the increased interest of provenance in the field of the semantic web the

W3C established the Provenance Incubator Group in 2008 with a charter to “provide

a state-of-the-art understanding and develop a roadmap in the area of provenance and

possible recommendations for standardization efforts.”

This effort concluded in December 2010 with the publication of its final report [41].

The products of this group are summarised as follows:

• Development of a shared working definition of provenance;

• Deduce a set of key dimensions for provenance—grouped into content, management

and use;

• Collate use cases: three of which were honed into flagship scenarios;

• Developed provenance requirements of these scenarios. Initially in terms of user

requirements, from which were derived technical requirements;

• Mappings for existing provenance vocabularies [99], using OPM as a reference model

expressed in terms of SKOS (Simple Knowledge Organization System) [73];

CHAPTER 1. INTRODUCTION 9

• A state-of-the-art report, which identified the need for standards for publishing and

accessing provenance information;

• Provenance in web architecture;

• Roadmap and recommendations, which included a proposed charter for a working

group on provenance, and a series of proposed deliverables. Including conceptual

model of provenance and a related formal model; how provenance should be accessed

and queried; and XML serialisation.

The charter proposed by the Incubator Group was enacted by the W3C in April 2011

with the formation of the Provenance Working Group, whose deliverables were set out

to satisfy the recommendations of the Provenance Incubator Group. Over the course

of its lifetime, the Provenance Working Group defined a family of specifications, known

collectively as PROV, which provide a definition for how provenance information can be

represented and interchanged. Its approach is largely based on that of OPM but offers

extensions in several directions. The group closed in June 2013, and its contribution marks

a significant event in the field of provenance. The PROV family of specifications comprises

the following W3C recommendations [42]:

• PROV-DM [79]. The PROV conceptual data model for provenance;

• PROV-CONSTRAINTS [24] Constraints that apply to define validity of a PROV

instance: uniqueness constraints, event ordering constraints, impossibility constraints,

and type constraints;

• PROV-O [64]. The PROV ontology. An OWL2 ontology representation of PROV-

DM allowing the mapping of PROV to RDF;

• PROV-N [80]. A notation for representing PROV-DM provenance intended for

human consumption.

As well as the above Recommendations, a number of Notes were published:

• Introductory documents PROV-OVERVIEW and PROV-PRIMER;

• An XML schema PROV-XML for representing PROV-DM instances, which will

be discussed in Chapter 4;

• PROV-AQ for access and query of provenance;

CHAPTER 1. INTRODUCTION 10

• PROV-DICTIONARY defines a species of collection as defined by PROV-DM

that is a mapping of key-entity pairs that facilitates the modelling of provenance for

dictionary data structures;

• PROV-DC provides a mapping between PROV-O and Dublin Core Terms;

• PROV-SEM a declarative, first-order logic specification of PROV-DM;

• PROV-LINKS introduces a mechanism to link across bundles as defined by PROV-

DM.

The PROV model allows for the description of the provenance record of anything,

known as an entity, which may be physical, digital, conceptual or otherwise. Examples

of entities would be a printed document, a PDF document, a LATEX markup file, a data

set, or a chart.

An entity is said to be generated by an activity, which may be any process, either

virtual or of the real-world. In the course of performing its function, an activity may make

use of entities. These interrelations between entities and activities are described in the

past tense, such as in this instance ‘used’ and ‘wasGeneratedBy’.

An agent assumes the role of being responsible (to a degree) for the execution of some

activity. An agent again may be physical in its nature such as a person or object, or

virtual, such as a software program. An entity may be attributed to an agent who was

responsible for its creation, and an activity can be associated with an agent.

If a user ran the LATEX typesetting program pdflatex to transform a LATEX file into

a PDF document, this constituted an activity, with which the user and the program were

associated as agents; the input LATEX file is an entity which is used by the process; and

the resulting PDF document is an entity which was generated by that process.

One important feature of the PROV-O ontology is its extensibility. One such ex-

tension of PROV-O is the PAV (“Provenance, Authoring and Versioning”) ontology [27],

which intends to support the authoring and versioning information of web resources.

The example of John baking a cake that was represented in Figure 1.3 to illustrate the

use of OPM has been depicted in PROV terms as shown in Figure 1.4, which utilises the

PROV diagram and colour specification.

The PROV-N specification describes a notation for representing PROV-DM instances

in a human-readable form. It uses functional-style predicates such as entity and activ-

ity followed by a list of terms. The cake-baking example might be expressed as shown in

Listing 1.2.

CHAPTER 1. INTRODUCTION 11

Bake

wasAssociatedWith

wasGeneratedBy

used

used

used

used

Cake

100g
butter

2 eggs

100g
sugar

100g
flour

John

Figure 1.4: Key concepts of PROV illustrated by exemplifying John’s process of baking a

cake, which was previously encountered as OPM exemplar.

Listing 1.2: Example PROV-N notation for baking a Victoria sponge cake

1 document

2 default <http://victoriaspongeexample.org/>

3

4 entity(100gbutter)

5 entity(100gflour)

6 entity(100gsugar)

7 entity(2eggs)

8 entity(cake)

9

10 agent(john, [prov:type='prov:Person', name="John"])

11 // The above illustrates the optional use of a list of attributes

12 // to further describe the agent with identifier 'john'

13

14 activity(bake)

15

16 used(bake, 100gbutter)

17 used(bake, 100gflour)

18 used(bake, 100gsugar)

19 used(bake, 2eggs)

20

21 wasGeneratedBy(cake, bake)

22

23 wasAssociatedWith(bake, john)

24 endDocument

CHAPTER 1. INTRODUCTION 12

1.3 Provenance-Aware Software

1.3.1 Classification

It is possible to consider that there are—broadly-speaking—two approaches to provenance-

aware computer systems: that which requires the user manually to enter provenance in-

formation; and that which looks after this process on the user’s behalf without any explicit

user interaction.

The exclusive use of the former approach is not favourable as it is obviously little

more than ad-hoc annotation volunteered by the user and lacks the systemic involvement

to offer the required degree of structure or guarantee of accuracy; however, it does have

use in supplementing automatically recorded provenance information with user-defined

annotations [18].

The latter category can be further divided two ways: those items of software that

are capable (either naturally, or having been retrospectively adapted) of self-determining

which provenance to record, recording it, and allowing the user some means of interrog-

ating it; and those which enable the automatically collection of provenance from existing

applications, by means of observation.

In the case of software that has not had the benefit of any human involvement to specify

what provenance is to be recorded, one of the principal issues is that of granularity.

Granularity refers to the extent to which a recorded process has been subdivided, and

systems range from coarse-grained with fewer, larger processes; to fine-grained with

more, smaller processes. The term granularity is similarly applied to the data items on

which a process is performed; for example an XML file within a filesystem, an individual

XML record, a database tuple, or an individual byte within memory.

Granularity is a particular issue for systems that automatically record provenance

empirically (i.e. by process observation) as they are naturally oblivious to the context of

the information about which they are recording provenance, and therefore have difficulty

in determining an appropriate level of granularity [14]. These systems typically operate

at a very low-level (e.g. often that of system calls) and so naturally provide a fine-grained

record. In practicality terms for these, granularity can be considered as the “mismatch

between the operating system’s observation of a sequence of system calls and the scientific

user’s desire to record provenance” [14].

A potentially useful intermediate position between software that has been adapted to

collect provenance, and automated observation, is software that intrinsically records its

provenance by instrumenting these facilities by way of automatically adapting its source

CHAPTER 1. INTRODUCTION 13

code.

1.3.2 System-Level Provenance

One of the more successful attempts at recording provenance of existing systems has been

the Provenance Aware Storage System (PASS) [81]. PASS is implemented using a modified

Linux kernel and Berkeley DB back-end storage, and because of this it is able to operate at

a very low level, recording provenance information by intercepting system calls relating to

input and output to files and pipes. The result of this is incredibly fine-grained provenance

information. For instance, during the execution of a program launched from a command

line, PASS records the path of the executable; path(s) of any input files; all environment

variables; kernel version and loaded modules.

We can illustrate how PASS would record the execution of the example S session

given in Listing 1.1, in which case the property of S storing all of its data objects in

individual files becomes particularly useful. It would be possible to store the code given in

Listing 1.1 in a file, and provide it as input to S running on a PASS volume. PASS would

record the invocation of the S executable; the opening for reading of the input source

file; and the opening of S object files whenever an object was read from or written to;

as well as a potential plethora of environment variables and other information. From the

records generated by PASS of files opened and closed for reading and writing, it would be

straightforward to identify which objects were created and read during a session; however,

there would be no indication of how those objects were used, and whether for instance one

object were used in the creation of another object. In order to identify this, the source

file (and its interpretation) would be required. It therefore follows that the source file is

required to annotate the process in order to provide a satisfactory level of granularity; were

the source file not present to accompany the record created by PASS (or similar system),

for instance if the statements were instead entered manually by the user, there would be

no record of precisely what operations were performed on the data objects.

1.3.3 Versioning File-Systems

Provenance-aware systems have been based at the level of file systems, either keeping

a historic record of files by preserving each version—a ‘versioning file system’—or as a

useful point to intercept file operations performed by certain ‘monitored’ processes, and

thus being able to attribute those files opened for reading as being used for ‘input’, and

those opened for writing as ‘output’ [103].

CHAPTER 1. INTRODUCTION 14

A versioning file-system retains copies of previous versions of files. ElephantFS for

instance employed a copy-on-write approach, which instead of overwriting a file with a new

version, created a copy of it [101]. This concept was improved upon by VersionFS, which

was able to work on top of any underlying file system, as well as providing more control

over storage and retention policies [82]. Such a system operates at a necessarily coarse

granularity—that of a file—so while it may able to account implicitly for the evolution of

data by examination of the history of a file, it maintains no record of the specific processes

involved.

1.3.4 Adapting Software

One predominant work on adapting existing software to become provenance-aware is Para-

view, an open source application for data analysis and visualisation, to which has been

integrated VisTrails.

VisTrails allows the recording of provenance information pertaining to data exploration

and workflows by maintaining a record of the data provenance to track workflow (or in

VisTrails parlance, a ‘dataflow’) evolution and recording provenance information in a

structured way—as defined by an XML schema—allowing it to be queried and mined and

dataflows compared [17].

More specifically, this is accomplished by separating the notions of a dataflow specific-

ation from its instances, so while a dataflow instance comprises a record of the sequence

of steps performed in the generation of a particular visualisation, which would be suffi-

cient to regenerate the visualisation, this may be ‘abstracted’ to a more general dataflow

specification that may be used as a template for visualisations with different parameters.

VisTrails provides user interfaces for building and interacting with dataflows, allowing

the user to explore and return to previous versions.

It is VisTrails’ approach of change-based provenance, whereby only changes to state

are recorded, and not the state itself, that enables its integration to applications, and to

its particular case-study Paraview [18].

The foundation of this approach to adapting an application for provenance-awareness

is in an application’s use of the model-view-controller paradigm of graphical user interface,

which stipulates the decoupling of the user interface (view) from the application’s logic and

processing (model), by use of an event handling process known as a controller. Because

all user actions within the application pass through the controller, it can be modified

to intercept and record these actions so they may be replayed later. In practice, these

CHAPTER 1. INTRODUCTION 15

actions are those typically represented by the application’s undo-redo action stack, and a

particularly useful side-effect of ‘hijacking’ the undo-redo stack in this fashion is that it

utilises this as a form of pre-defined, application-specific granularity—there is no need to

define what constitutes a useful action from an outside perspective: it has already been

determined by the developer of the application.

When an action is captured, it is passed to a Provenance Explorer process that runs

alongside the target application in its own thread, via a defined Communications API,

and is recorded along with both automatic and manual metadata. Automatic metadata

includes the time and date of the action, the user who created it, and an assigned unique

identifier for the action, as well as a reference to its preceding action. Manual metadata

in the form of annotations or tags may be defined in the Provenance Explorer.

The Provenance Explorer graphically displays the different application states as a tree,

and allows the user to return to any of these states by replaying the sequence of recorded

actions. It does this by controlling the target application via the Communications API—

clearing the application state and executing the series of actions.

The principal advantage of this method is that it utilises the domain-specific granu-

larity as defined by the application’s undo-redo feature; however, it is thereby limited to

applications that feature undo-redo capabilities, and allow for application actions to be

captured and indeed controlled in this way.

1.3.5 Automatically Adapting Source Code

SourceSource investigates the approach of automatically adapting source code to enable

it to record its own process documentation [74].

The process documentation created by SourceSource is defined in terms of the OPM.

Statements are represented by OPM processes and variables are represented by OPM

artifacts. Because a variable may take on any number of values during the execution of

the program, each new assignment to a variable will result in the creation of a new artifact,

and a mapping is maintained by the recording library to reflect the most recent artifact

of each variable. When a variable is used in a statement, a causal relation (OPM used) is

created between the process (statement) and the most recent artifact associated with the

variable.

SourceSource recognises the requirement for control over granularity, and enables the

user a degree of configuration to determine whether or not a source component—such as

a Java class file—is adapted to record fine-grained provenance, or remains (relatively)

CHAPTER 1. INTRODUCTION 16

opaque, in which case a record of it being invoked is made, but not the processes it

performs, and so records coarse-grained provenance. Calls to third-party libraries, or

any other components for which the source is not available for adaptation, are treated

as Opaque components, for which adapters can be created to document the execution

more extensively. Varying levels of granularity can be accommodated by OPM’s account

identifier, and SourceSource always records the coarse-grained account, and if the relevant

source component has been adapted, the fine-grained account will also be recorded. These

two accounts can be linked by an OPM refinement relationship, in which the fine-grained

account refines the coarse-grained.

In order for the resultant provenance information to be queried and understood by

the user, SourceSource attributes identifiers to statement executions, variables and pro-

gram executions. Each individual statement execution is identified by its scope identifiers

(e.g. package/class/method names), a unique statement identifier and the iteration of its

execution. Each use of a variable is identified by the statement execution using it, its

scope and its name. Program executions are identified by a generated execution identifier.

These identifiers are used to annotate the processes and artifacts in the OPM graph so

that it may be queried by these attributes.

The process of adapting source code for use with SourceSource comprises three stages:

explicate, identify and augment, which can be achieved automatically using a tool for

rewriting source code based on rules. The first stage, explicate is simply preparing the

source code for processing, in particular making explicit any implicit code blocks by the

addition of braces. The second stage, identify, is to introduce identifiers to each statement

with a unique name, comprising its scope identifiers as well as its position within the

method. In the third stage, augment, each occurrence of a process or artifact (i.e. statement

or variable) is augmented by a recording statement.

The approach outlined in SourceSource attempts automatically to adapt source code

for provenance-awareness, thus eliminating (or perhaps at least reducing) the need for

manually adapting software to become provenance-aware. This has only been tested as a

proof of concept in a limited capacity, albeit one which was not entirely trivial, as it was

taken from the Third Provenance Challenge, in submission to which several approaches to

provenance-tracking were made. However, it remains to be seen how scalable this approach

is and whether or not it would be applicable to an application such as an interpreter, whose

function is to handle ad-hoc processes and arbitrary data.

CHAPTER 1. INTRODUCTION 17

1.4 Reproducible Research

1.4.1 Introduction

The journal publication process has long been considered to be the fundamental method of

dissemination of scientific findings and scholarly discussion. It has recently been contended

that “whilst statistical practice has evolved to encompass more computation and larger

and more complex datasets and models, the primary vehicle for delivery has remained the

static, printed page” [40]. The fundamental scientific method remains the same: a scientific

claim must be reproducible. It is this “culture of replication” that weeds out spurious

claims and ensures integrity. As advances in computational processing power increase

researchers’ ability to collect and process increasingly large sets of data with increasingly

complex models and simulations, so too does the challenge of ensuring reproducibility.

The significance of this requirement can be seen against a modern landscape which

provides demand for scientific claims to be ‘startling’; not just by headline writers for

newspapers creating digests of scientific findings for public consumption—even journals

exhibit a publication bias towards papers that discover something new [121], so it is more

critical than ever that scientific analyses are accessible and their repeatability is validated.

Results from observational studies have in particular been drawn into question [121,

57] as an excessive reliance on statistical significance by publishers can lead researchers

to manipulate findings to exploit this bias. A study in 2005 of 49 highly-cited studies

that made observational claims showed that 14 either failed entirely to replicate or the

magnitude of the claim could not be repeated [56]. A study by the same author into

18 articles in the journal Nature showed only two could be fully reproduced; six could be

partially reproduced or reproduced with some discrepancy; and 10 could not be reproduced

at all [58].

It is not only observational studies that are susceptible to lack of reproducibility;

randomised, controlled trials (RCTs) may be considered the “king of study-designs”, but

even these may require repetition to provide definitive conclusions. Even independent

research teams tasked with answering the same research question and armed with the

same data will not necessarily arrive at the same answer, due to the subjective approach

to the research question; the differences in evidence selection and analytic methods; and

editing of the report [63].

Errors in science have not escaped public attention and have been the subject of

media scrutiny, even recently making appearances in mainstream media publications. The

New York Times reported that the American Society for Microbiology’s Infection and

CHAPTER 1. INTRODUCTION 18

Immunity journal was forced to retract [113] six papers by one author who—it transpired—

had manipulated results [84]. The case dubbed the “Duke University Scandal” [54]—the

narrative of which provides a suitably illustrative exemplar of the benefits of reproducible

research, or perhaps more precisely: the cost of irreproducibile research—was reported

in both The Economist [109] and the New York Times [85]. With an even greater focus

on the need for reproducibility in science, The Economist in October 2013 published an

article under the descriptive heading “Unreliable Research: Trouble at the Lab” [110],

which serves as an excellent primer to reproducible research and what efforts are being

made to further reproducibility.

A study in the field of personalised medicine was conducted at Duke University in

2006. The aim was to establish whether a patient’s genetic make-up could be used to pre-

dict their responsiveness to various chemotherapy treatments; the research correlated drug

sensitivity data with results from bio-markers identified by micro-arrays, and made pre-

dictions against patient samples. According to the researchers’ publication in Nature [92],

these predictions were successful, and so provided a proof of concept that signalled a

break-through in the avoidance of chemotherapeutic regime failure. The findings were

so significant that the M.D.Anderson Cancer Center appointed its bio-statisticians Keith

Baggerly and Kevin Coombes to investigate. When supplied with the original data and

code used, Baggerly and Coombes encountered issues and identified ‘sensitive’ cell lines at-

tributed as ‘resistant’ and vice-versa; unintelligible data; mislabelled data and descriptions

of irreproducible analytical steps. When the original researchers refused to acknowledge

these findings, Baggerly and Coombes wrote to the (by now numerous) journals who had

published the Duke results. A response from the Journal of Clinical Oncology in 2008 was

given as:

“A focus on these errors as presented by Baggerly et al is misleading since

it suggests they are a contributing factor in the supposed lack of reproducibility,

which is not the case. Most importantly, the claim that they cannot reproduce

the results of the study, when in fact they did not even try to do so, is an

egregious flaw in their commentary. To reproduce means to repeat, using the

same methods of analysis as reported. It does not mean to attempt to achieve

the same goal of the study but with different methods.”

The original research was used as the foundation of a clinical trial, which eventually

involved 109 patients. Despite an internal inquiry by Duke University into the practices of

its researchers, in response to criticism by Baggerly and Coombes, the University passed

CHAPTER 1. INTRODUCTION 19

the work as being valid. The situation was only resolved when other institutes were unable

to reproduce the original results; a copy of the report of the internal Duke investigation

was acquired; and it was discovered that the principal author and key researcher had

falsified elements of his curriculum vitae. It transpired they had provided to the inquiry

data that had been modified in an attempt to cover their tracks. Ultimately four journal

papers were retracted. Baggerly wrote a brief summary of the incident in Nature [5] and

took the opportunity to make a call to the scientific community to “Disclose all data in

publications”:

To counter this problem, journals should demand that authors submit suf-

ficient detail for the independent assessment of their paper’s conclusions. The

quality of scientific output will benefit from setting these standards. As a com-

munity, we owe it to patients and to the public to do what we can to ensure

the validity of the research we publish.

Whilst most journals encourage attribution of supplementary materials to articles,

providing data and code in this fashion tends not to be completely satisfactory because

there is no consistent way to package these and convey the exact set of steps involved [40].

With particular respect to reproducing the results of computing code; it has been

stated that natural language descriptions of code lead to ambiguity, and errors even exist

in ‘perfect’ descriptions [55]. Even journals that employ policies that insist on code release

via formal descriptions or pseudocode cannot guarantee that this achieves the objective of

imparting the specific functionality of the code without ambiguity [118].

This is the ultimate objective of the reproducible research movement.

1.4.2 Terminology

The term reproducible research was coined in 1992 by geophysicist Jon Claerbout [28],

who went on to describe the initial motivation of recreating one’s own analyses: “In the

mid-1980s, we realized that our laboratory’s researchers often had difficulty reproducing

their own computations without considerable agony” [102]. This perspective was distilled

by Buckheit and Donohu [16] to what has been referred to as Claerbout’s Principle [32]:

An article about computational science in a scientific publication is not

the scholarship itself, it is merely advertising of the scholarship. The actual

scholarship is the complete software development environment and the complete

set of instructions which generated the figures.

CHAPTER 1. INTRODUCTION 20

A further definition has been given as “a piece of reproducible research is an article

that provides readers with all the materials that are needed to produce the same results

as described in the publication” [51]. A view corroborated by Gentleman and Temple

Lang1: “By reproducible research, we mean research papers with accompanying software

tools that allow the reader to directly reproduce the results and employ the computational

methods that are presented in the research paper.” [40].

Efforts have been made to define a distinction between reproducibility and replica-

tion, although there is no consensus about this. One such distinction has been given

by Peng [90], who describes reproducibility as the availability of original data and code,

which may be subjected to independent verification as well as alternative or extended

analyses; while replication as the process of independent investigators using independent

data, analytical methods, laboratories and instruments. Replication is described as the

higher standard to which all scientific evidence should be held, but it is proposed that

reproducibility should be a ‘minimum standard’ that should be met.

Drummond describes this relationship in opposite terms—i.e. with ‘replicability’ as the

simple repetition of original analyses, and reproducibility as the independent conducting

of analyses in attempt to repeat the outcome, without repeating the exact method [34].

Both Davison [31] and Peng [88] identify a reproducibility spectrum, as shown in Fig-

ure 1.5. At the ‘not reproducible’ end is just the publication; and at the other ‘gold

standard’ end is ‘full replication’. In between these two poles are—in respective order—

the publication with code; publication with code and data; and publication with linked

and executable code and data.

Figure 1.5: Reproducibility spectrum illustration, reproduced from [88].

The intrinsic meanings of the terms replication and reproduction are not sufficiently

different to allow them to denote distinct concepts. They will herein be treated

synonymously.
1Gentleman and Temple Lang are, incidentally, contributors to the R project. In fact, Robert Gentle-

man is a founder of the project, along with Ross Ihaka—in part, hence the name ‘R’, which also is a play

on ‘S’.

CHAPTER 1. INTRODUCTION 21

Mesirov introduced some formal—if not widely adopted—terms for referring to com-

ponents of a Reproducible Research System (RRS) [71]. The first is a Reproducible Research

Environment, which provides the necessary tools to conduct analysis and automatically

track the provenance of data, analyses and results, and package them (or persistent point-

ers to them) for redistribution. Secondly, a Reproducible Research Publisher (RRP) is

typesetting system such as Word or LATEX that provides facilities for incorporating arti-

facts from the RRE.

1.4.3 Journal Interest, Policy and Practice

IEEE’s Computing in Science and Engineering (CiSE) has to date featured two special

issues on reproducible research [36, 107] featuring guest editorials and articles detailing

approaches taken towards furthering reproducible research in individual disciplines.

Elsevier’s Journal of Computational Science in 2010 launched a competition inviting

researchers to propose methods for ‘executable papers’, to “improve how data intensive

research is represented in a scholarly journal” [35]. Its winner, Collage [83], was announced

at a workshop [39] held at International Conference on Computer Science 2011. The

Association for Computing Machinery’s Special Interest Group on Management of Data

(SIGMOD) has since 2008 offered the opportunity to assess the papers accepted to its

annual conference in terms of repeatability, as well as going further to “workability”: how

well parameters in computations may be changed [68].

Annals of Internal Medicine stated in 2007 its desire for authors to include in their

articles submitted for consideration a reproducible research statement [62] and in 2013

conducted a study along with Yale Open Data Access, whereby two research teams were

asked to answer the same research question, using the same dataset and produce papers

detailing their findings. The resulting differences serve to “illustrate the value of evidence

synthesis, data sharing, peer review, editing and reproducible research in helping us get

closer to the truth” [63].

Following a letter to the editor of the Biometrical Journal identifying numerical prob-

lems of a Markov Chain Monte Carlo analysis in a paper the journal published, Biometrical

Journal conducted a study into the extent to which the articles published in one of its

volumes were reproducible [51]. Of the articles that included either simulations and/or

illustrative examples, 32% provided access to data; 15% provided access to code; and 11%

access to both code and data. The Biometrical Journal described this finding as “not too

bad” and acknowledged the room for improvement, and went on to state its aims to “in-

CHAPTER 1. INTRODUCTION 22

crease the quality, usefulness and scientific impact of Biometrical Journal articles through

reproducibility”. To achieve this, the journal has appointed an ‘Associate Editor for Re-

producible Research’ who is responsible for checking reproducibility of an article using

its supporting information and providing assistance to authors to make their publications

reproducible.

The British Medical Journal [45] in 2009 stated its intention to encourage authors

to make available raw research data, and include in their submissions a ‘data sharing

statement’ to explain which additional data is available and how it is accessed. However,

the focus here is on the sharing of data (“raw numbers, analyses, facts, ideas and images

that do not make it into published articles”), and there is little mention of the processing

of the data to derive ‘facts, ideas and images’.

Stodden et al. conducted a study in 2013 to evaluate the data sharing policies for

a referent set of 170 journals for 2011 and 2012 [108]. Of the journals studied in 2012,

38% had a policy governing data sharing; 22% had a code policy; and 66% a policy on

supplementary materials. In comparison to the previous year, this represents increases of

16%, 30% and 7% in respective areas. Usefully this study analyses a five-point spectrum

of requirements of the individual policies—from ‘no mention’ up to a ‘requirement as

condition of publication’. At the maximum end of this scale, only 11% of journals require

sharing of data as a prerequisite of publication; only 3.5% require code sharing; and 3.5%

require sharing of supplementary materials (actually down from 4.7% the previous year).

The journal Biostatistics implemented a policy of encouraging authors of accepted

papers to make their work reproducible by others [87]. The journal also offers a “repro-

ducibility review” to its authors, in which the associate editor for reproducibility runs the

submitted code and data to verify the results in the manuscript. A series of ‘kite-marks’

are offered to appear on the first page of an article that have included data (“D”), code

(“C”), and pass the reproducibility review (“R”). After two years of this policy, 21 of 125

published articles have been attributed kite-marks; including five “R”s [88].

Sonnenburg et al. have stated the machine learning discipline’s requirement for a more

stringent reproducibility policy in the Journal of Machine Learning Research [105]; al-

though this has been—quite specifically—countered by Drummond [34]

It is worth noting that policy adoption does not always translate to an adoption

of practice—and that not only scientific disciplines require reproducible research. The

Journal of Money, Credit and Banking since 1996 has required its authors to submit their

code and data to an archive; however, a 2006 study revealed that of 150 papers published

CHAPTER 1. INTRODUCTION 23

over the past decade, only 15 could be independently reproduced using the materials

provided [69].

1.4.4 Benefits

Although making processes reproducible is typically for the benefit of allowing third parties

to use existing work on their own, it may also benefit the original author [102]. Details of

how artifacts were derived may be lost or forgotten over time, and adequate reproducibility

provisions may be implemented to prevent this.

Transparency and sharing of code can be seen as beneficial for reasons other than direct

reproducibility. The UK Engineering and Physical Sciences Research Council Software

Sustainability Institute promotes unity between scientists and software developers in an

effort to encourage the cross-discipline sharing of common code, to prevent “researchers

wasting time reinventing the wheel for each new application” [70].

The British Medical Journal suggests the “potential benefits of sharing data include

quicker scientific discovery and learning, better understanding of research methods and

results, more transparency about the quality of research, and greater ability to confirm or

refute research through replication” [45].

The 2007 case of NASA’s Surface Temperature Analysis software [7, 70] illustrates

how irreproducibility can engender public scepticism, and also how transparency alone

is not enough to change this perception. In this instance, NASA’s Goddard Institute

for Space Studies (GISS) made claims regarding climate change that were based on its

GISS Surface Temperature Analysis (GISTEMP) software, which analysed data of global

surface temperature since 1880. These claims were widely reported, and almost as widely

criticised, owing in no small part to the lack of accompanying software, despite this being

quite usual practice. In response to criticism for publishing findings without the software

used to derive them, GISS released the software source code. At this point, the focus of the

criticism shifted to the nature of the software itself—it was largely written in FORTRAN,

a language with which these days few are familiar; it was poorly organised and had no

build system or test framework; it was written in several languages and required very

specific versions of compilers and it was not portable between big- and little- endian

architectures. These difficulties surrounding the usability of the released code served

only to further fuel theories of conspiracy regarding the global warming claims made by

the software and published by NASA. Therefore it is not a trivial assertion that simple

transparency is of itself valuable; the value lies in—and what was required in this instance

CHAPTER 1. INTRODUCTION 24

was—reproducibility. However, the benefit of this transparency was in having the code in

question available in the public domain so that it may be examined. It is this transparency

that has enabled the code’s reimplementation in Python and the foundation of the Clear

Climate Code project, which has not only been able to verify the original code’s results,

but also consequently to allay fears of a conspiracy [6].

One other noted benefit of this exercise has been the identification of defects in the

GISTEMP software—truncation of floating point digits during parsing of input data; weak

loop termination conditions; inflexibility of internal array representations to changing

parameters.

1.4.5 Resistance

The principal barriers to adoption of reproducible research methods are suggested by

Peng to be “code no longer [being] available”; “the lack of a deeply engrained culture that

simply requires reproducibility for all scientific claims”, and “the lack of an integrated

infrastructure for distributing reproducible research to others” [88]. The first point here

can be addressed by enabling software to be provenance-aware, although it is noted that

this is not feasible for closed-source, or proprietary software.

Donoho presents numerous potential barriers as well as responses [33]. These are

divided into two categories; the first being “Knee-Jerk Objections”, which include: “Re-

producibility takes time and effort”; “No one else does it, so I won’t get any credit for it”;

“Strangers will use your code to compete with you”; “My computing environment is too

complicated to publish like this”. The second category is “Thoughtful Objections” and

include “Reproducibility undermines the creation of intellectual capital”; “Reproducibil-

ity destroys time-honored motivations for collaboration”; “Reproducibility floods journals

with marginal science”; and “True reproducibility means reproducibility from first prin-

ciples”.

The British Medical Journal, in its statement of intent to encourage its authors to share

data, describes the sharing of clinical research data as “a new and challenging concept” for

most medical journals [45]. One general observation made is that nature of clinical data

in respect of data protection, and the (strict) requirement of patient data anonymisation.

Drummond describes the lower standard of ‘replicability’—i.e. repetition of analyses

without change—as the “poor cousin” of the higher standard of independent reproducibil-

ity, and that it is “not worth having”, “would cause a great deal of wasted effort” and “at

best, would serve as little more than a policing tool, preventing outright fraud” [34]. This

CHAPTER 1. INTRODUCTION 25

is very much in the minority of expressed opinion and it could be contended that this per-

spective is naïve in its assumption that research does not require policing, or acknowledge

that by facilitating ‘replication’ of findings to as great an extent as is possible, credibility

and trust in those findings may be engendered. Retractions from journals increased 10-fold

in the decade 2000-2010 [119], with 44% of those attributable to ‘misconduct’ (comprising

fabrication or falsification 11%; self-plagiarism 17%; plagiarism 16%) and 11% because of

irreproducible results.

1.4.6 Existing Approaches

The ReDoc system [102] was developed by Schwab, Karrenbach and Claerbout at Stanford

University in the 1990s, and has been used in their department to provide reproducible

material accompaniment to journal papers, PhD theses as well as books. ReDoc is de-

scribed as “a simple software filing system for authors that lets readers easily reproduce

computational results using standardized rules and commands”. The system is based on

GNU Make [106], a standard Unix utility, typically used for creating software build sys-

tems. A file that is under the control of make is known as a ‘target’ file. For each target

file there is defined a list of source files (or dependencies) and a sequence of commands (or

rules) that should be executed to create that target file. When make is executed, it will

determine whether a target file is out-of-date with respect to its dependencies, and if it is,

the rules will be executed. This process is also applied to a target file’s dependencies, and

so ensures everything is up-to-date according to the defined dependencies. ReDoc’s reader

interface leverages this functionality, and augments it with a framework of make rules.

As well as the article or paper and source code, a ReDoc is composed of project-specific

makefiles, a set of universal make rules, and naming conventions for files. ReDoc classifies

files as follows: fundamental files are those which are not generated by a process, such

as source files, data sets and makefiles; result files are the targets ultimately to be repro-

duced; and intermediate files that are generated during the process of producing result

files from fundamental files. ReDoc provides the following commands: burn for removing

easily reproducible result files; build for reproducing result files; view for launching an

appropriate viewing program for a result file; and clean for removing intermediate files.

The pre-defined naming conventions allow universal rules to handle files appropriately, for

instance, files with the suffix .0 or base name junk are removed by the clean command.

This system represents a trivial step for users of make, as only the naming conventions

need to be adhered to.

CHAPTER 1. INTRODUCTION 26

Authors of the previously-mentioned VisTrails system (page 14) identify its provenance-

awareness as a “step toward simplifying the creation and review of reproducible res-

ults” [37], and thus it is rare amongst the reproducible research literature in its direct

relation of the terms reproducible research and provenance.

One of the ways in which this goes beyond simple provenance-awareness and towards

enabling reproducible research is Vistrail’s support for creating “provenance-rich” papers,

which allow the direct embedding of VisTrails workflows into LATEX and Microsoft Word

and Powerpoint, as described in [8], and also for support of ‘executable papers’ with whose

data and visualisations a user may interact [61].

Mesirov describes an expressly user-friendly reproducible research system, compris-

ing the reproducible research environment of the GenePattern computational genomics

environment, and Microsoft Word as the related publisher [71]. GenePattern, like Para-

view, handles workflows and automatically tracks the versions of ‘pipelines’—connections

between modules in the workflow; tracks the users’ analytic session; regenerates corres-

ponding pipelines; and packages them for redistribution. An add-in to Microsoft Word

enables connection to a GenePattern server—often running on the local machine—and

offers the author the ability to embed text, tables and figures derived from previously ex-

ecuted pipelines, which may then be persistently stored within the document. The reader

may then interrogate an embedded artifact, such as a figure, directly within the docu-

ment, and see the pipeline responsible for its creation. The reader is also able to connect

to a GenePattern server, to execute the embedded pipeline—with or without modified

parameters—to update the embedded elements, which can all then be saved along with

updated provenance.

The BURRITO Linux-based system aims to automate the ‘tedious’ aspects of everyday

research activities: managing file versions, logging parameters and experimental outputs,

writing notes, and organising notes [47]. It achieves this by combining a versioning file

system (NILFS [60]) to preserve historic versions of files; tracers for capturing operating

system-level execution provenance (similar to PASS) and GUI interactions; plugins for

collecting provenance in specific applications; and a variety of utilities for interrogating

and disseminating the recorded events, such as an Activity Feed similar to that of Twitter.

ReproZip [25] and CDE [46] are similar in their approach to providing a means for

both recording provenance of an execution, and packaging it for reproduction in a different

environment. The former utilises the SystemTap [3] library for intercepting system calls,

while the latter uses the ptrace system call. ReproZip cites Burrito as an influence and

CHAPTER 1. INTRODUCTION 27

claims some advantages over CDE including greater control over collected provenance and

customisation of the reproducible package; better caching of provenance in a database;

and greater focus on usability for authors and reviewers. Both are, however, limited to

operating on Linux operating systems. It is possible to overcome this limitation by using

a Virtual Machine to emulate a Linux system on which the package can be executed;

although this necessitates additional configuration and will incur a performance cost.

Sumatra [31] is a Python library “on which may be built interfaces adapted to indi-

vidual scientists’ workflows”; or, a method of constructing—what Mesirov might call—

Reproducible Research Environments. This is essentially a system for the automatic col-

lection of provenance, even though it’s not explicitly stated as such—to which end, two

approaches are described: “taking a digital copy of the entire environment using a hard-

ware virtualisation approach”; and “capturing and storing metadata about the code and

environment that lets it be recreated later”. In the latter approach, the execution en-

vironment (such as hardware platform, architecture, operating system, software versions,

command line parameters etc.) is recorded; the version of code used—according to a ver-

sion number attributed by a version control system such as Git or Mercurial; the input

data—again identified by VCS version number; and output data.

Reproducible research has been facilitated by means of the concept of Literate Pro-

gramming described by Knuth [59] in which programming code is interwoven with an

explanation of its logic expressed in natural language. Two preprocessing routines exist

to distil out components for consumption by computer and human—tangle extracts from

the input file a compilable source file; and weave which creates formatted documentation

for (human) viewing.

One system that utilises literate programming for the purpose of reproducible research

is Lepton [67].

It has been proposed that virtual machines could be used to facilitate packaging of

reproducible research [13]. At the point at which a researcher has completed an analysis,

the state of the (virtual) machine is saved. This is then packaged in an archive with

auxiliary files (such as the paper, its text and figures) which may then be distributed.

1.4.7 Approaches in R

There exists in R a package entitled Sweave, which facilitates the literate programming

of R code [65]. This was extended in 2011 [66] to the R2 platform, which proposes using

R packages (see Section 2.2.5) as containers for reproducible research papers, and R’s

CHAPTER 1. INTRODUCTION 28

built-in CMD check facility to evaluate the commands necessary to reproduce and validate

the paper and its results. There is also a proposed R2 server for storage and subsequent

retrieval of packaged papers.

Building on the Sweave approach, Gentleman and Temple Lang propose Compendium

as a “container for one or more dynamic documents and the different elements needed

when processing them, such as code and data” [40]. This approach describes a dynamic

document as an ordered composition of code chunks—sequences of commands, e.g. R,

the execution of which are needed to produce output—and text chunks—the (natural

language) descriptions of the problems, code, results and interpretations. As in literate

programming, one is intended for consumption by computer and the other by the reader.

Auxiliary software may also be included in a compendium; for example user defined func-

tions that will not appear (directly) in the document, but notwithstanding are required

for reproduction.

Peng describes the R package cacher as an alternative approach to that of literate

programming [86]—one more akin to that described by Claerbout [102]. The objective of

this package is to “provide a means by which an author can assemble the code and data

used in a statistical analysis into a single package that can be distributed easily to others.”

It does this without intertwining the code with a human-readable document as would be

the case in literate programming and so does not require the user to be familiar with the

necessary mark-up languages employed for this purpose, such as LATEX. When an analysis

is evaluated under the supervision of cacher, it establishes a directory within the file

system and saves to it cached versions of all resultant objects. This directory can be made

accessible via any protocol (e.g. HTTP/FTP) with which R is compatible, so that any user

who wishes to interact with the code and data from that analysis may invoke the function

clonecache with the relevant URI as an argument to obtain the repository of data and

code used. A further advantage of this method is that when an analysis is repeated only

those expressions that have not previously been evaluated (and therefore whose resultant

objects may be different) will be re-evaluated, while those that have remained the same

can load the values for objects directly from the cache.

1.5 Motivation and Research Goals

The principal motivation for this work is to overcome the lack of transparency of data

provenance that faces the analyst conducting, or perhaps returning to a long-ago conduc-

ted, exploratory data analysis in the CXXR statistical environment. As this chapter has

CHAPTER 1. INTRODUCTION 29

described, the value of data is increased by accompanying it with its provenance; further-

more, in this particular context of statistical analysis, establishing the provenance of an

analysis has clear value when it comes to being able to reproduce that analysis.

The use of a computational statistical platform for conducting exploratory data ana-

lysis presents inherent challenges for the analyst, whose typical workflow will employ

techniques for presenting data in various ways—e.g. tables, summaries, and plots (stem-

and-leaf, boxplots, scatterplots etc.)—in attempts to allow the data to reveal its underlying

structure.

After conducting an analysis—either immediately or after loading a previously saved

session—the user is faced with significant degree of opacity in the data—there is no

metadata. The result of this is that the user is only able to see what data objects were

created in the session and display (either textually or graphically as appropriate) their

values. There is no provision for asking questions about how any of the data objects came

into existence, so it is therefore not feasible to piece together a coherent picture of the

analysis.

To exemplify this effect we will look at an example analysis into changes in fine air

particle pollution (PM) in the United States between 1999 and 2012 using data available

on the website of the US government’s Environmental Protection Agency. This analysis

was written in R by Roger Peng [89] and will be encountered throughout this work (the

full analysis is presented in Appendix C.) The workflow of this analysis is presented in

Figure 1.6 as a UML activity diagram to describe its various stages.

CHAPTER 1. INTRODUCTION 30

«iterative»

Load Dataset
pmn from

CSV

Boxplot x0, x1

Summary x0, x1

Peng Fine Particle Air Pollution EDA

Verify #
rows

Name
columns

Extract
subset xn
from pmn

Sample.Value
column

Check
%age

missing
values

Indicates negative
values present in x1

Investigate negative
readings in x1

Small proportion negative;
mostly in first six months;

cause unclear

Find monitors
common to both

datasets

Determine which monitor
m had most observations

Scatterplot time series of m in
pm0, pm1 with median line

Shows decrease in median
PM levels

Calculate state-wide mean
 mn0, mn1, from pm0, pm1

Plot mn0, mn1, with
connecting lines

Shows per-state change in
mean PM level

Show aggregate
changes in PM level

Two datasets
available: 1999 and

2012

Figure 1.6: UML activity diagram depicting an EDA of fine air particle pollution in the

United States between 1999 and 2012

In an environment such as CXXR, the use of such techniques can quickly cause a

cluttered and confusing workspace: each instance of representing a dataset is likely to

require the creation of new data objects, or altered versions of existing data objects. The

analysis shown in Figure 1.6 was conducted in a CXXR session, and Listing 1.3 uses the

R function ls() to list the data objects—the names enclosed in quotation marks—that

were created during the execution of this analysis. The particulars of this example will

CHAPTER 1. INTRODUCTION 31

be described more thoroughly in due course, but for now serves to illustrate the sort of

problem faced by the data analyst in this scenario. This analysis consists of 50 expressions,

and results in the creation of 23 data objects, many of which have arbitrary, cryptic names

such as x1 and tab, from which very little information about the analysis can be gleaned.

Listing 1.3: List of data objects in CXXR workspace after execution of EDA use case

1 > ls()

2 [1] "both" "both.county" "both.id" "cnames"

3 [5] "cnt0" "cnt1" "dates" "dates0"

4 [9] "dates1" "missing.months" "negative" "pm0"

5 [13] "pm0sub" "pm1" "pm1sub" "rng"

6 [17] "site0" "site1" "tab" "x0"

7 [21] "x0sub" "x1" "x1sub"

More generally, Figure 1.7 depicts a use case of what might follow that described in

Figure 1.1, in which the original user Alice wishes to reflect on her analysis, or a new user

Bob loads Alice’s session and wishes to pick up where Alice left off. In this case, the users

wish to elicit details about the original analysis by asking questions of the data objects to

gain an understanding of how the analysis evolved and in what ways the data was used.

At present it is not possible for these such questions to be answered in CXXR. As a

consequence the user is prevented from easily (or perhaps at all) being able to re-use the

original analysis—its value is, at best, diminished; at worst, extinguished—and there is

no certainty in being able to replicate the analysis.

1.5.1 Research Goals

Motivated by the problems encountered in such scenarios, the principal objective of this

thesis is:

To understand how and the extent to which CXXR can be adapted to record

and interrogate the provenance of the data on which it operates.

To accomplish this the following goals will be undertaken:

1. Understand the role of provenance in the context of typical use cases of statistical

computing for exploratory data analysis (already discussed in this chapter)

2. Define, from 1, provenance questions that a provenance-aware CXXR would be

necessarily capable of answering (Chapter 3)

CHAPTER 1. INTRODUCTION 32

Subsequent to EDA in CXXR

‘Bob’

Load
Session

List objects

Ask questions
of data and

session

Print values

Draw plots

‘Alice’

Inspect
objects

How was it
created? By whom was

it created?

When was it
created?

Which other
objects does it
depend on?Which other

objects
depend on it?

What steps were
taken in the

entire analysis?

Figure 1.7: UML Use Case depicting scenario following EDA in CXXR

3. Design and implement facilities for enabling provenance questions to be answered

by CXXR (Chapter 3 in the general case; Chapter 5 for special cases)

4. Design and implement facilities for provenance questions to be answered in a cross-

session capacity (Chapter 4)

5. Understand how provenance recorded in CXXR can be used in other systems

(Chapter 4)

6. Evaluate the efficacy of provenance-awareness in CXXR with respect to the proven-

ance questions defined (Chapters 3, 4, 5)

A secondary objective of this thesis is as follows:

What can a Provenance-Aware CXXR contribute to reproducible research

in R?

CHAPTER 1. INTRODUCTION 33

1.6 Overview of this Thesis

The remainder of this thesis is structured as follows:

Chapter 2 Introduces the software that is the subject of this study, CXXR, and its

development as a variant of R, which may be considered a spiritual descendent

of S. R is a language and environment for statistical analysis and graphics. This

chapter also primes the reader in the language of R, so that the examples encountered

throughout may be understood.

Chapter 3 Details the provenance questions to which provenance-aware CXXR should

offer answers. This chapter describes the software design to achieve this and its im-

plementation to CXXR, and illustrates its effect with examples, and discusses how

we can understand this view of provenance in terms of standard provenance models.

Chapter 4 Describes how cross-session provenance tracking is achieved by reimplement-

ing the interpreter’s serialisation process to include provenance information.

Chapter 5 Details a series of ‘special cases’ of provenance tracking in CXXR, for which

the facilities introduced in Chapter 3 do not adequately cater, and special design

decisions are required in order for accurate representation of provenance.

Chapter 6 The first of two conclusion chapters which specifically evaluates this work

with respect to the field of reproducible research.

Chapter 7 Draws more general conclusions from the study, critically evaluates the under-

standing outcomes, and also considers how further work may extend the knowledge.

Chapter 2

CXXR

CXXR is a variant of the R environment, which is an open source implementation of S.

This chapter gives a brief examination of how CXXR has evolved from R and in turn

S, and an introduction to the R language and environment. Individual aspects of the R

language and CXXR version of the environment will be discussed in detail in later chapters

as they become more relevant.

2.1 History

S is a language and interactive environment for statistical computing, graphics, and ex-

ploratory data analysis [10]. It was developed during the mid-1970s at Bell Laboratories

by John Chambers and Richard Becker. S emerged from Bell Labs at around the same

time as the C programming language, and this is reflected in both its syntax and its name.

The follow-up to S, ‘New S’ was released in 1988 (accompanied by the “Blue Book” [9])

and it sported a new feature entitled S AUDIT [11], and in so doing it became one of

the first provenance-aware applications.

While S continued life as a commercial product called S-PLUS, retailed by TIBCO

Software Inc. [111] until at least 2010, the language, library and environment have been

reimplemented as part of the open-source R project [93] that was started as a research

project by Ross Ihaka and Robert Gentleman in the 1990s [53].

2.2 R

The R distribution comprises an interpreter, written for the most part in C with a splash

of Fortran, and packages for common functionality, which are written in a combination of

C, Fortran and R itself. R is maintained by a team of core developers that is currently

34

CHAPTER 2. CXXR 35

20-strong and includes original S developer John Chambers, and enjoys a large and active

userbase working in areas as diverse as retail strategy, genetics, education, pharmacology,

proteomics, and data and text mining.

This section serves as an introduction to the R language and environment.

2.2.1 Expressions

Listing 2.1: Example R statements

1 > 1 + 2

2 [1] 3

3 > three <- 1 + 2

The R environment is interactive; that is to say that during a session it is operated

by a user, who provides expressions that are evaluated and the result of that evaluation

is then displayed. An R session begins at the prompt, which by default is indicated by

the string "> ", and it is here that expressions are entered by the user for evaluation.

Expressions in R are ubiquitous, so to identify those that are entered here at the prompt

by the user, they are referred to as top-level expressions, which correctly implies that

there are other levels of expression. Although graphical user interfaces to R exist on many

common platforms (Windows, Linux, Mac OS X etc.), these perform little function when

it comes to performing any data analysis or programming, but serve a useful purpose

of facilitating easy control over the session by its user, such as customising its look and

feel, presenting visualisations in windows, managing packages and data sources, saving or

loading the workspace, and providing access to help documentation.

Listing 2.1 shows an extract of a session in which two top-level expressions are eval-

uated. The first expression simply outputs the result of the integer addition, while the

second attributes the result to the name three whose value will remain until such a time

when three is either deleted, or given another value. The latter expression is an example

of an assignment operation (and can be referred to as either an assignment expression or

an assignment operation equally validly), as denoted by the operator "<-"1. Also appear-

ing in the second top-level expression as the right hand side operand of the assignment is

addition, as traditionally denoted by the operator "+", and like the assignment operator

and indeed all other binary operators in R, it is essentially only ‘syntactic sugar’ for an
1The more traditional assignment operator = is also available at (only) the top-level in R; however, the

‘arrow’ is generally preferred in any case.

CHAPTER 2. CXXR 36

underlying binary function, whose arguments become the left and right hand side op-

erands. In the second top-level expression, the addition (1+2) forms an expression of its

own, within the top-level expression.

However, this is a slight simplification. What goes on “under the hood” in the above

example (Listing 2.1) is a little more complex. When 1 + 2 is evaluated in each of the two

statements it gives rise to an object representing the result of the calculation—3—which

in the first statement is discarded2 after its value is printed, but the second expression is

an assignment: we can think of this as “assigning 3 to three”.

The high-level view that most R users tend to take (as do most R introductory texts)

would suggest here that three is an ‘object’ or ‘variable’ and conceptually this is perfectly

sufficient in most contexts, but we need to treat this issue with finer accuracy. What

actually happens is more like so: The symbol three becomes bound to the value rep-

resenting 3 that resulted from evaluating the right hand side operand (consisting of the

expression 1 + 2) of the assignment operator. It would therefore be more accurate to say

that three refers to an object whose value is 3, or more generally: a binding connects

a symbol to an object.

2.2.2 Objects

Creating and using objects is one of the concepts central to R—it is practically a mantra of

S and R that “everything is an object” [21]. An object belongs to a class, which describes

its underlying data type and therefore how it may be used by functions. Common classes

within R include the following vector classes: logical, numeric, integer, character,

list, complex, raw, expression, and the non-vector class function. Less common classes

are call, name and environment.

Dynamic Typing

A binding in an R session is not declared in such a way that it has a fixed (or static) data

type. Instead, its type is determined dynamically, and it therefore assumes the class of

the object to which it is bound. The function class(x) returns a string representation of

binding x’s class. Examples of dynamic typing in R are shown in Listing 2.2.

Listing 2.2: Dynamic Typing example

2Strictly-speaking, it is bound to the symbol .Last.value but this is outside our scope for the moment.

CHAPTER 2. CXXR 37

1 > x <- "a string"

2 > class(x)

3 [1] "character"

4 > x <- 1

5 > class(x)

6 [1] "numeric"

7 > x <- TRUE

8 > class(x)

9 [1] "logical"

Vectors

A vector in R is an homogeneous indexable array of data, which may be composed of

elements of any vector class. Vectors in R are pervasive to such an extent that even single

values of objects of a vector class (e.g. TRUE) are represented by a vector of just one

element—a singleton vector. Therefore in the initial example (Listing 2.1), 1 + 2 is an

expression which adds two singleton integer vectors, to produce another singleton integer

vector—3. Scalar objects do not exist in R.

Listing 2.3: Basic Vector Manipulation

1 > x <- seq(from=1,length.out=10,by=2)

2 > x

3 [1] 1 3 5 7 9 11 13 15 17 19

4 > x[c(1,5,9)]

5 [1] 1 9 17

6 > x[c(TRUE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,FALSE)]

7 [1] 1 5 9 13 17

8 > x * 2

9 [1] 2 6 10 14 18 22 26 30 34 38

10 > x[c(TRUE,FALSE)]

11 [1] 1 5 9 13 17

12 > x[x > 10]

13 [1] 11 13 15 17 19

Listing 2.3 shows some basic vector operations. The first statement creates a vector

x using the seq() function to generate a vector of 10 elements, starting from 1, with

increment 2, which results in the odd numbers between 0 and 20. The second statement

simply causes this vector to be printed.

CHAPTER 2. CXXR 38

In general, a vector v’s elements can be addressed using the syntax v[i], where i is a

numeric (i.e. integer) vector or a logical vector. When i is a numeric vector, elements of v

corresponding to the elements of i are addressed, as shown in the third statement. When

i is a logical vector, elements of v that correspond by position to those elements in i that

are TRUE are addressed (as shown in the fourth statement). The fifth and sixth statements

illustrate how vector operations are performed element-wise, for example, in the case of

multiplying two vectors a and b, the resulting vector is composed of a[1] * b[1], a[2]

* b[2] and so on. If a and b are of unequal length, then the shorter is repeated, as

illustrated in the fifth statement, where the vector 2 is repeated for each element of x

(i.e. length(x) times), and the sixth statement where the logical vector c(TRUE,FALSE)

extracts just the odd-numbered elements of x, making the cumbersome fourth expression

more succinct.

These two techniques may be combined to select elements of a vector based on a

boolean condition, such as that of the seventh statement, which indexes x by a logical

vector that is created by applying the logical operation > 10 to each element of x.

Functions

Function definitions take the following form:

function (formal arguments) body

Typically a function body is enclosed by braces and split over multiple lines for read-

ability, and functions are typically bound to symbols.

Formal arguments are defined as a comma-separated list of names, each of which may

be given a default expression that gets evaluated in the absence of an actual argument.

For instance, the formal arguments for the function seq are defined as follows:

seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),

length.out = NULL, along.with = NULL, ...)

During evaluation of a function, the actual arguments, which are also comma-separated

and enclosed in parentheses after the name of the function, are matched to the formal

parameters by position or name, or a combination of the two. For example, a call to seq

to generate an integer vector of the numbers 1 to 10 could be expressed equally validly as

seq(from=1,to=10), seq(to=10,from=1), or seq(1,to=1), or seq(1,10).

Some built-in functions are evaluated not for their result, but for their side-effect(s)

such as the function plot(), which does not return a result, but instead uses a graphics

device to show a plot.

CHAPTER 2. CXXR 39

Operators and Primitive Functions

R uses C-style mathematical, relational and logical operators: + - * / == != < > <= >= &

| !, along with operators for exponentials (ˆ), integer division (%/%) and modulo division

(%%). R has other language-specific operators such as assignment <-, non-local assignment

<<-, collection subscripting [, collection named-component access $, package-qualification

::, and a number of others that will generally not be encountered here.

The use of binary operators with infix syntax, such as a + b is only ‘syntactic sugar’

for a call to a function in prefix style, in which the operator is placed in backticks, and

followed by its operands given as arguments: `+`(a,b).

R’s operators are one example of its set of functions known as primitives, which do

not correspond to the previously-encountered function type (that has formal arguments

and a body) 3. Their implementation is internal to R which holds a mapping between

each primitive ‘name’ and a C routine to be executed. There are two internal types

of primitives: builtin, whose arguments are first evaluated before being passed to the

internal routine, and special, whose arguments are passed to the internal routine as

unevaluated as expressions.

The majority of primitive functions in R are of the builtin variety as these opera-

tions, which include all mathematical operations such as addition `+`, multiplication `*`,

and logical negation `!`, will necessarily require their operands to be evaluated in order

to perform their function; while a special primitive such as `if` allows flexibility in

determining which of its operands (if any) are evaluated and when.

Lists

The R list datatype is a heterogeneous collection of (optionally named) objects. Lists

are typically returned as the result of calls to functions, but may be constructed manually

using the list() function, an example of which is shown in Listing 2.4: a list newlist is

constructed with a function element named oneToN; the list is then printed; the function

newlist$oneToN is invoked with argument 7; another list mylist is then constructed,

consisting of two elements: the result of newlist$oneToN(10) named intvector, and a

string; the entire list is printed; and then one of the named elements is extracted.

3Primitive functions reside in the base package. An investigation into primitives can be found in

Appendix A.1.

CHAPTER 2. CXXR 40

Listing 2.4: Example of R’s list

1 > newlist <- list(oneToN=function(n) seq(from=1,to=n))

2 > newlist

3 $oneToN

4 function (n)

5 seq(from = 1, to = n)

6 > newlist$oneToN(7)

7 [1] 1 2 3 4 5 6 7

8 > mylist <- list(intvector=newlist$oneToN(10),string="String in a list")

9 > mylist

10 $intvector

11 [1] 1 2 3 4 5 6 7 8 9 10

12

13 $string

14 [1] "String in a list"

15

16 > mylist$intvector

17 [1] 1 2 3 4 5 6 7 8 9 10

Classes and Object Orientation

Object-Orientated Programming (OOP) allows for an object’s attributes and behaviour

to be encapsulated and defined by a class, possibly in relation to other classes to provide

inheritance. When called, a method determines its behaviour based on the class of

the object on which it operates. R natively4 has three systems to support object-oriented

programming, two of which it has inherited from versions of its predecessor language, S:

S3 informal ‘classes’ present a simple and ad-hoc system to provide rudimentary object-

orientation based on single method dispatch; however, their use for new code is now

considered deprecated, although a significant legacy S3 codebase is still in use (including

in R itself); and S4 classes, which work similarly to S3 classes, but have formal class

definitions (and are hence known as formal classes) and allow multiple dispatch. Finally,

Reference Classes have come along far more recently and unlike S3 and S4 classes,

these operate on a different principle of message-passing object-orientation to better

capture the semantics of other object-orientated languages such as Java or C++.

S3 classes were introduced to the version of S developed around 1990, and first de-

scribed in the accompanying “White Book” [22]. Under this mechanism, objects are given

an attribute class that is used to describe its class and from what other classes it inherits.
4There are a number of add-on packages to support OOP available for R, including R.oo

CHAPTER 2. CXXR 41

The class attribute contains one or more strings representing names of classes, the first of

which is class of the object, and the remainder are classes from which the object inherits.

The class of an object can be set using the class function.

> x <- "The Sport of Rugby"

> class(x) <- "rugby"

A generic method is one which examines the class of its argument(s) and determines

to which method a call should be dispatched. Under S3, this is determined purely on the

basis of the class name(s) involved—if m is a generic method and obj is an object with

class c, then in a call to m(obj) will result in attempt to dispatch a call to m.c(obj). It

should be noted that full stop (.) is a valid character in identifiers and it does not carry

any member-extraction connotations, unlike C, C++ or Java. If no such method exists,

then methods with names corresponding to the other classes from which obj inherits are

sought, defaulting to m.default(obj) if no specialised method pertaining to one of obj’s

classes exists. This is called single-dispatch because an S3 generic method may only accept

one parameter.

> ball <- function(x) UseMethod("ball", x)

> ball.football <- function(x) "sphere"

> ball.rugby <- function(x) "prolate spheroid"

> ball.default <- function(x) "generic ball shape"

> ball(x)

[1] "prolate spheroid"

S3 classes offer an easy way to provide limited polymorphism, but this is limited by

the single dispatch restriction and lack of robust structure and type-safety. In particular,

there is no definition for what types the elements of an S3 class must have.

Nowadays the creation of new S3 classes is generally discouraged [21, p. 362] in favour

of S4 classes, although they are still widely-used and there is still appetite from the user-

base.

S4 classes arrived in the 1998 version of S, which is described in the “Green Book” [20].

This mechanism works loosely on the same principle of method dispatch as S3, but it uses

a formal definition of a class known as its representation, which specifies what attributes

the class has and from what (if any) other classes it inherits.

A class is created with the setClass function, which establishes its representation,

which is a collection of named and typed variables known as slots.

CHAPTER 2. CXXR 42

> setClass("BallSport", representation("officialname" = "character",

"ball" = "character"))

> football <- new("BallSport", officialname = "Association Football",

> ball = "sphere")

> rugby <- new("BallSport", officialname = "Rugby Union",

> ball = "prolate spheroid")

The setMethod function is used to establish which generic methods may be called on

an object of a given class. In contrast with S3, S4 generic methods support multiple-

dispatch, so they may choose methods based on the class of any number of arguments

instead of just one.

> setMethod("show", "BallSport", function(object) {

+ cat("The sport of", object@officialname, "is played with a",

+ paste0(object@ball, "-shaped"), "ball\n")

+ })

[1] "show"

> rugby

The sport of Rugby Union is played with a prolate spheroid-shaped ball

A new generic method (such as one to be used as an accessor function for a class slot)

is first created with the setGeneric function, before being established for a particular

class using setMethod.

> setGeneric("getBall", function(object) standardGeneric("getBall"))

[1] "getBall"

> setMethod("getBall", "BallSport", function(object) object@ball)

[1] "getBall"

> sapply(c(rugby, football), getBall)

[1] "prolate spheroid" "sphere"

S4 classes offer a more formalised approach to object-orientation in R; however, like

S3 classes, their methods are not encapsulated as part of their definition, they are simply

functions. They are also subject to R’s copy-on-change semantics: when a slot’s value is

altered, the change does not occur ‘in-place’, instead it forces the construction of a whole

new object. While this is a valid characteristic for R’s heritage as a functional language

and makes it easy to reason about programs with S4 classes, it can be inefficient where

large objects and numerous modifications are concerned.

R version 2.12 released in October 2010 contained for the first time the reference

class (RC) facility for defining classes whose objects behave in a fashion similar to those

of OOP languages like Java and C++. Reference classes are based on S4 classes, and the

CHAPTER 2. CXXR 43

RC vernacular and interface is broadly similar to that of S4, but there are a couple of

significant differences which set RC apart from its ancestor. Firstly, they present tighter

encapsulation of methods: unlike S4 classes whose methods are functions declared suitable

for joining in with the method dispatch arrangement, RC methods actually belong to

objects. Secondly, RC objects are mutable: they contain state that can be modified

without the object being subject to R’s copy-on-change policy.

A reference class is created using the setRefClass function to specify its name as a

string, and lists comprising fields and methods. The fields list’s elements each represent

a field of the class: the name of the field and its value is a string representing the field’s

type. Similarly for the methods list, whose element names represent the names of the

methods, and whose values are the functions.

> BallSport <- setRefClass("BallSport",

+ fields = list(officialname = "character", ball = "character"),

+ methods = list(getBall = function() ball)

+)

It is conventional to use the object returned by setRefClass in the creation of new

objects of a reference class. The operator $ is used to denote access to a member (either

field or method) of an RC object, for instance object$method(args) denotes invoking

a method method with arguments args on an RC object object, while object$field

accesses a field.

> rugby <- BallSport$new(officialname = "Rugby Union", ball = "prolate spheroid")

> rugby

Reference class object of class "BallSport"

Field "officialname":

[1] "Rugby Union"

Field "ball":

[1] "prolate spheroid"

> rugby$getBall()

[1] "prolate spheroid"

As their name implies, RC objects display reference semantics, meaning they are not

copied-on-modification, and they are passed by reference.

> notRugby <- rugby

> notRugby$ball <- "A silly shape"

> rugby$ball

[1] "A silly shape"

CHAPTER 2. CXXR 44

In the general R world with its copy-on-modify semantics, it is safe to assume that a

function f will not modify object a in the call f(a)—if it were to modify its argument

a, then a copy of it would be created within the scope of f, without modifying a in the

calling code; however, if a is a reference class object, then this assumption is no longer

safe.

Data Frames

Data frames are one example of the legacy of S3 classes in R, and are described as “the

fundamental data structure by most of R’s modelling software”5.

The concept of data frames in R is commonly considered to be naturally representative

of experimental data obtained by observation (i.e. one or more variables being measured

against another variable, such as time). In general, a data frame is a collection of linked

variables which, when it is visualised as a table, has unique row names and named columns.

An example of how data frames may be used is given in Section 2.2.6.

2.2.3 Flow Control

R’s ethos as a functional language encourages that, whenever possible, new functionality

is implemented by function accretion, where new functions are built on top of existing

functions, and operations are applied to vectors (or vectorised). However, R is not a

purely functional language and so does not enforce a requirement for code to be composed

exclusively of function application; in practice, R code typically looks imperative in nature.

R includes constructs for flow control: conditional code execution and loop constructs for

repeated code execution.

R provides two forms of conditional code execution:

if (condition) expression1

if (condition) expression1 else expression2

Similarly to other programming languages, if the logical expression condition evaluates

to TRUE then expression1 is then evaluated, otherwise if the optional else clause is defined,

expression2 is then evaluated.

As in the semantics of a functional language, the if construct returns a value. The

value resulting from evaluation of an if statement is the value that results from evaluation

of the final line in the branch, or NULL in the case where no else branch is defined and the

condition evaluated to FALSE). For example, the following function f returns the result
5According to the online help for data.frame

CHAPTER 2. CXXR 45

of an if, which is either the result of evaluating 42 > 42, i.e. FALSE; or the result of

evaluating a cat call, i.e. NULL:

> f <- function(x) {

+ if (x > 0) {

+ cat("if branch\n")

+ 42 > 42

+ } else {

+ cat("else branch\n")

+ }

+ }

> rc <- f(rnorm(1))

if branch

> rc

[1] FALSE

> rc <- f(rnorm(1))

else branch

> rc

NULL

R also supports three types of loops for repeating operations:

• The for each loop: for (var in range) body.

During each iteration of the loop, var’s value is iteratively set to each element of

range, which is typically a vector, and the expression body is evaluated. Unless

otherwise explicitly terminated, the loop terminates when range has been exhausted.

This is akin to a for-each loop in other languages (e.g. Perl, Bash, Java).

• The while loop: while (condition) body.

This is a traditional while, which evaluates the expression condition and if TRUE,

evaluates the expression body and repeats until the test condition evaluates to FALSE.

• The repeat loop: repeat body.

The expression body should include its own test to determine when to terminate the

loop.

Two statements which may appear in the body expressions of loops are next (akin to

continue in other languages) which stops evaluation of the current loop iteration and

proceeds to the next; and break which terminates the loop evaluation.

CHAPTER 2. CXXR 46

It is not only as a matter of style that loops are generally not preferred in R and S:

a discussion has long surrounded the use of vector operations for potentially achieving

greater computational efficiency over using looping constructs. The term vectorisation

refers to the use of a single expression operating on a vector in place of a loop that

iterates over the vector. While the potential to be gained from thorough vectorisation is

often exaggerated, there are instances where this can result in greater efficiency, such as

reducing the number of calls dispatched to C functions from R. The general idea is to

move from a situation involving a large number of function calls that each operate on a

small amount of data, to a smaller number of function calls that each operate on a larger

amount of data.

2.2.4 Language

The S language, of which R is one implementation, evolved slowly into its current state of

being a multi-paradigm language that draws influence primarily from functional languages,

but also imperative and—with the introduction of S4 classes and in particular Reference

Classes—object-oriented languages.

A pure function in computer science is one whose result depends exclusively (al-

though not necessarily) on its arguments and therefore will always evaluate the same res-

ult given the same arguments; nor may it have any semantically observable side-effects,

such as modifying external state or perform I/O interactions.

R does not enforce this practice and cannot guarantee this behaviour of functions

written in R, so it may not be considered as a purely functional language; however, it does

allow for functions to be written according to the spirit of functional programming, and

gain (to a greater or lesser extent) the inherent advantages of pure functions.

Some common R functions have side-effects, which in some cases may be considered

relatively legitimate (although still contrary to the principles of functional programming),

such as plot() (a “generic function for plotting of R objects”), whose only purpose is the

side-effect of drawing a plot, and those that accept user input; more illegitimate sources

of side-effects exist in the form of accessing and mutating state.

While R is not a strictly-functional language, R allows for software to be written

that makes use of functions and functional programming concepts, and even encourages

well-written software to do just that [23].

CHAPTER 2. CXXR 47

2.2.5 Packages

R’s system of packages allows R code to be grouped, saved, distributed and loaded as

required. The R distribution includes a number of packages for common functionality: the

base packages, which are loaded on start-up; and the recommended packages, which

are included as part of the standard distribution but not automatically loaded. Tables 2.1

and 2.2 each give a list and description of the base and recommended packages respectively

at the time of writing [50].

Packages are written to provide access to additional functionality and or sets of data.

It is common practice for a statistics textbook to have an R package accompaniment.

The R Project also maintains CRAN, the Comprehensive R Archive Network, which

is a package repository currently featuring over 5000 packages covering a vast array of

functionality [2].

Functions and data sets in packages that are loaded are often subject to lazy loading,

so that although they appear in scope, their contents are not actually loaded until required.

This reduces the time taken for R to start, as well as keeping large data sets out of memory

until they are needed. Lazy loading is discussed further in Chapter 5.

2.2.6 Bindings and Environments

When the term ‘object’ is used to describe an entity in R it is often used ambiguously and

its true meaning is not quite as obvious as it may first appear. What is commonly referred

to as an ‘object’ in R is actually a binding in an environment between a symbol and a

value (Figure 2.1).

Consider the following R expression:

> three <- 3

This expression creates a singleton integer vector composed only of the integer 3,

and establishes a binding between that and the symbol three. As this expression was

evaluated at the top level (indicated by the command prompt >), it is effective in the

global environment.

Ambiguity of this terminology will herein be avoided as far as is possible by using

explicit phrasing; however, in the interest of readability, the reader is advised that a

shorthand description of ‘objects’ may be employed: for instance, “x is a data frame”

should be read as “a binding whose value is of type data frame is associated to the symbol

x”. The environment in which the binding occurs will most likely be qualified, but in many

scenarios this will be the global environment.

CHAPTER 2. CXXR 48

Table 2.1 R’s base packages

base packages

base Base R functions (and datasets before R 2.0.0).

compiler R byte code compiler (added in R 2.13.0).

datasets Base R datasets (added in R 2.0.0).

grDevices Graphics devices for base and grid graphics (added in R 2.0.0).

graphics R functions for base graphics.

grid A rewrite of the graphics layout capabilities, plus some support for inter-

action.

methods Formally defined methods and classes for R objects, plus other program-

ming tools, as described in the Green Book.

parallel Support for parallel computation, including by forking and by sockets, and

random-number generation (added in R 2.14.0).

splines Regression spline functions and classes.

stats R statistical functions.

stats4 Statistical functions using S4 classes.

tcltk Interface and language bindings to Tcl/Tk GUI elements.

tools Tools for package development and administration.

utils R utility functions.

Global
 Environment

three [3]

Figure 2.1: Bindings exist within environments and connect symbols to values. In this

case, the symbol ‘three’ with a singleton integer vector ‘3’

CHAPTER 2. CXXR 49

Table 2.2 R’s recommended packages

recommended packages

KernSmooth Functions for kernel smoothing (and density estimation) corresponding

to the book “Kernel Smoothing” by M. P. Wand and M. C. Jones, 1995.

MASS Functions and datasets from the main package of Venables and Ripley,

“Modern Applied Statistics with S”. (Contained in the VR bundle for

R versions prior to 2.10.0.)

Matrix A Matrix package. (Recommended for R 2.9.0 or later.)

boot Functions and datasets for bootstrapping from the book “Bootstrap

Methods and Their Applications” by A. C. Davison and D. V. Hinkley,

1997, Cambridge University Press.

class Functions for classification (k-nearest neighbor and LVQ). (Contained

in the VR bundle for R versions prior to 2.10.0.)

cluster Functions for cluster analysis.

codetools Code analysis tools. (Recommended for R 2.5.0 or later.)

foreign Functions for reading and writing data stored by statistical software like

Minitab, S, SAS, SPSS, Stata, Systat, etc.

lattice Lattice graphics, an implementation of Trellis Graphics functions.

mgcv Routines for GAMs and other generalized ridge regression problems with

multiple smoothing parameter selection by GCV or UBRE.

nlme Fit and compare Gaussian linear and nonlinear mixed-effects models.

nnet Software for single hidden layer perceptrons (“feed-forward neural net-

works”), and for multinomial log-linear models. (Contained in the VR

bundle for R versions prior to 2.10.0.)

rpart Recursive PARTitioning and regression trees.

spatial Functions for kriging and point pattern analysis from “Modern Applied

Statistics with S” by W. Venables and B. Ripley. (Contained in the VR

bundle for R versions prior to 2.10.0.)

survival Functions for survival analysis, including penalized likelihood.

CHAPTER 2. CXXR 50

Each environment comprises a frame, which stores the mapping between symbols

and bindings, and an enclosure, which is a pointer to an enclosing environment. This

mechanism of having one environment enclosing another is used to define the search path

that is traversed when performing variable look-up. When variables are used in expressions

they are referenced by their symbol, therefore when expressions are being evaluated the

symbols they contain need to be dereferenced to enable their current value to be used in

place of the symbol. To know where to begin searching for bindings, expression evaluation

takes place in a given environment, and if a binding cannot be located within the frame

of that environment then its enclosing environments are iteratively searched until either a

binding with the desired symbol has been located, or the chain of environments has been

exhausted (the sequence is terminated by a special environment known as the empty

environment).

When an environment is at some point added for inclusion in this chain, it is said to be

attached. For instance when a package that exposes constants or functions is loaded, the

environment in which its bindings reside is attached, meaning it is incorporated into the

search path so that when referenced in an expression, its bindings can be located by their

symbols and their values used. It is also possible to attach data frames and lists, each

of which have named components—these are the columns of a data frame and individual

elements within a list—which may then be accessed by name without explicit reference to

the data frame or list. When one of these is attached a new environment is created and

then populated by bindings whose symbols correspond to the names of the elements within

the data frame or list, and whose values are copies of the elements. This environment is

then placed in the search path which enables its elements to be accessed directly by name;

for example if a data frame dfr has a column col, ordinarily this column would be referred

to by dfr$col, but after attach(dfr), then its column can be referred to simply as col.

While an environment is permitted only one direct enclosure, it is possible for an en-

vironment to be the enclosure of zero or more environments, which means environments

form a tree structure, whose root is the empty environment; however in practice this

is often more of a linked list. This is illustrated in Figure 2.2, which depicts the mise-

en-scène of environments in a vanilla R session. This was obtained using the R function

search() as shown in Listing 2.5, which returns a character vector representation of envir-

onments on the current search path beginning with the global environment (represented

by .GlobalEnv) and ultimately (and necessarily) ending with the base package. Envir-

onments of packages and R ‘objects’ (such as data frames) are represented by their name

CHAPTER 2. CXXR 51

Autoloads

Empty Environment

package:base

package:methods

package:datasets

package:utils

package:grDevices

package:graphics

package:stats

Global Environment
has enclosure

Figure 2.2: Each environment is enclosed by another.

attributes. This listing also shows how an attached data frame, in this instance women from

package:datasets, is incorporated into the search path and how its named components

may now be addressed.

Listing 2.5: Use of R function search to inspect the current search path and how this is

affected by the attachment of a data frame

1 > search()

2 [1] ".GlobalEnv" "package:stats" "package:graphics"

3 [4] "package:grDevices" "package:utils" "package:datasets"

4 [7] "package:methods" "Autoloads" "package:base"

5 > attach(women)

6 > search()

7 [1] ".GlobalEnv" "women" "package:stats"

8 [4] "package:graphics" "package:grDevices" "package:utils"

9 [7] "package:datasets" "package:methods" "Autoloads"

10 [10] "package:base"

11 > height

12 [1] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

CHAPTER 2. CXXR 52

Listing 2.6: Trivial R Example

1 > x <- 1:5

2 > y <- x

Listing 2.6 shows some simple top-level R expressions. The first creates an integer

vector composed of the values 1 to 5, and by assigning to the symbol x establishes a

binding between the two. The second expression assigns x to y; or speaking more strictly,

it binds symbol y to a copy of the value that is bound to symbol x.

2.3 CXXR

2.3.1 Introduction

The CXXR project [97] founded at the University of Kent is a project to progressively

reengineer the fundamental components of the R interpreter from C into C++, while

fully preserving functionality of the standard R distribution, which will be referred to as

CR where necessary in contradistinction to CXXR. The primary objective of CXXR is

to enable experimental versions of the R interpreter to be created, allowing developers to

introduce new functionality, which would otherwise be highly impractical to incorporate

into the standard R interpreter.

Additional consequences of conducting this refactoring include improving the internal

documentation, which in the case of CR could quite feasibly be a barrier to a developer

looking to alter core functionality of the interpreter; as well as tightening internal en-

capsulation boundaries within the interpreter, which again assists developers by instilling

confidence that modifications to the code are localised and will not impact other areas.

2.3.2 Progressive Development

Work started on CXXR in 2007, shadowing R version 2.5.1. CXXR shadows developments

to the CR distribution, as well as progressing with its own development. Over the course

of this work, CXXR has been kept up-to-date with respect to numerous versions of CR,

and the provenance-aware variant has in turn spanned several versions of CXXR.

The initial Provenance-Aware variant of CXXR described in Chapter 3 and Chapter 4

and Sections 5.1 and 5.2 of this work was based on CXXR 0.26-2.10.1, and it is this version

that is introduced here in this chapter6. This variant was later brought up to date with
6The two-part version number refers both to internal CXXR version [0.26] and – after the hyphen – the

CR version on which it is based [2.10.1]

CHAPTER 2. CXXR 53

respect to CXXR version 0.40-2.15.1, upon which was based work that is described in

Sections 5.3 and 5.4.

Where it is crucial to the understanding of the work described here, any relevant

changes to the provenance-aware variant’s CXXR underpinning will be detailed as re-

quired.

2.3.3 Layers

The refactored CXXR interpreter can be considered to comprise three distinct layers, as

shown in Figure 2.3.

Tr
an

sition Layer

Packages

CXXR
Core

Figure 2.3: Layers within CXXR

The CXXR core contains CR code that has been refactored as far as possible into

idiomatic C++ and is defined within the C++ namespace CXXR. The packages layer

resides on the outside of CXXR and, similarly to CR, is composed of the base and recom-

mended packages that form the standard R distribution, as well as the optional multitude

of packages available from CRAN. It is CXXR’s objective that packages should work with

little or no alteration, and it has been shown that this has been achieved [96]. The trans-

ition layer consists of C code from CR redesignated as C++, which has been adapted

where necessary to work with the CXXR core but not yet comprehensively refactored to

employ CXXR or C++ idioms [98].

2.3.4 Class Hierarchy

In an R session, the user creates and interacts with object values that have been bound to

symbols. In this arrangement the objects (and symbols alike) are represented internally to

CR by one of two nodes: either a struct SEXPREC or a struct VECTOR_SEXPREC. Each

node has an opaque pointer type, respectively defined as:

CHAPTER 2. CXXR 54

typedef struct SEXPREC *SEXP;

typedef struct VECTOR_SEXPREC *VEXSEXP;

Access to the contents of a struct SEXPREC or struct VECTOR_SEXPREC is permitted

only through the provided functions, whose argument types are the opaque pointer type

SEXP. For instance, elemental access of an integer vector x is achieved with the function

INTEGER(x) and retrieving the head of a list y is achieved with CAR(y).

Both nodes comprise a struct sxpinfo header; three pointers—one to the object’s

attributes, and one each to the next and previous nodes in a doubly-linked list (used for

memory management); and finally the data.

The most important aspect of the header is the field SEXPTYPE type, where SEXPTYPE

is, for the time being at least7, defined as typedef unsigned int SEXTYPE, with a

#define for each one of the 27 different types of object:

typedef unsigned int SEXPTYPE;

#define NILSXP 0 /* nil = NULL */

#define SYMSXP 1 /* symbols */ [...]

#define LGLSXP 10 /* logical vectors */

#define INTSXP 13 /* integer vectors */

#define REALSXP 14 /* real variables */

#define CPLXSXP 15 /* complex variables */ [...]

#define FUNSXP 99 /* Closure or Builtin or Special */

The data portion of the two nodes vary. The SEXP node is used to represent a number

of types: primitives, symbols, lists, environments, closures, and promises, so its data

component is a C union of these individual structures.

union {

struct primsxp_struct primsxp;

struct symsxp_struct symsxp;

struct listsxp_struct listsxp;

struct envsxp_struct envsxp;

struct closxp_struct closxp;

struct promsxp_struct promsxp;

} u;

While the VECSEXP node only represents vector types (which include logical, integer,

real, etc.) and has as its data portion a struct vecsxp_struct vecsxp; used to store

7There is a currently a movement to replace the current definition of SEXPTYPE values with an enum

CHAPTER 2. CXXR 55

the length of the vector8. This node is then followed by a block of memory large enough

to store the required number of vector elements, whose individual size depends upon the

type of vector. For instance a C int type is used to represent elements of integer and

logical vectors and C99 double complex is used for complex vectors.

Since both nodes share a common preamble section (of header and three pointers), it is

common practice for a VECSEXP to be treated as though it were a SEXP: even the function

responsible for allocating vectors has the signature:

SEXP allocVector(SEXPTYPE type, R_len_t length)

This makes working with objects in CR a very type-unsafe prospect. As with all C

unions, exactly which one of its possible constituent types a SEXPREC is representing is not

known at compile-time and determined only at runtime. There are two main implications

of this: the compiler’s typechecking abilities are not utilised; and at runtime, debugging

the interpreter is significantly more difficult—two characteristics that are incompatible

with CXXR’s motivation to enable creation of experimental versions of interpreter, and

indeed incompatible with any experimenter with a sense of self-preservation.

CXXR replaces this union with an extensible class hierarchy rooted in class RObject,

which is shown in Figure 2.4.

2.3.5 Memory Management

CXXR’s core instruments facilities for the allocation and management of memory using

automatic garbage collection.

The class MemoryBank is responsible for memory allocation and can allocate memory in

one of two ways depending upon the size of the allocations required. Memory allocations

of less than 128 bytes can be drawn from CXXR’s CellPool, which comprises prealloc-

ated cells of fixed size (e.g. 8 bytes, 16 bytes). This enables more efficient allocation

and deallocation of memory for smaller objects [72]. Larger allocations of memory are

accomplished using C++’s ::operator new.

The two principal clients of MemoryBank are GCNode::operator new and

CXXR::Allocator<T>. The former will be discussed in the following section; the lat-

ter is an STL-compatible Allocator to enable STL collections to use memory allocated via

MemoryBank.

8As well as a field called truelength, which is not used in the vast majority of cases.

CHAPTER 2. CXXR 56

Figure 2.4: CXXR version 0.26 RObject class hierarchy

Garbage Collection

CXXR employs a garbage collection mechanism for automatically deallocating objects

when they are no longer required. This is primarily based on reference counting, which

dictates that when an object is no longer referenced by any other object then it is no

longer possible to access it and so it may be deleted. Mark-sweep garbage collection is

employed as a backstop to collect up cases where objects may refer to each other but are

not otherwise accessible from any other objects.

Objects subject to garbage collection inherit—either directly or indirectly—from the

class GCNode (so called as it represents a node in the graph of objects), which incorporates

a reference count. When a GCNode is instantiated, its construction will involve requesting

memory for itself via MemoryBank.

GCNodes refer to each other by way of a GCEdge<T>, which is a templated smart pointer

that automatically adjusts the reference count of the GCNode to which it points.

A garbage collection may be triggered at any point when memory is requested from the

memory bank. Typically these garbage collections are based only on reference counting, as

it is trivial to ascertain which objects are no longer required; this is known as a lightweight

CHAPTER 2. CXXR 57

garbage collection. A mark sweep garbage collection is less frequent, and a threshold

for the point above which these are conducted is maintained in class GCManager.

From the point that GCNode is created and exposed to the garbage collector, it needs

to be protected from unwanted destruction by the garbage collector. One way in which

this is achieved is by use of a GCEdge, but this is only appropriate in situations where

the reference to the GCNode is from another GCNode, in other situations it is necessary to

specifically instruct the garbage collector to protect a vulnerable GCNode.

One typical scenario where the need for these measures occurs is within the C im-

plementation of the R primitive functions, such as abs(x)—which is analogous to (and

implemented using) C’s abs function—which constructs an object in which to store the

result of the operations to be returned to the calling code. Such an object needs to be

protected from being prematurely destroyed before it is returned.

In CR, protecting an object from the garbage collector is handled entirely manually

using the macros PROTECT(), UNPROTECT(), and (less commonly) REPROTECT(). When an

object is to be protected from the garbage collector, then a call to PROTECT() is made with

it given as an argument. Pointers to protected objects are stored on a stack, and as such

are removed in a last-in-first-out arrangement. When objects no longer require protection,

UNPROTECT is used to pop a given number of objects from the protection stack. This

behaviour is illustrated in Listing 2.7 which shows the do_abs C function that implements

R’s primitive function abs.

When a vector object is created—either on line 16 or 22—it is immediately protected

by the call to PROTECT. Before the function returns it, it is necessary to UNPROTECT it (line

30).

Listing 2.7: The do_abs function which implements R’s primitive function abs

1 SEXP attribute_hidden do_abs(SEXP call, SEXP op, SEXP args, SEXP env)

2 {

3 SEXP x, s = R_NilValue /* -Wall */;

4

5 checkArity(op, args);

6 check1arg(args, call, "x");

7 x = CAR(args);

8

9 if (DispatchGroup("Math", call, op, args, env, &s))

10 return s;

CHAPTER 2. CXXR 58

11

12 if (isInteger(x) || isLogical(x)) {

13 /* integer or logical ==> return integer,

14 factor was covered by Math.factor. */

15 int i, n = length(x);

16 PROTECT(s = allocVector(INTSXP, n));

17 /* Note: relying on INTEGER(.) === LOGICAL(.) : */

18 for(i = 0 ; i < n ; i++)

19 INTEGER(s)[i] = abs(INTEGER(x)[i]);

20 } else if (TYPEOF(x) == REALSXP) {

21 int i, n = length(x);

22 PROTECT(s = allocVector(REALSXP, n));

23 for(i = 0 ; i < n ; i++)

24 REAL(s)[i] = fabs(REAL(x)[i]);

25 } else if (isComplex(x)) {

26 return do_cmathfuns(call, op, args, env);

27 } else

28 errorcall(call, R_MSG_NONNUM_MATH);

29 DUPLICATE_ATTRIB(s, x);

30 UNPROTECT(1);

31 return s;

32 }

As can be seen in the illustrative example, this mechanism requires parity between

the number of objects protected and subsequently unprotected, and places responsibility

for ensuring this with the programmer. Therefore, this mechanism can be (and often is)

prone to errors, particularly in conditional branches from which the method may return,

as the number of objects that require unprotecting can be variable. Because only a single

protection stack exists for the entire call stack, if an object is not unprotected at the

appropriate time and exposed to the garbage collector, then it will persist and result in

a memory leak; conversely, the consequence of too many objects being unprotected is

the premature garbage collection of an object possibly outside the scope of the current

method.

The CXXR analogue of this mechanism is the C++ smart pointer class GCStackRoot,

which offers protection against garbage collection for the object to which it refers. As

with any C++ variable, its lifetime is determined by its scope, which makes it particularly

suited to short-term protection against garbage collection. When the GCStackRoot object

goes out of scope (either when a method returns or the code block in which it was defined

closes), the object to which it referred is then exposed to the garbage collector. As the name

CHAPTER 2. CXXR 59

implies, GCStackRoot is implemented as a stack, and so objects of this type are required to

be destroyed in the reverse order of their creation, which is also a suitable characteristic for

short-term garbage collection protection. Long-term protection against garbage collection

is better achieved using GCRoot, which works in a similar way to GCStackRoot but is not

subject to the latter’s restriction in destruction order and as a consequence construction

and destruction is slightly more time-consuming.

An example of how a GCStackRoot can be employed to protect an object is shown in

Listing 2.8. This can be contrasted with Listing 2.9 which gives one way in which the same

scenario is handled with only traditional CR facilities. There is no particularly favourable

way of handling this situation as the protection stack works against efficiency.

Listing 2.8: Example usage of GCStackRoot in a function that returns a reversed copy of

a PairList

1 PairList* reverse(const PairList* pl)

2 {

3 GCStackRoot<PairList> ans;

4 while (pl) {

5 ans = PairList::cons(pl->car()->clone(),

6 ans, pl->tag());

7 pl = pl->tail();

8 }

9 return ans;

10 }

Listing 2.9: Traditional CR garbage collection mechanism example

1 SEXP reverse(SEXP pl)

2 {

3 SEXP ans = R_NilValue;

4 int nprotect = 0;

5

6 for (; pl != R_NilValue; pl = CDR(pl))

7 {

8 SEXP el = Rf_duplicate(CAR(pl));

9

10 PROTECT(ans = CONS(el, ans)); ++nprotect;

11 SET_TAG(ans, TAG(el));

12 }

CHAPTER 2. CXXR 60

13

14 UNPROTECT(nprotect);

15 return ans;

16 }

2.3.6 Other aspects of CXXR

This section will give a brief overview of how CXXR has addressed refactoring other

aspects of the CR interpreter that, although these may not be of direct relevance to the

remainder of this work, should nevertheless be useful in getting the flavour of what CXXR

is about.

Handling of R errors and indirect flows of control such as return and break from

within R code are handled by CR with the use of the C standard library functions

setjmp/longjmp, which are incompatible with C++’s requirement for in-order stack un-

winding. The natural candidate for re-engineering this functionality is C++ exceptions,

which are used in CXXR to handle and report errors. However, the propagation of C++

exceptions when handling indirect flows of control incurred a significant overhead, and this

led to a comprehensive refactoring of the CR notion of a context, and the introduction of

classes Bailout and BailoutContext which offer a lightweight means to return control

flow to its intended destination.

The means for object duplicating now utilises C++ copy constructors. The CR func-

tion Rf_duplicate to accomplish this previously utilised a gargantuan switch statement

for each SEXPTYPE. Under CXXR, this function simply calls a virtual method clone on

the relevant RObject, which in turn utilises the copy constructor of its class.

Unary and binary operations that are type-specific in CR have been replaced in CXXR

with generic algorithms using C++ templates. CXXR’s extensible hierarchy enables the

easy introduction of new data types, and the abstraction of mathematical and subscripting

(and subassignment) operations that are exposed via the CXXR API, enables new data

types to be up and running with R operations with a minimal amount of coding.

Chapter 3

Provenance in CXXR

This chapter will address the following research goals as set out in Section 1.5.1, in the

ways respectively described:

• Goal 2 will be addressed by defining a set of provenance questions that a provenance-

aware CXXR should be able to answer;

• Goal 3 involves firstly the development of a view of provenance in the context of

CXXR; secondly, and in accordance with the aforementioned view of provenance in

CXXR, the design of facilities to record the information necessary to allow proven-

ance questions to be answered; and finally, the implementation of the design;

• Goal 6 is to be addressed by evaluation of the implemented facilities, in particular

with respect to a real-world example of an exploratory data analysis.

3.1 Provenance Questions

Section 1.5 introduced the concept of, and the motivation for, the CXXR user wishing

to ask provenance questions of the data in his or her session, with the primary aim to

elicit further information about the data and thereby gain greater understanding of how

an analysis was conducted.

The motivating questions to which a provenance-aware CXXR should be able to

provide answers are given as follows:

1. What was the command that gave rise to an object?

2. When was an object created?

3. Which other objects were used in the creation of an object?

61

CHAPTER 3. PROVENANCE IN CXXR 62

4. Which other objects during their creation used an object?

5. What is the full sequence of commands that was used to derive an object (or collec-

tion of objects)?

6. Who was the user that created, with which version of the software, an object?

3.2 Design - Recording

3.2.1 Entity

As implied by the provenance questions given above, the entity whose provenance we wish

to record and subsequently query is the object. To answer the provenance questions, it

is necessary to record operations performed on an object throughout its lifetime—from its

initial creation to its deletion, and in the meantime, every occasion on which it is used to

calculate the value of another object.

As introduced in Section 2.2.6, the colloquial ‘object’ is more strictly known as a

binding.

Listing 3.1: Trivial R Example (reprise)

1 > x <- 1:5

2 > y <- x

In the code shown in Listing 3.1 each of the top level expressions evaluated is an

assignment and as such is responsible for the creation of a new binding; however, the

second expression does not just create a binding, it also reads the value of an existing

one—x, which it does to determine the value of the RHS operand of the assignment

operation and therefore what value to give the newly-created binding to symbol y.

There is an important but subtle point to be made here regarding provenance. To

understand how x and y in Listing 3.1 have been derived, we need to know what has

been bound to these symbols. The value bound to x is an integer vector. During the

assignment y <- x R’s copy-on-write policy dictates that a copy of the vector is made, to

which symbol y is bound.

There is no way to determine from the perspective of the vectors here, how x and y

have been derived.

It is clear, therefore, that provenance information in this context of variable bindings

must be associated not with an object—in the loose sense—but with a binding.

CHAPTER 3. PROVENANCE IN CXXR 63

The relationships between classes Symbol, Binding, and RObject are depicted in UML

by Figure 3.1.

1
BindingSymbol RObject

1

- symbol - value

Figure 3.1: UML class diagram depicting attribute relationships of the binding class

Provenance class: A binding state

When a binding is established (i.e. an “object is written”, loosely speaking), such as x

during the evaluation of the above expression x <- 1:5, this will be known as the creation

of a binding state (of x).

The term “binding state” is used to denote the concept that a binding has a mutable

nature; therefore, when an assignment expression is evaluated and causes a binding B to

receive a value, B’s value attribute is altered, but the same B binding object persists.

A binding state is represented in this model by the class Provenance (Figure 3.2),

which records the following details pertaining to a binding state:

• The symbol that was bound;

• The expression that gave rise to the binding;

• The timestamp of the binding’s establishment;

• The parents of the binding (if any);

• The children of the binding (if any).

When a binding state is created, a Provenance is created to represent this fact and it

is then associated with the Binding by attribution.

- symbol : Symbol
- command : Expression
- timestamp : Timestamp
- parents : Provenance [*]
- children : Provenance [*]

Provenance

Figure 3.2: UML class diagram depicting attributes of the Provenance class

CHAPTER 3. PROVENANCE IN CXXR 64

1
BindingSymbol RObject

1

- symbol - value

Provenance

1

- provenance

1

- symbol

0..*
- children

0..*

- parents

Figure 3.3: UML class diagram showing attribute relationships surrounding the Proven-

ance class

Figure 3.3 shows how the Provenance class is attributed to a binding.

Provenance P1 is a parent of Provenance P2 (and conversely P2 is a child of P1) if

the binding state corresponding to P1 was read in the course of evaluating the expression

that gave rise to binding state corresponding to P2. It is not necessary for a Provenance

to have any parents at all, and there is no conceptual limit to the number of parents it

may have.

Provenance Hierarchy

The Provenance class’s self-referential attributes parents and children model the real-world

relationships after which they are named to permit the formation of a Provenance family

tree. Like any other family tree, one composed of Provenances is not limited to representing

the relationships between only two generations, but an arbitrary number of generations.

This chaining together of Provenances can provide an entire ancestry.

In the following example, three binding states of x are created; the latter two are each

dependant upon the previous:

> x <- 1

> x <- x + 1

> x <- x + 2

The sequence of evaluating the above expressions is represented by object diagrams in

Figure 3.4, which illustrates how a Provenance captures and preserves the particular state

of a binding, as well as how Provenances relate to each other through their parent and

CHAPTER 3. PROVENANCE IN CXXR 65

child attributes to form a hierarchy.

3.2.2 Activity

This model considers the provenance activities that occur to be the evaluation of ex-

pressions.

The CXXR environment, like that of CR, employs by default a Read-Evaluate-

Print-Loop (REPL). The steps involved are: read user input from the standard input;

parse and evaluate that input; print the result; and loop (i.e. return to read). This type

of behaviour is common to interactive toplevels, such as the general purpose UNIX shell,

and environments for interpreted programming languages such as Python.

Figure 3.5 depicts by means of a sequence diagram the Read-Evaluate-Print-Loop

mechanism that is employed by CXXR.

Granularity

The REPL strategy naturally advances a provenance granularity of the top-level ex-

pression. A top-level expression is so-called in contradistinction to the sub-expressions

of which it may be composed. It is considered that this granularity is compatible with

provenance question 1 and it will therefore be utilised in this design.

One of the principal implications of this design choice is that the evaluation of a single

top-level expression, E, may read a particular binding state B1 multiple times before

writing binding state B2. There is no need, however, for this fact to be recorded: B1 is

a parent of B2 by virtue of it being read at least once; therefore, B1 should appear only

once as a parent of B2.

Similarly, evaluation of E may give rise to multiple bindings. If binding state B1 is

written during the course of evaluating top-level expression E, then the definition of B1’s

parents is those bindings read in the course of evaluating E before B1 is written.

By extension, it is conceivable that an individual binding B2 may be written to mul-

tiple times thereby going through numerous intermediate binding states in the course of

evaluating E; however, to record this level of granularity would be too fine for the mandate

of this design.

In order to maintain these constraints and ensure that granularity is restricted to the

top-level expression, it is proposed that a set of Provenance objects known as the seen

set is maintained to prevent binding states being erroneously recorded in a parentage.

One such scenario that requires a restriction in granularity by these means, is the

CHAPTER 3. PROVENANCE IN CXXR 66

- command : Expression = x <- 1
- timestamp : Timestamp
- parents : Provenance[] = []
- children : Provenance[] = []

P1 : Provenance

x : Symbol

- value : IntVector = [1]

B : Binding

- symbol
- symbol

- provenance

(a) After first expression evaluation

- command : Expression = x <- 1
- timestamp : Timestamp
- parents : Provenance[] = []

P1 : Provenance

x : Symbol

- value : IntVector = [2]

B : Binding

- command : Expression = x <- x + 1
- timestamp : Timestamp
- children : Provenance[] = []

P2 : Provenance

- symbol

- symbol

- symbol - parents - children

- provenance

(b) After second expression evaluation

- command : Expression = x <- 1
- timestamp : Timestamp
- parents : Provenance[] = []

P1 : Provenance

x : Symbol

- value : IntVector = [4]

B : Binding

- command : Expression = x <- x + 1
- timestamp : Timestamp

P2 : Provenance

- symbol

- symbol

- command : Expression = x <- x + 2
- timestamp : Timestamp
- children : Provenance[] = []

P3 : Provenance

- symbol

- symbol - parents - children

- parents - children

- provenance

(c) After third expression evaluation

Figure 3.4: Example of a Provenance hierarchy

CHAPTER 3. PROVENANCE IN CXXR 67

sd REPL

loop

: Main : IO : Evaluator

[quit==false]

R_ReadConsole(…)

eval(R_CurrentExpr, …)

PrintValueEnv(value, …)

Figure 3.5: UML sequence digram illustrating the Read-Evaluate-Print-Loop mechanism

handling of loops.

Handling of Loops

R allows for the use of looping constructs, although their use is not favoured for operations

on vectors. The R code shown in Listing 3.2 uses a for-each loop to compute the sum of

integers 1 to 5 (inclusive) and stores the result in x.

Listing 3.2: Example loop in R

1 > x <- 0 # Initialise x to zero

2 > for (n in 1:5) # n = {1 .. 5}

3 + x <- x + n # Increment x by n

There are two top-level expressions being evaluated here: the first initialises x, and the

second (split across two lines, as indicated by the continuation prompt +) is a loop in which

n iteratively takes the value of each element in the vector [1, 2, 3, 4, 5] (created by 1:5

which uses the infix binary operator : to generate a regular sequence), and gets added to

x. During each iteration of the loop: a new binding state of n is established; the addition

operation reads and sums the values of the bindings to n and x; the assignment operation

CHAPTER 3. PROVENANCE IN CXXR 68

binds the result of the addition to x. In short, during each loop iteration the values of

both bindings x and n are read, and new binding states of both x and n are established.

Although n is used as a loop control variable and declared in the loop header, in R—unlike

many languages—its lifetime is not limited to the body of the loop: expressions relating to

it are evaluated in the global environment, which is therefore where its binding is created

and will reside after the loop has terminated. At the end of the loop, there will remain a

binding of x and a binding of n, but there were binding states of each that do not survive

the evaluation of the for loop—in this instance they only survive the iteration in which

they were established—since there may be at most only one binding to a symbol in any

frame.

Listing 3.3 expands the above loop and shows each intermediate binding state denoted

by a suffix.

Listing 3.3: Expansion of loop given in Listing 3.2

1 x0 = 0 # Initialise x to zero

2

3 n0 = 1 # First Iteration

4 x1 = x0 + n0

5

6 n1 = 2 # Second Iteration

7 x2 = x1 + n1

8

9 n2 = 3 # Third Iteration

10 x3 = x2 + n2

11

12 n3 = 4 # Fourth Iteration

13 x4 = x3 + n3

14

15 n4 = 5 # Fifth Iteration

16 x5 = x4 + n4

The binding state of x that persists beyond the end of this expression evaluation is x5,

which has as a parent x4, which has as a parent x3, and so on back up to x0. Similarly,

the intermediate states of binding n are recorded as parents of their respective children.

According to the chosen strategy of attributing top-level expressions, the granularity

of this information is too fine; it does not accurately represent the top-level expression

that was issued, nor do we have adequate notation to differentiate between the various

CHAPTER 3. PROVENANCE IN CXXR 69

intermediate binding states to elicit any meaning therefrom.

The seen set

The purpose of the seen set in this design is to prevent intermediate bindings from being

recorded in the parentage, thereby maintaining the granularity of the top-level expression,

as well as to prevent multiple occurrences of a single binding state in a parentage. For

instance, in the case of b <- a + a, although the value of a is used twice, it should appear

only once as a parent to b.

Whenever a binding is written to or read from during the course of evaluating a top-

level expression, the Provenance associated with it is added to the seen set to indicate

that reads of it should not be subsequently reflected to the parentage.

In the instance of the ‘for each’ loop given in Listing 3.2, the effect of the seen set is as

follows. During the first loop iteration, n is bound to 1 causing the Provenance associated

with this binding to be added to the seen set. When the value of n is required during

the evaluation of the expression x <- x + n, because the Provenance of n exists in the

seen set, the reading of this value will not be reflected in (i.e. added to) the parentage.

This expression evaluation will also invoke a read on the binding of x that was created

immediately prior to the loop, therefore its Provenance will be added to the parentage

as well as to the seen set; when the assignment operation established a new binding to x,

this too will be added to the seen set so that on the second iteration of the loop, it will

be excluded from the parentage. This repeats for each iteration of the loop: the binding n

established by the loop construct and the binding x established in the previous iteration

are both excluded from the parents of the newly established x. The ultimate effect of

this is that the end of the evaluation of the for loop, the parentage only contains the

Provenance of the binding of x established before the loop, not its subsequent bindings.

As such the bindings x and n that survive the loop will each be attributed to the expression

for (n in 1:5) x <- x + n and have the prior binding of x as their sole parent.

Interactions

This model captures the interactions between activities (evaluation of top-level expres-

sions) and entities (bindings), which are the read and write operations that are performed

on a binding during the course of evaluating a top-level expression. For example, in the

expression y <- 1 + x, the value of the binding x is required, causing a read operation

to be performed on it; and subsequently a write operation will occur to the binding y due

CHAPTER 3. PROVENANCE IN CXXR 70

to the assignment operation. The occurrences of read and write types of interaction are

depicted in activity diagrams shown in Figures 3.6 and 3.7 respectively.

Evaluate top-level
Expression

Read Binding

Encounter
variable

Lookup Binding by
variable’s Symbol

Get Value

Use Value

Ex
pr

es
si

on
En

vi
ro

nm
en

t
Bi

nd
in

g

Figure 3.6: Activity diagram depicting occurrence of read operation on a binding

Evaluate top-level
Expression

Write Binding

Encounter
assignment
operation

Lookup Binding by
left-hand operand

Symbol

Modify
value

Ex
pr

es
si

on
En

vi
ro

nm
en

t
Bi

nd
in

g

Figure 3.7: Activity diagram depicting occurrence of write operation on a binding

To capture the interactions between an activity and entities, this design employs the

notion of a monitor to be called when a binding is read from or written to.

Figures 3.8 and 3.9 illustrate by way of activity diagrams when the monitors on read

and write operations are respectively triggered.

CHAPTER 3. PROVENANCE IN CXXR 71

Evaluate top-level
Expression

Read Binding with provenance-tracking monitor

Encounter
variable

Lookup Binding by
variable’s Symbol

Get Value

Read
Monitor

Ex
pr

es
si

on
En

vi
ro

nm
en

t
Bi

nd
in

g
Pr

ov
en

an
ce

Tr
ac

ke
r

Use Value

Figure 3.8: Activity diagram depicting when the read monitor is triggered

Evaluate top-level
Expression

Write Binding with provenance-tracking monitor

Encounter
assignment
operation

Lookup Binding by
left-hand operand

Symbol

Modify
value

Ex
pr

es
si

on
En

vi
ro

nm
en

t
Bi

nd
in

g
Pr

ov
en

an
ce

Tr
ac

ke
r

Write
Monitor

Figure 3.9: Activity diagram depicting when the write monitor is triggered

Class ProvenanceTracker

This method of recording provenance requires the maintenance of some state for the life-

time of a REPL iteration as dictated by the chosen level of granularity: the current

parentage, an ordered collection of Provenance to record those bindings read; and the seen

set, an (unordered) collection of Provenance to record which bindings have previously been

encountered and should not be subsequently recorded in the parentage.

CHAPTER 3. PROVENANCE IN CXXR 72

This state, along with the operations to reset it for each REPL iteration, and the

monitor operations are defined by the ProvenanceTracker class (Figure 3.10).

+ resetParentage (void) : void
+ resetSeen (void) : void
+ writeMonitor (Binding) : void
+ readMonitor (Binding) : void

- current_parentage : Provenance [*]
- seen : Provenance [*]

ProvenanceTracker

Figure 3.10: UML class diagram depicting attributes and operations of the Provenan-

ceTracker class

The way in which ProvenanceTracker has been designed to be used as part of the

REPL strategy is shown in Figure 3.11.

sd REPL with provenance tracking

loop

: Main : IO : Evaluator

[quit==false]

R_ReadConsole(…)

eval(R_CurrentExpr, …)

PrintValueEnv(value, …)

: ProvenanceTracker

resetParentage()

resetSeen()

writeMonitor()

readMonitor()

Figure 3.11: UML sequence digram illustrating the Read-Evaluate-Print-Loop mechanism

augmented to incorporate the provenance-tracking strategy

Monitors

It is the responsibility of the read and write monitors to intercept read and write operations

performed on a binding during the course of top-level expression evaluation and perform

the necessary housekeeping to ensure the provenance record is maintained.

The read monitor must, if a binding state has not been included in the seen set, include

CHAPTER 3. PROVENANCE IN CXXR 73

this in both the parentage and seen set. The write monitor is responsible for encapsulating

the binding state in a Provenance object (Figure 3.2); associating this Provenance with

the binding; adding it to the seen set; and finally, registering it as a child of each parent.

The designed behaviour of the read and write monitors is depicted respectively in

Figures 3.12 and 3.13.

Get
Provenance P

of bdg

Read Monitor

Add P to
seen

bdg : Binding

«c
la
ss
»

Pr
ov

en
an

ce
«c
la
ss
»

Pr
ov

en
an

ce
Tr

ac
ke

r

Add P to
Parentage

P in seen

«decisionInput»

[true]

[false]

Figure 3.12: Activity diagram depicting the behaviour of the read monitor

Create new
Provenance P

Write Monitor

Associate with P
via provenance

attribute

Get
Parentage

bdg : Binding

«c
la
ss
»

Pr
ov

en
an

ce
«c
la
ss
»

bd
g

: B
in

di
ng

«c
la
ss
»

Pr
ov

en
an

ce
Tr

ac
ke

r

«iterative»

Parent R Add P to
seen

Set attributes

Add P to
R’s

‘children’
attribute

Registering P as a
child of each of its

parents

Figure 3.13: Activity diagram depicting the behaviour of the write monitor

Binding Deletion

When a binding state is established, it is registered as a child of each of its parents.

Conversely, when a binding B is deleted (e.g. when the user uses the rm() function to

CHAPTER 3. PROVENANCE IN CXXR 74

delete an object) it is necessary for B to be deregistered as a child of each of its parents.

3.2.3 Algorithm

The approach taken in the above design to model and record provenance in CXXR is

described in pseudocode in Algorithm 3.1.

Algorithm 3.1 Provenance-aware CXXR recording algorithm
1: procedure RecordProvenance

2: GlobalEnv.WriteMonitor ← ProvenanceTracker.writeMonitor

3: GlobalEnv.ReadMonitor ← ProvenanceTracker.readMonitor

4: for each REPL iteration do

5: p_seen← [] ▷ Reset containers

6: p_current← []

7: procedure ProvenanceTracker.readMonitor(bdg : Binding)

8: if bdg.m_provenance /∈ p_seen then

9: p_current.add(bdg.m_provenance)

10: p_seen.add(bdg.m_provenance)

11: procedure ProvenanceTracker.writeMonitor(bdg : Binding)

12: P ← new Provenance ▷ Create new binding state

13: P.m_expression← Current top-level expression

14: P.m_symbol← bdg.symbol

15: P.m_parents← p_current

16: P.m_timestamp← Current Time

17: P.m_children← []

18: for all parent ∈ P.m_parents do ▷ Register as child of each parent

19: parent.children.add(P)

20: bdg.m_provenance← P

21: p_seen.add(P)

3.3 Design - Querying

3.3.1 In-interpreter Interface

The nature of the motivating provenance questions, for example Question 5, “What is the

full sequence of commands that was used to derive an object?”, in the typical use case

CHAPTER 3. PROVENANCE IN CXXR 75

(Figure 1.7), dictates that answers should be provided in (i) an immediate fashion; (ii) in

an environment with which the user is already familiar; and (iii) in a format that can be

fed back into the user’s workflow.

In consideration of these factors, the prime candidate interface for querying recorded

provenance information in CXXR is in-interpreter, by employing R-level functions that

the user evaluates at the command prompt.

Some of the advantages of this approach are:

• The use of R functions should already be a concept familiar to the user, for whom

provenance information should therefore be readily accessible;

• The provenance information remains in-memory without the need to be continually

serialised. This results in a simpler implementation;

• The output of an R function can be used as the input to another function, thereby

offering substantial flexibility of which objects are queried and how the result is used.

Answers to provenance questions can be given by two functions:

• provenance(symbol). This function should return information pertaining to a cur-

rent binding state given by reference to its symbol. This function answers provenance

questions 1-4;

• pedigree(symbol(s)). This function should return the sequence of commands

used to derive the current state(s) of given binding(s) by traversing the hierarchy of

Provenances in chronological order. This function answers provenance question 5.

Algorithm 3.2 describes a routine for determining the ancestors of a set of binding

states.

3.4 Implementation

3.4.1 Monitors

CXXR introduces the concept of monitors that are applied to a frame and triggered

whenever a binding within that frame is accessed, either to have its value read or when it

is established. A monitor is a pointer to a function which takes as argument a reference

to the binding being accessed. The monitor data type is defined in the Frame class as

follows:

typedef void (*monitor)(const Binding&);

CHAPTER 3. PROVENANCE IN CXXR 76

Algorithm 3.2 Determine the ancestors of a (set of) binding state(s)
1: procedure Ancestors(open : set of Provenance)

2: closed← ∅

3: while open¬∅ do

4: P ∈ open

5: for all parent ∈ P.parents do

6: if parent /∈ closed then

7: open.add(parent)

8: open.remove(P)

9: closed.add(P)

10: return closed

The Frame class defines two member fields of this data type: m_read_monitor and

m_write_monitor, each of which has a mutator method (e.g. setReadMonitor) to alter its

value, and an accessor method (e.g. monitorRead), which will invoke the relevant monitor

function if one has been set—since there is no requirement to implement monitors, a NULL

monitor signifies such an absence.

Monitor Triggers

During the course of evaluating an expression the interpreter necessarily performs look-ups

for any symbols used in the expression to denote references to variables. As previously

mentioned (Section 2.2.6, this search begins in a given environment, which for symbols

occurring in a top-level command will be the global environment. The process of looking

up a symbol beginning in a given Environment is handled by the function findVar(SEXP

symbol, SEXP rho) (shown in Listing 3.4) which was inherited by CXXR from CR. Most

of R’s internal C functions pass arguments as SEXP opaque pointers. In CXXR SEXP is a

pointer to RObject, which then requires downcasting to its actual type, either in a checked

capacity, such as with the symbol argument, or in an unchecked capacity, such as with

rho. rho is the name customarily designated to an environment argument.

Listing 3.4: The findVar function from envir.cpp

1 SEXP findVar(SEXP symbol, SEXP rho)

2 {

3 if (TYPEOF(rho) == NILSXP)

CHAPTER 3. PROVENANCE IN CXXR 77

4 error(_("use of NULL environment is defunct"));

5

6 if (!isEnvironment(rho))

7 error(_("argument to '%s' is not an environment"), "findVar");

8

9 Symbol* sym = SEXP_downcast<Symbol*>(symbol);

10 Environment* env = static_cast<Environment*>(rho);

11 Frame::Binding* bdg = findBinding(sym, env).second;

12 return (bdg ? bdg->value() : R_UnboundValue);

13 }

It uses the findBinding function, shown in Listing 3.5, to search an environment env

for a binding with a given symbol sym. If one cannot be found in the environment given,

then it repeats this search in each enclosing environment in turn.

Listing 3.5: The findBinding function from envir.cpp

1 pair<Environment*, Frame::Binding*>

2 findBinding(const Symbol* symbol, Environment* env)

3 {

4 while (env) {

5 Frame::Binding* bdg = env->frame()->binding(symbol);

6 if (bdg)

7 return make_pair(env, bdg);

8 env = env->enclosingEnvironment();

9 }

10 return pair<Environment*, Frame::Binding*>(0, 0);

11 }

If a binding associated with the specified symbol has been located in the environment’s

frame, then findVar will return the value of it by calling the value method on it. It is at

this point that the read monitor is called, as is shown in Listing 3.6.

Listing 3.6: Frame::Binding::value()

1 RObject* Frame::Binding::value() const

2 {

3 RObject* ans = (isActive() ? getActiveValue(m_value) : m_value);

4 m_frame->monitorRead(*this);

5 return ans;

6 }

CHAPTER 3. PROVENANCE IN CXXR 78

The assignment to a variable involves modification of a binding’s value, and is handled

similarly. Initially the setVar method uses findBinding to locate a binding, which if

successfully found, has its assign method called with the value being assigned to it as

argument. The assign method will dispatch a call to the write monitor, as shown in

Listing 3.7.

Listing 3.7: The Frame::Binding::assign method

1 void Frame::Binding::assign(RObject* new_value, Origin origin)

2 {

3 if (isLocked())

4 Rf_error(_("cannot change value of locked binding for '%s'"),

5 symbol()->name()->c_str());

6 m_origin = origin;

7 if (isActive()) {

8 setActiveValue(m_value, new_value);

9 m_frame->monitorRead(*this);

10 } else {

11 m_value = new_value;

12 m_frame->monitorWrite(*this);

13 }

14 }

3.4.2 Containers

The following containers have been introduced to CXXR to store the various aspects of

provenance information. The class collaboration diagram for these new classes is shown

in Figure 3.14

class Provenance

The Provenance class is central to storing provenance for a binding. Because it is desirable

that Provenance objects which are no longer accessible are destroyed, this class is subject

to the garbage collection outlined in Section 2.3.5 and as such inherits the CXXR class

GCNode, and may utilise GCEdge smart pointers to refer to other GCNode objects.

Its implementation comprises the following:

• The struct timeval timestamp of the binding’s creation;

• A pointer to a Set of children;

CHAPTER 3. PROVENANCE IN CXXR 79

Provenance

Binding

ProvenanceSetExpression

Symbol RObject

Provenance::Set

Parentage

Existing CXXR class
New class

Figure 3.14: Class collaboration diagram of new/old CXXR classes.

• A pointer to a Parentage and an integer denoting the position in the parentage at

which the binding was created;

• A GCEdge to a clone of the top-level expression that was being evaluated when the

binding was created;

• A GCEdge to the symbol to which the binding is bound.

It also defines a nested class CompTime that is used by STL containers of Provenance

objects to order their members chronologically according to their timestamp, as shown in

Listing 3.8.

Listing 3.8: class CXXR::Provenance::CompTime

1 class CompTime {

2 public:

3 bool operator()(Provenance* lhs, Provenance* rhs) {

4 return (lhs->m_timestamp.tv_sec==rhs->m_timestamp.tv_sec) ?

5 (lhs->m_timestamp.tv_usec<rhs->m_timestamp.tv_usec) :

6 (lhs->m_timestamp.tv_sec<rhs->m_timestamp.tv_sec);

7 }

8 };

class Parentage

The Parentage class stores references to Provenance objects pertaining to those Bindings

that have been read during the course of evaluating a top-level expression. It is necessary to

CHAPTER 3. PROVENANCE IN CXXR 80

reference Provenances here as their association with a binding may only be transient, and

may not outlast the evaluation of the top-level expression, such as the loop control variable

n in the loop for (n in 1:5) which will go through numerous bindings throughout the

evaluation (as Section 3.2.2 will discuss).

This class inherits from the C++ Standard Template Library (STL) std::vector

class; it does not inherit from GCNode. However, despite this, it does encapsulate its

references to Provenance objects in GCEdges, but instead of relying on the garbage col-

lection facilities from GCNode it performs its own manual reference counting together with

class Provenance. This is in response to a garbage collection issue which resulted in the

premature destruction of Parentage objects.

class ProvenanceSet

This class is a set of references to Provenance objects via GCEdges. It was introduced

for use in circumstances where these objects would otherwise be in the firing line of the

garbage collector and therefore require protection from it. This collection inherits from

GCNode and therefore forms part of the garbage collection graph. It principally functions

as the seen set during collection of provenance information described later in Section 3.2.2

and is defined as follows:

class ProvenanceSet : public GCNode,

public std::set<GCEdge<Provenance>, Provenance::CompTime>

Set Provenance::Set

This is a non-GC analogue of ProvenanceSet defined as:

typedef std::set<Provenance*, Provenance::CompTime> Set;

This class is used for purposes where the Provenance objects it comprises are referenced

elsewhere via GCEdges, typically as part of a Parentage. This class is used to represent

the set of children attributed to a Provenance and creating, manipulating and traversing

provenance graphs.

3.4.3 ProvenanceTracker

The class ProvenanceTracker is principally responsible for the execution of the above

algorithm. It houses instances of the containers for the seen set and current parentage list;

the read and write monitors that are instrumented to a frame to capture reads and writes

of bindings; as well as methods for resetting the collections at the start of a REPL cycle.

CHAPTER 3. PROVENANCE IN CXXR 81

All the members of this class—both its fields and methods—are static; this class is not

instantiated, it is used purely in a static context.

REPL Reset

The ProvenanceTracker class provides two methods for resetting the member fields of

class ProvenanceTracker: resetParentage() and resetExpression(), both of which

are shown in Listing 3.9.

Listing 3.9: Methods for resetting in preparation for new REPL iteration

1 void ProvenanceTracker::resetParentage() {

2 (*p_seen)=GCNode::expose(new ProvenanceSet());

3 (*p_current)->set(new Parentage());

4 return;

5 }

6

7 void ProvenanceTracker::resetExpression() {

8 setExpression(NULL);

9 }

Each of these methods is called at the beginning of each REPL iteration (handled by

the function Rf_ReplIteration defined in main.cpp).

Monitor Hooks

The monitor functions that are triggered on read and writes of bindings are defined in this

class, as is a method for attaching these monitors to the hooks of a particular environment,

initEnv(Environment*), which gets called during initialisation of the global environment.

Read Monitor

The read monitor defined in ProvenanceTracker is simply as is stated in the algorithm

above, and shown in Listing 3.10.

Listing 3.10: ProvenanceTracker::readMonitor

1 void ProvenanceTracker::readMonitor(const Frame::Binding& bdg) {

2 Frame::Binding& b=const_cast<Frame::Binding&>(bdg);

3 Provenance* p=const_cast<Provenance*>(b.getProvenance());

CHAPTER 3. PROVENANCE IN CXXR 82

4 if (!p) return;

5 GCEdge<Provenance> needle(p);

6 if (seen()->find(needle)==seen()->end())

7 parentage()->pushProvenance(p);

8 seen()->insert(needle);

9 }

Write Monitor

Similarly, the write monitor defined by ProvenanceTracker is largely as appears in the

above algorithm and is shown in Listing 3.11. The expression that is passed in the first

argument to the constructor of Provenance is determined by the function expression(),

which will be discussed in greater detail in Section 5.1.3.

Listing 3.11: ProvenanceTracker::writeMonitor

1 void ProvenanceTracker::writeMonitor(const Frame::Binding &bind, {

2 CXXR::Frame::Binding& bdg=const_cast<CXXR::Frame::Binding&>(bind);

3 RObject* e=expression();

4 Expression* expr=(e) ? static_cast<Expression*>(e->clone()) : NULL;

5 Symbol* sym=const_cast<Symbol*>(bind.symbol());

6

7 bdg.setProvenance(GCNode::expose(

8 new Provenance(expr,sym,parentage())

9));

10 Provenance* prov=const_cast<Provenance*>(bdg.getProvenance());

11

12 GCEdge<Provenance> tmp(prov);

13 seen()->insert(tmp);

14 }

Registering with Parents

During the course of evaluating a top-level expression, only a single parentage is maintained

and referenced by the provenances of all bindings created during the evaluation of that

expression. This strategy was implemented to avoid needlessly duplicating Provenance

references and creating Parentage objects of different sizes. Only those members of a

Parentage that were read before a Provenance was created are considered to be its parents.

This is realised by storing a position marker in Provenance to represent the number of

CHAPTER 3. PROVENANCE IN CXXR 83

relevant members in the parentage.

When a Provenance is created, it is responsible for announcing itself as a child of each

of its parents. This happens in Provenance::announceBirth(), shown in Listing 3.12,

where registerChild(Provenance* p) simply adds p to its set of children. The at

method called on a Parentage is inherited from std::vector.

Listing 3.12: Provenance::announceBirth()

1 void Provenance::announceBirth() {

2 if (!m_parentage) return;

3 for (unsigned int i=0;i<m_parentpos;++i)

4 m_parentage->at(i)->registerChild(this);

5 }

Deregistering with Parents

Similarly it is also necessary for a Provenance object to deregister itself from its parents

when it is no longer required. This occurs when the binding to which a Provenance

is attached is no longer accessible, either directly from an environment (e.g. after being

explicitly removed, or ‘replaced’ when a symbol is rebound to a different value) or as part

of the ancestry of an accessible binding. This is determined automatically by the garbage

collector, so that when a Provenance is no longer accessible it is destroyed, at which point

it informs its parents in the announceDeath() method shown in Listing 3.13. This method

also contains functionality for manually handling reference-counted garbage collection of

Parentage objects.

Listing 3.13: Provenance::announceDeath()

1 void Provenance::announceDeath() {

2 if (!m_parentage) return;

3 /* Firstly, tell all of our parents we're dying */

4 for (unsigned int i=0;i<m_parentpos;i++)

5 m_parentage->at(i)->deregisterChild(this);

6 /* Manual garbage collection.

7 If this is the last Provenance refering to this Parentage

8 then we must destroy it. */

9 if (!m_parentage->decRefCount()) {

10 for (Parentage::iterator it=m_parentage->begin();

CHAPTER 3. PROVENANCE IN CXXR 84

11 it!=m_parentage->end();

12 ++it)

13 (*it).detach();

14 delete m_parentage;

15 }

16 m_parentage=NULL;

17 }

3.4.4 Querying

This section describes the implementation of two R-level functions for querying recorded

provenance information: provenance(object) and pedigree(object,...).

The provenance function

The provenance(x) function expects parameter x to be of type Symbol and returns an R

list detailing the provenance of the current binding of x (the search for which will begin

in the global environment, assuming the function is invoked at the top-level), comprising

the following named elements:

• $command – The Expression whose evaluation gave rise to the binding;

• $symbol – The Symbol to which the binding pertained;

• $timestamp – A string representation of the date and time at which the binding was

written;

• $parents – A vector of string representations of x’s parents’ symbols;

• $children – A vector of string representations of x’s children’s symbols.

The pedigree function

The pedigree(x) function expects either a Symbol or an Expression that when evaluated,

yields a string vector representation of Symbols, and prints the complete chronological

sequence of top-level expressions that resulted in the current binding(s) of those symbols.

Firstly, it creates a Set S1 of Provenance objects attached to Bindings resolved from

looking up the given Symbol(s), beginning in the global environment. This Set is then

passed to the Provenance::ancestors method (defined below), which returns a Set S2

containing Provenance objects of all ancestors of those given in S1. Because Set is ordered

according to timestamp, S2 is then traversed from beginning to end, iteratively printing

each expression.

CHAPTER 3. PROVENANCE IN CXXR 85

Ancestry

Like all representations of provenance data, the parentage records attributed to bind-

ings form a directed, acyclic graph between Provenances, which can be easily traversed.

Provenance::ancestors(Set* open) is an implementation of Algorithm 3.2 that collates

all ancestors of Provenances contained in the Set open, and is shown in Listing 3.14.

Listing 3.14: The Provenance::ancestors(Set*) method

1 Provenance::Set* Provenance::ancestors(Set* open) {

2 Set *closed;

3 closed=new Set();

4

5 while (!open->empty()) {

6 Provenance* n=*(open->begin());

7 Parentage* p=n->getParentage();

8 if (p) {

9 for (unsigned int i=0;i<n->m_parentpos;i++) {

10 Provenance* s=p->at(i);

11 // If s isn't in closed set, put it in open

12 if (closed->find(s)==closed->end())

13 open->insert(s);

14 }

15 }

16 open->erase(n);

17 closed->insert(n);

18 }

19 return closed;

20 }

3.5 Example

Trivial

The trivial examples in this section will relate to the code given in Listing 3.15.

Listing 3.15: Example R code for demonstrating provenance recording and query

1 > one <- 1

2 > two <- one + one

CHAPTER 3. PROVENANCE IN CXXR 86

3 > three <- 3

4 > sq <- function(x) x * x

5 > four <- sq(two)

6 > nine <- sq(three)

After evaluation of the expressions shown in Listing 3.15, the provenance function

returns the following for three of the bindings:

Listing 3.16: Output of provenance(three)

1 > provenance(three)

2 $command

3 three <- 3

4

5 $symbol

6 three

7

8 $timestamp

9 [1] "14/10/11 18:59:28.297549"

10

11 $parents

12 character(0)

13

14 $children

15 [1] "nine"

Listing 3.17: Output of provenance(sq)

1 > provenance(sq)

2 $command

3 sq <- function(x) x * x

4

5 $symbol

6 sq

7

8 $timestamp

9 [1] "14/10/11 18:59:44.857478"

10

11 $parents

12 character(0)

13

CHAPTER 3. PROVENANCE IN CXXR 87

14 $children

15 [1] "four" "nine"

Listing 3.18: Output of provenance(nine)

1 > provenance(nine)

2 $command

3 nine <- sq(three)

4

5 $symbol

6 nine

7

8 $timestamp

9 [1] "14/10/11 18:59:51.753806"

10

11 $parents

12 [1] "sq" "three"

13

14 $children

15 character(0)

The following examples of the usage of pedigree are assumed to have taken place

after evaluation of the expressions shown in Listing 3.15.

Listing 3.19: Output of pedigree(nine)

1 > pedigree(nine)

2 three <- 3

3 sq <- function(x) x * x

4 nine <- sq(three)

As Listing 3.19 shows, only those top-level expressions involved in the derivation of the

binding nine are included in the output of pedigree(nine). The other expressions which

were evaluated in between these expressions, whose inclusion would not be ‘harmful’ in

the derivation of nine, are not included unnecessarily as they are not required as part of

its derivation. This is similarly depicted for pedigree(four) in Listing 3.20.

Listing 3.20: Output of pedigree(four)

CHAPTER 3. PROVENANCE IN CXXR 88

1 one <- 1

2 two <- one + one

3 sq <- function(x) x * x

4 four <- sq(two)

pedigree is also able to accept as its argument any expression that results in a char-

acter vector, whose elements are (string representations of) symbols. This enables the

output of ls() to be used as input to show the pedigree of all current bindings, which

(since no bindings have been removed) will give an exhaustive account of the session as

shown in Listing 3.21.

Listing 3.21: Output of pedigree(ls())

1 > ls()

2 [1] "four" "nine" "one" "sq" "three" "two"

3 > pedigree(ls())

4 one <- 1

5 two <- one + one

6 three <- 3

7 sq <- function(x) x * x

8 four <- sq(two)

9 nine <- sq(three)

3.6 Evaluation

Roger Peng’s Air Quality Audit analysis (see Figure 1.6 for workflow; Appendix C for

R code) was selected as a sufficiently complex example of a real-world R program. It

comprises a moderately large number of statements (50) and operates on a large amount

of data (approximately 2.5 million rows x 29 columns).

3.6.1 Provenance Questions

To demonstrate that the provenance questions defined in Section 3.1 can be satisfactorily

answered they will hereby be asked of a data object—pm1—that is created in the course

of executing the air quality audit analysis.

Answers to questions 1 to 4 are given in the output of the provenance() function;

while the pedigree() function offers an answer to question 5 as shown in Listing 3.22.

CHAPTER 3. PROVENANCE IN CXXR 89

Listing 3.22: Answering provenance questions of air quality audit data objects

1 > provenance(pm1)

2 $command

3 pm1$county.site <- with(pm1, paste(County.Code, Site.ID, sep = "."))

4

5 $symbol

6 pm1

7

8 $timestamp

9 [1] "20/07/14 01:47:39.387958"

10

11 $parents

12 [1] "pm1"

13

14 $children

15 [1] "cnt1" "pm1sub"

16

17 > pedigree("pm1")

18 cnames <- readLines("pm25_data/RD_501_88101_1999-0.txt", 1)

19 cnames <- strsplit(cnames, "|", fixed = TRUE)

20 pm1 <- read.table("pm25_data/RD_501_88101_2012-0.txt", comment.char = "#",

21 header = FALSE, sep = "|", na.strings = "")

22 names(pm1) <- make.names(cnames[[1]])

23 pm1$county.site <- with(pm1, paste(County.Code, Site.ID, sep = "."))

3.6.2 Performance

The Peng AQA analysis was executed in CXXR with both provenance-tracking enabled

and disabled, and for each execution its duration and the memory usage were recorded.

Five runs were performed in each Provenance-Aware and Provenance-Unaware CXXR

and of the measurements collected the mean and standard deviation were calculated. The

results of this performance analysis are given in Table 3.1.

The overall performance impact of the implementation of provenance-awareness to

CXXR appears, at least in the case of this example, to be minimal and is less than

expected, particularly with respect to execution time. The increase in average memory

consumption was expected due to the retention in memory of objects that in ordinary

CXXR would either have not existed at all (e.g. Provenance) or have been garbage collected

(e.g. Expression) earlier and have therefore existed for shorter periods of time. This result

is therefore considered to be very positive.

CHAPTER 3. PROVENANCE IN CXXR 90

Table 3.1 Performance analysis of PA-CXXR vs. CXXR

Duration (s)
Memory Usage (MiB)

Peak Avg.

Mean S.D. Mean S.D. Mean S.D.

CXXR 302.04 3.08 1220.77 3.92 576.01 5.07

PA-CXXR 305.93 2.62 1264.80 0.00 620.63 4.01

Overhead 1.29% 3.61% 7.75%

3.6.3 PROV Characterisation

In CXXR, the provenance of a binding state is represented by a Provenance object. Asso-

ciated to the Provenance is a Parentage, which comprises its parents—the Provenances

of those bindings that were read prior to the binding’s creation during the course of eval-

uating a top-level expression.

This representation involves the interconnection of Provenances by a parent relation,

and many Provenances may arise from and therefore be attributed to a single top-level

expression evaluation. The W3C PROV ontological view of provenance as introduced in

Section 1.2.6 has at its core interrelations between entities and activities.

Provenance in CXXR can be characterised in W3C PROV terms by considering the

evaluation of a top-level command to be analogous to a PROV activity, and a binding to

be a PROV entity. Therefore if expression evaluation E reads binding B1 and then writes

binding B2, it would be said that E used B1 and B2 wasGeneratedBy E.

A graphical representation of this characterisation for the example given in Listing 3.15

is shown in Figure 3.15 and described in PROV-N notation by Listing 3.23.

Section 4.5 will describe how W3C PROV information can be automatically extracted

from CXXR session information.

Listing 3.23: Example CXXR session represented in PROV-N

1 document

2 default <http://cxxrexample.org/>

3

4 entity(one)

5 entity(two)

6 entity(three)

7 entity(sq)

CHAPTER 3. PROVENANCE IN CXXR 91

one threesq

two four nine

wasGeneratedBy wasGeneratedBywasGeneratedBy

used

used

used used used

wasGeneratedBy wasGeneratedBy wasGeneratedBy

one <- 1 three <- 3 sq <- function (x) x * x

two <- one + one four <- sq(two) nine <- sq(three)

Figure 3.15: Example CXXR session as depicted in PROV.

8 entity(four)

9 entity(nine)

10

11 activity(expr1, [expr="one <- 1"])

12 activity(expr2, [expr="two <- one + one"])

13 activity(expr3, [expr="three <- 3"])

14 activity(expr4, [expr="sq <- function(x) x * x"])

15 activity(expr5, [expr="four <- sq(two)"])

16 activity(expr6, [expr="nine <- sq(three)"])

17

18 wasGeneratedBy(one, expr1)

19 wasGeneratedBy(two, expr2)

20 wasGeneratedBy(three, expr3)

21 wasGeneratedBy(sq, expr4)

22 wasGeneratedBy(four, expr5)

23 wasGeneratedBy(nine, expr6)

24

25 used(expr2, one)

26 used(expr5, sq)

27 used(expr5, two)

28 used(expr6, sq)

29 used(expr6, three)

30 endDocument

3.6.4 Further Work

At present, there are no records made of details pertaining to the session that would

be necessary in order to answer such provenance questions as 6. In particular: who is in

control of the session (and is therefore responsible for causing a binding to be in a particular

CHAPTER 3. PROVENANCE IN CXXR 92

state), or in what environment the binding state occurred. Such information regarding

the user that might be of interest could include: user name or login; full-name; e-mail

address. Information regarding the environment could include: CXXR version; loaded

packages (and their versions); operating system and its version; host name of computer.

One strategy for modelling these details would be to represent them as PROV Agents.

Chapter 4

Serialisation

4.1 Introduction

Serialisation is the process of transforming data structures that constitute object or pro-

gram state into a format suitable for persistent storage in a file or transmission on a

network, with the intention that this data may later undergo the reverse of this process—

deserialisation—to restore data or program state in either the same or a different envir-

onment.

In this way, data analysis sessions may be saved and later resumed. Data that persists

across more than one session will be referred to as cross-session.

This chapter addresses research goals (Section 1.5.1) number 4 by introducing cross-

session provenance-awareness, and number 5 by considering how to enable interoperability

of provenance captured by CXXR.

This chapter will:

• Re-cap the use case for cross-session provenance awareness;

• Look at emerging standards for serialisation of provenance;

• State the design objectives of a cross-session provenance-aware CXXR;

• Describe how this facility has been implemented;

• Describe how serialised provenance information can be processed to offer interoper-

ability.

CXXR has inherited serialisation and deserialisation facilities from CR. CR’s facilities

for serialisation and deserialisation of data objects offer a variety of options: from which

objects are serialised—one object per file, numerous objects, or the entire session; to where

93

CHAPTER 4. SERIALISATION 94

the serialisation occurs—a flat file, a compressed file, or even a HTTP/FTP connection;

and also file format—ASCII, Binary or XDR (a big-endian format). An example of how

cross-session CR looks is given in 4.1.

Listing 4.1: Cross-session R session example

1 > sq <- function(x) x*x

2 > three <- 3

3 > nine <- sq(three)

4 > save.image(file="cas.RData")

5 > q()

6 csilles@agate:~/PWE/cxxr/vendor/2.11.1$ bin/R --vanilla

7

8 R version 2.11.1 (2010-05-31)

9 Copyright (C) 2010 The R Foundation for Statistical Computing

10 ISBN 3-900051-07-0

11

12 [...]

13

14 > load(file="cas.RData")

15 > ls()

16 [1] "nine" "sq" "three"

17 > sq

18 function(x) x*x

19 >

4.1.1 Use Case

The motivating use case for cross-session provenance-awareness was outlined in Section 1.5,

which describes a scenario in which a user returns to an analysis that was conducted some

time ago for which there were no contemporaneous notes made, therefore the user wishes

to ask provenance questions of the session to determine how the present data objects

arrived in their respective states. A likely variation on this scenario is when a user is in

receipt of an analysis conducted by a third-party and has a similar desire to ask provenance

questions.

The provenance questions to be answered in this scenario remain the same as those

defined in Section 3.1.

At the moment, only the data is serialised by the serialisation facility CXXR inherited

from CR—attributed provenance information is not included.

CHAPTER 4. SERIALISATION 95

4.1.2 Serialisation of Provenance

As introduced in Chapter 1, the principal objective of the W3C Provenance Working

Group was to define a provenance interchange language (PIL) and accordingly publish

W3C Recommendations to this effect. The Recommendation describing the central data

model for representation of provenance information is PROV-DM [79].

Being a conceptual data model, PROV-DM does not prescribe—or describe—a format

for the serialisation of provenance information. Three separate publications were made

relating to serialisation: PROV-O: the PROV Ontology [64], which expresses PROV-DM

in OWL2 Web Ontology Language, allowing mapping of PROV-DM to RDF (the serialisa-

tion of which may occur to several formats, principally XML); PROV-N: the Provenance

Notation [80], which is serialisation of provenance intended for human consumption; and

PROV-XML [112], which describes an XML schema allowing instances of PROV-DM to

be serialised as XML.

The Working Group permitted a Member Submission PROV-JSON [52], which spe-

cifies a serialisation format for the representation of PROV-DM as JSON (JavaScript

Object Notation), and focusses its attention on allowing the interchange of provenance

information between web services and clients.

4.2 Design

Serialising the bindings belonging to a CXXR session necessitates saving the state of each

binding, including its related attributes: the symbol, value, etc. and their attributes, and

so on until every object that is required to restore the session has been saved.

4.2.1 Interpreter State

There is an important distinction to be made between certain types of objects in CXXR:

those that are session-specific and those that are session-independent.

The former category comprises objects that are used to represent aspects of the in-

terpreter’s state, which is established at the beginning of the session, and remains for

the session’s duration. This type of object is not directly transferable from one session to

another for reasons that are best illustrated by way of example.

By the time a user operating a CXXR session S1 decides to load into it a previously-

saved session S0 the state of S1 has already been established. One such element of state

is the global environment, which is among the first objects to be created on initialisation

CHAPTER 4. SERIALISATION 96

of the interpreter, and to which there are countless references from other objects. These

references would be broken and cause corruption of the interpreter state if, when S0 is

loaded, the global environment from S0 were to simply replace that of S1. Similarly,

of the objects in S0, any references to the global environment would not be well-served

notionally by loading the global environment of S0 into S1 without having it replace the

global environment.

More generally: if an object O refers to some aspect of interpreter state S, the salient

notion is that O makes a reference to the S of the session in which it exists, and not the

specific instance of S in the session in which it was created.

These objects are therefore termed session-specific as they cannot feasibly be trans-

planted from one session to another without either losing their semantic significance or

invalidating aspects of interpreter state. All other objects are session-independent.

Session-specific objects

The session-specific objects are currently:

• Two instances of Environment: the global environment and the base environment;

• All instances of Symbol;

• All instances of CachedString.

The global and base environments are established during the initialisation of the in-

terpreter and are fixed for the lifetime of the session. An instance of the Symbol class is

a necessarily unique textual representation of an identifier name; similarly CachedString

does likewise for arbitrary strings. For example, if one creates a binding in the global

environment to the symbol seq, this binding will reference precisely the same instance of

Symbol as the binding to the standard library function defined in the base environment.

When it comes to serialising an object of this type, it is not the referenced object itself

that needs to be preserved; rather the fact that it is a reference to some object—it should

therefore be serialised by reference.

Session-independent objects

All other objects are session-independent as their state within one session can be preserved

and subsequently loaded into a new session without any harmful side-effects.

The information that should be preserved for a session-independent object is its value—

it should therefore be serialised by value.

CHAPTER 4. SERIALISATION 97

4.2.2 Design Objectives

The design considerations that influence the approach taken here are as follows:

• Interpreter State. As outlined above, the separation between serialise-by-value

and serialise-by-reference objects needs to be handled;

• Output Format. This should be flexible and provided by an opaque ‘Archive’ type

whereby the code that initiates serialisation of a data item should not be aware of

how, to where, or in what format the data will actually be stored;

• Versioning. The serialisation process should allow for changes to attributes as the

interpreter internals evolve;

• Code Encapsulation. CXXR promotes an ethos of extensibility, and affords de-

velopers the ability to introduce easily new data types into the RObject hierarchy.

The serialisation/deserialisation functionality needs to be encapsulated with the code

and attributes to which it pertains;

• C++ features. A robust solution should cope with the features of C++ that

CXXR employs: inheritance, pointers, templates, smart pointers, managing object

instances.

4.2.3 Algorithms

The two highest-level operations are serialisation and deserialisation whose functions

here are to respectively save all of the bindings in the global environment, and load saved

bindings into the current global environment. These two operations are outlined in Al-

gorithms 4.1 and 4.2. They each utilise an algorithm to import bindings from the frame

of one environment to another (Algorithm 4.3).

Algorithm 4.1 CXXR session serialisation algorithm
1: procedure Serialize

2: A← new output archive

3: E ← new Environment

4: Import(R_GlobalEnv.frame, E.frame) ▷ Import bindings from global env.

5: A.serialize(E)

CHAPTER 4. SERIALISATION 98

Algorithm 4.2 CXXR session deserialisation algorithm
1: procedure Deserialize

2: A← new input archive

3: E ← A.deserialize

4: Import(E.frame, R_GlobalEnv.frame) ▷ Import bindings to global env.

Algorithm 4.3 Import bindings algorithm
1: procedure Import(srcFrame, destFrame)

2: for all (srcSymbol, srcBinding) ∈ srcFrame do

3: destBdg ← destFrame.obtainBinding(srcSymbol) ▷ Locate binding

4: destBdg.m_provenance← srcBdg.m_provenance ▷ Set Provenance

5: destBdg.m_value← srcBdg.m_value ▷ Set value

Session-(in)dependent Objects

The handling of session-dependent objects described in the previous section is detailed in

Algorithms 4.4, 4.5, 4.6, and 4.7. To signify references to particular session-dependent

environments—global and base—and special symbols—unbound value, missing argument,

and restart token—integer identifiers are used.

4.3 Implementation

C and C++ offer no native features for handling of serialisation.

Consequently, CR defines its own mechanisms for handling serialisation and deserial-

isation, which have so far been inherited by CXXR.

The serialisation facilities introduced here will utilise the boost::serialization lib-

rary, which the following section will introduce and explain why this library satisfies the

design criteria described above.

4.3.1 boost::serialization

Boost is a collection of peer-reviewed, highly-portable, C++ libraries that cover a vast

range of applications [1]. Boost has an emphasis on creating libraries that are highly

compatible the C++ standard library. Such has been its success, its libraries have been

adopted as part of the most recent C++11 standard, and many of the concepts, classes

and functions introduced in its libraries are increasingly being incorporated into the C++

Committee’s Library Technical Reports for consideration for inclusion in future definitions

CHAPTER 4. SERIALISATION 99

Algorithm 4.4 Object Serialisation/Deserialisation algorithms
1: procedure SerialiseObject(O, A) ▷ Serialise object O to archive A

2: T ← TypeOf(O)

3: A.serialize(T)

4: if T = ‘Environment′ then

5: SaveEnvironment(O, A)

6: else if T = ‘Symbol′ then

7: SaveSymbol(O, A)

8: else if T = ‘CachedString′ then

9: SaveCachedString(O, A)

10: else

11: A.serialise(O)

12: procedure DeserialiseObject(A) ▷ Deserialise an object from archive A

13: T ← A.deserialise

14: if T = ‘Environment′ then

15: O ← LoadEnvironment(A)

16: else if T = ‘Symbol′ then

17: O ← LoadSymbol(A)

18: else if T = ‘CachedString′ then

19: O ← LoadCachedString(A)

20: else

21: O ← A.deserialise

of the C++ language standard.

Boost’s libraries comprise libraries that are header-only such as

boost::circular_buffer and boost::graph that need to only be #included;

and those that require compilation into library objects, against which programs that wish

to utilise their functionality must be linked. Examples of this type include boost::regex,

boost::thread and boost::serialization.

CXXR already makes use of Boost elsewhere—specifically boost::regex, although

regex is now part of C++11’s standard library—so there is in fact no additional depend-

ency on a separate third-party library collection being introduced here.

This section will introduce the key features of boost::serialization, and how these

are particularly well-suited to the requirements for serializing CXXR’s object hierarchy

and provenance information.

CHAPTER 4. SERIALISATION 100

Algorithm 4.5 Serialise/Deserialise Environment
1: procedure SaveEnvironment(E, A) ▷ Serialise E to archive A

2: if E = R_GlobalEnv then

3: EnvType← 1

4: else if E = R_BaseEnv then

5: EnvType← 2

6: else

7: EnvType← 0 ▷ All other environments

8: A.serialize(EnvType)

9: if EnvType = 0 then

10: A.serialize(E)

11: procedure LoadEnvironment(A) ▷ Deserialise Environment from archive A

12: EnvType← A.deserialize

13: if EnvType = 1 then

14: return R_GlobalEnv

15: else if EnvType = 2 then

16: return R_BaseEnv

17: else

18: E ← A.deserialize

19: return E

Archives

An Archive is considered to be any stream of bytes that may have be embodied in any

underlying file format, and comprises a complementary pair of interfaces for access: one

each for data output and input. Boost provides specimen Archive types to cater for many

needs: text, XML, and binary; however, the user is not restricted to these formats and may

instead opt to extend Archive into some other bespoke format. This mechanism allows

an application to treat any Archive in a unified manner and therefore be entirely format-

agnostic, thereby not needing to be concerned with the fundamentals of how the data is

being represented at a low level. The Archive interface is designed with the intention that

it can easily be extended. It would therefore be possible to create an Archive that enabled

representation of provenance information as PROV-O, RDF or even PROV-N.

Archives are constructed with either an std::istream for an input archive, or

std::ostream for an output archive. These could typically be std::ifstream and

CHAPTER 4. SERIALISATION 101

Algorithm 4.6 Serialise/Deserialise Symbol
1: procedure SaveSymbol(S, A) ▷ Serialise S to archive A

2: if S = R_MissingArg then ▷ Special Symbols

3: SymType← 1

4: else if S = R_RestartToken then

5: SymType← 2

6: else if S = R_UnboundV alue then

7: SymType← 3

8: else

9: SymType← 0 ▷ All other symbols

10: A.serialize(SymType)

11: if SymType = 0 then

12: A.serialize(S.toString())

13: procedure LoadSymbol(A) ▷ Deserialise Symbol from archive A

14: SymType← A.deserialize

15: if SymType = 1 then

16: return R_MissingArg

17: else if SymType = 2 then

18: return R_RestartToken

19: else if SymType = 3 then

20: return R_UnboundV alue

21: else

22: string ← A.deserialize

23: return Symbol.obtain(string)

std::ofstream respectively for input from and output to files. Again this abstraction

from underlying streams allows Archives to be constructed from streams that do not ne-

cessarily exist as files on a filesystem.

Serializable classes

A class is considered to be serializable if it either (i) implements an appropriate

serialize member method:

CHAPTER 4. SERIALISATION 102

Algorithm 4.7 Serialise/Deserialise CachedString
1: procedure SaveCachedString(C, A) ▷ Serialise C to archive A

2: A.serialise((C.string, C.encoding))

3: procedure LoadCachedString(A) ▷ Deserialise CachedString from archive A

4: (string, encoding)← A.deserialize()

5: return CachedString.Obtain(string, encoding)

template<class Archive>

void serialize(Archive &ar, const unsigned int version);

or (ii) is provided with an appropriate free-standing serialize function, in accordance

with the following prototype:

template<class Archive>

inline void serialize(

Archive& ar,

MyClass& t,

const unsigned int file_version

) {

[...]

}

The former method ensures very tight code encapsulation, as the serialisation-related

code is contained as part of the class definition. In cases where modifying the class defini-

tion is not possible, the latter method allows these class types to be made Serializable.

C++ primitive types are also considered Serializable.

Serializing members

Archive types overload the operators << and >> for the respective purposes of writing to

an output archive, and reading from an input archive. Archive types also polymorphically

overload the binary operator &, so that it may be used in place of << for an output archive,

and >> for an input archive.

This enables the serialize member method to handle both serialisation and deseri-

alisation with the same code, such as that shown in the example Listing 4.2.

Listing 4.2: Example definition of a class that de/serialises its member variables

1 class Club {

CHAPTER 4. SERIALISATION 103

2 public:

3 Club(std::string officialname, int yearfounded)

4 : officialname(officialname), yearfounded(yearfounded) { }

5 private:

6 friend class boost::serialization::access;

7

8 std::string officialname;

9 int yearfounded;

10

11 template<class Archive>

12 void serialize(Archive& ar, const unsigned int version) {

13 ar & officialname; // Serialize/deserialize

14 ar & yearfounded; // member fields

15 }

16 };

Serializing Pointers

It is possible to serialise an object through a pointer to that object, for example a class

that has a Club* member might serialise it as follows:

class Player {

private:

Club *club;

template<class Archive>

void serialize(Archive& ar, const unsigned int version) {

ar & club;

}

};

It is of course possible that an object is referenced by more than one pointer, for

instance more than one Player will play for the same Club. In such a case, an instance

will be only be recorded once in the archive. During deserialisation, a new object will be

created into which its contents are loaded. Any subsequent deserialisation of pointers to

this object will not result in the creation of duplicate instances of it; instead these pointers

will be set to reference the pre-existing instance.

Polymorphic pointers are also handled in this fashion and will be discussed later.

CHAPTER 4. SERIALISATION 104

Constructing Archives

As previously mentioned, an Archive is used for either input from or output to some

particular format, typically to a file. In the case of the standard Boost specimen Archives,

whether they are for input or output is indicated by their name, such as the XML Archives

xml_iarchive for input and xml_oarchive for output, which like all Boost Archives

require a corresponding file stream. Listing 4.3 exemplifies how XML input and output

Archives may be created with the file serialize.xml and used to serialise and deserialise

an object. In the case of XML archives, this process has one additional step to attribute

a name to the XML tag of the object being serialised. This example uses a boost macro

that simply generates a name based on that of the class.

Listing 4.3: Constructing an XML archive for output and then input

1 Club *club;

2 [...]

3

4 ofstream ofs("serialize.xml");

5 boost::archive::xml_oarchive oa(ofs);

6 oa << BOOST_SERIALIZATION_NVP(club); // Serialize 'club' to XML archive

7

8 [...]

9

10 ifstream ifs("serialize.xml");

11 boost::archive::xml_iarchive ia(ifs);

12 ia >> BOOST_SERIALIZATION_NVP(club); // Deserialize XML archive to 'club'

Versioning

A particularly valuable feature of boost::serialization’s approach to devolution of

serialisation responsibility to each class, is that each class is able to evolve independently:

there is no overall, application-wide version of the serialisation format, instead versioning

is performed on a class by class basis. This is supported by use of the version parameter of

the serialize method. When an archive incorporates a serialised instance of a class, the

archive also records which serialisation version number of this class was used. This means

that as a class changes over time, for instance when it incorporates new member fields, it

can increment its serialisation version number to reflect the change in its own format, while

at the same time it retains its ability to accommodate deserialising its previous versions.

CHAPTER 4. SERIALISATION 105

It does this by determining at the time it restores its data what constituents pertain

to the version with which it is presented.

Splitting Save/Load

The examples shown so far have presented serialisation and deserialisation as operations

that differ only in the direction the data is flowing—everything serialised is deserialised in

the same order. This has enabled both operations to be represented by the same serialize

method, with the context-sensitive operator &. In the case of multiple versioning, these

operations are unlikely to remain identical: while serialisation will occur to only one format

that represents the current version of a class, deserialisation will need to account for all of

the previous versions of a class. In that case, the solution is to split save and load into

separate methods.

This requires that the serialize method is defined as follows to announce to the

library that the save and load operations will be handled separately:

void serialize(Archive& ar, const unsigned int version) {

boost::serialization::split_member(ar, *this, version);

}

The class then needs to implement methods with the following signatures:

void save(Archive& ar, const unsigned int version) const;

void load(Archive& ar, const unsinged int version);

Listing 4.4 shows the previously-encountered example class Club has since been aug-

mented with an additional member field homeground, and how this is class uses split

save/load members to cater for this difference in versions.

Listing 4.4: Split save and load from Club serialize

1 #include <boost/serialization/split_member.hpp>

2 #include <boost/serialization/version.hpp>

3

4 class Club { [... constructor omitted ...]

5 private:

6 friend class boost::serialization::access;

7

8 std::string officialname;

9 int yearfounded;

10 Ground* homeground;

11

CHAPTER 4. SERIALISATION 106

12 template<class Archive>

13 void serialize(Archive& ar, const unsigned int version) {

14 boost::serialization::split_member(ar, *this, version);

15 }

16

17 template<class Archive>

18 void save(Archive& ar, const unsigned int version) const {

19 ar << officialname;

20 ar << yearfounded;

21 ar << homeground;

22 }

23

24 template<class Archive>

25 void load(Archive& ar, const unsigned int version) {

26 ar >> officialname;

27 ar >> yearfounded;

28 if (version > 0)

29 ar >> homeground;

30 }

31 };

32

33 BOOST_CLASS_VERSION(Club, 1);

Inheritance

A facility for serialising the superclass of a class is defined in header base_object.hpp

and is invoked as illustrated in Listing 4.5;

Listing 4.5: Serialize a superclass

1 #include <boost/serialization/split_member.hpp>

2 #include <boost/serialization/base_object.hpp>

3

4 class FootballClub : public Club {

5 [...]

6 private:

7 friend class boost::serialization::access;

8

9 Division* division;

10

11 template<class Archive>

CHAPTER 4. SERIALISATION 107

12 void serialize(Archive& ar, const unsigned int version) {

13 boost::serialization::split_member(ar, *this, version);

14 }

15

16 template<class Archive>

17 void save(Archive& ar, const unsigned int version) const {

18 ar << boost::serialization::base_object<Club>(*this);

19 ar << division;

20 }

21

22 template<class Archive>

23 void load(Archive& ar, const unsigned int version) {

24 ar >> boost::serialization::base_object<Club>(*this);

25 ar >> division;

26 }

27 };

This enables subclass A to pass the serialisation/deserialisation operation to its super-

class B. However this does not cater for the case where an object of dynamic type A is

being serialised via a pointer or reference of static type B, in which case it is necessary to

downcast from B to A.

boost::serialization handles the serialisation of polymorphic pointers like this

automatically, through a process of registration of derived classes. In the case that

A is a derived class of B and it is intended that objects of type A are to be serialised

through polymorphic pointers of type B, then A must first be registered using one of a

few macros defined in boost/serialization/export.hpp. Our exemplar derived class

FootballClub could be registered as follows:

BOOST_CLASS_EXPORT_KEY(FootballClub);

The following example shows how this registration enables a Player’s club, stored in

a variable whose static type is Club and whose dynamic type is FootballClub, to be

serialised/deserialised.

CHAPTER 4. SERIALISATION 108

class Player {

Club* club;

template<class Archive>

void serialize(Archive& ar, const unsigned int version) {

ar & club;

}

}

In particular, the type of the object instantiated when club is deserialised will be

FootballClub.

4.3.2 Provenance Containers

Provenance

The serialisation functionality within class Provenance is split into a save/load pair to

enable the necessary house-keeping to be performed when reconstructing a Provenance

object.

The central data structure for provenance information is the class Provenance, whose

objects are related to each other by way of a Parentage class (introduced in Section 3.4.2).

The serialisation method for the Provenance class is shown in Listing 4.6, in which the

data types of non-primitive variables have been annotated in comment. It is responsible

for serialising its six member fields: two fields comprising the timestamp associated with

its creation time; a GCEdge connecting to the expression associated with this provenance

object; a GCEdge connecting to the symbol with which this provenance object is associated;

a pointer to a Parentage object; and the position within that parentage.

Listing 4.6: The Provenance::save method

1 template <class Archive>

2 void save(Archive & ar, const unsigned int version) const {

3 ar << boost::serialization::base_object<GCNode>(*this);

4

5 ar << m_timestamp.tv_sec;

6 ar << m_timestamp.tv_usec;

7 ar << m_expression; // GCEdge<Expression>

8 ar << m_parentpos;

9 ar << m_symbol; // GCEdge<Symbol>

CHAPTER 4. SERIALISATION 109

10 ar << m_parentage; // Parentage*

11 }

The deserialisation method for the Provenance class is shown in Listing 4.7. It rein-

states the class member fields from the archive, and also does some necessary house-keeping

activities:

• Establish an empty set of children;

• Increment the reference count of the associated parentage;

• Announce its birth to its parents.

Listing 4.7: The Provenance::load method

1 template <class Archive>

2 void load(Archive & ar, const unsigned int version) {

3 ar >> boost::serialization::base_object<GCNode>(*this);

4

5 ar >> m_timestamp.tv_sec;

6 ar >> m_timestamp.tv_usec;

7 ar >> m_expression;

8 ar >> m_parentpos;

9 ar >> m_symbol;

10 ar >> m_parentage;

11 m_children=new Set();

12

13 m_parentage->incRefCount();

14 announceBirth();

15 }

Parentage

Similarly to Provenance, the serialisation and deserialisation methods of Parentage are

asymmetrical and so require splitting into save/load pairs.

As illustrated in Listing 4.8 saving a Parentage object consists of firstly saving its

size, and then iteratively saving each of its constituent Provenance objects.

Listing 4.8: The Parentage::save method

CHAPTER 4. SERIALISATION 110

1 template<class Archive>

2 void save(Archive & ar, const unsigned int version) const {

3 unsigned int sz=size();

4 ar << sz;

5 for (unsigned int i=0;i<sz;i++) {

6 Provenance *p=at(i);

7 ar << p;

8 }

9 }

Loading a Parentage object is a little more involved: its load method firstly retrieves

from the archive the size of the Parentage in order to determine how many Provenance

objects reside in the archive and are to due to be read. Each of the Provenance objects

is then retrieved from the archive, exposed to the garbage collector, and pushed into the

parentage. The relevant code is given in Listing 4.9.

Listing 4.9: The Parentage::load method

1 template<class Archive>

2 void load(Archive & ar, const unsigned int version) {

3 unsigned int sz;

4 ar >> sz;

5 for (unsigned int i=0;i<sz;i++) {

6 Provenance *p;

7 ar >> p;

8 GCNode::expose(p);

9 pushProvenance(p);

10 }

11 }

Frame

The frame, as introduced in Section 2.2.6, is the component of an environment which

maps symbols to bindings, which in turn have an associated value. In order to incorporate

the bindings of one frame into another, a method import has been introduced to Frame.

The definition of this method in its derived class StdFrame is shown in Listing 4.10, and

operates as described in Algorithm 4.3.

Listing 4.10: The StdFrame::import method

CHAPTER 4. SERIALISATION 111

1 void StdFrame::import(const Frame* frame) {

2 const StdFrame* stdFrame = static_cast<const StdFrame*>(frame);

3 for (map::const_iterator it = stdFrame->m_map.begin();

4 it != stdFrame->m_map.end();

5 ++it) {

6 const Symbol* symbol=(*it).first;

7 const Binding* bdgSrc=&(*it).second;

8

9 Binding* bdgDest = obtainBinding(symbol);

10 bdgDest->setProvenance(const_cast<Provenance*>(bdgSrc->getProvenance()));

11 bdgDest->setValue(bdgSrc->rawValue(), bdgSrc->origin(), TRUE);

12 }

13 }

4.3.3 User-Level Functions

A new R-level function bserialize has been introduced to allow this functionality to

coexist with existing R functions for serialisation. The bserialize function implements

the functionality of Algorithm 4.1.

The complementary R-level function for deserialisation that has been introduced is

bdeserialize. The bdeserialize function implements the functionality described in

Algorithm 4.2.

4.3.4 Session-dependent Objects

A strategy for handling serialisation/deserialisation of CXXR’s session-dependent objects,

which were introduced in Section 4.2.1, was described by algorithms in Section 4.2.3.

The implementation of the strategy described in Algorithm 4.4 takes advantage of

the memory management technique that GCNodes use to refer to each other—the GCEdge.

At the time of its serialisation, a GCEdge inspects its target to determine its type and

if it might need to serialise it by reference, in which case it serialises an edge type

identifier and marshals control to the appropriate dedicated method for serialising the

object by reference. Otherwise, it serialises the target by value.

Deserialisation, as described in Algorithm 4.2 works as the converse of this process,

and uses the edge type identifier to determine whether the object needs to be deserialised

by value or by reference, and retargets the GCEdge accordingly.

This functionality is implemented in GCEdge’s base class, GCEdgeBase.

CHAPTER 4. SERIALISATION 112

GCEdgeBase

GCEdgeBase defines an enumerated data type EdgeSerializationType that will be used

as an edge type identifier:

enum EdgeSerializationType {

OTHEREDGE = 0, SYMBOLEDGE,

CACHEDSTRINGEDGE, ENVIRONMENTEDGE

};

A member method shown in Listing 4.11 is introduced to disambiguate the type of a

GCEdgeBase’s target, and resolve it to one of the given values in EdgeSerializationType.

Listing 4.11: The GCEdgeBase::serializationType() method

1 GCEdgeBase::EdgeSerializationType GCEdgeBase::serializationType() const {

2 if (!m_target) return OTHEREDGE;

3

4 switch (typeid(*m_target)) {

5 case typeid(Symbol): return SYMBOLEDGE;

6 case typeid(CachedString): return CACHEDSTRINGEDGE;

7 case typeid(Environment): return ENVIRONMENTEDGE;

8 }

9

10 return OTHEREDGE;

11 }

Serialisation

The serialisation method of GCEdgeBase as shown in Listing 4.12. Firstly the edge type

identifier of the current GCEdgeBase is determined and written to the archive.

Listing 4.12: The GCEdgeBase::save method

1 template<class Archive>

2 void save(Archive & ar, const unsigned int version) const {

3 EdgeSerializationType type=serializationType();

4 ar << type;

5 switch(type) {

6 case CACHEDSTRINGEDGE:

7 saveCachedString(ar, m_target);

CHAPTER 4. SERIALISATION 113

8 break;

9 case ENVIRONMENTEDGE:

10 saveEnvironment(ar, m_target);

11 break;

12 case SYMBOLEDGE:

13 saveSymbol(ar, m_target);

14 break;

15 case OTHEREDGE:

16 ar << const_cast<GCNode* &>(m_target);

17 break;

18 }

19 }

Following that, different methods are called depending upon the type of the target:

CachedString : Saves to the archive an std::pair comprising: an std::string repres-

entation of the cached string; and an internal encoding value.

Environment : In order to identify special environments—namely the global

and base environments—an identifier based on an enumerated data type

EnvironmentSerializationType is first saved to the archive, and if the environ-

ment is not deemed special, then in addition its contents is written to the archive,

as illustrated in Listing 4.13.

Symbol : The handling of symbols is similar to that of environments as it too has

to consider representing its special values: R_MissingArg, R_RestartToken and

R_UnboundValue. An identifier representing which (if any) of these cases pertains

to the current symbol is written to the archive, and if a special value is not being

represented, then an std::string representation of the symbol is also saved to the

archive.

Other targets are simply written to the archive. This will invoke the relevant serialize

method—either a member of the appropriate class (which almost certainly will be

derived from GCNode) or a free-standing method pertaining to the appropriate class.

Listing 4.13: The saveEnvironment method

1 template<class Archive>

2 void saveEnvironment(Archive & ar, const GCNode* pce) {

3 Environment* env=const_cast<Environment*>(

CHAPTER 4. SERIALISATION 114

4 static_cast<const Environment*>(pce)

5);

6 EnvironmentSerializationType type=environmentSerializationType(env);

7

8 ar << type;

9 if (type==OTHERENV)

10 ar << env;

11 }

Deserialisation

Deserialisation of GCEdgeBase is the logical reverse of the serialisation process, and is

described in Listing 4.14. First the edge type identifier is loaded from the archive

and is then used to determine the appropriate handling routine. Each of the methods

load{CachedString,Environment,Symbol} returns a pointer which is used to retarget

the current GCEdgeBase.

Listing 4.14: The GCEdgeBase::load method

1 template<class Archive>

2 void load(Archive & ar, const unsigned int version) {

3 EdgeSerializationType type;

4 ar >> type;

5 switch(type) {

6 case CACHEDSTRINGEDGE:

7 retarget(loadCachedString(ar));

8 break;

9 case ENVIRONMENTEDGE:

10 retarget(loadEnvironment(ar));

11 break;

12 case SYMBOLEDGE:

13 retarget(loadSymbol(ar));

14 break;

15 case OTHEREDGE:

16 ar >> const_cast<GCNode* &>(m_target);

17 if (m_target) {

18 GCNode::expose(m_target);

19 m_target->incRefCount();

20 }

21 break;

22 }

CHAPTER 4. SERIALISATION 115

23 }

4.4 Evaluation

This section demonstrates how the serialisation/deserialisation facility of Provenance-

Aware CXXR is used, and how provenance questions (Section 3.1) can be answered of

data objects that have been restored from a previously-saved session.

4.4.1 Illustrative Example

In the interest of brevity of XML output, this example is necessarily short:

> myVar <- "Hello, XML Serialization"

> myVar <- paste0(myVar, "!")

> myVar

[1] "Hello, XML Serialization!"

> bserialize()

> q()

This session can later be recalled as follows:

> bdeserialize()

> ls()

[1] "myVar"

> myVar

[1] "Hello, XML Serialization!"

> pedigree("myVar")

[[1]]

myVar <- "Hello, XML Serialization"

[[2]]

myVar <- paste0(myVar, "!")

The corresponding XML output for only the first top-level command can be found in

Appendix B.

4.4.2 Real-World Example

The by now familiar Peng AQA analysis was serialised after being performed in a CXXR

session. The serialisation resulted in an XML file of size 3.5GB, comprising approximately

155 million XML elements. Being a text-based format, this XML file is highly compress-

ible. The GNU tar program, for instance, is able to compressed the XML file to an

CHAPTER 4. SERIALISATION 116

altogether more reasonable 23MB using gzip compression.

It is possible to recall the session thus:

> bdeserialize()

> ls()

[1] "both" "both.county" "both.id" "cnames"

[5] "cnt0" "cnt1" "dates" "dates0"

[9] "dates1" "missing.months" "negative" "pm0"

[13] "pm0sub" "pm1" "pm1sub" "rng"

[17] "site0" "site1" "tab" "x0"

[21] "x0sub" "x1" "x1sub"

And ask provenance questions of individual objects that have been restored:

> provenance(x1sub)

$command

x1sub <- pm1sub$Sample.Value

$symbol

x1sub

$timestamp

[1] "21/07/14 12:49:57.855978"

$parents

[1] "pm1sub"

$children

[1] "rng"

Or question the sequence of commands used to generate all the objects:

CHAPTER 4. SERIALISATION 117

> pedigree(ls())

pm0 <- read.table("pm25_data/RD_501_88101_1999-0.txt", comment.char = "#",

header = FALSE, sep = "|", na.strings = "")

cnames <- readLines("pm25_data/RD_501_88101_1999-0.txt", 1)

cnames <- strsplit(cnames, "|", fixed = TRUE)

names(pm0) <- make.names(cnames[[1]])

x0 <- pm0$Sample.Value

pm1 <- read.table("pm25_data/RD_501_88101_2012-0.txt", comment.char = "#",

header = FALSE, sep = "|", na.strings = "")

names(pm1) <- make.names(cnames[[1]])

x1 <- pm1$Sample.Value

negative <- x1 < 0

dates <- pm1$Date

dates <- as.Date(as.character(dates), "%Y%m%d")

missing.months <- month.name[as.POSIXlt(dates)$mon + 1]

tab <- table(factor(missing.months, levels = month.name))

site0 <- unique(subset(pm0, State.Code == 36, c(County.Code,

Site.ID)))

site1 <- unique(subset(pm1, State.Code == 36, c(County.Code,

Site.ID)))

site0 <- paste(site0[, 1], site0[, 2], sep = ".")

site1 <- paste(site1[, 1], site1[, 2], sep = ".")

both <- intersect(site0, site1)

pm0$county.site <- with(pm0, paste(County.Code, Site.ID, sep = "."))

pm1$county.site <- with(pm1, paste(County.Code, Site.ID, sep = "."))

cnt0 <- subset(pm0, State.Code == 36 & county.site %in% both)

cnt1 <- subset(pm1, State.Code == 36 & county.site %in% both)

both.county <- 63

both.id <- 2008

pm1sub <- subset(pm1, State.Code == 36 & County.Code == both.county &

Site.ID == both.id)

pm0sub <- subset(pm0, State.Code == 36 & County.Code == both.county &

Site.ID == both.id)

dates1 <- as.Date(as.character(pm1sub$Date), "%Y%m%d")

x1sub <- pm1sub$Sample.Value

dates0 <- as.Date(as.character(pm0sub$Date), "%Y%m%d")

x0sub <- pm0sub$Sample.Value

rng <- range(x0sub, x1sub, na.rm = T)

CHAPTER 4. SERIALISATION 118

4.5 Provenance Interchange

This chapter has so far detailed serialisation of a CXXR session in which provenance

information attributed to data items within that session is preserved alongside the data

to which it pertains, so that at a later time the session may be restored, complete with

data and provenance.

This is only one potential use of provenance information serialised from CXXR. This

section will describe how it is possible to enable interoperability of provenance by extract-

ing from a saved CXXR session, provenance information in the W3C PROV-O format

described in Section 1.2.6.

4.5.1 Design

By serialising to XML using Boost, CXXR allows its saved sessions to be processed as

regular XML documents. One particular advantage offered by these means is Boost’s

attribution of identifiers to each type of C++ class encountered as well as each instance

of an object. It is therefore practical to reconstruct from XML the graph of objects (i.e.

instances of C++ classes) that compose the CXXR session with provenance information,

so that this may then be written in some other format. PROV-O is an OWL2 Web Onto-

logy Language (OWL2) ontology expressing the PROV Data Model, whose namespace is

defined as http://www.w3.org/ns/prov# and—as is common practice—this namespace

will herein be bound to the prefix prov. As an OWL2 ontology, PROV-O can be serialised

in a variety of syntaxes including but not limited to RDF/XML, OWL/XML, and Turtle.

Turtle is something of a de facto standard syntax for representing PROV-O; therefore it

is the chosen syntax into which CXXR provenance will be transformed.

Classes

To recap Section 1.2.6: a prov:Entity class is analogous to a CXXR::Provenance—a

representation of a binding state—and a prov:Activity class is analogous to a top-

level expression evaluation—subsequently represented in this implementation by class

CXXR::CommandChronicle, which implements the combined concepts of parentage and

expression.

Properties

A CommandChronicle also comprises references to those objects that were read in the

course of its expression evaluation, each of which can be said—in PROV terms—to have

CHAPTER 4. SERIALISATION 119

been used by the Activity. The prov:wasGeneratedBy attribute of a prov:Entity is used

to represent a Provenance reference to a CommandChronicle.

Labels

To assist with human-readability, both prov:Entity and prov:Activity may have label

attributes, which are expressed in PROV-O using the rdfs:label property. The label

of a CommandChronicle will be a string representation of the expression; the label of a

Provenance will be the string representation of the symbol of the binding to which it

pertains.

Identifiers

Each of the resources described (i.e. prov:Activitys and prov:Entitys) will necessar-

ily be given identifiers: Universal Resource Identifiers (URIs) whose namespace will be

http://cs.kent.ac.uk/projects/cxxr#. An RDF statement is in the form of a subject-

predicate-object Triple. The identifiers here are used to reference resources in the subject

and object components of statements. In many cases the predicates will be from the prov

or rdfs namespaces. At present, CXXR does not attribute identifiers to data objects,

or the session itself and this will be discussed further in Section 4.5.4; however, for the

purpose of constructing valid PROV-O, these identifiers can be automatically generated

during conversion from XML.

XML Parsing

As previously alluded to in Section 4.4, the XML document produced by CXXR session

serialisation is verbose; the result of running the example given in the previous section

during which only one assignment is performed, is an XML document consisting of 113

lines and the length of the output file grows considerably with each additional statement

evaluated in the session. An analysis of modest size could quite feasibly produce an

XML serialisation of several gigabytes, which when loaded by an XML parsing library will

further incur a considerable memory overhead; therefore, it is not practical to implement

an XML parsing strategy that would necessitate an in-memory representation of the entire

XML tree. An alternative to this is to employ a stream (or iterative) parsing approach,

in which events such as node start or node end are processed. This technique affects

a depth-first traversal of the XML tree, and this design choice allows flexibility in which

selecting which elements forming sub-trees are retained in memory.

CHAPTER 4. SERIALISATION 120

Listing 4.15 shows the first few lines from an XML-serialised CXXR session. The

events encountered while parsing this extract would be:

• Event: start; Element tag: boost_serialization

• Event: start; Element tag: env

• Event: start; Element tag: RObject

• Event: start; Element tag: GCNode

• Event: end; Element tag: GCNode

• Event: start; Element tag: type

• Event: end; Element tag: type

• Event: start; Element tag: m_attrib

• Event: end; Element tag: m_attrib

• Event: end; Element tag: RObject

• Event: start; Element tag: envtype

• Event: end; Element tag: envtype

Listing 4.15: XML extract to illustrate parsing events

1 <boost_serialization signature="serialization::archive" version="10">

2 <env class_id="1" class_name="CXXR::Environment" tracking_level="1" version="0"

3 object_id="_0">

4 <RObject class_id="2" tracking_level="0" version="0">

5 <GCNode class_id="0" tracking_level="1" version="1" object_id="_1"></GCNode>

6 <type>4</type>

7 <m_attrib class_id="-1"></m_attrib>

8 </RObject>

9 <envtype>6</envtype>

10 [...]

The classes whose contents we wish to inspect are:

• CXXR::Provenance for information on the binding: the timestamp of its creation;

the symbol it bound; and its related CommandChronicle.

CHAPTER 4. SERIALISATION 121

• CXXR::Symbol for a string representation of the Symbol

• CXXR::CommandChronicle for the expression that was evaluated and a list of parent

Provenances.

These are the classes of interest.

Figure 4.1 illustrates where these elements occur within the graph of an XML-serialised

session.

boost_serialization

env

RObject envtype m_enclosing

m_frame

Frame numberOfBindings

symbol binding

Pair repeated for
‘numberOfBindings’

RObject symtype name

m_value m_provenance m_origin m_active m_locked

symbol chronicle

command str_command

sec u_sec m_num_
parents m_value m_xenogenous

size

CXXR::Provenance

CXXR::CommandChronicle

parent Repeated for ‘size’

CXXR::Symbol

Figure 4.1: A graphical depiction of the XML elements of a serialised CXXR session,

annotated to show those elements of interest

The way in which an XML element can be disambiguated to determine which C++

class it represents is by inspecting its class_id attribute. The first occurrence of a

particular class within an XML document is signified by the presence of a class_name

attribute. Therefore when a class of interest is first encountered, its ID is noted so that

subsequent elements of interest can be identified by the value of their class_id attribute.

Elements occurring between the opening and closing tags of an element of interest are

retained in memory so that their values can be inspected upon reaching the closing tag.

This is facilitated by:

• Maintaining a count, which is incremented upon encountering the start of an element

CHAPTER 4. SERIALISATION 122

of interest, and decremented on encountering an end;

• A node stack onto which elements within an element of interest are pushed. When

the count is decremented and reaches 0, this signifies leaving a subtree of interest,

and so the node stack can be unwound and each of its elements’ memory allocations

released;

• Further performance-enhancing control is obtained by inhibiting all recording of a

given element tag. For example, the value of a xenogenous binding may comprise

several million elements that are not required, so inside a CXXR::Provenance ele-

ment, an inhibitor on the <m_value> tag can be established to prevent values within

that element being retained.

Similarly to its handling of classes, Boost serialisation assigns an identifier to each

object (i.e. instance of a class) in an object_id attribute of its first occurrence. Subsequent

occurrences of an object will use this identifier in their object_reference_id attributes.

The stages of extracting in RDF, provenance information from a CXXR session seri-

alised as XML are as follows: -

1. Parse the XML document and iteratively process its elements to derive collections

of symbols, provenances and command chronicles, indexed by their object_ids;

2. Dereference the relationships between these collections formed by

object_id_references;

3. Construct an RDF representation of the data comprised within the collections, ex-

pressed using appropriate terms from PROV-O, RDFS, FOAF vocabularies;

4. Serialise the RDF graph.

This is illustrated by an activity digram shown in Figure 4.2.

CHAPTER 4. SERIALISATION 123

«iterative»

XML File RDF FileProcess Event Dereference Construct
Graph

cxxr2prov

Figure 4.2: Activity diagram overview of RDF extraction from XML document

4.5.2 Algorithm

The outline of the iterative parsing approach to processing a saved CXXR session into

PROV-O is described in Algorithm 4.8.

Activity diagrams for the node start and node end portions of Algorithm 4.8 are shown

respectively in Figures 4.3 and 4.4.

Callback Handlers

The ‘start’ handlers for CXXR::Symbol and CXXR::CommandChronicle are empty, while

that for CXXR::Provenance establishes an inhibitor for the <m_value> tag to avoid entirely

loading those XML elements that represent the value of xenogenous bindings:

inhibitor_queue.append(‘‘m_value”)

The ‘end’ handler for each class reads the values of relevant XML elements using XPath

queries, and stores these in an associative container with key object_id. In the case of

a symbol, only its string representation is stored, while for Provenance and Command-

Chronicle a composite structure is used to contain the various attributes. End handler

algorithms for class types CXXR::Symbol, CXXR::CommandChronicle, CXXR::Provenance

are respectively shown in Algorithms 4.9, 4.11, and 4.10.

4.5.3 Implementation

The above has been implemented in Python, using the lxml library [12] for its iterparse

method for “parsing XML into a tree and generates tuples (event, element) in a SAX-like

fashion”. For RDF output the rdflib library [29] has been used for its ability to construct

and serialise RDF graphs in numerous formats including RDF/XML, N3, NTriples and

Turtle.

The source code of the implementation is given in [104].

CHAPTER 4. SERIALISATION 124

Algorithm 4.8 The cxxr2prov algorithm
1: procedure cxxr2prov(input_file)

2: interest[‘CXXR :: Symbol′]← (symbol_start, symbol_end)

3: interest[‘CXXR :: Provenance′]← (prov_start, prov_end)

4: interest[‘CXXR :: CommandChronicle′]← (chron_start, chron_end)

5: classes← empty dictionary

6: inhibitor_queue← []

7: inhibitors← []

8: node_stack ← []

9: interest_count← 0

10: for all (event, elem) ∈ iterativeparse(input_file) do

11: if event = ‘start′ then

12: if count(inhibitors) > 0 then continue

13: if ‘class_name′ ∈ elem.attrib then ▷ First encounter of class

14: class_name← elem.attrib[‘class_name′]

15: class_id← elem.attrib[‘class_id′]

16: if class_name ∈ interest then ▷ Is this a class of interest?

17: handler ← interest[class_name]

18: classes[class_id]← handler ▷ Associate callbacks with class ID

19: if elem.tag ∈ inhibitor_queue then

20: inhibitor_queue.remove(elem.tag)

21: inhibitors.add(elem.tag) continue

22: if interest_count > 0 or elem of interest then

23: node_stack.push(elem)

24: if elem of interest then

25: interest_count++

26: class_id← elem.attrib[‘‘class_id”]

27: Call classes[class_id][0](elem) ▷ Start handler for class

CHAPTER 4. SERIALISATION 125

28: else if event = ‘end′ then

29: if elem.tag ∈ inhibitors then

30: inhibitors.remove(elem.tag) continue

31: if count(inhibitors) > 0 then

32: elem.clear() continue

33: if elem of interest then

34: class_id← elem.attrib[‘‘class_id”]

35: Call classes[class_id][1](elem) ▷ End handler for class

36: interest_count−−

37: if interest_count == 0 then

38: while count(node_stack do

39: e← node_stack.pop()

40: e.clear()

41: if interest_count == 0 then ▷ Not currently recording

42: elem.clear()

Algorithm 4.9 cxxr2prov: symbol_stop handler
Require: elem

object_id← elem.attrib[‘object_id′]

x← elem.xpath(‘‘child :: symtype/text()”)

if !x or x[0] ̸= ‘0′ then return

sym← elem.xpath(‘‘child :: name/text()”)

symbols[object_id]← sym

CHAPTER 4. SERIALISATION 126

elem : Element
process node start

Process
elem as

class
definition

[true]
count(inhibitors) > 0

«decisionInput»

‘class_name’ in
elem.attributes

«decisionInput»
[true]

elem.tag in
inhibitor queue

«decisionInput» Remove from
inhibitor queue and

add to inhibitors

[true]

interest_count > 0 or
elem is of interest

«decisionInput»

Push
element onto
node_stack

[true]

elem is of interest

«decisionInput»

Read class_id from elem
attributes;

interest_count++;
Call ‘start’ handler for

class type

[true]

Figure 4.3: Activity diagram showing processing of XML ‘start node’ event

CHAPTER 4. SERIALISATION 127

elem : Element
process end event

interest_count == 0

«decisionInput»

For each element
on node stack:
pop and clear

elem.tag in
inhibitors

«decisionInput» Remove from
inhibitors

[true]

count(inhibitors) > 0

«decisionInput»
Clear elem

[true]

elem is of interest

«decisionInput» Read class_id from elem.attrib;
Call ‘end’ handler for class type;

interest_count—;

[true]

[true]

[false]

interest_count == 0

«decisionInput»
Clear elem

[true]

Figure 4.4: Activity diagram showing processing of XML ‘end node’ event

CHAPTER 4. SERIALISATION 128

Algorithm 4.10 cxxr2prov: provenance_stop handler
Require: elem

prov_id← elem[‘‘object_id”] ▷ Provenance ID

chron← elem.xpath(‘‘child :: chronicle”) ▷ CommandChronicle ID

chron_id← chron.get(‘‘object_id” or ‘‘object_id_reference”)

sym← elem.xpath(‘‘child :: symbol”) ▷ Symbol ID

sym_id← sym.get(‘‘object_id” or ‘‘object_id_reference”)

sec← int(elem.xpath(‘‘child :: sec/text()”)) ▷ Timestamp

usec← int(elem.xpath(‘‘child :: usec/text()”))

prov ← Provenance(sym_id, chron_id, sec, usec)

provenances[prov_id]← prov

Algorithm 4.11 cxxr2prov: chronicle_stop handler
Require: elem

chron_id← elem[‘‘object_id”] ▷ CommandChronicle ID

cmd← elem.xpath(‘‘child :: str_command/text()”) ▷ Expression

parents← [] ▷ Parents

for all parent ∈ elem.xpath(‘‘child :: parent”) do

parent_id← parent.get(‘‘object_id” or ‘‘object_id_reference”)

parents.append(parent_id)

chronicles[chron_id]← Chronicle(cmd, parents)

CHAPTER 4. SERIALISATION 129

4.5.4 Evaluation

Example

Listing 4.16 shows a trivial R session for demonstrating the use of cxxr2prov. Once eval-

uated under CXXR and serialised to XML as the file trivial.xml, it may be processed

with cxxr2prov as shown in Figure 4.5 to store the resultant PROV-O in RDF/Turtle as

file trivial.ttl.

Listing 4.16: Trivial R examplar for cxxr2prov

1 sq <- function(x) x * x

2 one <- 1

3 two <- one + one

4 three <- two + one

5 nine <- sq(three)

Figure 4.5: Invocation and (verbose) output of cxxr2prov

The resultant file trivial.ttl may be supplied to other provenance-aware systems

such as PROV-O-Viz [49], which is designed to visualise provenance in a Sankey Diagram.

The output of this is shown in Figure 4.6.

The purpose of this investigation was to satisfy Research Goal 5 (Section 1.5.1), to

understand how provenance information recorded in CXXR can be enabled for interoper-

ability with other provenance-aware systems. It has been demonstrated that it is possible

using the given approach to express automatically an XML-serialised Provenance-Aware

CXXR session in terms of W3C PROV, and that as such, provenance information gathered

by CXXR can be used in other provenance-aware systems.

CHAPTER 4. SERIALISATION 130

Figure 4.6: PROV-O-VIZ sankey diagram of exemplar session

Performance

For testing the performance of cxxr2prov, R.D. Peng’s ‘Air Quality Audit’ analysis (Ap-

pendix C) was selected as an example of a real-world data analysis that consists of a

moderate number of top-level expressions (50), and utilises reasonably large datasets (ap-

proximately 2.5 million rows x 29 columns).

This analysis was performed under CXXR and the session then serialised, resulting

in an XML document of size 3.5GB and containing 155,593,443 XML elements. On the

development machine used1 the cxxr2prov process took on average 14 minutes, 15 seconds

to complete while crucially experiencing a peak memory consumption of only 425 MB.

This represents a substantial improvement in memory consumption when compared to

tests conducted without inhibitors, in which case the process would consume in excess of

15GB before being terminated by the user who deemed this to be having an unreasonable

effect on system performance.

In respect of execution time: it takes over 8 minutes to simply parse the sample XML

file in Python with lxml while trapping ‘start’ and ‘end’ events but without performing any

further action of any kind. For these reasons the performance of the cxxr2prov algorithm

is considered to be satisfactory.

Future Work

This work herein describes the current ability to express provenance collected during

a CXXR session in terms of W3C PROV-O. In order for the interoperability of this
1Intel Core2 Quad Q6600 @ 2.4GHz; 8GB RAM; 2 x 7200RPM SATA HDDs in RAID-0; Debian 7.6

(Wheezy)

CHAPTER 4. SERIALISATION 131

provenance to be more robust, it would be necessary for CXXR to attribute to each

resource—i.e. Provenance, CommandChronicle—a unique identifier, or UUID, to which

that resource can be persistently referred. For further reducing ambiguity of UUIDs, it

would also be desirable to have CXXR attribute each session with an identifier. This would

also enable provenance information regarding the session itself to be recorded, such as the

CXXR version, the name of the user operating the session, details of loaded packages, so

that provenance questions involving these details—such as question 6 in Section 3.1—may

be answered.

Chapter 5

Further Provenance

Chapter 3 describes a view of provenance and design for modelling and capturing proven-

ance that is generally applicable to most use cases of R; however, there exist use cases

where this design does not apply and provenance questions are unanswerable, either at all

or to such a degree that would be considered sufficient.

This chapter will consider such use cases of R and aspects of the (CXX)R interpreter

in which provenance-awareness is not adequately catered for by the design described in

Chapter 3, and propose new designs to address the use cases and scenarios.

5.1 Expressions from Outside

So far we have only considered the effects of evaluating expressions that were issued by the

user as top-level commands in a CXXR session. CXXR, like R, instruments a mechanism

for reading and evaluating expressions from outside the usual console interface, taking its

input from files, connections or the standard input. The function for accomplishing this

is R’s source function.

This section will discuss an alternative design for capturing provenance of the source

function to refine its provenance-awareness in accordance with research goal 3 (Section

1.5.1). The outline for the following section is as follows:

• Introduce source and describe its usage,

• Describe alternative views of provenance collected in source,

• Describe the use case for an alternative view of source’s provenance to that sugges-

ted in Chapter 3,

• Show the design for enabling a different granularity of provenance collection,

132

CHAPTER 5. FURTHER PROVENANCE 133

• Show the implementation of the design in CXXR,

• Evaluate the approach taken.

5.1.1 Introduction

R’s source function can trace its origins back to S, where it was one of a number of ways

in which expressions could be read from a file and then evaluated [9].

Listing 5.1: example.R file contents

1 x <- date() # String representation of current date/time

2 y <- rnorm(10) # Vector of 10 normally-distributed numbers

3 strs <- paste(x, y, sep=" ") # Concatenate each element of vector x with vector y

4 cat("Goodbye\n") # Print a farewell message

The expressions given in the file example.R, whose contents is shown in Listing 5.1,

would be read and evaluated by source by issuing the following top-level command:

> source("example.R")

In its current form in R, source enables the interpreter to accept input from sources

other than the standard input, such as a file, a URL, or a connection, and parse the

received data line-by-line.

If all expressions are syntactically correct, then they are sequentially evaluated in either

the local environment from within which source was invoked (i.e. from within the body

of a function), or the global environment.

The parameters of source are given in Listing 5.2, and the commonly-used ones will

now be briefly discussed. file is either the name of a connection, or a string containing

the path to a file or URL from which to read. local allows the environment in which the

expressions are to be evaluated to be defined. The default of logical FALSE indicates that

the global environment should be used, while logical TRUE will evaluate the expressions

in the environment from which source was called. The parameter may also be a specific

environment. If echo is TRUE then each expression is printed after parsing, but before

evaluation.

Listing 5.2: source function parameters

1 source(file, local = FALSE, echo = verbose, print.eval = echo,

2 verbose = getOption("verbose"),

CHAPTER 5. FURTHER PROVENANCE 134

3 prompt.echo = getOption("prompt"),

4 max.deparse.length = 150, chdir = FALSE,

5 encoding = getOption("encoding"),

6 continue.echo = getOption("continue"),

7 skip.echo = 0, keep.source = getOption("keep.source"))

5.1.2 Use Case

By maintaining the granularity of the top-level expression as originally set out in Chapter 3,

any and all bindings states created during the course of evaluating a top-level source

expression will have attributed to them this top-level expression.

This section considers the case where the user wishes to refine this granularity, to

know precisely which expression inside the sourced file is responsible for the creation of

a binding state, and to therefore provide more refined answers to provenance questions 1

and 5 (Section 3.1).

Views of source

When a binding state created in the course of evaluating a top-level source expression

has only the invocation of source attributed to it as the expression responsible for its

creation and not the specific expression within the sourced file whose evaluation resulted

in its creation, we refer to this as a black box view of source.

In other words, in the established provenance record only the input—the source

command and its parameters—and the output—the bindings that are created in the course

of its evaluation—are known, and the internal details—the individual expressions—of the

source command are unknown.

In contrast to this is the white box view of source, which instead attributes to a

binding created in the course of evaluating a source, the specific expression from the

sourced file that was responsible for its creation.

Consider evaluating the example given in Listing 5.1 with the command source(

"example.R").

In the black-box view of source, all three bindings created—x, y, strs—would each

have the expression source("example.R") recorded in their respective provenance re-

cords; whereas, in the white-box view x would be attributed to x <- date(), y would be

attributed to y <- rnorm(10), and strs would be attributed to strs <- paste(x, y).

CHAPTER 5. FURTHER PROVENANCE 135

5.1.3 Design

To refine the granularity to the level of individual expressions evaluated by source, an

interception is required of expression evaluations invoked by source. Once such an ex-

pression has been trapped, it can be used to override the top-level expression that would

otherwise be used by default in attribution of created binding states.

Class ProvenanceTracker is augmented, as shown in Figure 5.1, to include an attribute

‘current_expression’ whose state is set by the operation ‘setExpression’. At the appro-

priate time in the evaluation of source, ProvenanceTracker’s setExpression operation is

called with the appropriate expression.

This desired behaviour is depicted in Figure 5.2.

+ resetParentage (void) : void
+ resetSeen (void) : void
+ setExpression (Expression) : void
+ getExpression() : Expression = current_expression
+ writeMonitor (Binding) : void
+ readMonitor (Binding) : void

- current_parentage : Provenance [*]
- current_expression : Expression
- seen : Provenance [*]

ProvenanceTracker

Figure 5.1: Class Diagram of ProvenanceTracker augmented to allow specification of cur-

rent expression

A simplified1 source function is given in pseudocode in Algorithm 5.1, in which it has

been augmented to instrument a call to ProvenanceTracker setExpression to override the

current expression being evaluated. It is also necessary to reset the current parentage to

match the granularity of this to that of the expression being evaluated.

Algorithm 5.1 Refined granularity of provenance in source
1: procedure source(file)

2: exprs← parse(file)

3: for all expr ∈ exprs do

4: ProvenanceTracker.setExpression(expr)

5: ProvennaceTracker.resetParentage

6: result← eval(expr)

1The focus here is on the file being sourced—extraneous arguments such as environment, encoding,

verbosity of output have been omitted for greater clarity

CHAPTER 5. FURTHER PROVENANCE 136

sd REPL with provenance tracking and refined source granularity

loop

: Main : IO : Evaluator

[quit==false]

R_ReadConsole(…)

eval(R_CurrentExpr, …)

PrintValueEnv(value, …)

: ProvenanceTracker

resetParentage()

resetSeen()

writeMonitor()

: Provenance

opt

setExpression(expr)

[expr origin==source]

readMonitor()

<<create>>

expression=getExpression()

value

resetParentage()

Figure 5.2: Sequence diagram depicting REPL which has been augmented to override the

top-level expression

CHAPTER 5. FURTHER PROVENANCE 137

5.1.4 Implementation

source is defined as an R-level function in the base package. Parts of the function relating

to reading and evaluating expressions from a file are shown in Listing 5.32, where it can

be seen to first parse the input file, then iterate over the resulting list of expressions,

evaluating each in turn with the function eval.with.vis. This implements some of the

basic behaviour outlined in Algorithm 5.1.

Listing 5.3: Selected source code from R’s source function

1 function (file, local = FALSE, echo = verbose, print.eval = echo,

2 verbose = getOption("verbose"), prompt.echo = getOption("prompt"),

3 max.deparse.length = 150, chdir = FALSE, encoding = getOption("encoding"),

4 continue.echo = getOption("continue"), skip.echo = 0,

5 keep.source = getOption("keep.source"))

6 {

7 [...]

8 exprs <- .Internal(parse(file, n = -1, NULL, "?", srcfile, encoding))

9 Ne <- length(exprs)

10 [...]

11 for (i in 1L:Ne) {

12 ei <- exprs[i]

13 [...]

14 yy <- eval.with.vis(ei, envir)

15 [...]

16 }

17 [...]

18 }

The function eval.with.vis referred to in this code extract is defined locally within

source, and is simply a wrapper for the internal C function of the same name.

The CXXR::ProvenanceTracker class implements the following to reflect changes in

design to ProvenanceTracker (Figure 5.1). The current_expression attribute is implemen-

ted as a static member field with the name ‘e_current’, as follows:

RObject* ProvenanceTracker::e_current;

This variable is used in conjunction with the method setExpression (RObject* expr)

to set explicitly the expression that should be attributed to the provenance of binding

states created. The ProvenanceTracker::setExpression method is simply defined as:
2[...] denotes lines omitted

CHAPTER 5. FURTHER PROVENANCE 138

void ProvenanceTracker::setExpression(RObject* expr) {

e_current=expr;

}

To recap Chapter 3: when a binding is established, the write monitor method Provenance

Tracker::writeMonitor is called with the given binding as an argument. The write

monitor creates a Provenance object and attributes it to the binding. This Provenance

contains a reference to the expression that resulted in the creation of the binding. This ex-

pression is determined by the method ProvenanceTracker::expression(), shown in List-

ing 5.4, so that if an expression has been previously explicitly set by a call to setExpression,

then it is returned; otherwise the default behaviour is to just return R_CurrentExpr. This

behaviour implements the ProvenanceTracker getExpression operation introduced to the

design in Section 5.1.3.

Listing 5.4: The ProvenanceTracker::expression() method

1 Expression* ProvenanceTracker::expression() {

2 RObject* exp=R_CurrentExpr;

3 if (!e_current)

4 return static_cast<Expression*>(exp);

5

6 if (TYPEOF(e_current)==EXPRSXP) {

7 ExpressionVector* ev=static_cast<ExpressionVector*>(e_current);

8 RObject* o = (*ev)[0];

9 return static_cast<Expression*>(o);

10 } else if (TYPEOF(e_current)==LANGSXP) {

11 return static_cast<Expression*>(e_current);

12 } else {

13 return static_cast<Expression*>(exp);

14 }

15 }

In order to instrument a white box version of source it is necessary to determine when

an expression resulting from source is being evaluated, and then explicitly instruct the

provenance tracker to attribute this expression to any resultant bindings. The approach

described in Algorithm 5.1 is implemented not at the R level—for it would be unsafe to

allow such access to the internals of the interpreter at such a level—instead, the changes are

implemented inside the internal function responsible for handling expression evaluation:

in Algorithm 5.1 this is denoted as eval, in the (CXX)R implementation it is denoted by

CHAPTER 5. FURTHER PROVENANCE 139

eval.with.vis, a function whose call is handled by do_eval. We will look first at how

these internal functions are called from the R level, and then how this arrangement was

established.

A C function that has been compiled into the interpreter can be accessed from R code

via one of two interfaces: the .Primitive interface, used by the primitive functions

outlined in Section 2.2; and the .Internal interface. A call made via .Internal is

necessarily wrapped in a closure by some R code, which provides greater transparency in

its handling of named and default arguments, although at the expense of some performance

overhead in constructing and evaluating the closure; whereas the .Primitive interface is

more direct to better support more low-level operations, such as the language elements

if, for, while and the like. One example of a function accessed via the .Internal

interface is eval.with.vis used in R’s source. R maintains a function table, which—

amongst other things—connects the name of the R function to the C function responsible

for handling the call, and designates through which interface it may be called. A single

C function may handle calls from more than one R internal or primitive function that are

distinguished by a unique integer offset that gets passed as the second argument to the

C function, which may inspect it using the function PRIMVAL.

According to the function table, the .Internal R function eval.with.vis is handled

by the C function do_eval with an offset of 1. This is the point at which a call to

eval.with.vis can be identified and whilst there is nothing to prevent any other function

from making a call to .Internal(evalwithvis(...)), source is the only function in the

standard R distribution to do so, therefore it is safe to deduce that a call to eval.with.vis

originated from source.

do_eval has been augmented to check whether the R internal function being handled

is an eval.with.vis—as opposed to eval that is also handled by this function—in which

case it informs the provenance tracker that the current expression is the one passed from

source to eval.with.vis. This is shown in Listing 5.5. The parentage is reset to begin a

new parentage for this expression evaluation so as not to include things in this parentage

that only pertain to the previous expression.

Listing 5.5: The C function do_eval

1 SEXP attribute_hidden do_eval(SEXP call, SEXP op, SEXP args, SEXP rho)

2 {

3 SEXP encl, x, xptr;

CHAPTER 5. FURTHER PROVENANCE 140

4 volatile SEXP expr, env, tmp;

5

6 int frame;

7 RCNTXT cntxt;

8

9 checkArity(op, args);

10 expr = CAR(args);

11 env = CADR(args);

12 encl = CADDR(args);

13

14 if (PRIMVAL(op)==1) { /* eval.with.vis */

15 ProvenanceTracker::setExpression(static_cast<Expression*>(expr));

16 ProvenanceTracker::resetParentage();

17 }

18

19 [...]

5.1.5 Evaluation

The objective of this investigation is to consider the granularity of provenance information

collected during the course of evaluating an expression that invokes the source function.

This relates to provenance questions 1 and 5. There were introduced two alternative views

of provenance in source: the black box and the white box. The design was based around

the white box view which captured a finer-grained provenance.

The relevant provenance questions can be seen to be answered in the following ex-

amples.

Example

Listing 5.6 shows example.R being evaluated with the white-box implementation of source.

The effect of this implementation can firstly be seen in the parents of strs being correctly

identified as x and y; and secondly, the pedigree of all of present bindings shows that each

binding has been attributed to the expression in the file responsible for its creation.

Listing 5.6: Example of white-box source in action

1 > source("example.R")

2 Goodbye

3 > ls()

CHAPTER 5. FURTHER PROVENANCE 141

4 [1] "strs" "x" "y"

5 > provenance(strs)$parents

6 [1] "x" "y"

7 > pedigree(ls())

8 x <- date()

9 y <- rnorm(10)

10 strs <- paste(x, y)

This behaviour is consistent even if source is evaluated from an expression derived

from a call to source: if liftExample.R has as its contents:

source("example.R")

The result of calling source("liftExample.R") is the same as simply calling source(

"example.R").

If another expression is added after the source so that liftExample2.R has contents:

source("example.R")

z <- y * 2

It can be seen from Listing 5.7 that this full transparency in expressions is at the

expense of the ability to identify in which file the expression occurred.

Listing 5.7: Example of white-box source within a source

1 > source("liftExample2.R")

2 Goodbye

3 > ls()

4 [1] "strs" "x" "y" "z"

5 > pedigree(z)

6 y <- rnorm(10)

7 z <- y * 2

8 > pedigree(ls())

9 x <- date()

10 y <- rnorm(10)

11 strs <- paste(x, y)

12 z <- y * 2

Default source behaviour: Black box?

Without implementing the above features it would not be possible to obtain a white-box

version of source; however, that is not to say that source au naturel is of the black-

box variety. Unfortunately source displays by default some idiosyncratic behaviour that

CHAPTER 5. FURTHER PROVENANCE 142

results in no meaningful provenance-awareness.

As described in Algorithm 5.1, before being able to evaluate the expressions, source

must first parse the input it receives from a file (or connection or standard input). It

does this by calling .Internal(parse(file,...)) (Line 8 in Listing 5.3).

Unfortunately, the parse function ultimately has a rather destructive side-effect: it

overwrites R_CurrentExpr. It actually does this for each expression it parses (which in

at least one of its other applications—parsing the top-level command as part of a REPL

iteration—is perfectly acceptable).

The effect this has is that by the time the expressions are evaluated by source,

R_CurrentExpr has already been made to point to an expression representing each line

of source’s input, and so it remains pointing to the final one, which is attributed to any

bindings created during subsequent evaluation:

> source("example.R")

Goodbye

> ls()

[1] "strs" "x" "y"

> provenance(strs)$command

cat("Goodbye\n")

> provenance(ls())

cat("Goodbye\n")

cat("Goodbye\n")

cat("Goodbye\n")

In order to avoid this, the value of R_CurrentExpr needs to be captured sooner, for

instance as soon as it is parsed by the REPL iteration. This gives the ‘expected’ result of

a black-box view of source:

CHAPTER 5. FURTHER PROVENANCE 143

> source("example.R")

Goodbye

> ls()

[1] "strs" "x" "y"

> provenance(strs)$command

source("example.R")

> provenance(strs)$parents

NULL

> pedigree(ls())

source("example.R") # x <- ...

source("example.R") # y <- ...

source("example.R") # strs <- ...

In this scenario there is no record of str’s parents—x and y—because their bindings

were created in the same top-level command as str, so would appear in the seen set. In

the white-box version this was not encountered because the parentage was reset prior to

each expression evaluation (Line 16 in Listing 5.5).

Although it may be reasonable to attribute an individual binding to a source top-level

command in isolation; when considering a collection of bindings (such as the ls() above),

it is inconsistent with our reasoning of what constitutes a pedigree to repeat the source

command like this: it should instead be the top-level commands that need to be evaluated

to reconstruct the given bindings.

For the above reasons the black-box model presented here does not entirely accurately

model the landscape of a session in a consistent way. To overcome these limitations would

require a significant change in approach; the possibility of which will be touched on in the

following section.

Future Work

While the white-box implementation has been shown to be adequate in some moderately

simple cases, more sophisticated scenarios cannot be modelled as effectively.

If we consider the following session:

> f <- function() {

+ source("example.R")

+ y + 5

+ }

> z <- f()

The first of these statements establishes a binding f to a function, whose body calls

CHAPTER 5. FURTHER PROVENANCE 144

source and then returns y + 5; the second makes a call to this function and binds the

result to z.

This does not affect the provenance of the bindings created by the source—x, y and

strs—but it does expose a similar issue to that encountered in the black-box implement-

ation for z:

> provenance(z)

$command

cat("Goodbye\n")

$symbol

z

$timestamp

[1] "25/11/13 14:38:33.94041"

$parents

[1] "y"

$children

NULL

The expression to which z has been attributed is that to which R_CurrentExpr referred

at the time of the binding’s creation, which was set by the parsing routine as it went about

its business.

Furthermore, the parentage that is attributed to z is that which was established at the

beginning of evaluating the final expression in the source. A more realistic parentage for

z would include f as well, but were a single parentage to exist throughout the life-time of

the top-level command—and not be reset for each expression in source—then y would be

omitted as part of the seen set.

In general: this cannot be modelled by maintaining only one parentage; in the same

way that commands cannot be modelled as sequential either—these concepts need to be

nested to accurately model this sort of scenario. For instance, in such a view, the binding

resulting from the sourced expression x <- date() should be attributed to both that

expression and source("example.R").

At the moment we can express dependencies between bindings in the form of a par-

entage; what is needed here is a means to represent expression dependencies. This

issue will be discussed further in Section 7.2.

CHAPTER 5. FURTHER PROVENANCE 145

5.2 Lazy Loading

5.2.1 Use Case

When a function is defined in the global environment, it is possible to determine which

other bindings used it during their creation by inspecting the children of the function:

> sq <- function (x) x * x

> four <- sq(2)

> nine <- sq(3)

> provenance(sq)$children

[1] "four" "nine"

Suppose we wanted to tell which bindings were created by using one of R’s standard

functions such as source or seq. For instance, if the seq function were discovered to

have been defective after it had been used in some calculation, one might wish to determ-

ine which bindings had used it and will need to be regenerated after it has been fixed;

something like provenance(seq)$children. At present, only the global environment is

instrumented with facilities for tracking provenance and since the functions of the stand-

ard R distribution reside in other environments—such as the base environment in the

case of source and seq—interactions with their bindings are not recorded.

The research objective of this section is a constituent of Section 1.5.1’s research goal 3

and is to investigate how provenance question 4 (Section 3.1) can be answered in the above

use case.

This section will:

• Introduce the (CXX)R concept of the promise for lazy evaluation,

• Look at how packages (Section 2.2.5) are loaded,

• Show how lazy evaluation is used to support lazy loading of functions in packages,

• Illustrate how the current design for provenance-awareness does not in the instance

of lazy-loading create a representative provenance record,

• Present a modified design and its implementation.

5.2.2 Promises

A promise—internally designated as SEXPTYPE PROMSXP, and encapsulated in CXXR’s

Promise class—is R’s facility for lazy evaluation, which enables the evaluation of some

expression to be deferred until such a time as the result of its evaluation is required.

CHAPTER 5. FURTHER PROVENANCE 146

A promise comprises three components: an expression whose evaluation is deferred; an

environment in which the expression should be evaluated; and a value, which is initially

the symbol R_UnboundValue and used to store the result of the evaluation (a form of the

memoization optimisation technique to ensure that an expression is evaluated at most

once). When the value of a promise is required, it is said that its value is forced—in

other words, the given expression is evaluated in the given environment, and this result is

stored in the promise’s value field.

Figure 5.3: The Promise class

+ force() : RObject

- expression : Expression
- environment : Environment
- value : RObject = R_UnboundValue

Promise

R has three types of function: builtin and special—collectively known as the prim-

itives described in Section 2.2—and closures. A primitive function is internal to R—

typically implemented in C—and is designated to be called via one of the two interfaces

.Internal or .Primitive. Closures are the type defined in R using function.

R closures are a form of the general functional programming concept of function

closures, which are composed of the following:

• Formal Parameters. A comma-separated list of formal parameters that are accepted

by the function. A parameter may take one of three forms: a symbol to which the

argument will be bound; symbol = default to define a default argument value; or

..., a special symbol which when used as a formal argument denotes the function

accepts multiple arguments. This is used in scenarios such as when the precise

number of arguments is not known in advance, or when one function extends another

without specifying the full list of arguments.

• Body. An R statement; or composition of multiple statements enclosed within braces.

• Environment. The environment that was active at the time of the function’s creation.

The rules for argument evaluation are determined by the type of the function. Builtin

functions have their arguments evaluated before being passed to the function, while argu-

ments to special functions are not evaluated prior to the function call.

CHAPTER 5. FURTHER PROVENANCE 147

Evaluation of a closure is a little more involved because the actual arguments need to

be matched to the formal parameters, either by position or by name, and the closure may

define default argument values that need to be applied if a parameter is unmatched. When

a closure is evaluated, an environment known as its evaluation environment is created

and populated with bindings for each of its formal parameters. The symbol of a binding

in the evaluation environment is the name of the formal parameter, and the binding’s

value is determined by a process of argument matching. Each actual argument is firstly

encapsulated in a promise so that in the case that the argument is an expression, it would

only be evaluated at the time that its value is required. For example in mystery(1+2) the

expression 1+2 will only be evaluated if the result of its evaluation is required such as if

mystery <- (x) x * x.

The body of the closure is then evaluated in the evaluation environment—as Section 5.4

will discuss in a bit more detail—in which if an argument’s values is required, the promise

is forced.

This technique enables R to present a call-by-need evaluation strategy for function

closures. Promises may also be, and indeed are, used outside of this scenario. Because a

promise can encapsulate and defer evaluation of any arbitrary R expression, they can be

used to support other facilities.

This section will now describe how promises allow R to perform lazy loading of its

packages.

The R distribution comprises a number of standard packages including base, datasets,

methods and utils packages (see Table 2.1 for the complete list). These are collectively

known as the base packages, many of which—including those just mentioned—are loaded

automatically at the outset of an R session (the full list of these is given in Figure 2.2).

Any other packages—both those forming a part of the standard R distribution and add-on

packages—are loaded as they are required.

When loading a package, such as the base package, two environments are defined:

a namespace environment, named for instance namespace:base, contains the bindings

from the package; and a package environment, such as package:base, which is populated

by selected bindings from the package’s namespace known as its exports. It is the latter

environment that gets attached to form part of the search path. This mechanism allows

a package a degree of control over which of its bindings are exposed to public visibility

and addressable from outside the package3.
3There is another, more subtle, distinction between the two environments: the enclosing environment

of a package’s namespace is one created to hold explicit imports from other namespaces defined by

CHAPTER 5. FURTHER PROVENANCE 148

5.2.3 Lazy-Loading

(CXX)R uses a lazy-loading strategy to load the value of an object introduced by a

package at the time of its first use. When a package is loaded, its namespace is populated

with bindings to the symbols defined in the package; however, the value of these bindings

are not those intended for use: they are promises, which when evaluated will fetch the

actual value from a database, to which the given symbol is then rebound. For example,

Figure 5.4 describes how, when the base package is loaded, seq’s initial binding state is

established with the value of a Promise ‘loadseq’.

5.2.4 Problem

This presents a problem to our strategy for collecting provenance, because the original

binding being accessed is not the one that will persist in the package’s namespace. Suppose

for example one wanted to use the seq(from, to, by) function for generating regular

sequences defined in the base package to generate a simple sequence of integers between

one and five:

> x <- seq(from=1, to=5)

> x

[1] 1 2 3 4 5

We will assume that this is the first invocation of the seq function. This explana-

tion follows the sequence diagram given in Figure 5.5. As with all symbols in the base

environment, seq is initially bound to an unevaluated promise. This binding state is rep-

resented by S1. In evaluating the expression in which its symbol appears, the seq binding

is read, and S1 is added to the current parentage and seen set. Its value is required for

the evaluation of the expression, and being an unevaluated promise, its value gets forced.

This evaluates the lazy-loading code encapsulated in the promise ‘loadseq’, causing the

definition of the ultimately desired value—a closure, ‘seqclos’—of seq to be loaded from

a database, which gets bound to the symbol seq. This creates a new binding state of

seq, S2, which has as its parent S1—the first seq binding state—with which it registers

itself as a child, and it is inserted into the seen set as per protocol for all written bindings.

the package, and the enclosing environment of that environment is the base environment. (The enclosing

environment of a package’s (‘package’) environment depends on its order in the search path.) The enclosing

environment of the base namespace is the global environment. The search path for a package pkg that

begins in namespace:pkg next goes through its imports, then to the base namespace, then on to the

standard search path beginning in the global environment (then through whatever package environments

are attached, ultimately ending up at the package:base and R_EmptyEnv, as described in Section 2.2.6.

CHAPTER 5. FURTHER PROVENANCE 149

sd
 In

iti
al

is
in

g
th

e
ba

se
 e

nv
iro

nm
en

t w
ith

 v
es

tig
ia

l s
eq

 b
in

di
ng

 to
 a

 P
ro

m
is

e

: P
ro

ve
na

nc
e-

Tr
ac

ke
r

: M
ai

n
gl

ob
al

 :
En

vi
ro

nm
en

t
ba

se
 :

En
vi

ro
nm

en
t

in
iti

al
is

e(
)

se
q

: B
in

di
ng

lo
ad

pa
ck

ag
e(

)

lo
ad

se
q

: P
ro

m
is

e

as
si

gn
(lo

ad
se

q)

: E
va

lu
at

or

w
rit

eM
on

ito
r(s

eq
)

<<
cr

ea
te

>>

S1
 :

Pr
ov

en
an

ce

<<
cr

ea
te

>>

se
tP

ro
ve

na
nc

e(
S1

)

Th
e

‘e
xp

re
ss

io
n’

 a
ttr

ib
ut

e
of

 th
is

Pr

om
is

e
is

 R
 c

od
e

fo
r l

az
y-

lo
ad

in
g—

i.e
.

op
en

in
g

a
fil

e
an

d
re

ad
in

g
fro

m
 it

 th
e

re
al

va
lu

e
of

 ‘s
eq

’ a
nd

 re
bi

nd
in

g
‘s

eq
’

Fi
gu

re
5.

4:
Se

qu
en

ce
di

ag
ra

m
de

pi
ct

in
g

in
iti

al
bi

nd
in

g
st

at
e

of
se

q
in

ba
se

en
vi

ro
nm

en
t

CHAPTER 5. FURTHER PROVENANCE 150

sd
 L

az
ily

-L
oa

di
ng

 th
e
se
q

cl
os

ur
e

: P
ro

ve
na

nc
e-

Tr
ac

ke
r

: M
ai

n
gl

ob
al

 :
En

vi
ro

nm
en

t
ba

se
 :

En
vi

ro
nm

en
t

se
q

: B
in

di
ng

lo
ad

se
q

: P
ro

m
is

e

fo
rc

e(
)

: E
va

lu
at

or

ev
al

ua
te

(“x
 <

- s
eq

(1
,5

)”,

 g

lo
ba

l)
fin

dF
un

(“s
eq

”)

re
ad

M
on

ito
r(s

eq
)

ev
al

ua
te

(b
od

y)

<<
cr

ea
te

>>

w
rit

eM
on

ito
r(s

eq
)

as
si

gn
(s

eq
cl

os
)

se
qc

lo
s

: C
lo

su
re

S1
 :

Pr
ov

en
an

ce

cu
rre

nt
 :

Pa
re

nt
ag

e
se

en
: S

ee
n

Se
t

ad
d(

S1
)

ad
d(

S1
)

S2
 :

Pr
ov

en
an

ce <<
cr

ea
te

>>

se
tP

ro
ve

na
nc

e(
S2

)
ad

d(
S2

)

re
gi

st
er

C
hi

ld
 (S

2)se
tp

ar
en

ta
ge

(c
ur

re
nt

)

ev
al

ua
te

 (s
eq

cl
os

,

 a

rg
s=

(1
,5

))

re
su

lt
=

[1
,2

,3
,4

,5
]

x
: B

in
di

ng as
si

gn
(re

su
lt)

w
rit

eM
on

ito
r(x

)

X1
 :

Pr
ov

en
an

ce

<<
cr

ea
te

>>

re
gi

st
er

C
hi

ld
 (X

1)

se
tp

ar
en

ta
ge

(c
ur

re
nt

)

ad
d(

X1
)

se
tP

ro
ve

na
nc

e(
X1

)

fin
dF

un
(“s

eq
”)

re
ad

M
on

ito
r(s

eq
)

ne
g ad

d(
S2

)

Th
e

in
cl

us
io

n
of

 ‘S
2’

 in
 th

e
cu

rre
nt

pa

re
nt

ag
e

is
 p

ro
hi

bi
te

d
be

ca
us

e
it

al
re

ad
y

ap
pe

ar
s

in
 ‘s

ee
n’

Fi
gu

re
5.

5:
Se

qu
en

ce
di

ag
ra

m
de

pi
ct

in
g

th
e

fir
st

ev
al

ua
tio

n
of

se
q

re
su

lti
ng

in
its

la
zy

-lo
ad

in
g

CHAPTER 5. FURTHER PROVENANCE 151

Now that the bona fide closure is bound to seq in the base namespace, it now needs to be

evaluated so that it may generate the sequence according to the given arguments. In doing

this, the new binding of seq is read—binding state S2; however, S2 will not be recorded

in the parentage because it was added to the seen set when it was written. Consequently,

S2 is not been recorded in the parentage; therefore, when the binding x is written, the

sole4 parent of x is S1—the first binding state of seq that existed only to lazily-load the

real one—while the binding state S2—representing the actual closure that generated the

current value of x—has not been recorded.

> provenance(x)$parents

[1] ".Options" "getNamespace" "as.name"

[4] "seq" ".__S3MethodsTable__." "seq.default"

This is reflected in the set of seq’s children where we would like to—but won’t—see x,

and the command that resulted in the binding of seq makes it plain when it was created:

> provenance(seq)$children

NULL

> provenance(seq)$command

x <- seq(from = 1, to = 5)

Upon subsequent uses of the seq function it can be seen to exhibit the desired beha-

viour:

> y <- seq(from = 1, to = 5)

> z <- seq(from = 5, to = 1)

> provenance(seq)$children

[1] "y" "z"

5.2.5 Design

This type of behaviour does not satisfy the requirements of the initial motivating scenario

of being able to identify those bindings that were created by a (faulty) standard function.

In order to achieve the desired functionality it is necessary to exclude the original

binding of a promise from the seen set. Algorithm 5.2 redefines the write monitor to

enable control over whether a binding state is recorded in the seen set. At the time the

write monitor is called when forcing the promise, i.e. in the Promise force operation, this

new write monitor is called with the value false for its beenSeen argument.

4The ‘sole’ binding with which we are presently concerned—there are some extraneous bindings for

various bits of housekeeping that live in the base environment.

CHAPTER 5. FURTHER PROVENANCE 152

Algorithm 5.2 An updated write monitor to allow overriding of inclusion in the seen set
1: procedure ProvenanceTracker.writeMonitor(bdg : Binding, beenSeen :

Boolean)

2: P ← newProvenance ▷ Create new binding state

3: P.m_expression← Current expression

4: P.m_symbol← bdg.symbol

5: P.m_parents← p_current

6: P.m_timestamp← Current Time

7: P.m_children← []

8: for all parent ∈ P.m_parents do ▷ Register as child of each parent

9: parent.children.add(P)

10: bdg.m_provenance← P

11: if beenSeen then

12: p_seen.add(P)

5.2.6 Implementation

The modified write monitor given in Algorithm 5.2 is implemented as follows:

void ProvenanceTracker::writeMonitor(const Frame::Binding &bind,

bool beenSeen) {

[...]

if (beenSeen) {

GCEdge<Provenance> tmp(prov);

seen()->insert(tmp);

}

A method forcedPromise is added to class ProvenanceTracker:

void ProvenanceTracker::forcedPromise(const Frame::Binding& bdg) {

writeMonitor(bdg, false);

}

The forcedPromise method is called at the point at which a promise is forced—in

the Frame::forcedValue method shown in Listing 5.8. This will ensure that the promise

being forced is excluded from the seen set.

Listing 5.8: The Frame::forcedValue method from envir.cpp

1 pair<Frame::Binding*, RObject*>

CHAPTER 5. FURTHER PROVENANCE 153

2 Frame::forcedValue(const Symbol* symbol, const Environment* env)

3 {

4 Binding* bdg = binding(symbol);

5 RObject* val;

6 if (bdg) {

7 val = bdg->rawValue();

8 if (val && val->sexptype() == PROMSXP) {

9 Promise* prom = static_cast<Promise*>(val);

10 if (prom->environment()) {

11 GCStackRoot<Promise> promrt(prom);

12 monitorRead(*bdg);

13 val = Rf_eval(val, const_cast<Environment*>(env));

14 GCStackRoot<> valrt(val);

15 // The eval() may have invalidated bdg, so we need

16 // to look it up again.

17 bdg = binding(symbol);

18 if (bdg)

19 ProvenanceTracker::forcedPromise(*bdg);

20 }

21 val = const_cast<RObject*>(prom->value());

22 }

23 return make_pair(bdg, val);

24 }

25 return pair<Binding*, RObject*>(0, 0);

26 }

5.2.7 Evaluation

The design presented here allows the first invocation of a lazily-loaded closure in the base

environment to be accurately attributed to a binding whose value depends upon it, as set

out in the use case at the beginning of the section.

The following example illustrates how provenance question 4, “Which other objects

used it during their creation?” can be answered of a lazily-loaded function in the base

environment:

> a <- seq(from = 1, to = 5)

> b <- seq(from = 5, to = 1)

> c <- seq(from = 1, to = 935, by=39)

> provenance(seq)$children

[1] "seq.default" "a" "b" "c" ".Last.value"

CHAPTER 5. FURTHER PROVENANCE 154

5.3 Values from Outside

5.3.1 Use Case

The scenario described in Section 5.1 of reading and parsing expressions from a file is

one example of how an R function, in that instance source, may result in an output

that is not entirely dependent upon its input arguments. A function that modifies some

aspect of external state—like source, which may for instance create bindings in the global

environment—is said to exhibit side-effects. A function whose output is determined

entirely by its input and has no side-effects is called a pure function, whose converse is

naturally an impure function.

When pure functions are used exclusively, provenance question 5, “what was the se-

quence of commands that resulted in binding state S?”, can be answered by collating in

order of evaluation the expressions that resulted in each ancestor binding state of S.

However, there is an implication for provenance of binding states derived from impure

functions: if an impure function F is used to determine the value of binding state S or any

ancestor state of S, then it is not possible to describe certainly the process that led to S

using only the expressions that were evaluated.

One typical use case for this provenance question is to determine how a binding state

can be recreated. By a slight refocussing of this provenance question we get: “How can S

be recreated?” This section looks at how this question can be answered in situations that

have the involvement of impure functions.

5.3.2 Xenogenesis

Many of the R functions encountered so far are pure: the value they return depends ex-

clusively on the value of their arguments. Other functions are useful precisely because

they have side-effects; in other words they modify some aspect of the interpreter state as

well as or instead of returning a value. One example of this is pseudo random number

generation for which the seed may be set with the set.seed function, which modifies the

.Random.seed binding in the global environment. When a random number is generated,

this binding is read and subsequently written, and because this all occurs through inter-

actions with bindings, it occurs within the scope of Provenance-Tracked CXXR’s facilities

as so far described. Any subsequent generation of a random number will depend on the

seed, as illustrated in Listing 5.9.

CHAPTER 5. FURTHER PROVENANCE 155

Listing 5.9: Provenance tracking pseudo-RNG

1 > set.seed(1)

2 > x <- rnorm(10)

3 > x

4 [1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078 -0.8204684

5 [7] 0.4874291 0.7383247 0.5757814 -0.3053884

6 > pedigree("x")$commands

7 [[1]]

8 set.seed(1)

9

10 [[2]]

11 x <- rnorm(10)

However, it is not always the case that a function’s behaviour depends on either its

arguments or some other aspect of the interpreter state. This occurs when a function

receives some external influence such as reading from a file or database, accepting user

input interactively, or because it calls non-R code via one of the foreign language interfaces

(such as to C). Examples of R functions that behave in this way include: scan which reads

data into a vector from a file (or connection) or console; identify reads the position of

the graphical user interface (‘mouse’) pointer when the button is pressed and identifies,

within a given dataset, which point is closest to the position of the pointer; edit launches

a text editor in which the user can define the value of an R object, which when the text

editor is closed, is returned by the edit function so that it may be bound to a symbol.

An example of using edit to define the function sq which squares its argument is given

in Listing 5.10, the user interaction with the Vim text editor that was launched by the

invocation of edit() is depicted in Figure 5.6.

Listing 5.10: Using edit to define a function sq.

1 > sq <- edit()

2 > sq

3 function (x) {

4 x * x

5 }

6 >

This can be reflected only so far in the provenance record for the binding sq; it is

attributed to the command sq <- edit() as this was the top-level command that gave

rise to its existence. However, there is no record of the actual substance of the call to

CHAPTER 5. FURTHER PROVENANCE 156

Figure 5.6: View of the text editor launched by edit in which the body of the function

has been defined, immediately prior to saving and exiting.

edit—the text that was entered by the user—as it comes from outside the state of the

interpreter and it is not subject to the provenance-tracking facilities.

For this reason, this binding is known as xenogenous: “caused by a foreign body”,

and functions that give rise to these bindings are xenogenetic.

Therefore, unlike a regular binding it is not possible to define categorically the process

for regenerating the value of a xenogenous binding solely in terms of its input artifacts (i.e.

parents) and the top-level command that gave rise to it. If a xenogenetic function is eval-

uated (either directly or indirectly) during the course of evaluating a top-level command,

any bindings created subsequently are considered to be xenogenous.

5.3.3 Design

It is not possible heuristically to determine whether a function is xenogenetic, because

there is no particular, common way in which they will accept input. It is therefore ne-

cessary to modify each xenogenetic function to announce to the provenance tracker that

a xenogenetic function has been evaluated, and that binding states created subsequently

should be considered xenogenous.

In order to be able to recreate a xenogenous binding—as required by the motivating

question—we elect to preserve its value. Therefore the value of a xenogenous binding

may be later recalled using an R-level function and then utilised in subsequent expressions.

Figure 5.7 shows (only) the new attributes for representing a xenogenous binding state:

xenogenous for indicating that a binding state is xenogenous, value for storing the value

assigned to a xenogenous binding state; and new operations: isXenogenous which returns

true iff the binding state is xenogenous, setXenogenous for attributing the value of a

xenogenous binding to the Provenance, and value for accessing the value attribute.

The ProvenanceTracker maintains a flag to indicate whether or not a xenogenetic

CHAPTER 5. FURTHER PROVENANCE 157

[…]
+ isXenogenous() : boolean
+ value() : RObject
+ setXenogenous(RObject) : void

[…]
- xenogenous : boolean = false
- value : RObject = NULL

Provenance

Figure 5.7: Provenance class diagram showing new attributes and operations for xenogen-

esis

function has been evaluated so that it may inform a binding state upon its creation that

it is xenogenous. The new attributes and operations involved with this are depicted in

Figure 5.8. The simple operation flagXenogenesis is given in Algorithm 5.3.

[…]
+ flagXenogenesis() : void

[…]
- xenogenetic : boolean = false

ProvenanceTracker

Figure 5.8: Provenance Tracker class diagram showing new attributes and operations for

xenogenesis

Algorithm 5.3 The ProvenanceTracker flagXenogenesis operation
1: procedure ProvenanceTracker.flagXenogenesis

2: ProvenanceTracker.xenogenetic← True

Algorithm 5.4 describes what, in addition to its previous design, the write monitor

must do to signify to a Provenance object that it represents a xenogenous binding state,

whose current value is to be preserved.

The way in which these entities interact is depicted in Figure 5.9. Initially the occur-

rence of a xenogentic function is flagged to Provenance Tracker. In the evaluation of the

top-level expression, any binding state subsequently created is declared xenogenous and

its present value is recorded as part of its provenance record.

5.3.4 Implementation

This section follows an implementation approach suggested by Dr. A. R. Runnalls.

CHAPTER 5. FURTHER PROVENANCE 158

Fi
gu

re
5.

9:
Se

qu
en

ce
di

ag
ra

m
de

pi
ct

in
g

ho
w

ev
al

ua
tio

n
of

a
xe

no
ge

ne
tic

fu
nc

tio
n

wo
ul

d
fla

g
Pr

ov
en

an
ce

Tr
ac

ke
r,

an
d

w
he

n
a

xe
no

ge
no

us
bi

nd
in

g

st
at

e
is

cr
ea

te
d,

ho
w

th
is

is
re

co
rd

ed
an

d
its

va
lu

e
is

re
ta

in
ed

sd
 E

va
lu

at
in

g
a

ca
ll

to
 a

 p
os

si
bl

y
xe

no
ge

ne
tic

 fu
nc

tio
n

P
: P

ro
ve

na
nc

e
: P

ro
ve

na
nc

e-
Tr

ac
ke

r
: E

va
lu

at
or

fu
nc

 :
Fu

nc
tio

n

ev
al

ua
te

(“x
 <

-
fu

nc
()

”)

ap
pl

y(
)

x
: B

in
di

ng

<<
cr

ea
te

>>

op
t

op
t

Fi
nd

 F
un

ct
io

n
fu

nc

fla
gX

en
og

en
es

is
()

va
l

as
si

gn
(v

al
)

w
rit

eM
on

ito
r(s

q)

[fu
nc

 in
 {e

di
t,

sc
an

, r
ea

dC
ha

r,
re

ad
Bi

n,
 …

}]

[x
en

og
en

et
ic

]

se
tX

en
og

en
ou

s(
va

l)

se
tP

ro
ve

na
nc

e(
P)

CHAPTER 5. FURTHER PROVENANCE 159

Algorithm 5.4 Functionality added to write monitor to, depending on ProvenanceTracker

state, declare a Provenance xenogenous and preserve the present value of the binding
1: procedure ProvenanceTracker.writeMonitor(bdg : Binding)

2: P ← new Provenance ▷ Create new binding state

3: [...] ▷ Initialise fields of P as previous

4: bdg.m_provenance← P

5: if ProvenanceTracker.xenogenetic then

6: val← bdg.rawValue

7: P.setXenogenous(val)

The new design of the Provenance class (Figure 5.7) is implemented in the

CXXR::Provenance class as shown in Listings 5.11 and 5.12.

Listing 5.11: Extract from class Provenance header file showing relevant additions to

track provenance of xenogenous values

1 class Provenance : public GCNode {

2 public:

3 [...]

4 const RObject* value() const

5 {

6 return m_value;

7 }

8

9 bool isXenogenous() const

10 {

11 return m_xenogenous;

12 }

13 [...]

14 void setXenogenous(const RObject* value);

15 [...]

16 private:

17 GCEdge<const RObject> m_value;

18 bool m_xenogenous;

19 [...]

20 };

Listing 5.12: Extract from soure file of class Provenance, illustrating mutator method

CHAPTER 5. FURTHER PROVENANCE 160

1 void Provenance::setXenogenous(const RObject* value)

2 {

3 m_value = value;

4 m_xenogenous = true;

5 }

In this implementation of the design, some of the attributes and methods of the Proven-

anceTracker class are implemented by a class ProvenanceTracker::CommandScope, e.g.

read and write monitors, and it is also this class that implements the design changes given

in Figure 5.8.

The relevant extracts from the header file and source file for this class are given in

Listings 5.13 and 5.14 respectively.

Listing 5.13: Extracts from header file for class ProvenanceTracker

1 #ifdef __cplusplus

2

3 namespace CXXR {

4

5 class ProvenanceTracker {

6 public:

7 class CommandScope {

8 public:

9 [...]

10 void flagXenogenesis()

11 {

12 m_xenogenetic = true;

13 }

14 [...]

15 private:

16 bool m_xenogenetic;

17 };

18 static void flagXenogenesis();

19 [...]

20 };

21 } // namespace CXXR

22

23 extern "C" {

24 #endif // __cplusplus

25 void flagXenogenesis();

26

CHAPTER 5. FURTHER PROVENANCE 161

27 #ifdef __cplusplus

28 } // extern "C"

29 #endif

Listing 5.14: Extracts from source file for class ProvenanceTracker

1 ProvenanceTracker::CommandScope::CommandScope(const RObject* command)

2 : m_xenogenetic(false)

3 { [...] }

4

5 [...]

6

7 void ProvenanceTracker::flagXenogenesis()

8 {

9 if (s_scope)

10 s_scope->flagXenogenesis();

11 }

12

13 [...]

14

15 void flagXenogenesis()

16 {

17 ProvenanceTracker::flagXenogenesis();

18 }

A call to the method ProvenanceTracker::flagXenogenesis() (or its equivalent

C wrapper) is appropriately inserted to the internal C++/C function which underlies

each xenogenetic R function: for example edit(), scan(), readLines(), readBin(),

readChar() and load().

The augmentation of the write monitor design in Algorithm 5.4 is implemented as

shown in Listing 5.15.

Listing 5.15: The write monitor ProvenanceTracker::CommandScope::writeMonitor

which identifies xenogenous bindings

1 void ProvenanceTracker::CommandScope::monitorWrite(const Frame::Binding &bdg)

2 {

3 const Symbol* sym = bdg.symbol();

4 GCStackRoot<Provenance> prov(CXXR_NEW(Provenance(sym, m_chronicle)));

5 if (m_xenogenetic)

CHAPTER 5. FURTHER PROVENANCE 162

6 prov->setXenogenous(bdg.rawValue()); // Maybe ought to clone value

7 CXXR::Frame::Binding& ncbdg = const_cast<CXXR::Frame::Binding&>(bdg);

8 ncbdg.setProvenance(prov);

9 m_chronicle->writeBinding(prov);

10 }

In this implementation the R function pedigree(x) traverses the graph of provenance

objects formed by ancestors of bindings given in x. An extract of the implementation of

this function is shown in Listing 5.16. This function returns a list comprising five vectors

named: commands, timestamps, symbols, xenogenous, and values. Each member of

the graph of provenances is interrogated and its details added to each of the vectors; in

particular, if it is xenogenous then it sets its element of the xenogenous vector to TRUE

and sets the corresponding element of values to the value recorded in the provenance.

Listing 5.16: Extract of code from function do_pedigree which underlies the R function

pedigree

1 SEXP attribute_hidden do_pedigree (SEXP call, SEXP op, SEXP args, SEXP rho)

2 {

3 [...] /* 'provs' is a Provenance::Set of Provenance objects

4 attributed to those bindings given in argument */

5 Provenance::Set* ancestors = Provenance::ancestors(provs);

6

7 GCStackRoot<ListVector> ans(CXXR_NEW(ListVector(5)));

8

9 // Assemble result:

10 {

11 size_t n = ancestors->size();

12 GCStackRoot<ListVector> commands(CXXR_NEW(ListVector(n)));

13 GCStackRoot<RealVector> timestamps(CXXR_NEW(RealVector(n)));

14 GCStackRoot<ListVector> symbols(CXXR_NEW(ListVector(n)));

15 GCStackRoot<LogicalVector> xenogenous(CXXR_NEW(LogicalVector(n)));

16 GCStackRoot<ListVector> values(CXXR_NEW(ListVector(n)));

17 size_t i = 0;

18 for (Provenance::Set::iterator it = ancestors->begin();

19 it != ancestors->end(); ++it) {

20 const Provenance* p = *it;

21 (*commands)[i] = const_cast<RObject*>(p->command());

22 (*timestamps)[i] = p->timestamp();

23 (*symbols)[i] = const_cast<Symbol*>(p->symbol());

24 (*xenogenous)[i] = FALSE;

CHAPTER 5. FURTHER PROVENANCE 163

25 if (p->isXenogenous()) {

26 (*xenogenous)[i] = TRUE;

27 (*values)[i] = const_cast<RObject*>(p->value());

28 }

29 ++i;

30 }

31 (*ans)[0] = commands;

32 (*ans)[1] = timestamps;

33 (*ans)[2] = symbols;

34 (*ans)[3] = xenogenous;

35 (*ans)[4] = values;

36 }

37 delete ancestors;

38 return ans;

5.3.5 Evaluation

Example

Suppose one decided to revisit a mini-example encountered previously, say Listing 3.15,

but instead of defining the function at the command line, you use the edit() function:

> sq <- edit()

> three <- 3

> nine <- sq(three)

The value of the binding to sq was obtained via the edit() function, which opens a

text editor to accept user input; in this instance a function definition was supplied. The

pedigree function allows for the interrogation of provenance information of a binding such

as sq, and it will inform us that the binding is xenogenous and provide the value that was

bound to it:

CHAPTER 5. FURTHER PROVENANCE 164

> pedigree("sq")

$commands

$commands[[1]]

sq <- edit() [...]

$xenogenous

[1] TRUE

$values

$values[[1]]

function (x)

{

x * x

}

The output of pedigree is quite simple in the case of interrogating a single binding;

Listing 5.17 shows how the pedigree function provides provenance information pertaining

to multiple bindings, in particular nine and all of its ancestors.

Listing 5.17: Provenance interrogation using the pedigree() function. Illustrates the way

in which corresponding list elements describe a particular binding.

1 > pedigree("nine")

2 $commands

3 $commands[[1]]

4 sq <- edit()

5

6 $commands[[2]]

7 three <- 3

8

9 $commands[[3]]

10 nine <- sq(three)

11

12

13 $timestamps

14 [1] "2013-11-28 20:51:08 GMT" "2013-11-28 20:51:30 GMT"

15 [3] "2013-11-28 20:51:39 GMT"

16

17 $symbols

18 $symbols[[1]]

CHAPTER 5. FURTHER PROVENANCE 165

19 sq

20

21 $symbols[[2]]

22 three

23

24 $symbols[[3]]

25 nine

26

27

28 $xenogenous

29 [1] TRUE FALSE FALSE

30

31 $values

32 $values[[1]]

33 function (x)

34 {

35 x * x

36 }

37

38 $values[[2]]

39 NULL

40

41 $values[[3]]

42 NULL

Discussion

One of the primary drawbacks of this method is that a degree of manual intervention is

required both to identify xenogenetic functions and to modify their definitions. If a new

R function were to be added to part of the standard R distribution, it would need to be

manually assessed to see if it ought to be considered xenogenetic and if so, its definition

modified to announce this fact to the provenance tracker. A further issue concerns third-

party packages, the functions of which may exhibit xenogenesis via some means which has

not been instrumented to declare their xenogeneticity.

A further issue surrounding this method of handling xenogenesis is that of granular-

ity. Suppose one were to issue the top-level expression { a <- edit(); x <- 1 }, then

despite not actually resulting from a call to a xenogenetic function, x will be flagged as

xenogenous, as shown in Listing 5.18. This behaviour is due to the level of granularity

being fixed and limited to only the top-level expression.

CHAPTER 5. FURTHER PROVENANCE 166

Listing 5.18: Example of granularity issue when R code is defined within a code block

1 > {

2 + a <- edit()

3 + x <- 1

4 + }

5 > pedigree("x")

6 $commands

7 $commands[[1]]

8 {

9 a <- edit()

10 x <- 1

11 }

12

13

14 $timestamps

15 [1] "2013-11-28 21:42:43 GMT"

16

17 $symbols

18 $symbols[[1]]

19 x

20

21

22 $xenogenous

23 [1] TRUE

24

25 $values

26 $values[[1]]

27 [1] 1

The granularity issue encountered here is not unique to this scenario; indeed it echoes

issues touched upon in Sections 5.1 and 5.4 of this chapter. This issue of granularity will

be discussed further in Section 7.2.

5.4 Functions with State

R allows for the creation of functions, or more precisely function closures, that exhibit

and maintain local state that persists across invocations, in a manner similar to static

local variables in a C function. In such cases, it is presently not possible to answer to

provenance questions because the local state falls outside the scope of the provenance

CHAPTER 5. FURTHER PROVENANCE 167

tracking facilities described to this point.

This section will:

• Explain how function closures are evaluated,

• Describe how a by-product of closure evaluation, the evaluation environment, can

be used to make state persistent,

• Describe the software design for handling the recording of provenance in this scenario,

• Show the implementation of this design in CXXR,

• Evaluate the approach taken and discuss the implications of this scenario for the

view of provenance developed.

5.4.1 Introduction

To summarise the definitions given in Section 3.1: An R environment comprises a frame,

which is a collection of bindings that map symbols to values; and a reference to an enclos-

ing environment. When a binding is sought in an environment but cannot be located,

then the chain formed by enclosing environments is recursively searched.

The concept of R’s closure is described in Section 5.2. In brief: a closure combines (i)

a list of formal parameters; (ii) a body consisting of R code; and (iii) an environment—

the environment in which the statement that created the closure was evaluated. A most

simple definition of a closure is:

> f <- function() { "I'm a closure" }

A closure is evaluated by giving the name of the symbol to which it is bound, followed

by a list of arguments enclosed in brackets (e.g. f()). It is possible to examine the

environment of a closure using the environment function:

> f()

[1] "I'm a closure"

> environment(f)

<environment: R_GlobalEnv>

> environment(seq)

<environment: namespace:base>

During the evaluation of a closure, a new environment is created—the evaluation

environment, whose enclosing environment is the environment of the closure. The eval-

uation environment is initially populated with the unevaluated promises of the arguments,

CHAPTER 5. FURTHER PROVENANCE 168

and as evaluation of the closure body continues, any local variables created are bindings

established in the evaluation environment.

Consider the following example which corresponds to evaluation of ‘A’ in Figure 5.10:

> sq <- function (x) {

+ rc <- x * x

+ rc

+ }

Evaluating this statement at the top-level (i.e. in the global environment) constructs a

closure, whose environment attribute is the global environment; body is rc <- x * x; rc;

and formal arguments is a list composed solely of x without a default value.

An evaluation of the sq function will cause the creation of an evaluation environment,

initially populated with a binding to symbol x, which gets matched to the actual argument

supplied wrapped in a promise.. The use of x in the RHS of the assignment operation will

cause the promise referent of x to be forced and its value then used in the multiplication

operation, the result of which is bound to symbol rc in the evaluation environment by the

assignment operation.

Figure 5.10’s evaluation of statement ‘B’ supposes that sq(3) is evaluated. At the

point at which the closure returns, the evaluation environment that was constructed is

populated with bindings to symbols x and rc. The function returns the value of the

binding rc and then the evaluation environment is discarded.

5.4.2 Functions with State

As Figure 5.10 shows, the evaluation environment gets discarded following evaluation

of the closure: it has fulfilled its purpose and it is no longer required. We can more

formally define the requirement of an object, such as the evaluation environment evEnv

in the diagram, in respect of whether it is referenced by any other objects. In practice,

CXXR’s reference-counted garbage collector will ensure that an object without references

is destroyed.

It is not, however, necessarily the case that the evaluation environment is discarded:

it is possible to retain the evaluation environment by attributing it as the environment of

a closure. This enables the evaluation environment to persist beyond the end of a closure

evaluation, and indeed beyond the end of a top-level expression evaluation.

By attributing a persistent environment to a closure, this closure is able to exhibit

state5.
5Strictly speaking: the bindings within this environment would be known in functional programming

CHAPTER 5. FURTHER PROVENANCE 169

sd
 C

re
at

io
n

of
 a

 C
lo

su
re

 a
nd

 it
s

su
bs

eq
ue

nt
 e

va
lu

at
io

n

sq
B

: B
in

di
ng

gl
En

v
:

En
vi

ro
nm

en
t

ar
gs

 :
Ar

gL
is

t
th

re
e:

 P
ro

m
is

e

pa
ra

m
s

:
Pa

irL
is

t
sq

C
 :

C
lo

su
re

: E
va

lu
at

or

ex
En

v
:

En
vi

ro
nm

en
t

x
: B

in
di

ng
rc

 :
Bi

nd
in

g

ev
al

ua
te

(A
, g

lE
nv

)
<<

cr
ea

te
>>

A
: s

q
<-

 f
un

ct
io

n(
x)

 {

 r
c

<-
 x

 *
 x

 r

c

}

fin
dB

in
di

ng
(‘s

q’
)

as
si

gn
(s

qC
)

cr
ea

te
(p

ar
am

s,
 b

od
y,

gl
En

v)

ev
al

ua
te

(B
, g

lE
nv

)

B
: s

q(
3)

<<
cr

ea
te

>>

ap
pl

y(
ar

gs
, g

lE
nv

, B
)

w
ra

pI
nP

ro
m

is
es

(g
lE

nv
)

<<
cr

ea
te

>>

in
vo

ke
(a

rg
s,

 g
lE

nv
,…

)

cr
ea

te
(g

lE
nv

)

En
cl

os
in

g
en

vi
ro

nm
en

t i
s

gi
ve

n
in

 p
ar

am
et

er

po
pu

la
te

(e
xE

nv
,

 fo
rm

al
s)

m
at

ch
(e

xE
nv

,
ar

gs
)

ev
al

ua
te

(b
od

y,
ex

En
v)

fin
dB

in
di

ng
(“x

”)

fo
rc

e(
)

rc
 <

-
x

*
x

rc

as
si

gn
(n

ul
l)

as
si

gn
(th
re
e)

va
lu

e(
)

fin
dB

in
di

ng
(“r

c”
)

as
si

gn
([9

] :
 In

tV
ec

to
r)

rc
.v
al
ue
()

Fi
gu

re
5.

10
:

Se
qu

en
ce

di
ag

ra
m

of
cr

ea
tin

g
an

d
su

bs
eq

ue
nt

ly
ev

al
ua

tin
g

a
C

lo
su

re

CHAPTER 5. FURTHER PROVENANCE 170

Listing 5.19: The ‘counter’ example

1 > makecounter <- function() {

2 + count <- 0

3 + function() { # 'F'

4 + count <<- count + 1

5 + count

6 + }

7 + }

8 > counter <- makecounter()

9 > counter()

10 [1] 1

11 > counter()

12 [1] 2

13 > counter()

14 [1] 3

In the ‘counter’ example shown in Listing 5.19, makecounter is a function that is

able to create counters such as counter, which are functions that utilise local state to

maintain a count, and whose each invocation increments and returns the value of its count.

The operator <<- seen in the function body is used to perform a non-local assignment

to the symbol given as its left-hand-side operand. Unlike regular assignment which will

rebind (or should a binding not exist, create a new binding of) the symbol in the environ-

ment in which the expression is being evaluated, non-local assignment will instead traverse

the chain of enclosing environments starting in the environment in which the assignment

is evaluated, in search of a binding to the given symbol. If such a binding exists6 then it

will be rebound to the value given on the right-hand-side operand. If no such binding is

found then the assignment takes place in the global environment.

What follows is a description of the example depicted by the sequence diagram in

Figure 5.11. makecounter is bound in the global environment to a closure C that accepts

no parameters, and whose environment is the global environment, by virtue of being

defined from the command line. This state is depicted in Figure 5.12 and the sequence of

actions which led it it can be seen in the evaluation of ‘A’ in Figure 5.11.

The body of the closure C bound to makecounter (i) initialises the variable count to

circles as ‘free’ variables—they are non-local to the actual body of the closure; where local may be defined

as the evaluation environment for the particular evaluation of a closure.
6And the binding is not locked, i.e. its value may be modified. This provides a safeguard in the protection

of bindings in attached packages, which may be identified in a process such as non-local assignment.

CHAPTER 5. FURTHER PROVENANCE 171

sd
 D

efi
ni

ng
 m

ak
ec

ou
nt

er
()

an
d

ev
al

ua
tin

g
it

co
un

te
r :

Bi

nd
in

g
gl

En
v

:
En

vi
ro

nm
en

t
co

un
t :

 B
in

di
ng

F
: C

lo
su

re
: E

va
lu

at
or

C
 :

C
lo

su
re

E
: E

nv
iro

nm
en

t

m
ak

ec
ou

nt
er

 :
Bi

nd
in

g
ev

al
ua

te
(A

, g
lE

nv
)

cr
ea

te
([]

, b
od

y,
gl

En
v)

A
: m

ak
ec

ou
nt

er
 <

-
fu

nc
ti

on
()

 {

 c

ou
nt

 <
-

0

 f

un
ct

io
n

()
 {

 c

ou
nt

 <
<-

 c
ou

nt
 +

 1

 c
ou

nt

 }

 }

ap
pl

y(
[],

 g
lE

nv
,…

)

ev
al

ua
te

(B
, g

lE
nv

)

B
: c

ou
nt

er
 <

-
ma

ke
co

un
te

r(
)

ev
al

ua
te

(b
od

y,
E)

fin
dB

in
di

ng
(“c

ou
nt

”)

in
vo

ke
(a

rg
s,

 g
lE

nv
,…

)

cr
ea

te
(g

lE
nv

)

as
si

gn
([0

])

cr
ea

te
([]

, b
od

yF
, E

)

F
F

F

fin
dB

in
di

ng
(“c

ou
nt

er
”)

as
si

gn
(F

)

fin
dB

in
di

ng
(“m

ak
ec

ou
nt

er
”)

as
si

gn
(C

)

Fi
gu

re
5.

11
:

Se
qu

en
ce

di
ag

ra
m

of
es

ta
bl

ish
in

g
th

e
ma

ke
co

un
te

r
cl

os
ur

e,
an

d
th

en
ev

al
ua

tin
g

it
an

d
bi

nd
in

g
th

e
re

su
lt

(a
no

th
er

cl
os

ur
e)

to
co

un
te

r

CHAPTER 5. FURTHER PROVENANCE 172

glEnv : Environment

- symbol : Symbol = “makecounter”

makecounter : Binding

- body : Expression =
{
 function() {
 count <- 0
 function () {
 count <<- count + 1
 count
 }
 }
}
- args : ArgList = []

C : Closure

- environment

- value

Figure 5.12: Class diagram depicting interpreter state following creation of makecounter

zero (in the evaluation environment created for the evaluation of makecounter()); and

(ii) returns a closure F, whose environment is the evaluation environment. Therefore if

F is bound to a symbol in some persistent environment (such as the global environment)

then the evaluation environment used in the evaluation of makecounter is necessarily

preserved, containing the binding count created during the course of evaluating C’s body.

This state is depicted in Figure 5.13, and its preceding actions shown in the evaluation of

‘B’ in Figure 5.11.

The following is a description of the evaluation of ‘C’ in Figure 5.11. During evaluation

of F (such as the calls to counter() in Listing 5.19) an evaluation environment E2 is

created, whose enclosing environment is E, the environment of closure F. The expressions

constituting F’s body are evaluated in E2, of particular interest is the assignment count <

<- count + 1. The RHS expression count + 1 will be evaluated in E2 in which the search

for a binding to symbol count will begin and then proceed through the chain of enclosing

environments. It will of course be found in E2’s immediately enclosing environment—

E, the environment of closure F—in which same environment the non-local assignment

operation will locate and rebind the count symbol given as its LHS operand. The final

line of F’s body simply returns the value of count (which again will be found via the

search path to exist in the immediately enclosing environment of E.)

When an environment E that was initially constructed as the evaluation environment

for a closure but has been persisted because the evaluation resulted in the creation of

another closure whose environment is E, E will be referred to as a local environment.

These local environments fall outside of the scope of the design for recording provenance

CHAPTER 5. FURTHER PROVENANCE 173

- symbol : Symbol = “counter”

counter : Binding

E : Environment

- value

- enclosing

- body : Expression =
{
 count <<- count + 1
 count
}
- args : ArgList = []

F : Closure

glEnv : Environment

- environment

- symbol : Symbol = “makecounter”

makecounter : Binding

- body : Expression =
{
 function() {
 count <- 0
 function () {
 count <<- count + 1
 count
 }
 }
}
- args : ArgList = []

C : Closure

- symbol : Symbol = “counter”
- value : IntVector = [0]

count : Binding

- environment

- value

Figure 5.13: Class diagram depicting interpreter state following creation of makecounter

and binding the result of its evaluation to counter

described in Section 3.2, which monitors bindings in only the global environment.

This will now be exemplified. Listing 5.20 performs the construction of a counter as in

the previous example, but instead of simply printing the result of the calls to counter(),

they are respectively assigned to variables x, y and z.

Listing 5.20: The ‘counter’ example, augmented to assign results to variables

1 > makecounter <- function() {

2 + count <- 0

3 + function() {

4 + count <<- count + 1

5 + count

6 + }

7 + }

8 > counter <- makecounter()

9 > x <- counter()

10 > y <- counter()

11 > z <- counter()

12 > x

13 [1] 1

CHAPTER 5. FURTHER PROVENANCE 174

sd
 E

va
lu

at
in

g
a

cl
os

ur
e

w
ith

 s
ta

te

co
un

te
r :

Bi

nd
in

g
gl

En
v

:
En

vi
ro

nm
en

t
F

: C
lo

su
re

E2
 :

En
vi

ro
nm

en
t

: E
va

lu
at

or
E

: E
nv

iro
nm

en
t

co
un

t :
 B

in
di

ng

ev
al

ua
te

(C
, g

lE
nv

)

ev
al

ua
te

(b
od

yF
, E

2)

C
 :
co

un
te

r(
)

fin
dB

in
di

ng
(“c

ou
nt

er
”)

va
lu

e(
)

ap
pl

y(
[],

 g
lE

nv
,…

)
in

vo
ke

([]
, E

,…
) cr

ea
te

(E
)

fin
dB

in
di

ng
(“c

ou
nt

”)

fin
dB

in
di

ng
(“c

ou
nt

”) va
lu

e(
)

fin
dB

in
di

ng
(“c

ou
nt

”)

as
si

gn
([1

])

[1
]

[1
]

N
o

su
ch

 b
in

di
ng

 e
xi

st
s

in
 E

2,

so
 th

e
se

ar
ch

 p
as

se
s

to
 it

s
cl

os
in

g
en

vi
ro

nm
en

t E

[1
]

[1
]

Fi
gu

re
5.

14
:

Se
qu

en
ce

di
ag

ra
m

of
ev

al
ua

tin
g

th
e
co

un
te

r
cl

os
ur

e

CHAPTER 5. FURTHER PROVENANCE 175

14 > y

15 [1] 2

16 > z

17 [1] 3

The first time counter() is evaluated, the value of the count variable is incremented to

1, returned, and assigned to x. The second time counter() is evaluated, the value of count

is incremented to 2, returned, and assigned to y. Similarly its third invocation results in

count being incremented to 3 and assigned to z. Clearly the expressions that involve

assignments to y and z have been influenced by the previous invocations of counter().

However, as shown in Listing 5.21, this fact has not been recorded.

Listing 5.21: Result of the ‘counter’ example illustrating the omission of provenance track-

ing in local environments

1 > pedigree("y")$commands

2 [[1]]

3 makecounter <- function() {

4 count <- 0

5 function() {

6 count <<- count + 1

7 count

8 }

9 }

10

11 [[2]]

12 counter <- makecounter()

13

14 [[3]]

15 y <- counter()

16

17 > pedigree("z")$commands

18 [[1]]

19 makecounter <- function() {

20 count <- 0

21 function() {

22 count <<- count + 1

23 count

24 }

25 }

26

CHAPTER 5. FURTHER PROVENANCE 176

27 [[2]]

28 counter <- makecounter()

29

30 [[3]]

31 z <- counter()

This behaviour occurs because there is no record of the binding count being read or

written; only those in the global environment—counter is read, and y and z are written.

During a single invocation of counter(), count will firstly be read, and then written.

5.4.3 Design

To overcome this it is necessary to instrument facilities for tracking provenance within

local environments. In the context of the given example, the read of the binding to

symbol count needs to be recorded, and when a new binding to symbol count is written

it is attributed the previous binding of count as a parent.

The difficulty lies in determining which environments, or more specifically frames,

should be instrumented for provenance-tracking facilities.

Environments and their frames are created frequently during the course of evaluat-

ing an expression and these frames may not necessarily be persisted for any particular

purpose, and so should not necessarily be instrumented for provenance-tracking. This is

a performance consideration, that consequently informs the design to track provenance

in only those frames that survive the top-level expression evaluation. A CXXR-specific

refinement of this practice is to perform a lightweight garbage collection at the end of the

top-level expression, to further ensure that inaccessible frames are destroyed.

Figure 5.15 gives a sequence diagram to describe frame monitoring and Figure 5.16

shows the new static member attributes and operations on class Frame. Class Frame is

instrumented with the ability to track the creation of each instance of Frame in a set.

The idea of frame monitoring is introduced to mean that the creation and destruction

of Frame instances should be recorded. At the beginning of a top-level expression frame

monitoring is enabled (Algorithm 5.5), and it is disabled at the end of the top-level ex-

pression (Algorithm 5.6). When a frame is constructed, it is said to be registered whereby

it is added to the set; conversely, a frame undergoing destruction is deregistered and is

hence removed from the set.

5.4.4 Implementation

Listing 5.22 shows what is added to class Frame to implement the above design.

CHAPTER 5. FURTHER PROVENANCE 177

sd Frame Monitoring in REPL

loop

: Main : Evaluator : Frame

initialise()

Read

enableFrameMonitoring()

<<create>>

registerFrame()

<<destroy>>

deregisterFrame()

frame_monitoring==true

Print

disableFrameMonitoring()

cleanup()

[quit==false]

Figure 5.15: Sequence diagram showing frame monitoring

+ initialise() : void
+ cleanup() : void
+ enableFrameMonitoring() : void
+ disableFrameMonitoring() : void
+ registerFrame() : void
+ deregisterFrame() : void

- set : Frame[*]
- frame_monitoring : boolean = false

Frame

Figure 5.16: Class diagram showing new attributes and operations in class Frame

Algorithm 5.5 The Frame enableFrameMonitoring operation
1: procedure Frame.enableFrameMonitoring

2: frame_monitoring ← true

3: set.clear

CHAPTER 5. FURTHER PROVENANCE 178

Algorithm 5.6 The Frame disableFrameMonitoring operation
1: procedure Frame.disableFrameMonitoring

2: frame_monitoring ← false

3: gclite ▷ This is CXXR-specific performance consideration

4: for all F ∈ set do

5: F.enableReadMonitoring

6: F.enableWriteMonitoring

Listing 5.22: Additions to definition of class Frame to enable it to maintain a collection of

its instances

1 class Frame : public GCNode {

2 private:

3 class Comparator {

4 public:

5 bool operator() (const Frame* lhs,

6 const Frame* rhs) const {

7 return (lhs < rhs);

8 }

9 }

10 typedef std::set<const Frame*, Comparator> Set;

11

12 friend class SchwarzCounter<Frame>;

13

14 static bool s_frame_monitoring;

15 static Set* s_set;

16 [...]

17 public:

18 static void cleanup();

19

20 static void initialize();

21

22 void deregisterFrame() {

23 s_set->erase(this);

24 }

25

26 void registerFrame() {

27 s_set->insert(this);

28 }

29

CHAPTER 5. FURTHER PROVENANCE 179

30 static void enableFrameMonitoring(bool on);

31 [...]

32 }

33

34 namespace {

35 CXXR::SchwarzCounter<CXXR::Frame> frame_schwarz_ctr;

36 }

The class defines a private type Set as an alias of a C++ std::set to contain pointers

to Frame. A static member field s_set is defined of this type, whose purpose will be to

maintain a collection of Frame objects created during the course of evaluating a top-level

expression.

Class Frame already defined static member fields—the read and write monitors—

but these do not require any special initialisation (their combined declaration/initial-

isation to NULL is sufficient) so this class did not previously require use of a Schwarz

counter to ensure correct initialisation of its static members. Class Frame now has

a friend class CXXR::SchwarzCounter<Frame> and declares an instance of this type as

frame_schwarz_ctr in an anonymous namespace. The new member field s_set is initial-

ised to an empty Frame::Set in the initialize() method that is invoked necessarily by

SchwarzCounter<Frame>:

void Frame::initialize() {

s_set = new Set();

s_frame_monitoring = false;

}

Similarly the cleanup method required by SchwarzCounter destroys s_set:

void Frame::cleanup() {

delete s_set;

}

The boolean member field s_frame_monitoring is used to signify whether frame

monitoring is enabled (true) or disabled (false). This field is modified by the method

enableFrameMonitoring(bool on) which will be discussed later.

Whenever a Frame is created and frame monitoring is enabled, it needs to be registered

in the set s_set; and when it is destroyed, it must be deregistered. The member method

registerFrame is used to register the instance of Frame on which it is called, by adding it

to s_set. Conversely deregisterFrame deregisters from s_set the frame on which it is

called. They are respectively called from the constructor and destructor of Frame, which

are shown in Listings 5.23 and 5.24 respectively.

CHAPTER 5. FURTHER PROVENANCE 180

Listing 5.23: The constructor of Frame modified to register this Frame instance with the

set of frames

1 Frame()

2 : m_cache_count(0), m_locked(false),

3 m_read_monitored(false), m_write_monitored(false)

4 {

5 if (s_frame_monitoring)

6 registerFrame();

7 }

Listing 5.24: The destructor of Frame modified to deregister this Frame instance with the

set of frames

1 ~Frame()

2 {

3 if (s_frame_monitoring)

4 deregisterFrame();

5 statusChanged(0);

6 }

The method enableFrameMonitoring(bool on) implements both design operations

enableFrameMonitoring (Algorithm 5.5) and disableFrameMonitoring (Algorithm 5.6).

Firstly, it sets the field s_frame_monitoring to its argument on, which informs the

{de,}registerFrame methods as to whether they should perform any action. Secondly,

if frame monitoring is being enabled (i.e. its on argument is true) at the start of a top-level

expression then it clears s_set in anticipation of being populated with Frames created

during evaluation of the top-level expression; if frame monitoring is being disabled at the

end of a top-level expression, then a light garbage collection will be performed and each

surviving frame will have its read and write monitors enabled. This method is given in

Listing 5.25.

Listing 5.25: The Frame::enableFrameMonitoring(bool) method

1 void Frame::enableFrameMonitoring(bool on)

2 {

3 if (on) {

CHAPTER 5. FURTHER PROVENANCE 181

4 s_set->clear();

5 } else {

6 gclite();

7 for (Frame::Set::iterator it = Frame::s_set->begin();

8 it != Frame::s_set->end();

9 ++it) {

10 const Frame* frame = *it;

11 frame->enableReadMonitoring(true);

12 frame->enableWriteMonitoring(true);

13 }

14 }

15 s_frame_monitoring = on;

16 }

The points at which frame monitoring is enabled and disabled are respectively before

and after evaluation of a top-level expression as illustrated in Figure 5.15. This is intro-

duced in the Rf_ReplIteration function which handles the Read-Evaluate-Print Loop

shown in Listing 5.26.

Listing 5.26: Outline of Rf_ReplIteration function with control of frame monitoring

1 int Rf_ReplIteration(SEXP rho, CXXRUNSIGNED int savestack, R_ReplState *state)

2 { [...]

3 // Read TLC from console into buffer

4 R_CurrentExpr = R_Parse1Buffer(&R_ConsoleIob, // Parse

5 0, &state->status); // buffer

6

7 switch (state-> status) { [...]

8 case PARSE_OK:

9 { [...]

10 Frame::enableFrameMonitoring(true);

11 [...]

12 PROTECT(thisExpr = R_CurrentExpr);

13 value = eval(thisExpr, rho); // Evaluate TLC

14 [...] // Print `value' (possibly)

15 Frame::enableFrameMonitoring(false);

16 [...]

17 } [...]

18 } [...]

19 }

CHAPTER 5. FURTHER PROVENANCE 182

5.4.5 Example

The result of evaluating the ‘counter’ example given in Listing 5.20 with provenance-

tracking of local environments enabled can be seen by inspecting the pedigree of z, as

shown in Listing 5.27. The pedigree of z includes all of those previous calls to counter()

which are crucial for accounting for the derivation of z but were previously not included.

Listing 5.27: Result of the ‘counter’ example illustrating the inclusion of provenance track-

ing in local environments

1 > pedigree("z")$commands

2 [[1]]

3 makecounter <- function() {

4 count <- 0

5 function() {

6 count <<- count + 1

7 count

8 }

9 }

10

11 [[2]]

12 counter <- makecounter()

13

14 [[3]]

15 x <- counter()

16

17 [[4]]

18 y <- counter()

19

20 [[5]]

21 z <- counter()

This method requires a careful review of the way in which provenance is characterised

in this system, as this method presents a perhaps unexpected nuance, as illustrated in

Listing 5.28.

Listing 5.28: Illustration of side-effect of local environment provenance tracking

1 > pedigree("counter")$commands

2 [[1]]

3 makecounter <- function() {

CHAPTER 5. FURTHER PROVENANCE 183

4 count <- 0

5 function() {

6 count <<- count + 1

7 count

8 }

9 }

10

11 [[2]]

12 counter <- makecounter()

As can be seen, the three calls to counter() do not appear in its pedigree. Despite

the rebinding of the count symbol to different values in the local environment, there is no

record of this having any effect on counter. This is because counter itself has not been

rebound, because its own value has not been altered—it still points to the original closure.

Furthermore, the closure itself hasn’t been altered either; the only change that has taken

place is to a binding within the closure’s environment.

For this to be effective on counter, it would be necessary to regard any modification

to count to represent a change in the state of counter.

To consider the state of counter to not strictly depend on count seems, on the one

hand, counter-intuitive: the expectation of a provenance record is that it ought to con-

tain the complete sequence of commands that resulted in an item reaching a given state;

however, on the other hand, to consider counter’s state independent to that of count

does remain faithful to our definition of a binding state’s provenance: operating at the

granularity of bindings, without there being a new binding created, there is nothing that

need be reflected in the provenance record.

Or more generally: if B is a binding in the global environment to a closure F whose

environment is E, the state of the bindings in E are not considered to be part of the state

of B.

The consequence of this is that it is not possible to reconstruct B from its pedigree;

however, in the alternative, it would be necessary to rule that B should be characterised

as being dependent upon E—either some element thereof or in its entirety—which raises

conceptual questions, as well as considerable practical difficulties.

Addressing the latter first: it would be practically impossible to implement this func-

tionality in CXXR. The mechanism by which environments enclose each other is strictly

unidirectional—it is not possible to traverse from an outer environment to an inner en-

vironment. It also challenges the concept of a binding’s ancestry—the other bindings on

which it depends—being defined as those things that were read before it was written in

CHAPTER 5. FURTHER PROVENANCE 184

the course of evaluating a top-level expression. In order to attribute changes to bindings

in E as representative of a change in B then it would be necessary to modify or offer

exception to this rule. It is not accurate to identify all bindings in E as necessarily being

precursors of B, but nor is it practical to identify precisely those that are.

Whether this is a satisfactory representation is a matter of perspective. At this stage,

it is necessary to accept this as simply a limitation of the given approach. Section 5.4.6 of

this chapter will discuss in some detail potential approaches to overcoming this limitation.

5.4.6 Discussion

To address this problem further, it would be necessary to move away from the definition

of binding’s ancestry as being the sole determinant of its state. During the course of

evaluating a top level expression those bindings read prior to the writing of a binding are

considered to be its parents, which enables an ancestry to be established by tracing through

the generations of parentage. Presently it is only these ancestors that are considered to

have been influential in deriving a binding’s present state. If we wish to consider changes

to bindings which are not directly incorporated in a binding’s ancestry as having exerted

any influence over it, then this presents a challenge in how to conceptually model this

behaviour while working within reasonable technical constraints.

A naive policy might attempt an approximation of this by assuming that an invocation

of a closure bound to B may have caused its state to change, and so should be considered

to be a new version of B. One immediate problem with this approach is that a single

closure might be referred to by two bindings, such as in c1 <- c2 <- makecounter(), in

which case calls to c1() should, but would not, be recorded in the provenance of c2()

(and vice versa.)

There are three issues surrounding this problem.

• What constitutes a change in B? If E is some environment referred to by B, either

directly or indirectly through some chain of environments, then how should changes

to the bindings in E be considered as influential on B.

• Is it possible to categorically determine which bindings in E have been of influence

to B? Identifying those items in E whose alteration should be regarded as a change

in the state of B.

• How should these changes be reflected in the state B? Does a change to some member

of E constitute a new B?

CHAPTER 5. FURTHER PROVENANCE 185

What constitutes a change in B?

This has previously been straightforward to define as the creation of a binding B. If the

new binding B had been derived from the previous binding of B then this would be

recorded in its parentage.

What changes in E determine B?

Where E is a local environment of a closure to which B is bound, B could conceivably

take the following values:

• All items in E. Consider a change to any binding in E to represent a change in

B. This may seem conceptually sound in the toy example, but this cannot borne

out into more sophisticated scenarios. One immediate problem is that it is possible

to manually modify the environment of the closure from E1 to E2: environment(

B) <- E2. At which point E1 is no longer of any interest, but also everything in

E2 should not necessarily be considered a determinant in the value of B, as this

environment may well be populated with innumerable extraneous bindings.

• Bindings that were present in E at the time of B’s creation. This is still subject to

the problem outlined in the previous point, some practical considerations of which

include:

– The process of modifying the environment of a closure from E1 to E2 would

need to be augmented to apply those monitors on bindings in E1 to those of

the same symbol in E2.

– It is possible that a relevant binding B in E1 does not presently exist in E2.

This introduces the problem of monitoring bindings which do not yet exist.

The monitoring on B in E1 would need to be instrumented as soon as it was

created.

• Bindings in E on which the return value of the closure referred to by B depends.

The closure body may have no single consistent return value, and therefore closure

evaluation would need special monitoring.

How are changes in E are reflected in B?

There is no clear characterisation of how a state changes in E should be attributed to,

or reflected in, the state, or provenance record, of B. One pertinent question is: should a

change in E constitute a new binding of B?

CHAPTER 5. FURTHER PROVENANCE 186

If this were the case, then it might cause problems of repetition. Using the counter

example, suppose that an invocation of counter() were to cause a new—or perhaps only

apparently new—binding of counter, due to the change in state of its local environment.

Following this approach, it is difficult for one to reason about x <- counter() as before:

it would now involve two bindings (one of counter) and one of x.

One potential direction of exploration for this could be instead of—as is currently

done—attributing count as a parent of x, have count as a parent of the new generation

of counter, and have that counter as a parent of x.

Further Work

The principal direction in which further work should be conducted is in relation to the idea

of nested command scopes—i.e. attributing binding states at a finer granularity than just

the top-level expression—to which Section 5.1 alluded, and what effect might be achieved

if this approach were applied to local environments.

Another candidate for further attention would be enhancing the R functions for explor-

ing provenance—namely provenance and pedigree—to better denote and interrogate the

provenance of bindings in environments other than the global environment. Establishing

an intuitive means of referring to an arbitrary environment is not trivial; the way in which

R does this presently is by address:

> counter <- makecounter()

> environment(counter)

<environment: 0x7f8dbb7a3f40>

Which would just about qualify as a decent starting point, but ultimately a more

descriptive handle for environments would be preferable—something that would give a

useful qualification to symbols such as these:

> provenance(counter)$children

[1] "count" "count" "count" "count"

Chapter 6

Reproducible Research

Reproducible research, as introduced in 1, is a movement towards enabling third-party

repetition of a scientific process described in a published work. This involves making

available the data and code used to arrive at some result, along with the result itself.

It was the second objective of this thesis to consider what Provenance-Aware CXXR

can contribute to this field. This chapter will contend that the first step in making

research reproducible is by accurately establishing provenance, and describe the ways in

which Provenance-Aware CXXR—and more generally how provenance-aware software—

can support reproducible research.

By recording the derivation of a data artifact, its derivation may be repeated to allow,

in the context of a scientific application for instance, the results to be reproduced, perhaps

independently to provide verification. In making the code and data that produced the

results available alongside the results, the process becomes transparent and enables third-

parties to repeat and either verify or, should this not prove to be possible, potentially

identify and correct issues in the process. This of course is not possible while there exists

to any degree opaqueness.

6.1 Provenance as the means to Reproducible Research

Just as it has been stated that it is by its metadata that data may be considered to be

good, this may be similarly applied to the results of an analysis—the process which led

to the results is crucial to adequately determine the quality of those results.

As the objective of reproducible research is to enable the repetition of some scientific

process, such as a statistical data analysis, obviously a prerequisite of this is to record

the process in the first place. By using provenance-aware software then this procedure

187

CHAPTER 6. REPRODUCIBLE RESEARCH 188

is automatically taken care of on behalf of the user, who need not worry about manual

methods for recording and documenting the process, which may be ad-hoc, inconsistent,

incomplete and—as is anything exposed to human involvement—prone to human error

and should be considered generally unreliable. By automating this process, the reliability

of the process documentation is ensured.

While simple replication of an analysis with original input data may only validate it

with respect to claims made within those original confines, by recording and distributing

the process documentation it becomes possible to repeat an analysis using different input

data to further prove or disprove claims. This repeatability may also be required in an

instance where some input data has been identified as being corrupt. Provenance-aware

software should be able to identify which other data has been influenced by or directly

derived from the suspect data, and regenerate these data in accordance with the original

process.

The accountability of an analysis can be enhanced by accurate provenance documenta-

tion, as it becomes possible to validate what actually took place with respect to what was

purported to have taken place in a descriptive text or article. Spotting any discrepancy

in the accounts becomes trivial, and this for instance provides a means for reviewers of

articles submitted to journals to verify what is described within those articles.

There is a considerable overlap between the objectives of the previously somewhat

distinct fields of provenance and reproducible research, and it is clear that the rigorous

application of provenance-aware computing methods is essential to enable and

support reproducible research.

6.2 Reproducible Research in R

There are a few means to accomplish reproducibility within R, and these can be broadly

classified into those based upon principals of literate programming, and those that are not.

6.2.1 Literate Programming

R’s standard library package “utils” includes a function Sweave, which facilitates the

literate programming of R code [65]. As with literate programming in general, an Sweave

document is written in some mark-up language such as LATEX or HTML, into which sections

of R code are interleaved. When the document is processed by the Sweave function, each

section of R code is replaced by the result of its evaluation, which may for instance be

numerical values, tables, or graphical figures. Sweave utilises the Noweb format [94],

CHAPTER 6. REPRODUCIBLE RESEARCH 189

which offers a simple syntax for demarcating “code chunks” within the mark-up format

and typically uses file extensions .Rnw and .Snw.

The two literate programming processes, weave and tangle, are implemented as

Sweave and Stangle. When the user wishes to transform an Sweave document such

as example.Rnw shown in Listing 6.2.1 into the human-readable document, the weave pro-

cess would be invoked as follows: > Sweave("example.Rnw"). The result of this process

is the LATEX file example.tex, which may be processed into a PDF directly from R using

tools::texi2pdf("example.tex"), the result of which is shown in Figure 6.1.

1 \documentclass[a4paper]{article}

2 \title{Sweave Example}

3 \author{Chris A. Silles}

4 \begin{document}

5 \maketitle

6

7 In this example we will generate a vector of 100 normally-distributed data points, whose mean

8 we would expect to be around 0:

9 <<>>=

10 x <- rnorm(100, mean=0, sd=1)

11 mean(x)

12 @

13 A histogram of the values:

14 \begin{center}

15 <<fig=TRUE>>=

16 hist(x)

17 @

18 \end{center}

19 \end{document}

One potential barrier to this method is the prerequisite experience of the user in some

mark-up language such as LATEX or HTML to write the text portion of their document.

An alternative is provided by the R package odfWeave [38], which allows users to instead

use the OpenOffice word processor to write the text portion.

One further enhancement to sweave is Peng’s cacheSweave package, which enables

the caching of the results of expressions evaluated during the course of weaving a docu-

ment [91]. This overcomes Sweave’s default mode of operation whereby every section of

code will be evaluated every time the document is processed, which can be a time and

resource consuming process for lengthy analyses.

The knitr package [120] incorporates features of Sweave, cacheSweave and other R

packages to produce a more powerful and transparent engine for dynamic report generation

CHAPTER 6. REPRODUCIBLE RESEARCH 190

Sweave Example

Chris A. Silles

January 1, 2014

In this example we will generate a vector of 100 normally-distributed data
points, whose mean we would expect to be around 0:

> x <- rnorm(100, mean=0, sd=1)

> mean(x)

[1] 0.1104283

A histogram of the values:

> hist(x)

Histogram of x

x

F
re

qu
en

cy

−2 −1 0 1 2

0
5

10
15

20

1

Figure 6.1: example.pdf generated using Sweave

CHAPTER 6. REPRODUCIBLE RESEARCH 191

within R.

Building on the literate programming paradigm, Gentleman and Temple Lang contend

that the separation of a textual description of an analysis from the data and code on

which it is founded often relegates the latter to an appendix and such disjoint treatment

constitutes an obstacle to a user wishing to repeat the analysis.

For this reason, Compendium is proposed to be “one or more self-contained dynamic

documents”, which is “an ordered composition of code chunks and text chunks that de-

scribe and discuss a problem and its solution” [40]. A compendium comprises dynamic

documents, from which views may be transformed, with any other required data and aux-

iliary software.

The Compendium authors identify limitations in the data capture process during cre-

ation of a compendium. This includes the scenario in which data is necessarily anonymised,

and defines the scope of the compendium may only reasonably exist from a certain starting

point. The capture of data at a finer granularity is described as “practical problem, not a

“conceptual one”.

6.2.2 Non-literate Programming

The cacher R package introduced in Section 1.4.7 describes a means by which an analysis

in R may have its contents (both the sequence of expressions and their resultant objects)

recorded in a ‘cache’, which may then be distributed to other users who may wish to

repeat, verify or otherwise interact with it.

It achieves this by parsing a file containing R expressions and then supervising the

evaluation of each expression. Each expression is attributed an identifier which is the

SHA-1 digest of: the expression; the expression history (a string vector composed of all

expressions preceding this expression); and the name of the source file. If, according

to the identifier, there exists a previously cached result for this expression, then this

cached result (i.e. R object(s)) is (lazily) loaded; otherwise evaluate the expression in a

temporarily constructed environment E. Prior to evaluation of an expression a list bindings

in the global environment is saved and later compared with a list of bindings in the global

environment after expression evaluation. These new bindings in the global environment

along with those bindings within environment E are cached in the database against a

key of the expression identifier. Finally, the bindings in E are recreated in the global

environment, to mimic ordinary evaluation at the command prompt.

All objects are necessarily cached (with the exception of connection objects) and this

CHAPTER 6. REPRODUCIBLE RESEARCH 192

certainly offers performance advantages in some cases, for example where the analysis is

simply being repeated without modification. However the number of these cases is quite

small and it is very easy to invalidate cached results and require every expression to be

evaluated. Because an expression is identified in part by the sequence of expressions pre-

ceding it, any change to this sequence—even one which is of no influence to any subsequent

expression—will immediately invalidate the subsequent cached results.

For example consider the following file used as input to cacher():

Listing 6.1: Trivial R Code for cacher() example

1 one <- 1

2 three <- 3

If one were to add as the second expression: two <- 2, then because the sequence of

expressions preceding three <- 3 has been altered, the cached result of this expression

(and likewise all following expressions) will no longer be considered valid and its evaluation

will be necessitated.

A more strict definition of the history of an expression E would identifying only those

expressions that affected any of the bindings used as input to the evaluation of E; but

without provenance-tracking facilities this is impossible within CR or its packages.

The global environment is considered as a special case, and only bindings created in

the temporary environment and the global environment are considered to have resulted

from the evaluation of an expression. This is to handle one case of expressions with side

effects, in this instance where bindings in the global environment are modified. Other

special cases handle those expressions which do not create or modify any bindings at all

(either in the temporary environment or global environment), such as when output is to a

graphics device (as in a call to plot), or when a call to attach() alters the search path.

These expressions are deemed uncacheable and their evaluation is necessarily forced and

this property is recorded in the database.

6.3 Reproducible Research in CXXR

The literate programming approaches available within R allow its users to create docu-

ments that incorporate elements designed for human consumption, such as the manuscript

for a paper that includes results; as well as elements designed for computer consumption

such as the data and code used to derive the included results. This methodology has the

CHAPTER 6. REPRODUCIBLE RESEARCH 193

advantage of encapsulating some code contiguous with its natural language description, so

that when presented with the document, one would be able to (a) repeat the code-chunks;

(b) verify the results against those in the original paper; and (c) corroborate the actual

process of deriving the results with the natural language description of the process.

However, for an author who wishes to publish a result, this method does not provide

the means to systematically establish the process that derived that result. The process of

producing a literate programming document is conducted in vitro. The author must rely

on his or her own ad-hoc method to maintain a record of the analysis that took place

and what elements of that analysis must be included in the document to form a sufficient

account of it.

In order to achieve this in a robust manner, it is necessary for the provenance of

data artifacts to be recorded and persisted. As has been herein demonstrated,

Provenance-Aware CXXR performs this crucial aspect of housekeeping on the user’s be-

half and better facilitates this aspect of reproducible research than the present approaches.

Implementing rigorous provenance-tracking facilities to software enables it to automatic-

ally document its processes in a manner that is systematic, accurate and consistent, and it

is ultimately these characteristics that must be satisfied if the process is to be reproduced.

In particular it is intended that by providing such functionality, Provenance-Aware CXXR

can complement the popular literate programming in R approach.

Furthermore, as a result of its serialization/deserialization facility, Provenance-Aware

CXXR offers a means to encapsulate for distribution data resulting from an analysis along

with its provenance, therefore including the original source data and the entire sequence

of commands responsible for deriving the resultant data. From this emerge advantages

over a provenance-unaware system such as cacher. The availability of accurate provenance

information allows for the identification of the ancestors of a data artifact and therefore

allows the analysis to be easily and efficiently repeated with different input data. When

an input, such as a dataset, or parameter value or even an entire expression is modified,

it is possible using the provenance information recorded by P-A CXXR to identify and

deterministically evaluate only those expressions whose evaluation will be affected by the

change, as opposed to evaluating each and every (potentially time and resource consum-

ing) extraneous expression. Therefore this approach facilitates not only repetition of the

original analysis, but also by facilitating the application of a given process to another set

of input data, a degree of independent verification.

Chapter 7

Conclusions

The research presented in this thesis has sought to achieve the objectives set out in Sec-

tion 1.5.1. The first of these objectives was to understand how and the extent to which

facilities for recording, preserving and querying provenance information can be introduced

to the CXXR implementation of the R statistical language and environment. This object-

ive was then split into separate research goals.

Chapter 1 sets out the motivation for this work, and the typical use cases in which

provenance questions arise. Owing partially to its heritage as a spiritual descendent of S,

CXXR is used quite typically for conducting exploratory data analysis, which gives rise

to particular provenance questions.

In recent years, the field of provenance in computing has received increasingly wide

interest, no better exemplified than by the success of IPAW conferences and such a mature

standard as W3C’s PROV specification. While there are documented accounts of software

being adapted to become provenance-aware, such facilities have not been incorporated to

an environment to support an interpreted language such as R. Chapter 2 explains why

the (C)R interpreter itself is not well-suited to exploratory implementation of function-

ality, and that this is the main motivation behind CXXR, which provides the necessary

opportunity to introduce provenance tracking to the R language and environment.

The field of reproducible research has also seen a remarkable increase in interest in

recent years. As introduced in Section 1.4, there are strong motivators for this: researchers

and publishers alike are increasingly viewing the inability to reproduce published results

as being a significant barrier to progress, as well as potentially damaging to the credibility

of all concerned. As Chapter 6 identifies: the reproducible research effort has long been

conducted without due consideration to the provenance of data.

No more so is this typified than in the R packages intended to facilitate reproducible

194

CHAPTER 7. CONCLUSIONS 195

research. Some of these may go a long way towards solving certain issues of reproducibility

such as logging commands, caching results, and packaging things for easy distribution;

while other means such as literate programming involve manually annotating a process—

albeit in a fashion that promotes tight encapsulation of source code and results—in a

slightly in vitro manner: there is no accommodation for recording the live exploratory

component of an analysis. There remains a conspicuous omission in these methods for

reproducible research in R: how can we categorically identify the process that led to a

particular object?

The features designed in this thesis demonstrate that, in general, interactions with

R objects can be monitored, recorded and distilled into provenance information about R

objects that can be queried by the user. This thesis has also shown it is possible to preserve

this provenance information along with the R object to which it pertains. As discussed in

Chapter 5, there are aspects of the R language as well as the CR interpreter that present

edge cases that are not adequately catered for by the general algorithm, and these have

received special attention. During these investigations, it has become apparent that there

is scope for improvement to the methods employed. One such area will be discussed in

Section 7.2.

7.1 Contributions

This thesis presents in Chapters 3, 4, and 5 original research to investigate an approach

to introducing facilities for recording, preserving, and querying provenance in the CXXR

implementation of the R statistical language and environment.

Chapter 3 describes the motivating provenance questions that a provenance-aware

CXXR should be capable of answering (research goal 2). A view of provenance in CXXR

is described that pertains to the binding, at a granularity of the top-level expression. A

design for capturing provenance in CXXR takes into consideration the read-evaluate-print-

loop strategy, and introduces monitors to capture read and write operations performed

on bindings during the evaluation of a top-level expression. Other considerations that

inform the design presented at this stage are maintaining the granularity of the top-level

expression in loops and how the provenance information is queried by the user by an in-

interpreter interface (research goal 3). With respect to a real-world R exploratory data

analysis, this chapter also presents a performance analysis of the provenance-tracking

facilities in CXXR, and demonstrates how the provenance questions can be answered

(research goal 6).

CHAPTER 7. CONCLUSIONS 196

The work presented in Chapter 4 gives an account of how a serialisation facility has

been engineered into CXXR to allow objects within a session to be saved to a file along

with their provenance information, all of which can be restored to a subsequent session by

loading the file. This enables the user to ask provenance questions of objects created in

previous sessions, and also enable newly created objects to include in their pedigree, the

pedigree of objects used in their creation, even if these objects were created in a previous

CXXR session (research goal 4). Chapter 6 describes how, further to simply providing

general utility, the provenance-awareness introduced to CXXR along with its serialisation

capabilities may be used to support reproducible research. This chapter also addresses how

provenance information recorded in CXXR can be enabled for interoperability (research

goal 5).

Chapter 5 addresses a number of scenarios that require special design considerations in

order that sufficient provenance information is recorded to provide answers to provenance

questions in these instances (research goals 3). Much of the focus of this chapter is on

recording provenance of expressions evaluated outside the main read-evaluate-print loop,

including the expressions themselves (in the case of Sections 5.1 and 5.2) as well as func-

tions which accept input from outside means (Section 5.3). The sections of this chapter—

to some extent independently—conclude that in order to further refine the provenance

collection, some flexibility of granularity is required.

7.2 Further Work

7.2.1 Provenance-Aware CXXR

As suggested by the previous section, the principal candidate area for conducting further

work in is that of granularity, and in particular, to investigate the effects of tracking

provenance at more than one level.

The example originally encountered in Section 5.1.3 included nested invocations of

source, beginning with source("liftExample2.R"), where liftExample2.R’s contents

was:

source("example.R")

z <- y * 2

And example.R contained:

CHAPTER 7. CONCLUSIONS 197

x <- date()

y <- rnorm(10)

strs <- paste(x, y)

At present we can adequately express the relationships between the bindings through

the parentage relation as shown in Figure 7.1(a) one of the challenges remaining is to

adequately express the relationships between the expressions. A potential expression re-

lationship graph for the above is depicted in Figure 7.1(b).

strs

y <- norm(10)x <- date() strs <- paste(x, y)

z <- y * 2source(“example.R”)

source(“liftExample2.R”)

z

x y

(a) (b)

Figure 7.1: Example dependencies, depicting relationships between (a) bindings, and (b)

expressions

This issue concerns the granularity at which an expression is attributed to a binding

it created. Presently, it is only possible to record the top-level expression that gives rise

to a binding state—with the exception of the handling of source given in Section 5.1.

One potential design for the handling of this would be to trace the nesting of expression

evaluations, so that the granularity is not fixed at only the top-level expression and,

allowing individual binding states to be attributed to the sub-expressions from whose

evaluation they resulted.

It is possible that such an approach would alleviate the difficulties of handling source

calls, functions with local environments, and xenogenesis.

Another area for potential exploration might be whether serialisation could occur nat-

ively to a format compatible with PROV-DM, and how CXXR can operate on provenance

information generated by other software.

Finally, further user interfaces to provenance information in CXXR could also be ex-

plored. In particular, some form of graph visualisation could be valuable. However, R

does not have a native package for graph visualisation, and its visualisation facilities may

not provide adequate interactivity for exploring a large provenance graph, but there is

definite scope for investigation.

It is intended that the work presented in this thesis forms a strong foundation for

further exploration into provenance-awareness in CXXR and software that exhibits similar

characteristics—such as mutable binding variables; REPL-based expression evaluation;

lazy-evaluation; closure evaluation—with a view that provenance-aware software has a

CHAPTER 7. CONCLUSIONS 198

vital role to play in furthering reproducible research.

7.2.2 Reproducible Research

Provenance-Aware CXXR lays the foundation for facilitating reproducible research. Fur-

ther areas of exploration might involve the addition of R functions to, for instance, de-

termine whether a binding is out of date with respect to its ancestors, in which case it

may be regenerated; and to replay an analysis with different input data or parametrised

computations.

The environment mechanism could be used to support this: if a user wished to re-

generate a binding (or set of bindings) using an ‘input’ binding with a different value,

P-A CXXR could construct a new environment, and using its provenance for the output

bindings, determine which bindings are duplicated into the new environment, and which

expressions should be evaluated in order to generate the desired output.

This sort of functionality could have implications for the way in which historical bind-

ings (perhaps in the case where symbols are, over time, used to bind different values) are

are denoted or referred to.

Reproducible research in areas in which many R users work may involve sensitive data

that requires anonymisation. This is a scenario that presents problems to provenance-

aware systems in general as well as to P-A CXXR.

Bibliography

[1] The Boost C++ Libraries. http://www.boost.org. 98

[2] CRAN: The Comprehensive R Archive Network. http://cran.r-project.org ac-

cessed 2013-12-15. 47

[3] SystemTap. http://sourceware.org/systemtap/ accessed on 2013-12-14. 26

[4] PREMIS Data Dictionary for Preservation Metadata. Version 2.1. Technical report,

January 2011. 7

[5] Keith Baggerly. Disclose all data in publications. Nature, 467(7314):401–401, 09

2010. 19

[6] Nicholas Barnes and David Jones. Clear Climate Code: Rewriting legacy science

software for clarity. IEEE Software, 28(6):36–42, 2011. 24

[7] Nick Barnes. Publish your computer code: it is good enough. Nature, 467(7317):753,

October 2010. 23

[8] Bela Bauer, Jan Gukelberger, Brigitte Surer, and Matthias Troyer. Publishing

provenance-rich scientific papers. In Procs. TAPP, volume 11, 2011. 26

[9] R.A. Becker, J.M. Chambers, and A.R. Wilks. The New S language: a programming

environment for data analysis and graphics. Wadsworth & Brooks/Cole computer

science series. Wadsworth & Brooks/Cole Advanced Books & Software, 1988. 34,

133

[10] Richard A. Becker. A brief history of S. Computational Statistics – Papers Col-

lected on the Occasion of the 25th Conference on Statistical Computing at Schlosz

Reisensburg, pages 81–110, 1994. 34

[11] Richard A. Becker and John M. Chambers. Auditing of Data Analyses. SIAM

Journal on Scientific and Statistical Computing, 8:747–760, 1988. ix, xiii, 4, 5, 34

199

http://www.boost.org
http://cran.r-project.org
http://sourceware.org/systemtap/

BIBLIOGRAPHY 200

[12] Stefan Behnel. lxml - XML and HTML in Python. http://lxml.de/ accessed

2014-06-11, February 2014. 123

[13] Grant R. Brammer, Ralph W. Crosby, Suzanne J. Matthews, and Tiffani L. Willi-

ams. Paper Mâché: Creating Dynamic Reproducible Science. Procedia Computer

Science, 4(0):658 – 667, 2011. 27

[14] Uri Braun, Simson Garfinkel, DavidA. Holland, Kiran-Kumar Muniswamy-Reddy,

and MargoI. Seltzer. Issues in Automatic Provenance Collection, volume 4145, pages

171–183. Springer Berlin Heidelberg, 2006. 12

[15] Dan Brickley. Web of Trust RDF Ontology. http://xmlns.com/wot/0.1/. 7

[16] JonathanB. Buckheit and DavidL. Donoho. WaveLab and Reproducible Research,

volume 103, pages 55–81. Springer New York, 1995. 19

[17] S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T. Silva, and H.T. Vo.

Managing the evolution of dataflows with VisTrails. In Data Engineering Workshops,

2006. Proceedings. 22nd International Conference on, pages 71–71, 2006. 14

[18] Steven P. Callahan, Juliana Freire, Carlos E. Scheidegger, Cláudio T. Silva, and

Huy T. Vo. Towards Provenance-Enabling ParaView. pages 120–127, 2008. 12, 14

[19] Jeremy Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named Graphs.

Web Semantics: Science, Services and Agents on the World Wide Web, 3(4), 2005.

7

[20] J.M. Chambers. Programming with Data: A Guide to the S Language. Springer,

1998. 41

[21] J.M. Chambers. Software for Data Analysis: Programming with R. Statistics and

computing. Springer, 2008. 36, 41

[22] J.M. Chambers and T. Hastie. Statistical Models in S. Wadsworth & Brooks/Cole

computer science series. Wadsworth & Brooks/Cole Advanced Books & Software,

1992. 40

[23] John Chambers. Programming with R. In Software for Data Analysis, Statistics and

Computing, pages 37–78. Springer New York, 2008. 10.1007/978-0-387-75936-4_3.

46

http://lxml.de/
http://xmlns.com/wot/0.1/

BIBLIOGRAPHY 201

[24] James Cheney, Paolo Missier, and Luc Moreau. Constraints of the Provenance Data

Model. Technical report. http://www.w3.org/TR/prov-constraints/. 9

[25] Fernando Chirigati, Dennis Shasha, and Juliana Freire. ReproZip: Using Provenance

to support Computational Reproducibility. In Proceedings of the 5th USENIX Work-

shop on the Theory and Practice of Provenance, TaPP ’13, pages 1:1–1:4, Berkeley,

CA, USA, 2013. USENIX Association. 26

[26] P Ciccarese, E Wu, G Wong, M Ocana, J Kinoshita, A Ruttenberg, and T Clark.

The SWAN biomedical discourse ontology. J Biomed Inform, 41(5):739–751, 2008.

doi:10.1016/j.jbi.2008.04.010. 7

[27] Paolo Ciccarese, Stian Soiland-Reyes, Khalid Belhajjame, Alasdair Gray, Carole

Goble, and Tim Clark. PAV Ontology: Provenance, authoring and versioning.

Journal of Biomedical Semantics, 4(1):37, 2013. 10

[28] Jon Claerbout and Martin Karrenbach. Electronic documents give reproducible

research a new meaning. In Proc. 62nd Ann. Int. Meeting of the Soc. of Exploration

Geophysics, pages 601–604, 1992. 19

[29] Daniel Crech. rdflib - A Python library for working with RDF. https://github.

com/RDFLib accessed 2014-06-11, February 2014. 123

[30] Paulo Pinheiro da Silva, Deborah L. McGuinness, and Richard Fikes. A Proof

Markup Language for Semantic Web Services. Inf. Syst., 31(4):381–395, June 2006.

6

[31] A.P. Davison. Automated Capture of Experiment Context for Easier Reproducibility

in Computational Research. Computing in Science Engineering, 14(4):48–56, 2012.

20, 27

[32] Jan de Leeuw. Reproducible Research. The Bottom Line. Technical report, Univer-

sity of California, Los Angeles, California, 2001. 19

[33] D.L. Donoho, A. Maleki, I.U. Rahman, M. Shahram, and V. Stodden. Reproducible

Research in Computational Harmonic Analysis. Computing in Science Engineering,

11(1):8–18, 2009. 24

[34] Chris Drummond. Replicability is not reproducibility: Nor is it good science. In Pro-

ceedings of the TwentySixth International Conference on Machine Learning: Work-

shop on Evaluation Methods for Machine Learning IV, 2009. 20, 22, 24

http://www.w3.org/TR/prov-constraints/
https://github.com/RDFLib
https://github.com/RDFLib

BIBLIOGRAPHY 202

[35] Elsevier B.V. Elsevier Launches Executable Paper Grand Challenge.

http://www.elsevier.com/about/press-releases/science-and-technology/

elsevier-launches-executable-paper-grand-challenge accessed 2013-08-09,

December 2010. 21

[36] S. Fomel and J.F. Claerbout. Guest Editors’ Introduction: Reproducible Research.

Computing in Science Engineering, 11(1):5–7, 2009. 21

[37] Juliana Freire and Claudio T. Silva. Making Computations and Publications Re-

producible with VisTrails. Computing in Science Engineering, 14(4):18–25, 2012.

26

[38] Max Kuhn. Contributions from Steve Weston, Nathan Coulter, Patrick Lenon, and

Zekai Otles. odfWeave: Sweave processing of Open Document Format (ODF) files,

2012. R package version 0.8.2. 189

[39] Ann Gabriel and Rebecca Capone. Executable Paper Grand Challenge Workshop.

Procedia Computer Science, 4(0):577 – 578, 2011. 21

[40] Robert Gentleman and Duncan Temple Lang. Statistical Analyses and Reproducible

Research. Journal of Computational and Graphical Statistics, 16(1):1–23, 2007. 17,

19, 20, 28, 191

[41] Yolanda Gil, James Cheney, Paul Groth, Olaf Hartig, Simon Miles, Luc Moreau,

and Paulo Pinheiro da Silva. Provenance XG Final Report. http://www.w3.org/

2005/Incubator/prov/XGR-prov/ accessed on 2013-12-03, December 2010. 3, 8

[42] Yolanda Gil, Simon Miles, Khalid Belhajjame, Helena Deus, Daniel Garijo, Gra-

ham Klyne, Paolo Missier, Stian Soiland-Reyes, and Stephen Zednik. PROV Model

Primer. Technical report, W3C, 2012. http://www.w3.org/TR/prov-primer/. 9

[43] Carole Goble. Position statement: Musings on provenance, workflow and (semantic

web) annotations for bioinformatics. In Workshop on Data Derivation and Proven-

ance, Chicago, 2002. 3

[44] Paul Groth, Simon Miles, Victor Tan, and Luc Moreau. Architecture for provenance

systems. Technical report, University of Southampton, October 2005. 3

[45] Trish Groves. Managing Research Data for Future Use. BMJ: British Medical

Journal, 338(7697):pp. 729–730, 2009. 22, 23, 24

http://www.elsevier.com/about/press-releases/science-and-technology/elsevier-launches-executable-paper-grand-challenge
http://www.elsevier.com/about/press-releases/science-and-technology/elsevier-launches-executable-paper-grand-challenge
http://www.w3.org/2005/Incubator/prov/XGR-prov/
http://www.w3.org/2005/Incubator/prov/XGR-prov/
http://www.w3.org/TR/prov-primer/

BIBLIOGRAPHY 203

[46] Philip J. Guo. CDE: A Tool for creating Portable Experimental Software Packages.

Computing in Science Engineering, 14(4):32–35, 2012. 26

[47] Philip J. Guo and Margo Seltzer. BURRITO: Wrapping Your Lab Notebook in

Computational Infrastructure. In Proceedings of the 4th USENIX Conference on

Theory and Practice of Provenance, TaPP’12, pages 7–7, Berkeley, CA, USA, 2012.

USENIX Association. 26

[48] Olaf Hartig and Jun Zhao. Publishing and Consuming Provenance Metadata on the

Web of Linked Data, volume 6378, pages 78–90. Springer Berlin Heidelberg, 2010. 6

[49] Rinke Hoekstra. PROV-O-Viz. http://provoviz.org accessed 2014-06-12, Febru-

ary 2014. 129

[50] Kurt Hornik. The R FAQ, 2011. ISBN 3-900051-08-9. 47

[51] Torsten Hothorn, Leonhard Held, and Tim Friede. Biometrical Journal and Repro-

ducible Research. Biometrical Journal, 51(4):553–555, 2009. 20, 21

[52] Trung Dong Huynh, Michael O. Jewell, Amir Sezavar Keshavarz, Danius T. Mi-

chaelides, Huanjia Yang, and Luc Moreau. The PROV-JSON Serialization. Tech-

nical report. https://provenance.ecs.soton.ac.uk/prov-json/. 95

[53] R Ihaka and R Gentleman. R: A Language for Data Analysis and Graphics. Journal

of Computational and Graphical Statistics, 5(3):299–314, 1996. 34

[54] Darrel Ince. The Duke University scandal —what can be done? Significance,

8(3):113–115, 2011. 18

[55] Darrel C. Ince, Leslie Hatton, and John Graham-Cumming. The case for open

computer programs. Nature, 482(7386):485–488, 02 2012. 19

[56] John P A Ioannidis. Contradicted and initially stronger effects in highly cited clinical

research. JAMA, 294(2):218–228, 2005. 17

[57] John P. A. Ioannidis. Why most published research findings are false. PLoS Med,

2(8):e124, 08 2005. 17

[58] John P A Ioannidis, David B Allison, Catherine A Ball, Issa Coulibaly, Xiangqin

Cui, Aedin C Culhane, Mario Falchi, Cesare Furlanello, Laurence Game, Giuseppe

http://provoviz.org
https://provenance.ecs.soton.ac.uk/prov-json/

BIBLIOGRAPHY 204

Jurman, Jon Mangion, Tapan Mehta, Michael Nitzberg, Grier P Page, Enrico Pet-

retto, and Vera van Noort. Repeatability of published microarray gene expression

analyses. Nat Genet, 41(2):149–155, 02 2009. 17

[59] Donald E. Knuth. Literate programming. Comput. J., 27(2):97–111, 1984. 27

[60] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Kihara, and

Satoshi Moriai. The Linux Implementation of a Log-structured File System. SIGOPS

Oper. Syst. Rev., 40(3):102–107, July 2006. 26

[61] David Koop, Emanuele Santos, Phillip Mates, Huy T. Vo, Philippe Bonnet, Bela

Bauer, Brigitte Surer, Matthias Troyer, Dean N. Williams, Joel E. Tohline, Juliana

Freire, and Cláudio T. Silva. A Provenance-based Infrastructure to support the

life cycle of Executable Papers. Procedia Computer Science, 4(0):648 – 657, 2011.

Proceedings of the International Conference on Computational Science, ICCS 2011.

26

[62] Christine Laine, Steven N. Goodman, Michael E. Griswold, and Harold C. Sox.

Reproducible Research: Moving toward research the public can really trust. Annals

of Internal Medicine, 146(6):450–453, 2007. 21

[63] Christine Laine, Eliseo Guallar, Cynthia Mulrow, Darren B. Taichman, John E. Cor-

nell, Deborah Cotton, Michael E. Griswold, A. Russell Localio, Anne R. Meibohm,

Catharine B. Stack, Sankey V. Williams, and Steven N. Goodman. Closing in on the

Truth about recombinant human bone morphogenetic protein-2: Evidence synthesis,

data sharing, peer review, and reproducible research. Annals of Internal Medicine,

158(12):916–918, 2013. 17, 21

[64] Timothy Lebo, Satya Sahoo, Deborah McGuinness, Khalid Belhajjame, James

Cheney, David Corsar, Daniel Garijo, Stian Soiland-Reyes, Stephan Zednik, and

Jun Zhao. PROV-O: The PROV Ontology. Technical report. http://www.w3.org/

TR/prov-o/. 9, 95

[65] Friedrich Leisch. Sweave: Dynamic Generation of Statistical Reports Using Literate

Data Analysis, pages 575–580. Physica-Verlag HD, 2002. 27, 188

[66] Friedrich Leisch, Manuel Eugster, and Torsten Hothorn. Executable Papers for the

R Community: The R2 platform for Reproducible Research. Procedia Computer

Science, 4(0):618 – 626, 2011. 27

http://www.w3.org/TR/prov-o/
http://www.w3.org/TR/prov-o/

BIBLIOGRAPHY 205

[67] Sébastien Li-Thiao-Té. Literate Program Execution for Reproducible Research and

Executable Papers. Procedia Computer Science, 9(0):439 – 448, 2012. 27

[68] Ioana Manolescu, Loredana Afanasiev, Andrei Arion, Jens Dittrich, Stefan Mane-

gold, Neoklis Polyzotis, Karl Schnaitter, Pierre Senellart, Spyros Zoupanos, and

Dennis Shasha. The Repeatability Experiment of SIGMOD 2008. ACM SIGMOD

Record, 37(1):39–45, 2008. 21

[69] B. D. McCullough, Kerry Anne McGeary, and Teresa D. Harrison. Lessons from

the JMCB Archive. Journal of Money, Credit and Banking, 38(4):1093–1107, June

2006. 23

[70] Zeeya Merali. Computational science: ...Error. Nature, 467(7317):775–777, October

2010. 23

[71] Jill P. Mesirov. Accessible reproducible research. Science, 327(5964):415–416, 2010.

21, 26

[72] Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and

Designs (3rd Edition). Addison-Wesley Professional, 2005. 55

[73] A Miles and S Bechhofer. SKOS Reference. Published 2009-08-18. Accessed 2013-

10-09. [http://www.w3.org/TR/2009/REC-skos-reference-20090818/]. 8

[74] Simon Miles. Automatically Adapting Source Code to Document Provenance, volume

6378, pages 102–110. Springer Berlin Heidelberg, 2010. 15

[75] L. Moreau, B. Plale, S. Miles, C. Goble, P. Missier, R. Barga, Y. Simmhan,

J. Futrelle, R. McGrath, J. Myers, P. Paulson, S. Bowers, B. Luaescher, N. Kwas-

nikowska, J. V. den Bussche, T. Ellkvist, J. Freire, and P. Groth. The Open Proven-

ance Model (v.1.01). Technical report, University of Southampton, 2008. 7

[76] Luc Moreau, Ben Clifford, Juliana Freire, Yolanda Gil, Paul Groth, Joe Futrelle,

Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Yogesh Simmhan,

Eric Stephan, and Jan Van den Bussche. The Open Provenance Model — Core

Specification (v1.1). Future Generation Computer Systems, December 2009. ix, 7, 8

[77] Luc Moreau and Ian Foster, editors. Provenance and Annotation of Data, volume

4145 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006. 6

BIBLIOGRAPHY 206

[78] Luc Moreau and Bertram Ludaescher, editors. Special Issue on the First Provenance

Challenge, volume 20. Wiley, April 2008. 6

[79] Luc Moreau, Paolo Missier, Khalid Belhajjame, Reza B’Far, James Cheney, Sam

Coppens, Stephen Cresswell, Yolanda Gil, Paul Groth, Graham Klyne, Timothy

Lebo, Jim McCusker, Simon Miles, James Myers, Satya Sahoo, and Curt Tilmes.

PROV-DM: The PROV Data Model. Technical report. http://www.w3.org/TR/

prov-dm/. 9, 95

[80] Luc Moreau, Paolo Missier, James Cheney, and Stian Soiland-Reyes. PROV-N: The

Provenance Notation. Technical report. http://www.w3.org/TR/prov-n/. 9, 95

[81] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo Seltzer.

Provenance-aware storage systems. In ATEC ’06: Proceedings of the annual confer-

ence on USENIX ’06 Annual Technical Conference, pages 4–4, Berkeley, CA, USA,

2006. USENIX Association. 13

[82] Kiran-Kumar Muniswamy-Reddy, Charles P. Wright, Andrew Himmer, and Erez

Zadok. A versatile and User-Oriented versioning file system. In Proceedings of the

Third USENIX Conference on File and Storage Technologies (FAST), San Francisco,

CA, April 2004. USENIX. 14

[83] Piotr Nowakowski, Eryk Ciepiela, Daniel Harężlak, Joanna Kocot, Marek Kasztel-

nik, Tomasz Bartyński, Jan Meizner, Grzegorz Dyk, and Maciej Malawski. The

Collage Authoring Environment. Procedia Computer Science, 4(0):608 – 617, 2011.

Proceedings of the International Conference on Computational Science, ICCS 2011.

21

[84] NY Times. A Sharp Rise in Retractions Prompts Calls

for Reform. http://www.nytimes.com/2012/04/17/science/

rise-in-scientific-journal-retractions-prompts-calls-for-reform.html

accessed on 2013-07-07, April 2012. 18

[85] NY Times. How Bright Promises in Cancer Testing Fell Apart. http://

www.nytimes.com/2011/07/08/health/research/08genes.html access 2013-07-

07, 2011 July. 18

[86] Roger Peng. Caching and Distributing Statistical Analyses in R. Journal of Statist-

ical Software, 26(7):1–24, 7 2008. 28

http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-n/
http://www.nytimes.com/2012/04/17/science/rise-in-scientific-journal-retractions-prompts-calls-for-reform.html
http://www.nytimes.com/2012/04/17/science/rise-in-scientific-journal-retractions-prompts-calls-for-reform.html
http://www.nytimes.com/2011/07/08/health/research/08genes.html
http://www.nytimes.com/2011/07/08/health/research/08genes.html

BIBLIOGRAPHY 207

[87] Roger D. Peng. Reproducible Research and Biostatistics. Biostatistics, 10(3):405–

408, 2009. 22

[88] Roger D. Peng. Reproducible research in computational science. Science,

334(6060):1226–1227, 2011. ix, 20, 22, 24

[89] Roger D. Peng. Decreases in Fine Particle Air Pollution between 1999 and 2012.

http://rpubs.com/rdpeng/13396 accessed 2014-06-11, February 2014. 29

[90] Roger D. Peng, Francesca Dominici, and Scott L. Zeger. Reproducible Epidemiologic

Research. American Journal of Epidemiology, 163(9):783–789, 2006. 20

[91] Roger D. Peng and with contributions from Tobias Abenius. cacheSweave: Tools for

caching Sweave computations, 2012. R package version 0.6-1. 189

[92] Anil Potti, Holly K Dressman, Andrea Bild, Richard F Riedel, Gina Chan, Robyn

Sayer, Janiel Cragun, Hope Cottrill, Michael J Kelley, Rebecca Petersen, David

Harpole, Jeffrey Marks, Andrew Berchuck, Geoffrey S Ginsburg, Phillip Febbo,

Johnathan Lancaster, and Joseph R Nevins. Genomic signatures to guide the use of

chemotherapeutics. Nat Med, 12(11):1294–1300, 11 2006. 18

[93] R Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0.

34

[94] N. Ramsey. Literate programming simplified. Software, IEEE, 11(5):97–105, 1994.

188

[95] Jorge Luis Romeu. Data quality and pedigree. AMPTIAC Newsletter MaterialEASE,

3(1), 1999. 3

[96] Andrew R. Runnalls. CXXR and Add-on Packages. http://user2010.org/Slides/

Runnalls.pdf, Accessed 2012-05-05. 53

[97] Andrew R. Runnalls. CXXR Project. http://www.cs.kent.ac.uk/projects/cxxr.

52

[98] Andrew R. Runnalls and Chris A. Silles. CXXR: An ideas hatchery for future R

development. In Proceedings of the 2011 Joint Statistical Meeting (JSM), 2011. 53

[99] Satya Sahoo, Paul Groth, Olaf Hartig, Simon Miles, Sam Coppens, James My-

ers, Yolanda Gil, Luc Moreau, Jun Zhao, Michael Panzer, and Daniel Garijo.

http://rpubs.com/rdpeng/13396
http://user2010.org/Slides/Runnalls.pdf
http://user2010.org/Slides/Runnalls.pdf
http://www.cs.kent.ac.uk/projects/cxxr

BIBLIOGRAPHY 208

Provenance XG: Provenance Vocabulary Mappings. http://www.w3.org/2005/

Incubator/prov/wiki/Provenance_Vocabulary_Mappings accessed on 2013-12-

03, August 2010. 8

[100] Satya S. Sahoo and Amit Sheth. Provenir ontology: Towards a Framework for

eScience Provenance Management. In Microsoft eScience Workshop, Pittsburgh,

PA, Oct 2009. 6

[101] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch,

Ross W. Carton, and Jacob Otir. Deciding when to forget in the elephant file

system. In Proceedings of the seventeenth ACM symposium on Operating systems

principles, pages 110–123, 1999. 14

[102] M. Schwab, N. Karrenbach, and J. Claerbout. Making scientific computations re-

producible. Computing in Science Engineering, 2(6):61–67, 2000. 19, 23, 25, 28

[103] Chris A. Silles. APAFS: The Active, Provenance-Aware File System. Technical

report, University of Kent, 2008. 13

[104] Chris A. Silles. cxxr2prov - A program for extracting PROV-O from CXXR XML

serialisation. https://github.com/csilles/cxxr2prov accessed 2014-06-24, June

2014. 123

[105] Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Leon Bottou,

Geoffrey Holmes, Yann LeCun, Klaus-Robert Müller, Fernando Pereira, Carl Ed-

ward Rasmussen, Gunnar Rätsch, Bernhard Schölkopf, Alexander Smola, Pascal

Vincent, Jason Weston, and Robert Williamson. The Need for Open Source Soft-

ware in Machine Learning. J. Mach. Learn. Res., 8:2443–2466, December 2007.

22

[106] Richard M. Stallman and Roland McGrath. GNU Make - A Program for Directing

Recompilation. Free Software Foundation Inc., 1991. 25

[107] Victoria Stodden. Reproducible Research: Tools and Strategies for Scientific Com-

puting. Computing in Science Engineering, 14(4):11–12, 2012. 21

[108] Victoria Stodden, Peixuan Guo, and Zhaokun Ma. Toward Reproducible Compu-

tational Research: An Empirical Analysis of Data and Code Policy Adoption by

Journals. PLoS ONE, 8(6):e67111, 06 2013. 22

http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
https://github.com/csilles/cxxr2prov

BIBLIOGRAPHY 209

[109] The Economist. An Array of Errors. http://www.economist.com/node/21528593

accessed 2013-07-07, September 2011. 18

[110] The Economist. Unreliable Research: Trouble at the Lab. http://www.economist.

com/node/21588057 accessed 2013-11-07, October 2013. 18

[111] TIBCO Software Inc. Spotfire S+. http://spotfire.tibco.com. 34

[112] Curt Tilmes, Stephan Zednik, and Hook Hua. PROV-XML: The PROV XML

Schema. W3C note, W3C, April 2013. http://www.w3.org/TR/prov-xml/. 95

[113] Koh Tomimori, Eriko Uema, Hiromitsu Teruya, Chie Ishikawa, Taeko Okudaira,

Masachika Senba, Kazuo Yamamoto, Toshifumi Matsuyama, Fukunori Kinjo, Jiro

Fujita, and Naoki Mori. Helicobacter pylori induces CCL20 Expression. Infection

and Immunity, 79(1):545, 2011. 18

[114] John W. Tukey. Exploratory Data Analysis. Addison-Wesley Pub. Co., Reading,

Mass., 1977. 1

[115] John W. Tukey. We Need Both Exploratory and Confirmatory. The American

Statistician, 34(1):23–25, 1980. 1

[116] Sam Tunnicliffe and Ian Davis. Changeset Vocabulary. http://vocab.org/

changeset/schema.html, May 2009. 7

[117] DCMI Usage Board. DCMI Metadata Terms. 2012. DCMI Recommendation,

[http://dublincore.org/documents/2012/06/14/dcmi-terms/]. 6

[118] M. J P Van der Meulen and M.A. Revilla. The Effectiveness of Software Diversity

in a Large Population of Programs. Software Engineering, IEEE Transactions on,

34(6):753–764, 2008. 19

[119] Richard Van Noorden. Science publishing: The trouble with retractions. Nature

News, 478(7367):26–28, 2011. 25

[120] Yihui Xie. knitr: A general-purpose package for dynamic report generation in R,

2013. R package version 1.1. 189

[121] S. Stanley Young and Alan Karr. Deming, data and observational studies. Signific-

ance, 8(3):116–120, 2011. 17

http://www.economist.com/node/21528593
http://www.economist.com/node/21588057
http://www.economist.com/node/21588057
http://spotfire.tibco.com
http://www.w3.org/TR/prov-xml/
http://vocab.org/changeset/schema.html
http://vocab.org/changeset/schema.html

Appendix A

Exploring R

A.1 Operators in R

The base package in R contains, among other things, primitive functions. A list of these

may be retrieved as shown in Listing A.1. And they may be divided into their two types,

builtin and special as shown in Listing A.2.

Listing A.1: Extract a list of primitive functions from R-2.15.1

1 > obs <- ls("package:base", all.names=TRUE)

2 > prims <- sapply(obs, function(x) is.primitive(get(x)))

3 > primFunctions <- obs[prims]

4 > primFunctions

5 > primFunctions

6 [1] "-" ":" "!"

7 [4] "!=" ".C" ".cache_class"

8 [7] ".Call" ".Call.graphics" ".External"

9 [10] ".External.graphics" ".Fortran" ".Internal"

10 [13] ".Primitive" ".primTrace" ".primUntrace"

11 [16] ".subset" ".subset2" "("

12 [19] "[" "[[" "[[<-"

13 [22] "[<-" "{" "@"

14 [25] "*" "/" "&"

15 [28] "&&" "%*%" "%/%"

16 [31] "%%" "^" "+"

17 [34] "<" "<-" "<<-"

18 [37] "<=" "=" "=="

19 [40] ">" ">=" "|"

20 [43] "||" "~" "$"

210

APPENDIX A. EXPLORING R 211

21 [46] "$<-" "abs" "acos"

22 [49] "acosh" "all" "any"

23 [...]

24 [100] "function" "gamma" "gc.time"

25 [103] "globalenv" "if" "Im"

26 [106] "interactive" "invisible" "is.array"

27 [109] "is.atomic" "is.call" "is.character"

28 [...]

Listing A.2: Distinguish between builtin and special primitive functions

1 > funTypes <- split(primFunctions,

2 sapply(primFunctions, function(x) typeof(get(x))))

3 > names(funTypes)

4 [1] "builtin" "special"

5 > sapply(funTypes, length)

6 builtin special

7 156 35

8 > funTypes$special

9 [1] ".Internal" "[" "[[" "[[<-" "[<-"

10 [6] "{" "@" "&&" "<-" "<<-"

11 [11] "=" "||" "~" "$" "$<-"

12 [16] "break" "call" "expression" "for" "function"

13 [21] "if" "log" "missing" "next" "on.exit"

14 [26] "quote" "rep" "repeat" "return" "round"

15 [31] "signif" "substitute" "switch" "UseMethod" "while"

16 > funTypes$builtin

17 [1] "-" ":" "!"

18 [4] "!=" ".C" ".cache_class"

19 [7] ".Call" ".Call.graphics" ".External"

20 [10] ".External.graphics" ".Fortran" ".Primitive"

21 [13] ".primTrace" ".primUntrace" ".subset"

22 [16] ".subset2" "(" "*"

23 [19] "/" "&" "%*%"

24 [...]

Appendix B

XML Serialization

Given the following R session:

> myVar <- "Hello, XML Serialization"

> bserialize()

The following Listing details the XML output. This is a necessarily brief session, for

the sake of space. If one were to append "!" (using the R function paste) to myVar,

with the added Provenance information this file more than doubles in length (244 lines as

opposed to 113).
1 <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
2 <!DOCTYPE boost_serialization>
3 <boost_serialization signature="serialization::archive" version="10">
4 <env class_id="1" class_name="CXXR::Environment" tracking_level="1" version="0" object_id="_0">
5 <RObject class_id="2" tracking_level="0" version="0">
6 <GCNode class_id="0" tracking_level="1" version="1" object_id="_1"></GCNode>
7 <type>4</type>
8 <m_attrib class_id="-1"></m_attrib>
9 </RObject>

10 <envtype>6</envtype>
11 <m_enclosing class_id="-1"></m_enclosing>
12 <m_frame class_id="3" class_name="CXXR::StdFrame" tracking_level="1"
13 version="0" object_id="_2">
14 <Frame class_id="4" tracking_level="0" version="0">
15 <GCNode object_id="_3"></GCNode>
16 <locked>0</locked>
17 </Frame>
18 <numberOfBindings>1</numberOfBindings>
19 <symbol class_id="5" class_name="CXXR::Symbol" tracking_level="1"
20 version="0" object_id="_4">
21 <RObject>
22 <GCNode object_id="_5"></GCNode>
23 <type>1</type>
24 <m_attrib class_id="-1"></m_attrib>
25 </RObject>
26 <symtype>0</symtype>
27 <name>myVar</name>
28 </symbol>
29 <binding class_id="6" tracking_level="0" version="0">
30 <m_value class_id="7" class_name="CXXR::StringVector" tracking_level="1"
31 version="0" object_id="_6">
32 <size>1</size>
33 <VectorBase class_id="8" tracking_level="0" version="0">
34 <RObject>
35 <GCNode object_id="_7"></GCNode>
36 <type>16</type>

212

APPENDIX B. XML SERIALIZATION 213

37 <m_attrib class_id="-1"></m_attrib>
38 </RObject>
39 <m_truelength>1</m_truelength>
40 </VectorBase>
41 <numnas>0</numnas>
42 <item class_id="9" class_name="CXXR::String" tracking_level="1"
43 version="0" object_id="_8">
44 <RObject>
45 <GCNode object_id="_9"></GCNode>
46 <type>9</type>
47 <m_attrib class_id="-1"></m_attrib>
48 </RObject>
49 <isna>0</isna>
50 <string>Hello, XML Serialization</string>
51 <m_encoding>0</m_encoding>
52 </item>
53 </m_value>
54 <m_provenance class_id="10" class_name="CXXR::Provenance" tracking_level="1"
55 version="0" object_id="_10">
56 <symbol class_id_reference="5" object_id_reference="_4"></symbol>
57 <chronicle class_id="11" class_name="CXXR::CommandChronicle" tracking_level="1"
58 version="0" object_id="_11">
59 <command class_id="12" class_name="CXXR::Expression" tracking_level="1"
60 version="0" object_id="_12">
61 <ConsCell class_id="13" tracking_level="0" version="0">
62 <RObject>
63 <GCNode object_id="_13"></GCNode>
64 <type>6</type>
65 <m_attrib class_id="-1"></m_attrib>
66 </RObject>
67 <m_tag class_id="-1"></m_tag>
68 <m_car class_id_reference="5" object_id="_14">
69 <RObject>
70 <GCNode object_id="_15"></GCNode>
71 <type>1</type>
72 <m_attrib class_id="-1"></m_attrib>
73 </RObject>
74 <symtype>0</symtype>
75 <name><-</name>
76 </m_car>
77 <m_tail class_id="14" class_name="CXXR::PairList" tracking_level="1" version="0"
78 object_id="_16">
79 <ConsCell>
80 <RObject>
81 <GCNode object_id="_17"></GCNode>
82 <type>2</type>
83 <m_attrib class_id="-1"></m_attrib>
84 </RObject>
85 <m_tag class_id="-1"></m_tag>
86 <m_car class_id_reference="5" object_id_reference="_4"></m_car>
87 <m_tail class_id_reference="14" object_id="_18">
88 <ConsCell>
89 <RObject>
90 <GCNode object_id="_19"></GCNode>
91 <type>2</type>
92 <m_attrib class_id="-1"></m_attrib>
93 </RObject>
94 <m_tag class_id="-1"></m_tag>
95 <m_car class_id_reference="7" object_id_reference="_6"></m_car>
96 <m_tail class_id="-1"></m_tail>
97 </ConsCell>
98 </m_tail>
99 </ConsCell>

100 </m_tail>
101 </ConsCell>
102 </command>
103 <GCNode object_id="_20"></GCNode>
104 <size>0</size>
105 </chronicle>
106 <GCNode object_id="_21"></GCNode>
107 <sec>1387796556</sec>

APPENDIX B. XML SERIALIZATION 214

108 <usec>508568</usec>
109 <m_num_parents>0</m_num_parents>
110 <m_value class_id="-1"></m_value>
111 <m_xenogenous>0</m_xenogenous>
112 </m_provenance>
113 <m_origin>0</m_origin>
114 <m_active>0</m_active>
115 <m_locked>0</m_locked>
116 </binding>
117 </m_frame>
118 <m_single_stepping>0</m_single_stepping>
119 <m_locked>0</m_locked>
120 </env>
121 </boost_serialization>

Appendix C

Air Quality Analysis

Here is R.D. Peng’s air quality analysis in R.
1 pm0 <- read.table("pm25_data/RD_501_88101_1999-0.txt", comment.char = "#",
2 header = FALSE, sep = "|", na.strings = "")
3 dim(pm0)
4 head(pm0[, 1:13])
5 cnames <- readLines("pm25_data/RD_501_88101_1999-0.txt", 1)
6 cnames <- strsplit(cnames, "|", fixed = TRUE)
7 names(pm0) <- make.names(cnames[[1]]) ## Ensure names are properly formatted
8 head(pm0[, 1:13])
9 x0 <- pm0$Sample.Value

10 summary(x0)
11 mean(is.na(x0)) ## Are missing values important here?
12 pm1 <- read.table("pm25_data/RD_501_88101_2012-0.txt", comment.char = "#",
13 header = FALSE, sep = "|", na.strings = "")
14 names(pm1) <- make.names(cnames[[1]])
15 x1 <- pm1$Sample.Value
16 boxplot(log2(x0), log2(x1))
17 summary(x0)
18 summary(x1)
19 negative <- x1 < 0
20 mean(negative, na.rm = T)
21 dates <- pm1$Date
22 dates <- as.Date(as.character(dates), "%Y%m%d")
23 missing.months <- month.name[as.POSIXlt(dates)$mon + 1]
24 tab <- table(factor(missing.months, levels = month.name))
25 round(100 * tab/sum(tab))
26 site0 <- unique(subset(pm0, State.Code == 36, c(County.Code, Site.ID)))
27 site1 <- unique(subset(pm1, State.Code == 36, c(County.Code, Site.ID)))
28 site0 <- paste(site0[, 1], site0[, 2], sep = ".")
29 site1 <- paste(site1[, 1], site1[, 2], sep = ".")
30 str(site0)
31 str(site1)
32 both <- intersect(site0, site1)
33 print(both)
34 ## Find how many observations available at each monitor
35 pm0$county.site <- with(pm0, paste(County.Code, Site.ID, sep = "."))
36 pm1$county.site <- with(pm1, paste(County.Code, Site.ID, sep = "."))
37 cnt0 <- subset(pm0, State.Code == 36 & county.site %in% both)
38 cnt1 <- subset(pm1, State.Code == 36 & county.site %in% both)
39 sapply(split(cnt0, cnt0$county.site), nrow) ## 1999
40 both.county <- 63
41 both.id <- 2008
42
43 ## Choose county 63 and side ID 2008
44 pm1sub <- subset(pm1, State.Code == 36 & County.Code == both.county & Site.ID ==
45 both.id)
46 pm0sub <- subset(pm0, State.Code == 36 & County.Code == both.county & Site.ID ==
47 both.id)
48 dates1 <- as.Date(as.character(pm1sub$Date), "%Y%m%d")

215

APPENDIX C. AIR QUALITY ANALYSIS 216

49 x1sub <- pm1sub$Sample.Value
50 dates0 <- as.Date(as.character(pm0sub$Date), "%Y%m%d")
51 x0sub <- pm0sub$Sample.Value
52
53 ## Find global range
54 rng <- range(x0sub, x1sub, na.rm = T)
55 par(mfrow = c(1, 2), mar = c(4, 5, 2, 1))
56 plot(dates0, x0sub, pch = 20, ylim = rng, xlab = "", ylab = expression(PM[2.5] *
57 " (" * mu * g/m^3 * ")"))
58 abline(h = median(x0sub, na.rm = T))
59 plot(dates1, x1sub, pch = 20, ylim = rng, xlab = "", ylab = expression(PM[2.5] *
60 " (" * mu * g/m^3 * ")"))
61 abline(h = median(x1sub, na.rm = T))

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	List of Code Listings
	1 Introduction
	1.1 Exploratory Data Analysis
	1.2 Provenance
	1.2.1 Definition and Characterisation
	1.2.2 Early Provenance-Aware Computing
	1.2.3 Modern Provenance-Aware Computing
	1.2.4 Vocabularies, Ontologies and Representations
	1.2.5 Open Provenance Model
	1.2.6 W3C Provenance Incubator and Working Group

	1.3 Provenance-Aware Software
	1.3.1 Classification
	1.3.2 System-Level Provenance
	1.3.3 Versioning File-Systems
	1.3.4 Adapting Software
	1.3.5 Automatically Adapting Source Code

	1.4 Reproducible Research
	1.4.1 Introduction
	1.4.2 Terminology
	1.4.3 Journal Interest, Policy and Practice
	1.4.4 Benefits
	1.4.5 Resistance
	1.4.6 Existing Approaches
	1.4.7 Approaches in R

	1.5 Motivation and Research Goals
	1.5.1 Research Goals

	1.6 Overview of this Thesis

	2 CXXR
	2.1 History
	2.2 R
	2.2.1 Expressions
	2.2.2 Objects
	2.2.3 Flow Control
	2.2.4 Language
	2.2.5 Packages
	2.2.6 Bindings and Environments

	2.3 CXXR
	2.3.1 Introduction
	2.3.2 Progressive Development
	2.3.3 Layers
	2.3.4 Class Hierarchy
	2.3.5 Memory Management
	2.3.6 Other aspects of CXXR

	3 Provenance in CXXR
	3.1 Provenance Questions
	3.2 Design - Recording
	3.2.1 Entity
	3.2.2 Activity
	3.2.3 Algorithm

	3.3 Design - Querying
	3.3.1 In-interpreter Interface

	3.4 Implementation
	3.4.1 Monitors
	3.4.2 Containers
	3.4.3 ProvenanceTracker
	3.4.4 Querying

	3.5 Example
	3.6 Evaluation
	3.6.1 Provenance Questions
	3.6.2 Performance
	3.6.3 PROV Characterisation
	3.6.4 Further Work

	4 Serialisation
	4.1 Introduction
	4.1.1 Use Case
	4.1.2 Serialisation of Provenance

	4.2 Design
	4.2.1 Interpreter State
	4.2.2 Design Objectives
	4.2.3 Algorithms

	4.3 Implementation
	4.3.1 boost::serialization
	4.3.2 Provenance Containers
	4.3.3 User-Level Functions
	4.3.4 Session-dependent Objects

	4.4 Evaluation
	4.4.1 Illustrative Example
	4.4.2 Real-World Example

	4.5 Provenance Interchange
	4.5.1 Design
	4.5.2 Algorithm
	4.5.3 Implementation
	4.5.4 Evaluation

	5 Further Provenance
	5.1 Expressions from Outside
	5.1.1 Introduction
	5.1.2 Use Case
	5.1.3 Design
	5.1.4 Implementation
	5.1.5 Evaluation

	5.2 Lazy Loading
	5.2.1 Use Case
	5.2.2 Promises
	5.2.3 Lazy-Loading
	5.2.4 Problem
	5.2.5 Design
	5.2.6 Implementation
	5.2.7 Evaluation

	5.3 Values from Outside
	5.3.1 Use Case
	5.3.2 Xenogenesis
	5.3.3 Design
	5.3.4 Implementation
	5.3.5 Evaluation

	5.4 Functions with State
	5.4.1 Introduction
	5.4.2 Functions with State
	5.4.3 Design
	5.4.4 Implementation
	5.4.5 Example
	5.4.6 Discussion

	6 Reproducible Research
	6.1 Provenance as the means to Reproducible Research
	6.2 Reproducible Research in R
	6.2.1 Literate Programming
	6.2.2 Non-literate Programming

	6.3 Reproducible Research in CXXR

	7 Conclusions
	7.1 Contributions
	7.2 Further Work
	7.2.1 Provenance-Aware CXXR
	7.2.2 Reproducible Research

	Bibliography
	A Exploring R
	A.1 Operators in R

	B XML Serialization
	C Air Quality Analysis

