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OPTIMAL TAXATION POLICY FOR A PREY-PREDATOR
FISHERY MODEL WITH RESERVES*

Y1 ZHaNG, JINGHAO LIf, YUEMING JIE AND XINGGANG YAN

Abstract: This paper is concerned with optimal control problem for a prey-predator fishery model with prey
dispersal in two areas, one of which is free fishing area and the other is reserved area. Selective harvesting
effort on prey population is considered. To conserve resource in the ecosystem, the regulatory agency manages
exploitation of biological resources by imposing a taxation. The existence of its nonnegative equilibria and
their qualitative analysis are discussed. The objective is to maximize the monetary economic interests, by
virtue of Pontryagin’s maximum prineiple, the optimal control problem is solved and an optimal taxation
policy is obtained to keep the sustainable development of the ecosystem as well as achieve the economic
interests of harvesting effort at an ideal level. A simulation example is carried out to show the consistency
with the obtained theoretical results.

Key words: prey-predalor, fishery, reserved area, harvesting effort, optimal tazabion policy

Mathematics Subject Classification: 37N35, 37N40

Introduction

Ecological resources, like fishery and forest, are very useful renewable resources for human,
however, with the rapid growth of population, the competition between humnan and some
ecological resources are increasingly serious for limited space and food. Facing the dwindling
resource stocks and deteriorating environment, the importance of protection of ecological
resources becomes more and more highlighted.

Over the past decades, many researchers devoted themselves to the effective manage-
ment of ecological resources. Some available regulating measures are advocated to control
the exploitation. such as, reserves, taxation, lease of property rights. license fees. seasonal
harvesting and so on. Among all of these, reserves are deemed to a feasible instrument to
protect the sustainability of ecological resources. As have suggested by [9], reserves not only
protect species inside the reserved area. but they can also increase the species enrichiment
and diversities. [4] proposed a fishery model with reserve area in a aguatic environment and
elaborated the effect of the reserve area on the fishery model. [1] described a prey-predator
type fishery model with prey dispersal in a two-patch environment and investigated how to
maximize the net economic revenue earn from the fishery through implementing the sus-
tainable properties of the fishery to keep the ecological balance. [13] established a Holling
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Jiangsu Planned Projects for Postdoctoral Research Funds under Grant no. 1401044.
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II functional response prey-predator fishery model with marine reserves and pointed out
that so long as the prey population in the reserved zone did not extinct, the both prey
always existed. By virtue of singular systems theory [17], a singular ecological-economic
model with harvesting and migration was proposed by [18], they utilized a variable struc-
ture method to eliminate the singular induced bifurcation (for further understanding, please
refer to [12‘ 15,16, 19,20] and the references therein) and design a stabilized controller.

As the exploitation of ecological resources are often companied by the economic interests.
The incentive driven by the profits may destroy the ecosystem, ultimately, may lead to a
crisis of humans. Consequently, there is widespread concern upon how to keep the ecological
balance and maximize the revenue from the harvesting of ecological resources. As pointed
out in [2], economnists are extremmely interested in taxation, partly owing to its flexibility and
partly attributing to the fact that a competitive economic system can be better maintained
under taxation than other regulatory measures. Recently, considerable attentions are paid
to the modeling of harvesting of ecological resources. In these models, the harvesting effort
is supposed to be a differential variable, several kinds of harvesting policies are utilized
to study the dynamical behavior of the model system. Moreover, the optimal taxation
policy problems are also discussed. A dynamic reaction model of a fishery consisting of
two competing species with nonselective harvesting were considered in [14], where taxation
was a regulatory policy to control exploitation. [7,8] dealt with the selective harvesting in a
ratio-dependent prey-predator fishery model and the optimal taxation policy problems were
considered. A prey-predator model with stage structure for prey and selective harvest effort
on predator was proposed in [10], in which taxation was a control instrument to protect
the population from overexploitation, and the impact of variation of gestation delay on the
stability switch of the model system was also analyzed. In [21], a prey-predator model
with gestation delay, stage structure for predator, and selective harvesting effort on mature
predator was considered, the effects of taxation on the existence, stability behavior and
trade-offs between profits and ecological balance were also discussed elaborately. The marine
reserves and taxation were jointly introduced in [6], the optimal taxation policy was provided.
[11] established an ecoepidemiological prey-predator model with selective harvesting effort
on predator population, in which the control variable were chosed to be vaccination and
taxation, Bendixson criterion was used to discuss the global stability behavior. By taking
the crowding effect into consideration, a dynamical model was proposed and analyzed in [3]
to discuss the effect of population on a resource biomass, and taxation was also taken as
a control variable. [5] dealt with a prey-predator model system in the presence of some
alternative food to predator and selective harvesting on prey species, where the maximum
sustainable vield level was not considered as a reasonable method to prevent the model
system from extinction, and taxation was nutilized to overcome this defect, and was deemed
to be superior.

As we have seen from the above, the prey-predator fishery model with both reserves and
taxation have not been considered, which is the incentive of this paper. In this paper, we
establish a prey-predator fishery model system with prey population dispersal in two aquatic
environments, a free fishing area and a reserved area where predation and harvesting are
prohibited. The prey population obeys the logistic growth law and the migrations between
the free fishing area and the reserved area are considered to be stochastic. The predator con-
sumes the prey in the free fishing area in proportion to the predator population and grows
with logistic law and the capacity proportional to the prey population in the free fishing
area. By taking the harvesting effort as the dynamical variable and utilizing the taxation as
a control instrument, the dynamical behavior of the model system around the nonnegative
equilibria are analyzed elaborately, particularly, only the global stability of interior equi-
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librinm is discussed. To keep the trade-offs between ecological protection and commercial
exploitation, the optimal taxation policy problem is formulated, then, by using Pontryagin’s
maximum principle, the optimal control problemn is solved and the optimal taxation policy is
provided. Finally, the effect of marine reserve is also illustrated by analyzing the dynamical
response of our model system.

The organization of our paper is stated as follows: The next section is devoted to the
model formulation. The qualitative analysis of the nonnegative equilibria will be performed
in the third section, specially, just the global stability behavior of interior equilibrium is
studied. The optimal taxation policy problem is formulated and solved in the fourth section.
A simulation exainple is provided to support the analytical findings in this paper. Finally,
this paper ends with a conclusion.

@ Model Formulation

Consider the model proposed by [9] which is shown as follows:

didf(tt) = r(t) (1 — %) —o12(t) + oay(l) — ma(t)=(t) — ¢E(1)x(t)

dy(t) _y®) -

5 = sy(t) (1 T ) + orz(t) — aay(t) (2.1)
dz(t)

= az(t) (1 B ﬁ,i(g))

where 2(t) and y(t) are the respective densities of prey population inside the free fishing
zone and reserved zone at time £, z(1) is the density of predator population at time {. Prey
population migrate from the free fishing zone to the reserved zone at a rate o, and the
reserved zone to the free fishing zone at a rate o2, respectively. r(K) and s(L) are the
intrinsic growth rates (carrying capacities) of prey population inside the free fishing zone
and reserved zone, respectively. m is the predation rate, and + is the equilibrium ratio of
prey-to-predator population. E(f) is the harvesting effort at time ¢.

As we know, a competitive system can be better maintained by taxation rather than other
regulatory methods. In order to protect the fishery resources from overexploitation, the regu-
latory agency often imposes a taxation 7 > 0 per unit of the harvested prey population(r < 0
implies the subsides paid to the fishermen). Herein, we take E(t) as a dynamic variable,
following [21]. the following dynamic reaction model described by differential equations can
be obtained:

(da(t) _x(t)
g = (1 K

— o1x(t) + ooy(t) — ma(t)z(t) — gE{t)x(t)

dy(t)

Tl sy(t) o1z(t) — oay(t)

+
dz(t) _ z(t
a2 (1 N '}w(t))
)

\ dif") =apE(t) ((p—7)gx(t) — )

(2.2)

with the initial conditions

z(0) > 0,y(0) > 0,2(0) > 0, E(0) >0 (2.3)
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where some of the parameters share the same meanings with model (2.1), p is the fixed price

per unit of the harvested prey population, ¢ is the fixed cost of harvesting per unit of effort,

and ag is the stiffness parameter measuring the strength of reaction of harvesting effort.
For convenience of the subsequent analysis, it is assumed that

r—o—gE >0, s—09>0 (2.4)

Remark 2.1. It should be noted that the model in the absence of predator has been
studied in [6]. Compared with the model proposed by [6], the model (2.2} by incorporating
a predator into the ecosystems in this paper seems to be more realistic. Correspondingly, it
can also show the more complex biological phenomenon.

Qualitative Analysis of Model System

This section aims to analyze the existence of nounegative equilibria, discuss their local
stability and global stability. Specially, interior equilibrium is the key focus of our discussion.

Existence of Equilibria

By equating the left-hand sides of differential equations to zero, after a little manipula-
tion, we find five equilibria: Py (0,0,0,0), Py (21,y1,0,0), Py (22,42, 22,0), Ps (23,ys,0, E3),
P* (a*,y*, 2%, E*).

It is obvious that Fy (0,0,0,0) always exists. Thereby, we first verity the existence of
equilibrium Py (1,11,0,0) where &1,y are the positive solutions of the equations below:

i (l = %) —owt+oy =0
.s-y(l— %) + oz —oay =10

(3.1)

Expressing y with regard to x leads to

mzi (%_(T—gl)ﬂil) (3:2)

az

where x satisfies the following cubic equation

ara® + bzt e +dy =0 (3.3)
with
sr?
- 27 (r — o)
YT LolK
2 (3.4)

. s(r—o1)" r(s—o2)

1T Lo Ko,
d] — 7(5 — 62) (.?"—0'1) — 0

(o]
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The existence of a positive solution to equation (3.3) can be assured if the conditions below
are satisfied

s(r— 01)2 r(s—o2)
La3 Koo (3.5)

(s —02) (r—om) < o109

In order to make the equilibrium biologically meaningful, component y; should be posi-
tive, that is to say, an additional inequality

— > (r—o1) (3.6)
must holds.
Consequently, we have the following theorem.

Theorem 3.1. Provided that (3.5) and (3.6) hold, then dynamic system (2.2) has a non-
negative equilibrium Py (z1,11,0,0).
Now, we discuss the existence of equilibrium Pz (2, y2, 22,0). 2, y2 and za are positive

and satisty the following equation

ra(t) (1 - %) — ox(t) + ooy(t) — max(t)z(t) =0

sy(t) (1 — %) +ox(t) —oay(t) =0

2(t) = ya(t)

(3.7)

Solving g2 and zz from the first equation and the third equation of (3.7) respectively, we
can obtain

= &[G )= "

Zg = 7YI2
substituting yo and z5 into the second equation of (3.7), we obtain a equation in regard to x
a2 + box® + cow +da =0 (3.9)

where

g r 2
@ = 7,7 ( +m™)

_ 28(r—o1) 1
=7 (K - m) 10
,75(?‘—01)2_(8—02)(1+T ) S
o = o2 p c +m

o (-9—02)

dy (r—o1)—o1

T2
After little manipulations, there exist a positive solution x» to equation (3.9) it the
following inequalities hold
s(r - o)’
Lo 9

(s — o) (r—o1) < o100

<(s—o02) (% + m’}') (3.11)
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To guarantee the positiveness of ys, the following condition must be met
=
T2 > (r—ay)/ (K + m'y) (3.12)

Therefore, we can come to a conclusion.

Theorem 3.2, Provided that (3.11) and (3.12) hold, then dynamic system (2.2) has a non-
negative equilibrium Ps (12, ya, 22,0).

Next, we are prepared to show that equilibrium Ps (23, ys. 0, F3) is existent under certain
conditions. Since a3, y3 and E5 are the positive solution of the equations below

ra(t) (1 - %) —oyx(t) + oy(t) — gBE(H)x(t) =0
; t 5 ‘
sy(t) (1 - %) +oz(t) — oay(t) =0 (G5
anE() ((p—T7)gx(t) —c) =0
After solving the system of equations, the elements in equilibrinm F5 are given as
@
g =
T p-1)4
(=02 + /(s - 02)’ +4(s/L) oz .
Ys = 2s/L ; .14)
1 i
E; . ((?‘ = TT? = 51) 3 +f723‘)‘3)

On account of the positiveness of x3, y3 and Fj, the following inequality is supposed to be
satisfied
Ke

(r—o1)rq

T<p— (3.15)

Thus, according to the aforesaid discussion, the next theorem can be given.

Theorem 3.3. Provided that inequality (3.15) holds, then dynamic system (2.2) has a non-
negative equiltbrium Py (x2,y2,0, E3).

Finally, let us end up this subsection with the analysis of the existence of the interior
equilibrium or positive equilibrium P* (z*,y*, z*, E*). Actually, =%, y*, z* and E* are the
positive solution of

0= rx(t) (1 - %) — o1x(t) + oay(t) — ma(t)z(t) — gE(t)x(t)
0= sy(t) (1 _ %) + ayx(t) — aay(t) (3.16)
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from which we have

I (s —a3) + \/(8—02)2 + (;f;‘fgb

“-nd T -ng 2s/L " (3.17)

1 r ;
E* = {(r —aogy1)a* + ay* — ('}'m + L) :L'*z]
qr* K

* c * ‘}C *

g7

Since the biological meaning of interior equilibrium, the following condition needs to be
satisfied to guarantee the positivity of all the components of interior equilibrium.
e(ymK +r)

K (r—o1) (3.18)

D<rt<p-

Theorem 3.4. Provided that inequality (3.18) holds, then dynamic system (2.2) has a non-
negative equilibrium P* (z*,y*, z*, E*).

Local Stability

The local stability behavior can be analyzed by computing the variational matrix

2rz

r—5F —a—mz—qE o2 —mz —qx
21
a1 5— = — gy 0 0
J = L . 3.19
f;;z 0 o — 2_;’;:* . 0 ( )
apgFE (p—1) 0 0 ag{(p — 1) qxr —c}

As shown in [9], even if equilibrivm Fy (0.0, 0,0} is defined for the dynamic system (2.2),
its corresponding linearized system do not exist, which implies that the local stability can
not be investigated.

To determine the local stability of P; (1, y;,0,0), the Jaccobian of dynamic system (2.2)
around Py (ry,41,0,0) is

_% _ ﬂ;?lh o9 —Tha, —qIn
o _ st 0"] g ﬂ 0
J(Py) = S 2
(P1) 0 0 a 0 (8.20)
0 0 0 ap {(p— 1) gy —c}

which gives the characteristic equation at Py

P “u
0 0 a— A 0
0 0 0 ap{(p—7)qz —c} — A

(3.21)
From (3.21), it is easily observed that there exists a positive eigenvalue A = o, accordingly,
it is obvious that P is unstable.
At Py (22,92, 22,0), the Jaccobian of dynamic system (2.2) reduces to

= = 2 a3 —my —qT2
xg
o1 _S8Yz __ g31T2 U (]
B = L U2 22
T (P2) T 0 —a 0 (3:22)

0 0 0 ag {(p—7)qry — ¢}
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thus, we can acquire the following characteristic equation about P
(A—ao((p—7)gza — ) ()\3 + A% + oA + n3) =0 (3.23)

where
rIy T2 512 a1I2

=a+ —
e K i I L U2

rI aale SY2 J1T2 T2 | O2Y2 SYa | O1T2 2
= | —= 4+ P = 9r — — — 0102 + mayT
’ (K g L yz)+(f{+r2)(£+'yz) e T

o (T e (v @) N e (2 o1
mea () (P 5) -oos) st (P 52)

(3.24)
It is straightforward to check that
np > 0,ne > 0,ng > 0,
Ty g2Y2 SYz2 | O1L2 TZy | O2Y2 SY2 a1¥2
g — g = + =+ —+ -+ — + + — +
1179 — Ny = ¢ (cr e . 7 ~ )( e . 7 = )
raa 212 SU2 102 rIa T2z Sij2 a2 (3‘25)
+ | — + — + ——qr — | — :
(K T L Y2 )(( Kz ) ( Lt Y2 ) Um)
2 Tl  O2Y2
¢ T v+ — >0
+ mayz; ((‘t+ 7a + 7 )

In the light of Routh-Hurwitz criterion, it can be found that the local stability of P lies
in the sign of (p — 7) qra — ¢, that is, if (p — 7) gra — ¢ > 0, equilibrinm P» is unstable, while
(p — 7) qua — ¢ < 0, equilibrimn Py is locally asymptotically stable.

Around Py (x3.y3,0, E3), the Jaccobian of dynamic system (2.2) becomes

TEz _ Fala

— T3 an —mrs —gIs
o3l s 0 0
J(P) = L ¥3 3.26
(F3) 0 0 o 0 (3.26)
coqEs (p— ) 0 0 0
and its corresponding characteristic equation is
— (’T'(‘i + U—;‘:;u) — A o2 —mas  —gis
det a1 ~(g-m=zm)-x 0 0 | =0 (3.27)
0 0 a— A 0
apqFs (p—7) 0 0 —A

from which we find that a positive solution A = a appears, thus, Ps is unstable.
At P* (x*,y*, z*, E*), the Jaccobian of dynamic system (2.2) can be further reduced to
be

—% = ”f—"‘ K ) —mzx* —qa”
J= 71 T -5% 0 L (3.28)
ay 0 - 0
angE* (p—1) 0 0 0

It follows that the characteristic equation of P* (x*, y*, 2", E*) is

M+ A+ maA? + magh +my =0 (3.29)
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where
sy* ot

K 75 L - y*

rr* ooy sy or” rz® a9y syt ot
Mo = = qr — or — 0109 + @ —_— +
? ( K T ) ( L y* ) 12 ( K * a7 o L y*

+aog’E*z* (p— 1) + ayma*

ra®t oyt sy ot ; oya”
mg = | — + Lid 2 + = —aoyog + o Efa* (p—7) (o + sy =
K T L Y L y*

+ aymx (L + )

y*
a
my =aog@?E*z" (p— 1) ( lj )

"y =

(3.30)

It can be checked that

my > 0, mo > 0, my > 0, my > 0,

rr® Ty’ syt ot ra* ooyt syt ot
T — 1y = -+ + — 01T -+ + +
e ! (( K a5 L y* 1o K a5~ L y*

rz* gy sy® ot ra*  oayt syt ot
+a e e
“(f{+.r A y*)(a+f{+. Tt y*)

)>(J,

(3.31)

3w ret o9y ra® ooy
B (p—1)( o
+ g r (p—T) ( 7 + i ) + ayma* (a + i + -

mymams — TI’I?TR4 - 7?13

A=)

T.‘L.* T * 51 * a :L,’F
— 0102 — + 2 + i + !
K @ L y*
ra* ra®  oay®
—I—(ranE* * ( )+ct'ym.r ( = ;: )
12 o

K K }m”
. 3.32
e {50 (7 #57) oo (T +50)) o
iL; y*
rat o3y Yy 1 rat oy syt | oyt
(I{+w*+L+y*)( K o L+y*)

B Blers o re® aay ra* oyt syt ox”
0Bz (p—7) | 5=+ - e
tatag BT (p T)(K J:)(“ Kt T T

From the aforesaid computation, along with Routh-Hurwitz criteria, we can know that the
roots of (3.29) lie in the left-hand side of the complex plane. Accordingly, we prove the
locally asymptotic stability of the interior equilibrium P~.

From above all, we summarize these discussions as the following theorem.

Theorem 3.5. The local stability of nonnegative equilibria are shoun as follows:

1. Although Py(0,0,0,0) is defined for dynamic system (2.2), it can not be linearized,
which leads to the fact that we have no ability to determine whether Py is stable.
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2. As long as Py(x1,11,0,0) exits, it is unstable.

3 If(p—7)qra — e < 0, Palaa, yz, 22,0) is locally asymptotically stable, whereas, when
(p—7)gas —c >0, Py is unstable.

4. Py(ws, ys,0, Ey) is always unstable provided that it satisfies (3.15), that is, its existent
condition.

5. P*(a*,y*. z%. E*) is locally asymptotically stable, as long as its existence can be guar-
anteed.

Global Stability

Since interior equilibrinm is biologically meaningful, this subsection mainly studies the glob-
ally asymptotic stability of interior equilibrium.

Theorem 3.6. If 1y < x < po. then P*(x*,y*, 2" E*) is globally asymptotically stable,

0 — 2 _dr2 = _2r _dr 4 42
where H = 1+ Kym + K2+2m2 and Hz2 = 1+ K-y + Kym + K242m2 -

dr
Kym

Proof. Construct the Lyapunov functional candidate as

V(z,y,2,B) = (J —% —a"in (3—*)) +m (y -y —y'ln (1))
xr y*‘
+ p2 (2’ - 2" = 2"ln (i)) + ps (E — E* — E*ln (E))
z* ' E*

where p;, p2 and p3 are unknown positive parameter to be determined.
Differentiating V' (i, 9, z, F') with respect to t along with the trajectory of dynamic systein
(2.2), it can be shown as

(3.33)

dvV.  x—uxde y—y*dy z—z*dz+ E— E*dE
@& z @t NV y @& PP wTPTE &

(3.31)
Let py = g;g* P2 = 3 and p3 = 5, substituting (3.16) in to (3.34), after a little skillful
computation, the equation (3.34) can be further expressed as

(y—y) — 2 (a*y —ay*)?
atry

dv.— soay”
dt  Lojax®

r 2 1 o ) L _#\2
—{E(;c—ar) —(;—m)(.c z*) (z H}—f—’w(z ,.)}

It can be easily observed that provided (% — 'm) < K‘L—f;,r that is, g < @ < po, % < 0 holds,
and the equality does not always hold for any (x,y, 2, E) # (2%, y*, 2", E¥).

In light of Lyapunov stability theory, we can draw a conclusion that P* (2", y*, 2%, E*)
is globally asymptotically stable.

(3.35)

O

Optimal Control of Model System

In what follows, we will determine the optimal taxation policy to achieve the maximum net
revennes from the harvested population.
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‘With the purpose of planning harvesting and keeping the sustainable development of
ecosystemn, we design an optlimal harvesting policy to maximize the total discounted net
revenue from the harvesting by regarding taxation as a control instrinment.

As we know, Net economic revenue to the society w(a(t),y(t),z(t), E(t)) = Net
economic revenue from harvesting + Net economic revenue to the regulatory agency =
(p—7)ge(t)E(t) — cE(t) + Tqu(t)E(t) = (pgx(t) — ¢) E{t). Thus, the optimal performance
index can be formulated as:

J— [ =% (pqa(t) — ¢) E(t) (4.1)

where 6 is the instantaneous annual rate of discount.

For the given model system (2.2) with initial condition (2.3), the optimal control problem
is to seek an admissible taxation policy taking value in [T, Trmaz) to maximize the perfor-
mance index (4.1). Tyin and Ty, are the feasible upper and lower limit of the taxation for
harvested effort, respectively. Specifically, 7, < 0 means that subsidies have an effect on
the evolution of the model system.

By virtue of Pontryagin’s Maximum Principle [2], the Hamiltonian function of this control
problem can be constructed as:

H (a0, 0. B0,
= e~ [pga(t) — J EQ)

(
(

+24() _az(t) (1= 29)] + 70 0B (0~ Pastt) ~ )

M) _ arx(t) + oay(t) — ma(t)z(t) — qE(t)a(t)

i) (42)
)

y(t) + oq2(t) — Jz?}(t)j|

+ /\1{t) w(t) (1 -

=

+ )\g(t) sy(t) [ 1—

T

where A (1), Ap(t), A3(f) and A4(f) are adjoint variables.
Assume that the optimal solution does not occur at the extreme point, then the necessary
condition for singular control 7* to be optimal is given by

oH
o —MagFgr =0, which implies Ay = 0 (4.3)
and the adjoint equations are
M OH 6t 2r az?
— :_a:—[e pqE + Ay r—?—a]—mz—qE +A361+)\3_)_.? (4.4)
dry  OH 2sy -
T By = {/\10’2 + A2 (3 T, 0'2)] (4.5)
d/\:j o dH 2az )
Fiair i { A + Mg (n i )} (4.6)
A OH _
d_; ="%F [e7" (pgz — €) — \igz] (4.7)

By considering the interior equilibrivun P*, the above differential equations can be simplified

o be
dX
A _ {e_‘srpqE* Y (% + J:y ) Fohe a’}/\_g} (1.8)
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dXs syt ozt
i o L 1.0
(H /\1 T2 + )\2 ( L + y* ) (“LJ)
1A:
(d—: =mz* A\ +al3 (4.10)
C _
A= (p—qu—‘*)c ot (4.11)
Combined (4.11) with (4.10), we have
A ,
As(t) = —3 i3 (4.12)
where 4, = (p— qw) mr*
Likewise, we can obtain
As(t) = A 5 i (4.13)
where A; = "'}’—" + “'I and Az = g9 ( - qn)
Bs
t) = e % 4.14
M) = — g (4.14)

where By = = o+ —’— and By = ELI:L + :4‘% pgE*.
It follows from (4 11) and (4.14) that

& o Bz )
(P‘ q—) = TB+e (4.15)

which provides a way to solve optimal control 7. Consequently. the optimal path can be
given by =¥ = x5, y* = ys, 2% = z5, E™ = Ej.

Remark 4.1. It can be observed from (4.12), (4.13) and (4.14) that shadow prices
Ai(t)ed (i = 1,2,3,4) remain constant over time in an optimum equilibrium which implies
that they strictly satisfy the transversality condition at oo, thus, they remain bounded
as I — oo. Taking the interior equilibrium P* (z*,y*, z*, E*) into account, (4.11) can be

rewritten as .
_s O

aF
which means that the user’s total cost of harvesting per unit effort is equal to the discounted
values of the future price at the steady state effort level.

Mgz =e % (pgzt —c) =e (4.16)

Simulation Example

With the aid of MATLAB 2010a, a simulation example is provided to show the effectiveness
of our theoretical result.

For testifying the validity of our result, we take the Zhoushan fishery which is located in
Zhejiang province and is the biggest fishery in China. As given by [18], the total size of sea
area is approximately more than 10800km?. The size of the inshore area is about 3700kmn?,
and the size of the offshore area is about 7100km?. One kind of fish in Zhoushan fishery
is the coiliaspp and the total population is 1099 million in the whole sea area. To prevent
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Figure 1: Dynamical responses of model system (2.2) with the optimal taxation.

over exploitation, only the coiliaspp in the inshore area is permitted to be harvested. while
that in the offshore area is prohibited. On the other hand, the eel is thrown in the inshore
area so as to promoting the growing of the coiliaspp in the inshore area. According to the
data in [18] and [22], the carrying capacity of the inshore area is about 423 million and
that of the offshore area is about 676 million, the equilibrium ratio v is approximately 0.3.
The intrinsic growth rates in inshore area and offshore area are respectively assumed to be
r = 0.6 and s = 0.2. The coiliaspp migrates between the inshore area and the offshore area
at a same rate o; = g9 = (.3. The eel captures the coiliaspp at a rate m = 0.02, and the
intrinsic rate of the ell is a = 0.5. The stiffness parameter is ap = 0.24. It is also supposed
that the capture coefficient ¢ is 1 and the coiliaspp is sold at the average unit price p = 11
and its unit cost ¢ = 6. All the parameters are set in appropriate units.

For model system (2.2), we can evaluate the range of the taxation for which the interior
equilibrium is existent and asymptotically stable. As we have analyzed in the foregoing
section, theoretically. the desirable range of the taxation is (0,744 ), numerically, we can
find that the model system (2.2) is asymptotically stable for any 7 € (0,10.8516). Thus,
in the following, we are to find out the optimal control 7 in the interval (0,10.8516) with
instantaneously annual rate of discount 6 = 0.03. Solving the equation (4.15), the optimal
taxation 75 which takes value in the interval (0, 10.8516) is about 4.7160. Consequently, the
optimal equilibrium levels of biological population and harvesting effort can be also shown
as (x5, ys, 25, Es) = (0.9548, 2.8406, 0.4774, 1.1881).

For the optimal taxation, the time trajectories of prey population x(f) in free fishing
zone, prey population y(t) inside protected zone, predator population z(t) and harvesting
effort E(t) is depicted in Figure 1, from which we can observe that the model system (2.2)
is globally asymptotically stable around the interior equilibrium. Actually, with the optimal
taxation, the net economic revenue to the society can be achieved, what is important is
that there is a balance between cominercial exploitation and sustainable development of
ecosystern.

As depicted in Figure 2, Figure 3, Figure 4 and Figure 5, the coiliaspp inside the inshore
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Figure 2: Dynamical responses of the coiliaspp in the inshore area with different tax.
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Figure 3: Dynamical responses of the coiliaspp in the offshore area with different tax.
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Figure 5: Dynamical responses of the harvesting effort with different tax.
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Figure 6: Dynamical responses of model system (2.2) without reserves and the optimal
taxation 7 = 4.7160.

area and offshore area and the eel are increasingly growing, and the harvesting effort is
progressively decreasing with the increase of the tax. It reflects the fact that the tax can
regulate the exploitation on the coiliaspp, when little tax is needed to pay for the coiliaspp,
the exploitation is profitable, in this case, the fishermen will make a large number of effort
to harvest the coiliaspp, while, by raising the tax, the profit is reduced, then the fishermen
will not pay too much effort on the harvesting of the coiliaspp, which leads to the increase
of the coiliaspp and eel. Furthermore, the maximum economic benefits are achieved when
the tax takes its optimal value.

From the Figure 6, it is shown that the dynamical response of the model system (2.2)
without reserves reveals that if there is no refuge for the prey, the oscillation of the ecologi-
cal system is extraordinarily noteworthy, which may results in the difficulty of convergence,
eventually, lead to unbalance of the ecological system. Whereas, the rapidity and conver-
gence of our model system illustrate the ability of marine reserves to protect abundance and
diversities. Consequently, the marine reserves have a direct implications for the potential
benefits to prey population adjacent to the reserves.

@ Conclusion

In this paper, a bioeconomic model system is established. The prey grows with the logistic
law and lives in a two-patch zone, a free fishing zone and a reserved zone where all the
exploitations and predation are permitted, the migrations between the free fishing zone and
the reserved zone are supposed to be stochastic. The predator consumes the prey in the free
fishing zone and obeys the logistic growing law with capacity proportional to the population
of the prey in the free fishing zone. In this biological systein, only the prey in the free fishing
zone is available to be harvested. It is well known that biological resources have a strongly
economic benefits, thus, most of people have an imperious desire to exploit the profitable
resources, instead of receiving the maximum of the economic profits, unplanned exploitation
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has led to a terrible impact on ecosystems and the people driven by the interests which are
reflected by the dwindling biological resources and the diffienlty to harvest the enough food
supply. Consequently, to overcome this dilemma, a control instrument, taxation, is proposed.
By regarding the harvesting effort as the differential variable, a differential equation in
relation to economic respect is introduced.

For the aforementioned bioeconomic model systemn, the existence of the nonmegative
equilibria are firstly discussed, then the local stabilities of all the nonnegative equilibria are
analyzed in detail and conditions to guarantee the locally asymptotic stability or instability
are proposed. Particularly, in view of the biological meanings of interior equilibrium, the
globally asymptotic stability of interior equilibrium are studied. To prevent the ecosystem
from overexploitation and achieve the maximum economic benefits simultaneously, the opti-
mal control problem is formulated by taking the net economic revenue to the society. Using
the Pontryagin’s Maxiimum Principle, the optimal control is solved, and the optimnal equi-
librium levels are shown. From the discussion in this paper, we obtain the optimal control
which can ensure the economic benefits be maximum and all the hiotic population always ex-
ist. Biologically, this result implies that the optimal taxation can guarantee the sustainable
development of ecosystem and the maximization of economic interests. The effect of marine
reserve on the ecosystem is also highlighted, as have been expected, marine reserve plays an
indispensable role in maintaining the enrichment and diversities of species. Consequently,
the method proposed in this paper can be regarded as a consultancy for management agency
to govern the ecosystem reasonably.
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