
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Bocchi, Laura and Yoshida, Nobuko and Lange, Julien (2015) Meeting Deadlines Together.
 In: International Conference on Concurrency Theory (CONCUR).

DOI

http://doi.org/10.4230/LIPIcs.CONCUR.2015.283

Link to record in KAR

http://kar.kent.ac.uk/50257/

Document Version

UNSPECIFIED

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30709831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Meeting Deadlines Together

Laura Bocchi1, Julien Lange2, and Nobuko Yoshida2

1 University of Kent

2 Imperial College London

Abstract

This paper studies safety, progress, and non-zeno properties of Communicating Timed Automata

(CTAs), which are timed automata (TA) extended with unbounded communication channels,

and presents a procedure to build timed global specifications from systems of CTAs. We define

safety and progress properties for CTAs by extending properties studied in communicating finite-

state machines to the timed setting. We then study non-zenoness for CTAs; our aim is to prevent

scenarios in which the participants have to execute an infinite number of actions in a finite amount

of time. We propose sound and decidable conditions for these properties, and demonstrate the

practicality of our approach with an implementation and experimental evaluations of our theory.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Program

Keywords and phrases timed automata, multiparty session types, global specification

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Meeting deadlines is part of our everyday life; this is also the case for distributed software

systems that have real-time constraints, such as e-business and financial systems, where

exchanges of agreements and data transmissions need to be completed within specified time-

frames. Guaranteeing that a single entity will finish its assigned task within an upcoming

deadline is a crucial requirement that is generally difficult to attain. It is even harder to ensure

that several, distributed, and interdependent entities will work together in a timely fashion to

meet each other’s deadlines. To model such real-time distributed behaviours, communicating

timed automata (CTAs) [17] have been introduced as an extension of communicating finite-

state machines (CFSMs) [9] with time constraints. A system of CTAs consists of several

automata that exchange messages through unbounded FIFO channels and must comply with

time constraints on emission/reception of messages. These two features (unbounded channels

and time) make CTAs difficult to verify, e.g., reachability is undecidable in general [12].

This paper tackles the following two shortcomings of the current state-of-the-art of CTAs.

First, to the best of our knowledge, safety and progress properties, such as absence of

deadlocks and unspecified reception (type) errors, which are standard in the literature on

CFSMs [10], and essential for distributed systems, have not been studied in the context

of CTAs. Moreover, customary properties for TAs such as time-divergence [2] and non-

zenoness [7, 21] (preventing that some participant’s only possible way forward is by firing

actions at increasingly short intervals of time) have not been investigated for CTAs.

Second, while global specifications such as message sequent charts (MSC) and choreograph-

ies [8,16] are useful to model protocols from a global viewpoint, there has not been any work

to build global specifications from CTAs. The top-down approach [6] alone, which requires a

preexisting global specification, is not satisfactory in agile development life-cycles [23], in

refinement and reverse-engineering of existing systems, or to compose real-time distributed

components, possibly dynamically (see [14,18,19]).

© Laura Bocchi, Julien Lange, and Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Meeting Deadlines Together

U
U

se
r

U1

U0

U2

UW!task
x ă 1
x :“ 0

AU?result
x ď 15

W

W
o
rk

er

W0 W1 W2

UW?task
y “ 1

y :“ 0, y1 :“ 0

WA!data
y ă 1 ^ y1 ă 10

y :“ 0

WA!stop
y ă 1

A

A
g
g
re

g
a
to

r

A0 A1 A2

WA?data
z “ 1
z :“ 0

WA?stop
z “ 1
z :“ 0

AU!result
z ď 5

Figure 1 Scheduled Task Protocol (System Sst)

This work introduces classical properties of CFSMs and TAs to the world of CTAs,

and investigates the interplay between asynchronous communications through unbounded

channels and time constraints. We define the classes of CTAs that enjoy four properties –

safety, progress, non-zenoness, and eventual reception – and give a sound decision procedure

for checking whether a system of CTAs belongs to these classes. This procedure does

not rely on any other information than the CTAs themselves. Interestingly, a property

of CFSMs called multiparty compatibility (MC) [14], which characterises a sound and

complete correspondence with multiparty session types in the untimed setting [16], soundly

characterises safe CTAs and offers a basis for decidable decision procedures for progress and

non-zenoness in the timed setting. We give: (i) a sound characterisation for progress by

checking the satisfiability of first order logic formulae (thus verifiable by generic SMT solvers),

and (ii) a sound characterisation of non-zenoness by using a synchronous execution of CTAs.

Eventual reception follows from (i) and (ii). In addition, we present an algorithm to build a

timed global type [6] from CTAs, whose traces are equivalent to the original system. Thus,

if a system validates some of the properties discussed above, then the CTAs obtained by

projecting its timed global type onto its participants will preserve these properties.

The system Sst in Fig. 1 (Scheduled Task Protocol) will be used to illustrate our approach

throughout the paper. Sst consists of three participants (or machines): a user U, a worker

W, and an aggregator A, who exchange messages through unbounded FIFO buffers. Each

machine is equipped with one or more clocks, initially set to 0 and possibly reset during the

protocol. Time elapses at the same pace for all clocks, which is a standard assumption [17].

The protocol is as follows: U sends a task to W, W progressively sends intermediary data to A,

and finally A sends the aggregated result to U. The time constraints are:

U must send a task to W within one time unit, reset its clock x, and expects to receive the

result within 15 time units.

W must consume U’s task message at time 1, reset its clocks y and y1, and repeatedly

send data to A, waiting less than 1 time unit between each emission (modelled by the

constraint and reset on y). The overall iteration cannot last more than 10 time units

(modelled by the constraint on y1, which is not reset in the loop). When W has finished, it

must send a notification stop to A.

A must read intermediary data every 1 time unit, reset each time its clock z, and send

the overall result to U within 5 time units after receiving stop.

This example, albeit small, models a complex interaction where each machine has its own,

interdependent, deadlines; e.g., U relies on the other machines’ deadlines to receive the final

result within 15 time units. Note that the channel between W and A is unbounded: W can send to

A an arbitrary number of messages before A receives them, cf. WA!datapy ă 1^y1 ă 10, y :“ 0q.

Contribution and synopsis In the rest of the paper, we give several conditions that guarantee

that no participant misses its deadlines, that every message sent is eventually received on

L. Bocchi, J. Lange, and N. Yoshida 3

time, and that no participant is forced to perform actions infinitely fast, i.e., forced into a

zeno behaviour. In § 2 we recall basic definitions on CTAs. In § 3 we extend the standard

safety properties of CFSMs to the timed setting, and show that multiparty compatibility

(MC) is a sound condition for safety (Theorem 6). MC CTAs still allow undesirable scenarios

when, e.g., (1) the system gets stuck because of unmeetable deadlines, (2) the system’s

only possibility to meet its deadlines is through zeno behaviours, or (3) sent messages are

never received. We give sound and decidable conditions to rule out (1) in § 4 (Theorem 13)

and (2-3) in § 5 (Theorem 17 and Theorem 19). In § 6, we discuss the applications of our

theory and its implementation. The work in [6] studies a correspondence between timed

local types (projected from timed global types) and CTAs, focusing on type-checking timed

π-calculus processes. The present work studies CTAs directly, i.e., without relying on a

priori global knowledge of the system, and gives more general conditions for safety, progress,

and non-zenoness. None of the previous works [14,18,19] on building global specifications

from local ones caters for time constraints. Unlike existing work on the properties of

CTAs (e.g., reachability) our results do not set limitations to channel size or to network

topologies [12,17]. We discuss related work further in § 7. The proofs, additional material,

and the implementation are available online [3].

2 Communicating Timed Automata

We introduce communicating timed automata (CTA) following definitions from [14,17]. Fix

a finite set P of participants (ranged over by p, q, r, s, etc.). Let A be a finite alphabet of

messages ranged over by a, b, etc. The set of finite words on A is denoted by A˚, ww1 is the

concatenation of w and w1, and ε is the empty word (overloaded on any alphabet). The set

of channels is C
def
“ tpq

ˇ

ˇ p, q PP and p ‰ qu. Given a (finite) set of clocks X (ranged over by

x, y, etc.), the set of actions (ranged over by ℓ) is ActX
def
“ C ˆ t!, ?u ˆ Aˆ ΦpX q ˆ 2X , and

the set of guards (ranged over by g) ΦpX q is

g ::“ true | x ď c | c ď x | g | g1 ^ g2

where c ranges over constants in Qě0, and from which we derive the usual abbreviations.

We write fcpgq for the set of clocks in g and sr!apg, λq or sr?apg, λq for an element of ActX .

Action sr!apg, λq says that s sends a message a to r, provided that guard g is satisfied, and

resets the clocks in λ Ď X ; the dual receiving action is sr?apg, λq. Given ℓ “ sr!apg, λq or

ℓ “ sr?apg, λq, we define: msgpℓq “ a, guardpℓq “ g, and resetpℓq “ λ. We define the subject

of an action: subjppr!apg, λqq “ subjpsp?apg, λqq
def
“ p.

A communicating timed automaton, or machine, is a finite transition system given by a

tuple M “ pQ, q0, X , δq where Q is a finite set of states, q0 P Q is the initial state, X is a set

of clocks, and δ Ď QˆActX ˆQ is a set of transitions. We write q
ℓ
Ýã q1 when pq, ℓ, q1q P δ.

A machine M “ pQ, q0, X , δq is deterministic if for all states q P Q and all actions

ℓ, ℓ1 P ActX , if pq, ℓ, q1q, pq, ℓ1, q2q P δ and msgpℓq “ msgpℓ1q, then q1 “ q2 and ℓ “ ℓ1. A

state q P Q is: final if it has no outgoing transitions; sending (resp. receiving) if it is not

final and each of its outgoing transitions is of the form sr!apg, λq (resp. sr?apg, λq); and

mixed if it is neither final, sending, nor receiving. We say that q is directed if it contains

only sending/receiving actions to/from the same participant. Hereafter, we only consider

deterministic machines, whose states are directed and not mixed. These assumptions, adapted

from [14], ensure that a machine corresponds to a syntactic local session type [16]. We discuss

how to lift some of these restrictions in § 7.

A timed communicating system consists of a finite set of machines and a set of queues (one

4 Meeting Deadlines Together

for each channel) used for asynchronous message passing. Given a valuation ν : X Ñ Rě0 of

the clocks in X , ν |ù g denotes that the guard g is satisfied by ν and λpνq denotes a valuation

where all clocks in λ are set to 0 (reset) and clocks not in λ keep their values in ν.

§ Definition 1 (Timed communicating system). A timed communicating system (or system),

is a tuple S “ pMpqpPP where each Mp “ pQp, q0p, Xp, δpq is a CTA and for all p ‰ q P

P : Xp X Xq “ H. A configuration of S is a triple s “ p~q; ~w; νq where: ~q “ pqpqpPP is the

control state and qp P Qp is the local state of machine Mp; ~w “ pwpqqpqPC with wpq P A
˚ is

a vector of queues; ν :
Ť

pPP Xp Ñ Rě0 is a clock valuation. The initial configuration of S

is s0 “ p~q0; ~ε; ν0q with ~q0 “ pq0pqpPP, ~ε being the vector of empty queues, and ν0pxq “ 0 for

each clock x P
Ť

pPP Xp. ˛

Hereafter, we fix a machine Mp “ pQp, q0p, Xp, δpq for each participant p PP (assuming

that @p PP : pq, ℓ, q1q P δp ùñ subjpℓq “ p), and let S “ pMpqpPP be the corresponding

system. We write X for
Ť

pPP Xp and ν ` t for the valuation mapping each x P X to νpxq ` t.

The definition below is from [17, Definition 1], omitting internal transitions.

§ Definition 2 (Reachable configuration). Configuration s1 “ p~q1; ~w1; ν1q is reachable from

configuration s “ p~q; ~w; νq by firing the transition α, written s αÝÑs1 (or sÝÑs1 when the label

is immaterial), if either:

1. pqs, sr!apg, λq, q1
sq P δs and (a) q1

p “ qp for all p ‰ s; (b) w1
sr “ wsra and w1

pq “ wpq for

all pq ‰ sr; (c) ν1 “ λpνq; (d) α “ sr!apg, λq, and ν |ù g;

2. pqr, sr?apg, λq, q1
rq P δr and (a) q1

p “ qp for all p ‰ r; (b) wsr “ aw1
sr and w1

pq “ wpq for

all pq ‰ sr; (c) ν1 “ λpνq; (d) α “ sr?apg, λq and ν |ù g; or

3. α “ t P Rě0, ν1 “ ν ` t, w1
pq “ wpq for all pq P C, and q1

p “ qp for all p PP.

We let ρ range over sequences of labels α1 ¨ ¨ ¨αk and write ÝÑ˚ for the reflexive transitive

closure of ÝÑ. The reachability set of S is RSpSq
def
“ ts

ˇ

ˇ s0 ÝÑ
˚ su. ˛

Condition (1) allows a machine s to put a message a on queue sr, if the time constraints

in g are satisfied by ν; dually, (2) allows r to consume a message from the queue, if g is

satisfied; and (3) models the elapsing of time (or a delay).

3 Safety in CTAs

This section defines safe CTAs and gives a sufficient condition for safety, called multiparty

compatibility (MC) [14], in the timed setting. Here, we present a new approach based

on synchronous transition systems (STS); the STS is also useful for defining progress and

non-zeno properties in § 4.

Let n range over vectors of local states; and e range over events, which are elements of

the set C ˆAˆΦpX q ˆ 2X ˆΦpX q ˆ 2X , and write psÑr : a; gs, λs; gr, λrq for the event in

which s sends message a to r, with s (resp. r) having guard gs (resp. gr) and resets λs (resp.

λr). We introduce the synchronous transition system of S, following [19].

§ Definition 3 (Synchronous transition system). The synchronous transition system of S,

written STSpSq, is a tuple pN, n0, ãÝÑ, Eq such that:

ãÝÑ is the relation defined as n
e

ãÝÑ n1 with e “ psÑ r : a; gs, λs; gr, λrq iff n “ ~q, n1 “

~q 1, qs

sr!apgs,λsq
ÝÝÝÝÝÝÝã q1

s, qr

sr?apgr,λrq
ÝÝÝÝÝÝÝã q1

r, and @p P Pzts, ru : qp “ q1
p (write ãÝÑ when e is

unimportant and ãÝÑ˚ for the reflexive and transitive closure of ãÝÑ);

n0 “ ~q0 is the initial node; N “ tn
ˇ

ˇ n0ãÝÑ˚nu is the (finite) set of nodes; and E “

te
ˇ

ˇ Dn, n1 P N and n
e

ãÝÑ n1u is the set of events.

L. Bocchi, J. Lange, and N. Yoshida 5

We write n1
e1¨¨¨ek
ãÝÝÑ nk`1, when, for some n2, . . . , nk P N , n1

e1

ãÝÑ n2 ¨ ¨ ¨nk
ek
ãÝÑ nk`1. Let ϕ range

over (possibly empty) sequences of events e1 ¨ ¨ ¨ ek, and ε denote the empty sequence. ˛

The STS of the Scheduled Task Protocol (Sst) is given in Fig. 2; essentially, it models all

the synchronous executions of Sst. In the following, we fix STSpSq “ pN, n0, ãÝÑ, Eq.

Given e “ psÑr : a; gs, λs; gr, λrq, we define sidpeq
def
“ s, ridpeq

def
“ r, and idpeq

def
“ ts, ru.

The projection of e on p (written eçp) is given by: psÑr : a; gs, λs; gr, λrqçs“ sr!apgs, λsq;

psÑr : a; gs, λs; gr, λrqçr“ sr?apgr, λrq; and psÑr : a; gs, λs; gr, λrqçp“ ε, if pRts, ru. We

extend ϕçp to sequences of events and, given n P N , define idspnq
def
“

Ť

tidpeq
ˇ

ˇ nãÝÑ˚ e
ãÝÑu.

§ Definition 4 (Multiparty compatibility (MC)). System S is multiparty compatible if for all

p PP, for all q P Qp, and for all n “ ~q P N , if qp “ q, then

1. if q is a sending state, then @pq, ℓ, q1q P δp : Dϕ, De P E : n
ϕ¨e
ãÝÑ ^ eçp“ ℓ ^ ϕçp“ ε;

2. if q is a receiving state, then Dpq, ℓ, q1q P δp : Dϕ, De P E : n
ϕ¨e
ãÝÑ ^ eçp“ ℓ ^ ϕçp“ ε. ˛

Intuitively, condition (1) ensures that for every sending state, all messages that can be

sent can also be received, while (2) guarantees that, for every receiving state, at least one

transition will be eventually fireable, i.e., an expected message will eventually be received.

System Sst, in Fig. 1, is multiparty compatible.

pU0, W0, A0q pU1, W1, A0q

pU1, W2, A1qpU2, W2, A2q

pUÑW : task; x ă 1, txu; y “ 1, ty, y1uq

pWÑA : stop; y ă 1, H; z “ 1, tzuq

pAÑU : result; z ď 5, H; x ď 15, Hq

pWÑA : data; y ă 1 ^ y1 ă 10, tyu; z “ 1, tzuq

Figure 2 STS for Scheduled Task, cf. Fig. 1

Observe that STSpSq and MC do not ad-

dress time constraints. In fact, STSpSq might

include interactions forbidden by time con-

straints. These can be ruled out at a later

stage when analysing time properties in § 4.

We deliberately kept communication and time

properties separated, so that we can provide

simpler and modular definitions in § 7. Cru-

cially, MC guarantees that any asynchronous

execution can be mapped to a path in STSpSq,

i.e., it can be simulated by STSpSq.

We recall two types of errors from the CFSM model, which are ruled out by MC also

in the timed setting. Let s “ p~q; ~w; νq be a configuration of a system S; s is a deadlock

configuration [10, Def. 12] if ~w “ ~ε, there is r PP such that qr is a receiving state, and for

every p PP, qp is a receiving or final state, i.e., all machines are blocked waiting for messages;

and s is an orphan message configuration if all qp P ~q are final but ~w ‰ ~ε, i.e., there is

at least a non-empty buffer and all the machines are in a final state.

§ Definition 5 (Safe system). S is safe if for all s P RSpSq, s is not a deadlock, nor an orphan

message configuration. ˛

§ Theorem 6 (Safety). If S is multiparty compatible, then it is safe.

The proof follows from the fact that piq MC guarantees safety in CFSMs [14] and piiq time

constraints imply that a subset of the configurations reachable in the untimed setting are

reachable in the timed setting (modulo clock valuations). Thus, if there is a deadlock or an

orphan message configuration in the timed setting, there is one in the untimed setting, which

contradicts the results in [14].

The projection STSpSqçp of a synchronous transition system STSpSq on a machine p is

given by substituting each event e P E with its projection eçp, then minimising the automaton

w.r.t. language equivalence. For example, the projections of STSpSq onto U, W, and A are

isomorphic to the system Sst in Fig. 1. Below „ denotes the standard timed bisimulation [15].

6 Meeting Deadlines Together

§ Theorem 7 (Equivalence). If S “ pMpqpPP is MC then S „ pSTSpSqçpqpPP.

Theorem 7 says that the behaviour of the original system is preserved by STSpSq, this result

is crucial to be able to construct a global specification that is equivalent to a system of CTAs.

It follows from the fact that, (i) if the system is MC, then all the machine’s behaviour is

preserved except for the receive actions that are never executed; and (ii) since we assume

that the machines are deterministic w.r.t. messages, the projections of STSpSq also preserve

all required transitions.

4 Progress with Time Constraints

This section introduces a progress property for CTAs, ensuring that no communication

mismatch prevents the progress of the overall system (cf. § 4.1). In § 4.2, we give a sufficient

condition to guarantee progress in CTAs (cf. Theorem 13).

4.1 Progress Properties

We identify several types of errors, inspired by their counterparts in the (untimed) CFSM

model, which may arise in timed communicating systems. Let s “ p~q; ~w; νq P RSpSq;

s is an unsuccessful reception configuration if there exists r P P such that qr is a

receiving state, and for all pqr, sr?apg, λq, q1
rq P δr either (i) wsr ‰ ε and wsr R aA˚ or (ii)

@t P Rě0 : ν ` t /|ù g (i.e., r cannot receive messages from any of its queues, as they either

contain an unexpected message or none of the transition guards will ever be satisfied); and

s is an unfeasible configuration if there exists s PP such that qs is a sending state, and

pqs, sr!apg, λq, q1
sq P δs implies that @t P Rě0 : ν ` t /|ù g (i.e., s is unable to send a message

because none of its guards will ever be satisfied).

§ Definition 8 (Progress). S satisfies the progress property if for all s P RSpSq, s is not a

deadlock, an orphan message, an unsuccessful reception, nor an unfeasible configuration. ˛

Observe that the original semantics of CTAs in [17] and in Def. 2 do not allow us to

identify unsuccessful reception or unfeasible configurations. From Def. 2, a system may take

a time transition which permanently prevents a machine from firing further actions. Below,

we adjust the semantics of CTAs and give examples of “undesirable” scenarios it prevents.

§ Definition 9 (Reachable configuration (2)). s αÝÑs1 is defined as Def. 2, replacing (3) with:

3. α “ t P Rą0, ν1 “ ν ` t, @ pq P C : w1
pq“wpq, and @ p PP : q1

p “ qp and

a. qp sending ùñ Dpqp, ℓ, q2
p q P δp : Dt1 P Rě0 : ν1 ` t1 |ù guardpℓq

b. @pqp, sp?apg, λq, q2
p q P δp : pwsp P aA˚ ùñ Dt1 P Rě0 : ν1 ` t1 |ù gq

Unless stated otherwise, we only consider this semantics hereafter. ˛

Condition (3a) handles the case of machines waiting to perform send actions, and (3b)

handles receive transitions, as illustrated by the examples below:

s : q0 q1

sr!apx ă 3q

sr!bpx ă 2q

r : q2 q3

sr?apy “ 4q

sr?bpy “ 5q

Consider configuration ppq0, q2q; ~ε; ν0q in which s must send a message within 3 time units.

Condition (3a) prevents a time transition with delay t “ 3. Indeed, with a clock valuation

ν0`3, none of the action of s from q0 can be fired. Consider now configuration ppq1, q2q; ~w; νq

with wsr “ a and νpxq “ νpyq “ 3.5. Condition (3b) rules out a time transition with t “ 1.

Indeed, even if r has a transition whose guard will be enabled after time νpyq ` 1 “ 4.5, i.e.,

L. Bocchi, J. Lange, and N. Yoshida 7

pq2, sr?bpy “ 5q, q3q, this transition cannot be fired due to the content of queue wsr R bA˚; on

the other hand transition pq2, sr?apy “ 4q, q3q is no longer fireable, due to its time constraint.

4.2 A Sound Characterisation of Progress

Roadmap We give a sound condition that guarantees progress in the presence of time

constraints. The main property, interaction-enabling (IE) in Def. 12, essentially checks that

future actions are possible. IE guarantees that: (1) whatever the past, each machine that is

in a sending state is eventually able to fire one of its transitions and (2) for every message

that is sent, there exists a (future) time where this message can be received. IE relies on

checking whether an action ℓ is progress enabling (Def. 11) which ensures that, for all possible

past clock valuations, there exists a future time where the guard of ℓ is satisfied.

In the rest of this section, we give (i) a procedure for understanding the past of a

configuration, based on a graph modelling the causal dependencies between previously

executed actions; and (ii) a procedure to check that, for any reachable configuration, there

is always a future time where an available action can be fired.

Understanding the past We check that S has progress by analysing paths, i.e., sequences

of events, in STSpSq. Since STSpSq gives an over-approximation of the causal dependencies

between actions, we will construct a graph of the actual dependencies of the underlying

actions of a path. We compute the underlying actions of a path via the function:

nodespe1 ¨ ¨ ¨ ekq
def
“ e1çsidpe1q ¨e1çridpe1q ¨ ¨ ¨ ekçsidpekq ¨ekçridpekq pk ě 0q

Remarkably, given a path ϕ and two actions ℓi and ℓj in nodespϕq, i ă j does not imply that

there is a causal dependency between ℓi and ℓj . For instance, in

nodespϕq “ sr!apx ă 10,Hq ¨ sr?ap10 ď y,Hq ¨ sp!apx ă 10,Hq ¨ sp?ap10 ď z,Hq

the two receive actions sr?ap10 ď y,Hq and sp?ap10 ď z,Hq may not always be executed in

that order, since they are executed by two different participants.

The graph of dependencies of an action ℓk in a sequence of actions ℓ1 ¨ ¨ ¨ ℓk (Def. 10 below)

gives an abstraction of all actions on which ℓk depends. This is done by taking into account

two kinds of dependencies: output/input dependencies between matching send and receive

actions, and local dependencies within a single machine.

§ Definition 10 (Graph of Dependencies). Let deppε; ℓq
def
“ H and

deppρ ¨ ℓ1; ℓ2q
def
“

$

’

’

&

’

’

%

tpℓ1, ℓ2qu Y deppρ; ℓiqi“1,2 if ℓ1 “ sr!apg1, λ1q, ℓ2 “ sr?apg2, λ2q

tpℓ1, ℓ2qu Y deppρ; ℓ1q if subjpℓ1q “ subjpℓ2q

deppρ; ℓ2q otherwise

The graph of dependencies of ρ “ ℓ1 ¨ ¨ ¨ ℓk (ką 0), written DGpρq, is the graph pD, Aq s.t.

A“deppℓ1 ¨ ¨ ¨ ℓk´1; ℓkqztpℓi, ℓkq
ˇ

ˇ1 ď iă ku and D“tℓr‰ℓk

ˇ

ˇ Dpℓi, ℓjq P A^ r P ti, juu.1 ˛

DGpℓ1 ¨ ¨ ¨ ℓkq is a graph whose nodes form a subset of tℓ1, . . . , ℓk´1u and whose edges model

causal dependencies between actions (computed backwards starting from ℓk). In Fig. 3 (in

solid black), we give the graph of dependencies of WA?datapz “ 1, tzuq in the sequence ρst,

corresponding to an execution of the Scheduled Task Protocol.

1 For the sake of presentation, we write ℓi for the node pi, ℓiq in D where ℓi is an action in ρ and i is its
position in ρ. This guarantees that each element in ρ is assigned a unique node in D.

8 Meeting Deadlines Together

p1q UW!taskpx ă 1, txuq p2q UW?taskpy “ 1, ty, y1uq p3q WA!datapy ă 1 ^ y1 ă 10, tyuq

p5q WA!datapy ă 1 ^ y1 ă 10, tyuq

p4q WA?datapz “ 1, tzuq

p6q WA?datapz “ 1, tzuq

ρst “ UW!taskp...q¨UW?taskp...q¨WA!datap...q¨WA?datap...q¨WA!datap...q¨WA?datap...q

Figure 3 Graph of dependencies DGpρstq, in solid black, cf. Scheduled Task Protocol (Fig. 1)

idxpρq
def
“ ti

ˇ

ˇ ℓi P Du W i
x pρq

def
“

#

vi´vj if 0 ď j“max

j ă i
ˇ

ˇ ℓj PD ^ x P resetpℓjq
(

vi otherwise

allpastpρq
def
“

ľ

iPidxpρq

absoluteρpℓiq

elapsepρq
def
“

ľ

pℓi,ℓj qPA

vi ď vj absoluteρpℓiq
def
“ guardpℓiq

x ÞÑ W i
x pρq

(

xPX

Figure 4 Functions on graphs of dependencies, where DGpρq “ pD, Aq

Given a graph of dependencies DGpρq, we define several functions that allow us to

construct predicates modelling the past. The definitions of these functions are given in Fig. 4,

where we fix DGpρq “ pD, Aq. Below, we illustrate how they behave using DGpρstq in Fig. 3.

First, we transform the guard of an action ℓi such that its solutions are the possible absolute

times (i.e., from the initial configuration of the system) in which one may execute ℓi (taking

into account the last reset of each clock in ρ). In our example, we have:

absoluteρst

pℓ5q “ v5´v3 ă 1^v5´v2 ă 10 with ℓ5 “ WA!datapy ă 1^ y1 ă 10, tyuq

Observe that clock y (resp. y1) is replaced by the difference between variable v5 and variable

v3 (resp. v2) corresponding to the latest step where y (resp. y1) was reset. Unifying, e.g., y

and y1 into v5 models the fact that time elapses at the same pace for all clocks. Next, we

aggregate the information in DGpρq, by (i) recording the indices of all the actions on which ℓk

depends (idxpρq); (ii) taking the conjunction of all constraints in absolute time (allpastpρq);

and (iii) recording the fact that time never decreases between two causally dependent actions

(elapsepρq). Taking the dependencies for ρst in Fig. 3, we have:

allpastpρstq “ v1 ă1 ^ v2 “1 ^ pv3 ´v2 ă 1 ^ v3 ´v2 ă 10q ^ v4 “ 1 ^ pv5 ´v3 ă 1 ^ v5 ´v2 ă 10q

elapsepρstq “ v1 ď v2 ^ v2 ď v3 ^ v3 ď v4 ^ v3 ď v5 idxpρstq “ t1, 2, 3, 4, 5u

Predicting the future We now give the main definition of this section, allowing to check

whether the past implies that there exists a satisfiable future. We use the functions defined

above to check whether a given event in STSpSq can indeed meet its time constraints.

§ Definition 11 (Progress enabling (PE)). A pair pn, eq is progress enabling (PE) for p P idpeq

if for all paths ϕ such that n0
ϕ

ãÝÑ n, letting:

ρ “

#

nodespϕ ¨ eq if p “ ridpeq

nodespϕq ¨ eçsidpeq otherwise

and k “ |ρ|, ℓk “ eçp, ~v “ tvi

ˇ

ˇ i P idxpρqu; the following holds

@~v Dvk : allpastpρq ^ elapsepρq ùñ absoluteρpℓkq ^
Ź

viP~v vi ď vk

L. Bocchi, J. Lange, and N. Yoshida 9

A pair pn, ϕq is recursively progress enabling (RPE) for P ĎP if ϕ “ ε and P “ H; or if pn, eq

is PE for sidpeq and for ridpeq and pn1, ϕ1q is RPE for P zidpeq with ϕ “ e ¨ ϕ1 and n
e

ãÝÑ n1. ˛

Given a node n and an event e in STSpSq, and a participant p, the above definition ensures

that for all possible past clock valuations, there exists a future time where participant p has

the possibility to execute action eçp. For instance, the pair ppU1, W1, A0q, pWÑA : data; y ă

1^ y1 ă 10, tyu; z “ 1, tzuqq is PE for A, notably because the following holds:

@v1 . . . v5 Dv6 : allpastpρstq ^ elapsepρstq ùñ pv6 ´ v4q “ 1^ v1 ď v6 . . . v5 ď v6

Below, Def. 11 is used in STSpSq to ensure progress of the overall system.

§ Definition 12 (Interaction enabling (IE)). A node n P N is interaction enabling (IE) if either

(i) it is final or (ii) the following conditions hold:

1. There is e P E and ϕ such that n
e¨ϕ
ãÝÑ and pn, e ¨ ϕq is RPE for idspnq;

2. For all e P E such that n
e

ãÝÑ n1, pn, eq is PE for ridpeq, and n1 is IE.

A system S is interaction enabling (IE) if n0 is IE. ˛

Def. 12 recursively checks the nodes of STSpSq (starting from n0) and for each ensures that:

(1) there is at least one path, involving all the participants still active at node n, that is

RPE, i.e., where each guard along that path is satisfied for any past; (2) each receive action

is PE and its successor is IE (note that a send action is always a dependency of its receive

action). Condition (1) ensures that no sender will be left in a configuration where it cannot

send any message, due to time constraints being unsatisfiable; condition (2) ensures that a

receive action is always feasible given that its corresponding send action was executed.

Examples (1) The first example shows how resets affect the satisfiability of guards.

s :
sr!apx “ 3q

sr!bpx “ 5q

sr!cpx “ 7q
r :

sr?apy ď 3, y :“ 0q

sr?bpy ď 2, y :“ 0q

sr?cpy ď 2q

The system above is IE, notably, because the following holds:

@v1v2v3v4v5 Dv6 : v1 “ 3 ^ v2 ď 3 ^ v3 “ 5 ^ v4 ´ v2 ď 2 ^ v5 “ 7 ^

v1 ď . . . ď v5 ùñ v6 ´ v4 ď 2 ^ v1 ď v6 . . . v5 ď v6

Notice that the resets of clock y (recorded by subtracting v2 and v4 in the formula above)

allow r to receive message c before absolute time 7. If we modified the example by removing

the second reset of y in machine r, then the system would not be IE because message c

would be expected before absolute time 5, while c can only be sent at time 7. In fact, the

RHS of the implication above would become: v6 ´ v2 ď 2 ^ v1 ď v6 . . . v5 ď v6.

(2) The second example shows a system of three machines, which violates IE (Def. 12).

sr!a

sr!b

x ă 2 ps?c

sr?a

sr?b
ps!c

s r p

n0 n1 n2

psÑr : a; true, H; true, Hq

psÑr : b; x ă 2, H; true, Hq

ppÑs : c; true, H; true, Hq

If participant s does not send b before time 2, then message c (sent by p), will never be

received. This system is not IE because there is no path from n0 that is RPE for ts, r, pu.

The only transition that is PE from n0 is the loop on n0 (which does not involve p).

10 Meeting Deadlines Together

(3) The third example shows that IE captures a “global” notion of progress (i.e., all

participants must able to proceed). Consider the system of four machines below:

s1r1!a

x ą 2

s1r1!b

x ă 2

s
1
r

1
?
a

s
1
r

1
?
b

s
2
r

2
!c

s
2
r

2
!d

s
2
r

2
?
c

s
2
r

2
?
d

s1 r1 s2 r2

n0 n1

n3 n2

ps1 Ñr1 : a; x ą 2, H; true, Hq

ps1 Ñr1 : b; x ă 2, H; true, Hq

ps1 Ñr1 : a; x ą 2, H; true, Hq

ps1 Ñr1 : b; x ă 2, H; true, Hq

ps
2

Ñ
r

2
:

c
;

t
r
u
e
,

H
;

t
r
u
e
,

H
q

ps2 Ñr2 : d; true, H; true, Hq

ps
2

Ñ
r

2
:

c
;

t
r
u
e
,

H
;

t
r
u
e
,

H
q

ps2 Ñr2 : d; true, H; true, Hq

this system is not IE. Indeed, although there is one RPE path outgoing node n1 (machines

s2 and r2 can continue interacting), there is no path that is RPE for all participants

ts1, r1, s2, r2u. Observe that s1 is stuck in n1, as the transition with label s1r1!bpx ă 2, txuq

can never be fired by s1, i.e., @v0Dv1 : v0 ą 2 ùñ v0 ď v1 ă 2 does not hold.

§ Theorem 13 (Progress). Suppose S is multiparty compatible (Def. 4) and interaction

enabling (Def. 12). (1) Then S satisfies the progress property. (2) For all s “ p~q; ~w; νq P

RSpSq, if there is p PP such that qp is not final, then there is s1 such that sÝÑs1.

§ Theorem 14 (Decidability). Interaction enabling (Def. 12) is decidable.

The decidability of Def. 12 relies on the fact that the logic used in Def. 11 forms a subset of

the Presburger arithmetic, which is decidable; and that it is enough to check finite paths in

STSpSq. The complexity of the decision procedure is mostly affected by the enumeration

of paths in STSpSq (which can be reduced via partial order reduction techniques) and the

satisfiability of Presburger formulae (which can be relegated to an SMT solver).

5 Non-Zenoness and Eventual Reception in CTAs

In the presence of time constraints, one needs to make sure that some participant’s only

possible way forward is not by firing actions at increasingly short intervals of time, i.e., by

zeno behaviours. This is a common requirement in real-time systems [2], and it is justified by

the assumption that “any physical process, no matter how fast, cannot be infinitely fast” [21].

In order to identify zeno behaviours in our systems, we assume without loss of generality

that there is a special clock x̂ P X which is never reset, i.e., for all p PP and all pq, ℓ, q1q P

δp : x̂ R resetpℓq. Hence, x̂ keeps the absolute time since the beginning of the interactions.

Let s “ p~q; ~w; νq be a configuration of a system S, s is a zeno configuration if there exists

t P Rě0 such that for all s1 “ p~q1; ~w1; ν1q, s ÝÑ˚ s1 implies ν1px̂q ă t and s1ÝÑs2, for some s2.

§ Definition 15 (Non-zeno system). S is non-zeno (NZ) if @s P RSpSq, s is not a zeno

configuration. ˛

The following example shows that a zeno configuration may still occur in systems that are

multiparty compatible and interaction enabling.

s :
sr!apx ă 3q

sr!bpx ě 3q
r :

sr?apy ě 3q

sr?bpy ě 4q

The system above (ignoring the dashed transitions) satisfies MC and IE, e.g., @v0 Dv1 : v0 ă

3 ùñ v1 ě 3^ v0 ď v1, but is not NZ. Because of the upper bound x ă 3 and the fact that

x is not reset in the loop, machine s has to produce an infinite number of (send) actions in

L. Bocchi, J. Lange, and N. Yoshida 11

a finite amount of time (3 time units). A dramatic consequence of this zeno behaviour is

that machine r will never be able to consume any message a due to the fact that constraint

y ě 3 will never be satisfied (cf. Def. 9). This system violates eventual reception, a property

which guarantees that every message that is sent is eventually received. Formally, a system

S satisfies eventual reception (ER) if for all s “ p~q; ~w; νq P RSpSq, if wsr P aA˚, then

sÝÑ˚ sr?apg, λqÝÝÝÝÝÝÑ.

The system above (considering the dashed transitions) is NZ and satisfies ER: the dashed

transitions offer an ‘escape’ from zeno-only behaviours where time can elapse and thus allow

machine r to consume any messages that were sent. Observe that in general NZ alone is not

sufficient to guarantee ER. However, ER is guaranteed for systems which validate all the

condition presented in this paper, see Theorem 19 below.

The example also shows a fundamental difference between CTAs and models with

synchronous communications, such as Networks of Timed Automata (NTAs) [2]. The work

in [7] shows that it is sufficient that one machine in each loop of an NTA satisfies non-zenoness

for the whole system to be non-zeno. This is not generally true for CTAs. In the example

above (ignoring the dashed transitions), time cannot diverge despite the machine on the right

being non-zeno.

Checking non-zenoness Now we give a condition on STSpSq that, together with MC,

guarantees non-zenoness. A walk in STSpSq is an alternating sequence n1 ¨ e1 ¨n2 ¨ ¨ ¨ ek´1 ¨nk

such that ni
ei

ãÝÑ ni`1 for all 1 ď i ă k. We let ω range over walks in STSpSq. A walk is

elementary if pni ¨ eiq ‰ pnj ¨ ejq for all 1 ď i ‰ j ă k. A (elementary) cycle in STSpSq is a

(elementary) walk n1 ¨ e1 ¨ n2 ¨ ¨ ¨ ek´1 ¨ nk such that n1 “ nk.

Given guard g and clock x, we say that g is an upper bound for x, written g is UB for x,

if there is a sub-term x ď c in g (not under a negation) or a sub-term c ď x under a negation.

We say that g is strictly positive, written g is SP, if for all clocks x P fcpgq and for all

sub-terms in g of the form x ď c (not under negation) or c ď x (under negation), c P Qą0.

§ Definition 16 (Cycle enabling (CE)). System S is cycle enabling (CE) if for each elementary

cycle ω in STSpSq, and for each clock x such that there is psÑr : a; gs, λs; gr, λrq in ω and

gs is UB for x, the following holds, either

1. there are (i) pp Ñ q : b; gp, λp; gq, λqq in ω s.t. x P λp Y λq, and (ii) pp1 Ñ q1 :

b1; gp1 , λp1 ; gq1 , λq1q in ω s.t. gp1 is SP; or

2. for each pni ¨ e ¨ ni`1q in ω, there is n1 ‰ ni P N and e1 ‰ e P E such that idpeq “ idpe1q,

ni
e1

ãÝÑ n1, and pni, e1q is PE for sidpe1q ˛

Condition (1) adapts structural non-zenoness from [22] to CTAs by requiring that: (i) each

x is reset in ω, and (ii) it is possible to let some time elapse at each iteration. Condition (2)

requires that the “escape” event e1, leading to a different node n1, can always be taken. Our

running example satisfies CE (Def. 16); STSpSstq has one (elementary) cycle in which two

clocks have an upper bound: clock y satisfies (1) since it is reset and the guards have upper

bounds strictly greater than 0 in the cycle; clock y1 satisfies (2) since there is an escape event,

e1 “ pWÑA : end; y ă 1,H; z “ 1, tzuq, which is PE for W.

§ Theorem 17 (Non-zenoness). If S is MC and CE, then S is non-zeno.

§ Theorem 18 (Decidability). Cycle enabling (Def. 16) is decidable.

§ Theorem 19 (Eventual reception). If S is MC, IE, and CE, then S satisfies ER.

12 Meeting Deadlines Together

U (x ă 1 | x :“ 0)

task

W (y “ 1 | y :“ 0, y1 :“ 0)

W (y ă 1 ^ y1 ă 10 | y :“ 0)

data

A (z “ 1 | z :“ 0)

W (y ă 1)

stop

A (z “ 1 | z :“ 0)

A (z ď 5)

result

U (x ď 15)

xSendery (xsender guardy | xsender reset(s)y)

xlabely

xReceivery (xreceiver guardy | xreceiver reset(s)y)

Figure 5 Timed choreography for the Scheduled Task Protocol (Sst)

6 Applications and Implementation

Constructing global specifications Our theory can be easily applied and integrated with

other works, to construct sound (i.e., satisfying safety, progress, and non-zenoness) timed

global specifications, such as (syntactic) multiparty session types [6, 16], or graphical choreo-

graphies [8, 13, 19]. Thanks to Theorem 7, we can build on the algorithm in [14] to construct

(syntactic) timed global types from CTAs. In Appendix [3], we give the formal definitions

of the adaptation of the algorithm in [14]. Given an MC system S our algorithm generates

a timed global type [6] equivalent to the original system S (i.e., its projections are timed

bisimilar to those of S). This implies that if S is IE (resp. CE) then the constructed timed

global type will also enjoy progress (resp. non-zenoness). Similarly, building on the algorithm

in [19], we obtain a graphical representation reminiscent of BPMN Choreographies, see [8,19].

When applied to the Scheduled Task Protocol, the algorithm adapted from [19] produces the

choreography in Fig. 5; giving a much clearer specification for Sst.

Implementation To assess the applicability and cost of our theory, we have integrated our

theory into the tool first introduced in [19], which builds graphical choreographies from CFSMs.

Our tool [3] (implemented in Haskell and using Z3) takes as input a textual representation of

CTAs on which each condition (MC, IE, and CE) is checked for, and produces an equivalent

choreography (such as the one in Fig. 5). The results of our experiments (executed on a Intel

i7 computer, with 16GB of RAM) are below; where |P| is the number of machines, and |N |

(resp. |ãÝÑ|) is the number of nodes (resp. transitions) in STSpSq.
S |P| | N | | ãÝÑ | MC IE CE s |P| | N | | ãÝÑ | MC IE CE s

Running Example 3 4 4 X X X 0.41 ˆ4 12 256 1024 X X X 28.49
Bargain 3 5 5 X X X 0.44 ˆ2 6 25 50 X X X 12.30
Temp. calculation [6] 3 6 6 X X X 0.45 ˆ2 6 36 72 X X X 9.24
Word Count [20] 3 6 6 X X X 0.41 ˆ2 6 36 72 X X X 8.63
ATM (Template) [11] 3 9 8 X X X 0.36 ˆ3 9 729 1944 X X X 94.01
ATM (Instance) [11] 3 9 8 X X X 0.53 ˆ3 9 729 1944 X X X 96.09
Consumer-Producer [11] 2 1 1 X X X 0.16 ˆ5 10 1 5 X X X 43.19
Fischers Mutual Excl. [5] 2 4 3 X X X 0.21 ˆ4 8 256 768 X X X 3.19

Most of the protocols are taken from the literature and all are checked within a minute on

average. For the sake of space, we have used small examples throughout the paper, however

our benchmarks include bigger protocols (up-to 12 machines), which have comparable size

with those we encountered through our collaboration with Cognizant [19, 23]. Since the size

of the STS is the most critical parameter for scalability, we have tested systems consisting of

the parallel composition of several instances of a protocol. For instance, Running Example

ˆ4 is the parallel composition of four instances of Sst, cf. Fig. 1.

L. Bocchi, J. Lange, and N. Yoshida 13

7 Conclusions and Related Work

Our results are summarised in the table below. Multiparty compatibility (MC) gives (i) an

equivalence between an MC system and a system consisting of the projections of its STS ;

and (ii) a sufficient condition for safety. MC and interaction enabling (IE) form a sufficient

condition for progress; while MC and cycle enabling (CE) form a sufficient condition for

non-zenoness (NZ). Together, MC, IE, and CE ensure safety, progress, NZ, and eventual

reception (ER).

Property S „ pSTSpSqçpqpPP Safety Progress Non-Zeno ER
MC (Def. 4) X X 7 7 7

MC+IE (Def. 12) X X X 7 7

MC+CE (Def. 16) X X 7 X 7

MC+IE+CE X X X X X

Multiparty session types The work in [6] studies a typing system for a timed π-calculus

using timed global types. A class of CTAs which are safe and have progress is given in [6] via

projection of (well-formed) timed global types onto timed local types (which correspond to

deterministic, non-mixed, and directed CTAs). Well-formedness yields conditions on CTAs

that are more restrictive than the ones given in this paper. For instance, the system in Fig. 1,

which is safe and enjoys progress, is ruled out by the conditions in [6]. In addition, this paper

gives sufficient conditions for CTAs to belong to the class of safe CTAs with progress, which

was left as an open problem in [6]. The construction of timed global types from either local

types or CTAs is not addressed in [6]. Recently, [4] introduced a compliance and sub-typing

relation for binary timed session types without queues (synchronous communication semantics).

The existing works for constructing global specifications from local specifications [14, 18, 19]

only apply to untimed models. Our conditions (IE and CE) are given independently of the

definition of MC. The use of a more general notion of MC, as the one given in [19], would

allow us to lift the assumptions that the machines are directed and have no mixed states (cf.

§ 2). Hence, we could capture more general timed choreographies.

Reachability and decidability When extending NTAs [2] with unbounded channels, reachab-

ility is no longer decidable in general [17]. Existing work tackles undecidability by restricting

the network topologies [12,17] or the channel size [1]. We give general (w.r.t. topology and

channel size) decidable conditions ensuring that a configuration violating safety, progress, or

NZ will not be reached. Observe that the scenario in Fig. 1 would be ruled out in [17] (its

topology is not a polyforest) and in [1] (wWA is unbounded). Our conditions are based, instead,

on the conversation structures, which also enable the construction of global specifications.

Non-zeno conditions In § 5 we set the conditions for time divergence, by ruling out

specifications in which the only way forward is a zeno behaviour. This condition is called

time progress in [2] and it is built-in in the definition of runs of a TA. Several conditions

have been proposed to ensure absence of non-zeno behaviours in TAs: some, e.g., [21], do

not allow any zeno execution, and some, e.g., [7], and this work (cf. Def. 15), ensure that

there is always a non-zeno way forward. The condition in [7] can be checked with a simple

form of reachability analysis which introduced the notion of ‘escape’ from a zeno loop, which

we also use. [7, 21] consider Networks of TAs (NTAs), which do not feature asynchrony nor

unbounded channels.

Acknowledgements We would like to thank the ZDLC team at Cognizant for their stim-

ulating conversations and Dominic Orchard for some (very useful) Haskell tips. This

14 Meeting Deadlines Together

work is partially supported by UK EPSRC projects EP/K034413/1, EP/K011715/1, and

EP/L00058X/1; and by EU 7FP project under grant agreement 612985 (UPSCALE).

References

1 S. Akshay, Paul Gastin, Madhavan Mukund, and K. Narayan Kumar. Model checking time-

constrained scenario-based specifications. In FSTTCS, volume 8 of LIPIcs, pages 204–215,

2010.

2 Rajeev Alur and David L. Dill. A theory of timed automata. TCS, 126:183–235, 1994.

3 Webpage of this paper, 2015. http://www.doc.ic.ac.uk/~jlange/cta/.

4 Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro Sebastian Podda, and

Livio Pompianu. Compliance and subtyping in timed session types. In FORTE, volume

9039 of LNCS, pages 161–177. Springer, 2015.

5 Johan Bengtsson et al. Uppaal - a tool suite for automatic verification of real-time systems.

In Hybrid Systems III, volume 1066 of LNCS, pages 232–243. Springer, 1996.

6 Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty session types. In

CONCUR, volume 8704 of LNCS, pages 419–434. Springer, 2014.

7 Howard Bowman and Rodolfo Gómez. How to stop time stopping. FAC, 18(4):459–493,

2006.

8 BPMN 2.0 Choreography, 2012. http://en.bpmn-community.org/tutorials/34/.

9 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. JACM,

30(2):323–342, 1983.

10 Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communication.

I&C, 202(2):166–190, 2005.

11 Prakash Chandrasekaran and Madhavan Mukund. Matching scenarios with timing con-

straints. In FORMATS, volume 4202 of LNCS, pages 98–112. Springer, 2006.

12 Lorenzo Clemente, Frédéric Herbreteau, Amelie Stainer, and Grégoire Sutre. Reachability

of communicating timed processes. In FOSSACS, volume 7794 of LNCS, pages 81–96.

Springer, 2013.

13 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating

automata. In ESOP, volume 7211 of LNCS, pages 194–213. Springer, 2012.

14 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating

automata: Characterisation and synthesis of global session types. In ICALP (2), volume

7966 of LNCS, pages 174–186. Springer, 2013.

15 Uno Holmer, Kim Guldstrand Larsen, and Wang Yi. Deciding properties of regular real

time processes. In CAV, volume 575 of LNCS, pages 443–453. Springer, 1991.

16 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session

types. In POPL, pages 273–284. ACM, 2008.

17 Pavel Krcál and Wang Yi. Communicating timed automata: The more synchronous, the

more difficult to verify. In CAV, volume 4144 of LNCS, pages 249–262, 2006.

18 Julien Lange and Emilio Tuosto. Synthesising Choreographies from Local Session Types.

In CONCUR, volume 7454 of LNCS, pages 225–239. Springer, 2012.

19 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to

graphical choreographies. In POPL, pages 221–232, 2015.

20 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for

multiparty conversations. In BEAT, volume 162 of EPTCS, pages 19–26, 2014.

21 Stavros Tripakis. Verifying progress in timed systems. In Formal Methods for Real-Time

and Probabilistic Systems, volume 1601 of LNCS, pages 299–314. Springer, 1999.

22 Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. Checking timed büchi automata

emptiness efficiently. Formal Methods in System Design, 26(3):267–292, 2005.

23 Zero Deviation Lifecycle. http://www.zdlc.co.

http://www.doc.ic.ac.uk/~jlange/cta/
http://en.bpmn-community.org/tutorials/34/
http://www.zdlc.co

	Introduction
	Communicating Timed Automata
	Safety in CTAs
	Progress with Time Constraints
	Progress Properties
	A Sound Characterisation of Progress

	Non-Zenoness and Eventual Reception in CTAs
	Applications and Implementation
	Conclusions and Related Work

