
Enumerating Counter-Factual Type Error Messages

with an Existing Type Checker

Kanae Tsushima Olaf Chitil

Kyoto University University of Kent, UK
Research Fellow of .

the Japan Society for the Promotion, PD .
tsushima@fos.kuis.kyoto-u.ac.jp O.Chitil@kent.ac.uk

概 要 The type error message of a standard type checker for a functional language
gives only a single location as potential cause of the type error. If that location is
not the cause, which often is the case, then the type error message hardly helps in
locating the real cause. Here we present a method that uses a standard type checker
to enumerate locations that potentially cause the type error, each with an actual and
a counter-factual type for the given location. Adding our method to existing compilers
requires only limited effort but improves type error debugging substantially.

1 Introduction

The Hindley-Milner type system is a foundation for most statically typed functional program-
ming languages, such as ML, OCaml and Haskell. This type system has many advantageous, but
it does make type debugging hard: If a program is not well-typed, it is difficult for the program-
mer to locate the cause of the type error, that is, to determine where to change the program
how.

First, we note that no system can fully automatically correct a type error, because the system
cannot know the intentions of the programmer. Trivially, any ill-typed program could be replaced
by some well-typed program, e.g. x = 42. Thus the type error disappears. Even restricting
ourselves to smaller, “reasonable” changes of the program, the problem of unknown intentions
persists. Consider the following OCaml program:

let f n lst = List.map (fun x -> x ^ n) lst in

f 2.0

The program1 is ill-typed. Because ^ is string concatenation in OCaml, the type of f is string
-> string list -> string list. However, the program applies f to the floating point constant
2.0.

At least two different reasonable locations for correcting the type error spring to mind. First,
the floating point constant 2.0 could be wrong and should be replaced by some string. Only the
programmer can know which string they want, maybe "2.0":

let f n lst = List.map (fun x -> x ^ n) lst in

f "2.0"

1Library function List.map applies its first argument, a function, to each element of its second argument, a list.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30708708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

However, the occurrence of ^ is an alternative type error location. Instead of string concatena-
tion the programmer may have intended to use an operator on floating point numbers, such as
** or +.:

let f n lst = List.map (fun x -> x ** n) lst in

f 2.0

Both programs above are well-typed and may have been intended by the programmer.
Secondly, we observe that a type error message produced by existing functional programming

systems is actually very helpful, if it happens to identify the type error location correctly. Existing
systems only identify a single type error location; the chosen location depends on the details of
the type checking algorithm. For our ill-typed example program the OCaml compiler identifies
2.0 as type error location2 and adds:

Error: This expression has type float

but an expression was expected of type string

This message gives two different types for the type error location 2.0: Its actual type and an
expected type. The expected type is determined by the context of the type error location, the
rest of the program. As it is different from the actual type, the expected type is a counter-factual
type. The message basically says that if the subexpression at the type error location was replaced
by some expression of the expected type, then this part of the program would be well-typed (there
might be further type errors elsewhere). The programmer still has to select a subexpression of the
expected type that meets their intentions. Overall the counter-factual, expected type provides
the information to make type debugging easy for the programmer.

Combining our two observations we see how we can simplify type debugging: Instead of giving
a type error message with an expected type for just one potential type error location, we want
to enumerate such type error messages for all potential type error locations. So for our example
we additionally want to obtain a type error message suggesting ^ as the type error location and
saying

Error: This expression has type string -> string -> string

but an expression was expected of type ’a -> float -> ’b

The list of all type error messages with different locations will not be given as a whole to the
programmer. Instead the programmer sees one such message at a time, decides whether the type
error location has been identified correctly, and only if this is not the case, then the next type
error message will be shown. It is clearly desirable to enumerate type error messages such that
those that most likely are correct are enumerated early.

Although we can construct example programs with many potential type error locations, we
believe that in practice a program contains a large, well-typed part, which provides a context to
limit the number of potential type error locations and yield informative expected types.

We note that to simplify type debugging, numerous extensions to functional programming
systems have been proposed in the literature, but functional programming systems used in practice
have hardly changed. The type checker of a real functional programming system is too complex
to be easily replaced by something new. Hence we do not develop a new type checking algorithm
for our purpose, but instead describe an algorithm that reuses any existing type checker, which
is treated as a black box.

2The compiler first outputs the whole let-expression with 2.0 underlined.

2

In Section 2 we outline our method for enumerating the desired type error messages using any
existing type checker. In Section 3 we list the contributions of this paper. In Section 4 we give
a formal description for a small core functional language. We describe our implementation in
OCaml in Section 5, compare our work with related work in Section 6 and conclude in Section 7.

2 Using an Existing Type Checker

We reuse an existing type checker by giving it many variations of our ill-typed program to
check. Viewing the type checker as a black box means that we expect the type checker to tell
us only whether the program is well-typed or ill-typed. If the program is well-typed, then the
type checker shall also tell us the type of the given program. If the program is ill-typed, then we
demand no further information. In particular we do not use any details of the type checker’s own
error message(s).

2.1 Single and Multiple Locations

To simplify the description, we will here only consider searching for a single location that
causes a program to be ill-typed. Take for example the ill-typed expression [1;2;3.], which
mixes integers and floating point numbers in a list. There are two single potential type error
locations:

• The subexpression 3. may be the type error location. Replacing it by an integer constant
such as 3 would yield the well-typed expression [1;2;3].

• The list constructor [..;..;..]3 may be the type error location. Replacing it by for
example a tuple (..,..,..) would yield the well-typed expression (1,2,3.).

Another way to correct the ill-typed expression would be to simultaneously replace 1 by 1. and
2 by 2., yielding the well-typed expression [1.;2.;3.]. For now we exclude this case. We can
extend our method to also handle such cases. Even then it seems sensible to first enumerate all
single locations, followed by pairs of locations, etc. It is very likely that the programmer will
find the actual cause of the type error early in this list and thus does not have to look at error
messages listing several locations.

2.2 Only Leaves as Locations

In all our previous examples potential type error locations were simple variables or constants,
not more complex expressions. In other words, a location was a leaf of the abstract syntax tree,
never an inner node of the abstract syntax tree. Our method works for both leaves and inner
nodes, but to debug all type errors it is sufficient to consider only leaf locations. Any program
without any leaves is well-typed, because only the use occurrences of variables, data constructors
and constants lead to type constraints that cause type errors. It may be possible to debug all
type errors by considering only leafs (the replacement may be a complex function that rearranges
a whole subtree of the abstract syntax tree), but our method works for both leafs and inner nodes
and hence we consider both.

3Desugaring this list construction into uses of the list constructor (::) and the empty list is not desirable,
because desugared expressions in error messages would be confusing for the programmer.

3

2.3 Determining Locations with Expected Types

Let us consider the simple program 1.0 + 2.0. Because the operator + demands integer num-
bers but 1.0 and 2.0 are floating point numbers, the program is ill-typed. Internally the program
is represented as an application of the operator to two arguments, that is, (@ (+) 1.0 2.0).

The program has 3 leaf locations. We investigate for each leaf whether it is a potential single
type error location by type checking a corresponding variant of our program:

(1) fun hole -> @ hole 1.0 2.0

(2) fun hole -> @ (+) hole 2.0

(3) fun hole -> @ (+) 1.0 hole

So we replaced a potential type error location by a new variable hole and added a λ-binding for
the variable to the whole program. The λ-binding ensures that the program has no free variables
and allows us to obtain a type for hole from the type checker.

We run the existing type checker on each of the 3 program variants. Programs (2) and (3) are
ill-typed. Hence replacing the variable hole by any expression of any type would not make the
program well-typed. Consequently the locations 1.0 and 2.0 are not potential single type error
locations.

Program (1) is well-typed and its inferred type is (float -> float -> ’a) -> ’a. So the
type of the variable hole is float -> float -> ’a. Consequently (+) is a potential type error
location and we can produce the following message:

1. + 2.

Error: Here expected an expression of type float -> float -> ’a

2.4 Obtaining Actual Types too

The error message above does not yet include the actual type of +. We can also obtain that
type if we do not simply replace a potential type error location by a variable hole, but instead
apply a variable hole to the potential type error location. Again we λ-bind the variable hole.
So instead of the 3 program variants listed before, we type check the following 3 variants:

(1) fun hole -> @ (@ hole (+)) 1.0 2.0

(2) fun hole -> @ (+) (@ hole 1.0) 2.0

(3) fun hole -> @ (+) 1.0 (@ hole 2.0)

As before, only variant (1) is well-typed. For this variant the inferred type is ((int -> int ->

int) -> (float -> float -> ’a)) -> ’a. So the type of the variable hole is (int -> int

-> int) -> (float -> float -> ’a), which contains both the actual and the expected type
of the potential type error location. Thus we can produce the complete message:

1. + 2.

Error: This expression has type int -> int -> int

but an expression was expected of type float -> float -> ’a

Naturally we could have obtained the actual type of + by just type checking the program (+).
However, in general a potential type error location may not be a predefined function or data
constructor, but some variable that is λ- or let-bound in the ill-typed program. Our method of
applying a variable hole to the potential type error location works in all situations.

4

3 Contributions

In this section, we describe the advantages of counter-factual type error messages and the
contributions of this work.

- Counter-factual type error messages work well for type-annotated program
Programmers often use type annotations to locate the cause of a type error. However, type

annotations sometimes do not work as we expect. Let us consider the following program with a
type annotation:

let f = (fun n -> (fun lst -> List.map (fun x -> x ^ n) lst)) in

f (2.0:float)

Although a programmer wrote the program given on the first page, they received the error message
shown on the second page. Therefore they added this annotation. However it does not work as
expected. OCaml does not treat type annotations specially. OCaml always infers types in a
top-down traversal of the program. When OCaml finds the type annotation in this program, it
already inferred the type of f. Hence OCaml identifies 2.0 as the cause of the type error again.
Because counter-factual type error messages are produced independently of the order of type
unification, type annotations work more effectively than ever before.

- Our approach is extendable
Using an existing type checker gives us extendability . Our approach requires the ability to

insert holes anywhere in a program and to obtain the types of holes. This is not a difficult. We
can extend our idea to type definitions, patterns, record definitions and objects. For example,
consider the following small program:

type st = String of int

let k = String("k")

To make a hole in this type definition, we just add a new type variable ’a that replaces int.

type ’a st = String of ’a

let k = String("k")

We have not yet studied our idea for all features of OCaml’s modules, but it definitely works
for simple modules. Building a tailor-made type checker for such a big language with so many
features would require far more work.

- Our approach does not need to implement a type checker and automatically updates
with the compiler

Almost all previous type debuggers use tailor-made type checkers to obtain rich information
during inferring types. Although they work well, there are two problems with using tailor-made
type checkers. The first problem is implementing the type checker. This is easy for a small
language but substantial work for any real programming language such as OCaml or Haskell.
Proving that the type checker is correct with respect to the language definition or other compilers
is even harder. The second problem is that type systems evolve and change. Some compiler
updates provide changed or extended type systems. Such updates require corresponding updates
of the tailor-made compiler. Because we use the compiler’s own type checker, we avoid these
problems.

5

(M : term) ::= c (constant)
| x (variable)
| fun x -> M (abstraction)
| @ M1 M2 (application)
| (M1, M2) (tuple)
| [M1; M2] (list constructor)
| let x = M1 in M2 (let expression)

(τ : typ) ::= b (type variable)
| int,bool, ... (type constants)
| τ1 → τ2 (function type)

図 1. The syntax of the let-polymorphic language λlet

4 Obtaining Counter-factual Types

We show our object language in Figure 1. It is the simply-typed lambda calculus extended
with tuples, list constructors and let-expressions. We assume that let-expressions have let-
polymorphism. The types of this language do not include type schemas. Type schemas are
used for inferring polymorphic types during type inference. Because we use an existing compiler’s
type checker and its inferred types, we do not need to treat type schemas. We assume a com-
piler’s type inference function INFER receives an expression and returns its type. If the received
expression is not well-typed, it returns an exception TYPE ERROR. (In this paper, we use capitalised
type-writer font to show that they are the external functions.)

4.1 The Expected Types and Actual Types of Leaves

In this section, we aim to obtain the expected types and the actual types of leaves in the
abstract syntax tree. We have already seen the basic idea in Section 2. First, we replace each leaf
of the original program by applications of fresh variables. After that, we add the lambda bindings
for them at the top of the expression and obtain their expected types and actual types using the
compiler’s type checker.

Let polymorphism The outlined idea works well if there is no let-polymorphism. To see how
to handle let-polymorphism, let us consider the following example:

let id = (fun lst -> List.iter (fun x -> x) lst) in

(id [1;3;4], id [true])

This program is ill-typed. Because the type of List.iter is (’a -> unit) -> ’a list ->

unit, the type of id must be unit list -> unit. However, we pass two lists([1;3;4] :int
list and [true]: bool list) to id, so the type checker fails. We assume the source of the type
error is in List.iter. If we replace it by List.map (map function: (’a -> ’b) -> ’a list ->

’b list), then the whole program will be well-typed.
Let us consider to cover List.iter with an application of hole. Using our original idea, we

obtain the following program (Blue parts are changes.):

(fun hole ->

let id = (fun lst -> (hole List.iter) (fun x -> x) lst) in

6

(id [1;3;4], id [true]))

However, this transformation is wrong. Although List.iter has a polymorphic type in the
original program, the replaced expression (hole List.iter) has a monomorphic type due to the
lambda binding of hole ((fun hole -> ...)). To make it polymorphic, we move the binding
for hole under the definition of id.

let id = (fun hole -> (fun lst -> (hole List.iter) (fun x -> x) lst))

By this transformation, the number of id’s arguments is increased. Therefore, we add additional
variables hole1 and hole2 to each occurrence of id as the first argument.

let id = (fun hole -> (fun lst -> (hole List.iter) (fun x -> x) lst)) in

(id hole1 [1;3;4], id hole2 [true]))

In the upper program, new variables hole1 and hole2 are not bounded. Therefore we add lambda
bindings for them and obtain the following program as the final result:

(fun hole1 -> fun hole2 ->

let id = (fun hole -> (fun lst -> (hole List.iter) (fun x -> x) lst)) in

(id hole1 [1;3;4], id hole2 [true]))

We infer the type of this transformed program using an existing type checker and obtain the
expected types and actual types of hole. From the types of hole1 and hole2 we know one of
the expected types of hole is (’b -> ’b) -> int list -> ’c and another one is (’d -> ’d)

-> bool list -> ’e. Using these types, we can produce the following error message:

let id = (fun lst -> List.iter (fun x -> x) lst) in

(id [1;3;4], id [true])

Error: This expression has type ((’a -> unit) -> ’a list -> unit)

but an expression was expected of type (’b -> ’b) -> int list -> ’c

and (’d -> ’d) -> bool list -> ’e

The Program We show the functions to obtain the expected types and actual types of leaves in
Figure 2. The function GENSYM is an external function which produces a fresh string. We assume
the names produced by GENSYM are unique in the original program. The function VAR receives a
string and returns a variable using the string. The function MAP is the standard map function
which applies the received function to each element of the received list.

The function pierce transforms expressions to obtain the expected types. It receives an ex-
pression and returns a transformed expression and a list of unbounded variables. For variables
and constants we introduce holes. We make fresh binders for holes using GENSYM and return the
transformed expression and the list of fresh variables. In other constructors, we basically call
pierce recursively to make holes in their sub-expressions. After that, we plug the transformed
sub-expressions into the original expressions. In let-expressions, we expand the unbounded vari-
ables [s1; ..; sn] of transformed M1 as lambda bindings under the let-expression. Thanks to this
process, the holes of the definition part of let-expressions are treated polymorphically.

The function add adds the arguments of the target variable. It receives an expression M, the
name of the target variable f , and a list of its unbounded arguments n. This list n is used to
know the number of additional arguments. We assume the size of n is size n. The main work of

7

pierce : term → (term ∗ string list) list

pierce[[c]] = let st = GENSYM() in [(@(VAR st)c, [st])]
pierce[[v]] = let st = GENSYM() in [(@(VAR st)v, [st])]
pierce[[fun x -> M]] = MAP (λ(t, s).(fun x -> t, s)) pierce[[M]]
pierce[[@ M1 M2]] = (MAP (λ(t, s).(@ t M2, s)) pierce[[M1]])

+ (MAP (λ(t, s).(@ M1 t, s)) pierce[[M2]])
pierce[[(M1, M2)]] = (MAP (λ(t, s).((t, M2), s)) pierce[[M1]])

+ (MAP (λ(t, s).((M1, t), s)) pierce[[M2]])
pierce[[let x = M1 in M2]] = (MAP (λ(t, [s1; ..; sn]).let (M′2, s

′) = add[[M2]](x,[s1;..;sn]) in

(let x = fun s1 -> ..

fun sn -> t in M′2, s
′)) pierce[[M1]])

+ (MAP (λ(t, s).(let x = M1 in t, s)) pierce[[M2]])

add : term ∗ string ∗ string list → term ∗ string list

add[[c]](f,n) = (c, [])
add[[v]](f,n) = if f = v then let s = MAP (fun → GENSYM())n in

(@ v (MAP VAR s), s)
else (v, [])

add[[fun x -> M]](f,n) = if x = f then (fun x -> M, [])
else let (M’, s) = add[[M]](f,n) in (fun x -> M’, s)

add[[@ M1 M2]](f,n) = let (M′1, s1) = add[[M1]](f,n) in

let (M′2, s2) = add[[M2]](f,n) in (@ M′1 M′2, s1 + s2)
add[[(M1, M2)]](f,n) = let (M′1, s1) = add[[M1]](f,n) in

let (M′2, s2) = add[[M2]](f,n) in ((M′1, M′2), s1 + s2)
add[[let x = M1 in M2]](f,n) = let (M′1, s1) = add[[M1]](f,n) in

let (M′2, s2) = add[[M2]](f,n) in

(λ[]. (let x = M′1 in M′2, s2)
(λ | [s11; ..; s1n].let(M′′2, s

′
2) = add[[M′2]](x,s1) in

(let x = fun s11 -> .. fun s1n -> M′1 in M′′2, s
′
2)s1

infer holes : term ∗ string list → (string ∗ typ ∗ typ) list

infer holes[[(M, [s1; ...; sn])]] = try(let ((t1 → t′1) → ... → (tn → t′n) → t(n+1)) =
INFER(fun s1 -> .. fun sn -> M) in

[(s1, t1, t
′
1); ...; (sn, tn, t′n)]) with TYPE ERROR → []

hole types : term → ((string ∗ typ ∗ typ) list) list

hole types[[M]] = let lst = pierce[[M]] in

MAP (fun(M, s) → infer holes(M, s)) lst

図 2. The functions to obtain the expected types of leaves

8

add is performed for the variable case. If the variable is f , add replaces it by an application with
sizen arguments. In other cases, it simply calls add recursively for their sub-expressions. add

returns the replaced expression and new unbounded variables. For example, we assume the size
of n is three. In this case, add replaces occurrence of the target variable f in M by @ f v1 v2 v3

(vns are fresh variables) and returns the replaced program and a list of unbounded variables (e.g.
[v1;v2;v3]).

The function infer holes receives an expression M and its unbounded variables [s1; ...; sn].
First, we make lambda bindings for the unbounded variables and cover the received expression
with them. If the expression is not well-typed, then it will not be a candidate of type error
messages. Otherwise, we can obtain its type using the compiler’s type checker. Because the type
of each unbounded variable has the shape (its actual type -> its expected type), we can
separate the types and collect.

The function main receives an expression M and returns the names of holes, their actual types
and expected types. If the names of holes include the information of the location, we can produce
type error messages as follows:

program (underlined using the location information)

Error: This expression has type (its type)

but an expression was expected of type (expected type)

Recursive functions We have to treat recursive let-expressions specially. Let us consider the
following example:

let rec exponential = (fun x -> if x = "0" then 1

else exponential (x - 1)) in

exponential 5

This program is obviously ill-typed. The variable x is of type string in x = "0" and of type
int in x - 1. We assume that the source of the type error of this program is "0"4 and consider to
replace "0" by (hole "0"). As we have already seen, this hole has to have a polymorphic type
in exponential 5, therefore we add the binder for hole under the let-expression. After these
transformations, we can obtain the following part-transformed program:

let rec exponential = (fun hole -> (fun x -> if x = (hole "0") then 1

else exponential (x - 1))) in

exponential 5 (* This program is halfway through transformation *)

The problem is how to handle the recursive call (exponantial (x - 1)). Because the type of
hole must be monomorphic in the definition of exponential, we add the same hole as the first
argument of the recursive call of exponential (Red part).

(fun hole1 ->

let rec exponential = (fun hole -> (fun x -> if x = (hole "0") then 1

else exponential hole (x - 1))) in

exponential hole1 5)

Through inferring the type of this transformed program, we can obtain the expected type of
"0", int.

4If we replace it by 0, the whole program is well-typed.

9

4.2 The Expected Types of Nodes

In this section, we aim to obtain the expected types of inner nodes of the abstract syntax tree.
Let us consider the following example:

List.map (fun x -> x + 1) (2, 3)

This program is ill-typed, because we pass a tuple (2, 3) to List.map as the second argument.
We assume that the cause of this program is the tuple constructor. If we replace it with a list
constructor, then we obtain the following well-typed program:

List.map (fun x -> x + 1) [2; 3]

To obtain the expected types of nodes, first we consider replacing the focused node with a hole.

(fun hole -> (List.map (fun x -> x + 1) hole))

This transformed program gives us the expected type of (2, 3), int list. To consider the
correct program, the types of arguments are also important for programmers. Therefore we pass
the arguments of the focused node to the hole.

(fun hole -> (List.map (fun x -> x + 1) (hole 2 3)))

Altogether we can obtain the expected types of nodes and the types of their arguments.

The naive transformation Some readers may consider the following transformation (It just
adds a hole as a function before the focused node).

(fun hole -> (List.map (fun x -> x + 1) (hole [2; 3])))

This transformation does not work for us, because it does not remove the type restrictions of
list constructors. For example, the following simple program is ill-typed:

[true; 3]

The cause of the type error may be the list constructor (In that case the correct program is
(true, 3)). If we use the naive transformation, the following transformed program is ill-typed.

(fun hole -> hole [true; 3])

Every hole that we introduce must remove the type restrictions of the focused part.

Let polymorphism The policy of addition of bindings is identical to the solution in the previous
section. If there are holes in the definition parts of let-expressions, we add lambda bindings for
them. Otherwise, the unbounded variables are bound at the outermost part of the program as
lambda bindings.

The program We show the functions to obtain the expected types of nodes in Figure 3. The
function skeleton replaces each node by an application of a new variable and their arguments.
skeleton returns the transformed program and the names of unbound variables. If the target node
is under the definitions of let expressions, we add lambda bindings for the unbounded variables.
This process is the same with the previous section. The function infer nodes is almost the same
with the function infer holes in the previous section. The difference is that infer nodes does
not collect the actual type of the focused expression itself. The function node types is also almost
the same with the function hole types.

10

skeleton : term → (term ∗ string list) list

skeleton[[c]] = [(c, [])]
skeleton[[v]] = [(v, [])]
skeleton[[fun x -> M]] = MAP (λ(t, s).(fun x -> t, s)) skeleton[[M]]
skeleton[[@ M1 M2]] = let st = GENSYM() in [(@ (var st) M1 M2, [st])]

+ (MAP (λ(t, s).(@ t M2, s)) skeleton[[M1]])
+ (MAP (λ(t, s).(@ M1 t, s)) skeleton[[M2]])

skeleton[[(M1, M2)]] = let st = GENSYM() in [(@ (var st) M1 M2, [st])]
+ (MAP (λ(t, s).((t, M2), s)) skeleton[[M1]])
+ (MAP (λ(t, s).((M1, t), s)) skeleton[[M2]])

skeleton[[[M1; M2]]] = almost the same with the tuple case
skeleton[[let x = M1 in M2]] = (MAP (λ(t, s).let (M′2, s

′) = add[[M2]](x,s) in

(let x = fun s -> t in M′2, s
′)) skeleton[[M1]])

+ (MAP (λ(t, s).(let x = M1 in t, s)) skeleton[[M2]])

infer nodes : (term ∗ string list) → (string ∗ typ) list

infer nodes[[(M, [s1; ...; sn])]] = try(let t1 → ... → tn → t(n+1) =
INFER(fun s1 -> ... fun sn -> M) in

[(s1, t1); ...; (sn, tn)]) with Type Error → []

node types : term → ((string ∗ typ) list) list

node types[[M]] = let lst = skeleton[[M]] in

MAP infer nodes lst

図 3. The functions to obtain the expected types of nodes

4.3 A Study of type error messages’s Ordering

We introduced an approach to make type error messages of all single potential type error
locations using an existing compiler’s type checker. Because we might sometimes have many
messages for an ill-typed program, the messages’s order of showing programmers is important. If
we simply show all type error messages, the needed time to locate the source of the type error
depends on the order.

To define an efficient order, we need experiences, such as many ill-typed programs and their
sources of the type errors. Frequent mistakes may be differ depending on the programmers.
Therefore, we need a way to gather the experiences and to extract the information about possi-
bility of the source of the type error from them automatically. In this paper, we do not go further
about this problem.

4.4 Interactive Type Debugging

In this section, we consider the possibility about interactive type debugging using our approach.
First, we consider the program that we introduced in Section 1 again.

let f = (fun n -> (fun lst -> List.map (fun x -> x ^ n) lst)) in

f 2.0

11

We can obtain 4 different type error messages 5 from this program. They are about f (in f 2.0),
2.0 (in f 2.0), ^ and n (in x ^ n). First, we consider the case that the first error message is
about n as the following:

let f = (fun n -> (fun lst -> List.map (fun x -> x ^ n) lst)) in

f 2.0

Error: This expression has type float

but an expression was expected of type string

Now, we assume the programmer’s intended source of the type error is in ^. In this case, this error
message is inept. Because the actual type is the programmer’s intended type, the programmer
answers this expected type, string, is not her/his intended type. Therefore, we can memorize
the information that programmer’s intended type of n (in x ^ n) is not string. Using this
information, we remove some candidates of the type error messages.

To judge which candidates we can remove, we just make another hole, the same hole with the
upper message in the candidates. For example, we consider the following candidate about 2.0:

(fun hole ->

let f = (fun n -> (fun lst -> List.map (fun x -> x ^ n) lst)) in

f (hole 2.0))

We make a hole at the part of n in this program.

(fun hole2 -> (fun hole ->

let f = (fun hole2 ->

(fun n -> (fun lst -> List.map (fun x -> x ^ (hole2 n)) lst))) in

f hole2 (hole 2.0)))

Using this transformed program, we can obtain the expected type of n, string. Because this
has a conflict with the previous programmer’s answer, we can remove this type error message
from the candidates. Although this is the case two types are the same, the programmer’s answers
work if they are the same. To judge two types have type conflicts, we can use the function which
determines “more general” 6. It receives two types, A and B, and determines if A is more general
than B. For example, we have two types string -> ’a and ’b -> ’c. The latter is more general
than the former. If a programmer’s previous answers of a focused expression are more general
than its inferred type, we can judge the candidate is not needed.

In a similar way, we can refresh candidates using the programmer’s answers. In this case, we
have only one candidate ^ after asking the first error message. Like this, although we have many
candidates first, the programmer do not have to see all of them.

4.5 A Study of Several Type Errors in an Ill-typed Program

An ill-typed program often includes many type conflicts. In this section, we describe how to
deal them in our approach.

Let us consider the following example which may include some causes of type errors:

[1; 2.; "3"]

5Actually, we obtain 6 type error messages using the functions we show in Figures 2 and 3. Although they
include f 2.0 (application) and x ^ n (application), their transformed programs are the same with f (in f 2.0)
and 2.0 (in f 2.0) respectively. Therefore we omit 2 messages here.

6In OCaml, there is a function Ctype.moregeneral.

12

Because a list constructor requires its all elements to have the same type, this program is ill-
typed. Here, we assume the programmer considers this program should have type float list
7, therefore the causes of the type errors are in 1 and true. First, we obtain a candidate about
the list constructor using the functions in Sections 4.1 and 4.2. The error message about the list
constructor is the following:

[1; 2.; "3"]

Error: This expression’s arguments have types int, float and bool respectively

and its expected type is ’a,

but this constructor requires the type ’b -> ’b -> ’b -> ’b list.8

However, this constructor is not the cause of the type error for the programmer. At this point,
we already show all candidates because there is only one single potential type error location in the
original program. Therefore, we reconstruct a new program from the original ill-typed program.
Because we know the list constructor is the programmer’s intended one, we add it first and after
that we add other parts until the whole program will be ill-typed. For example, in this case,
we can obtain a new ill-typed program [1; 2.; �]9. In this program, 1 and 2. cause a type
conflict. Because "3" was abstracted, 1 and 2. become candidates for single type error locations
in this program. One message of the candidates (about 1) is the following:

[1; 2.; "3"]10

Error: This expression has type int

but an expression was expected of type float.

Because we assume the programmer’s intended type of the whole program is float list, this
error message shows one of the sources of the type errors in the original program. After s/he
corrects it, we restart type debugging to locate another source of the type error, "3".

As just described, if an ill-typed program has several sources of the type errors, we can debug
it by repeating debugging and narrowing of the original program. This narrowing is done by a
kind of type error slicing11.

7For example, [1.; 2.; 3.] might be the correct intended program.
8The upper two lines are about the expected types, and the last line is about the ac-

tual type of the focused list constructor. In Section 4.2, we do not touch about the ac-
tual type of nodes. We can obtain them by replacing the sub-expressions of the focused expression by fresh vari-
ables and bind them. In this case, we make (fun a -> fun b -> fun c -> [a;b;c]) from the focused expres-
sion and obtain the type (’b -> ’b -> ’b -> ’b list) using a compiler’s type checker.

9This � is a kind of holes, however we do not take notice of its type.
10Although we show the original program in this message,
type debugger uses different program [1; 2.;]
11Usually the aim of type error slicing is to obtain the minimum slice from the original program. We do not try

to obtain the minimum slice here.

13

5 Implementation in OCaml

We have implemented a prototype of our approach for a subset of OCaml 3.12.1. Our target
language includes standard expressions, such as if-expressions, constructors and the like. Thanks
to the following features of OCaml, we can minimize our effort of implementation.

• the abstract syntax tree for expressions and types

• the lexer, the parser, and pretty printer for types

• the type checker infer (that receives an expression and returns its type or an exception
Type Error)

Because we utilize the lexer and parser of OCaml, our work is transforming the abstract syntax
tree by the functions shown in Figures 2 and 3. Each part of the OCaml’s abstract syntax tree
have the information of its program location. Using these information we generate new symbols
(GENSYM) including its location information.

We do not change these compiler’s functions at all. If we extend the object language with
modules, objects and so on, we will use these strongly typed language’s fundamental features as
is. Therefore it will be easy to implement our approach in other languages.

To improve the behavior of our implementation, we also use the following features of OCaml.

• the function moregeneral (that determines if one type is more general than the other type)
and the type unifier unify (that receives two types and returns the unified type)

We use the function moregeneral to realize an interactive type debugging and unify to realize
recommendations of amendments.

Recommendations of amendments We have the expected types in our type error messages.
If the expected types are the programmer’s intended one, we can make recommendation of amend-
ments using them. For example, let us consider the program shown in Section 4.1.

let id = (fun lst -> List.iter (fun x -> x) lst) in

(id [1;3;4], id [true])

We assume the cause of this type error is in List.iter. If we replace it by List.map, the whole
program will be well-typed. The error message about List.iter is the following:

let id = (fun lst -> List.iter (fun x -> x) lst) in

(id [1;3;4], id [true])

Error: This expression has type ((’a -> unit) -> ’a list -> unit)

but an expression was expected of type (’b -> ’b) -> int list -> ’c

and (’d -> ’d) -> bool list -> ’e

From this message, we know the expected type of List.iter is (’b -> ’b) -> int list ->

’c and (’d -> ’d) -> bool list -> ’e. Because we know the type of List.map is (’f -> ’g)

-> f list -> ’g list, we can judge the expected types and the type of List.map do not have
type conflicts. Therefore we can recommend List.map as an amendment. To produce recommen-
dation of amendments, we need a list of candidates of amendments. We judge which ones do not
have type conflicts with the expected types using the function unify. In our implementation, we
use the functions in OCaml’s initially opened module as the candidates of amendments.

14

Although the amendments are often useful for programmers, there are two problems. First,
amendments can not always show the correct fix for programmers’s intentions. Second, they have
risks to cause incorrect fixes. To recommend of amendments practically, we should take up these
problems.

6 Related Work

A wealth of papers have been published on type error debugging since the 1980’s. Here we
focus on a few.

New Type Checking Algorithms

Existing functional programming systems use variants of the standard type checking algorithm
W by Milner and Damas. Algorithm W traverses the abstract syntax tree of the program and
eagerly solves type constraints by unification. When type unification fails, the currently inspected
expression is reported as type error location together with its actual and expected type. Thus
the reported type error location depends on the order in which W solves type constraints, that
is, traverses subexpressions and unifies types.

Many improved type checking algorithms have been proposed. Wand [10] extends W to keep
track of the history of how type variables are instantiated and shows this history for conflicting
types when unification fails. Lee and Yi [6] propose to use the algorithm M. They show that
M finds type conflicts earlier than algorithm W and thus M reports a smaller expression as
error location. Heeren and Hage [5] use a constraint-based type checker to flexibly vary the
order of solving constraints. Their heuristic approach sometimes but not always produces good
error messages. In contrast, our approach is completely independent of the order of solving type
constraints.

Reusing an Existing Type Checker

Braßel[1] was the first to proposes using an existing type checker for type debugging. His
experimental tool TypeHope automatically corrects type errors for the functional logic language
Curry. Lerner et al. [7] take this idea further. They replace the erroneous part with various
syntactically correct similar expressions, and see if they type check. If they do, they are displayed
as the candidates for fixing the type error.

Chen and Erwig [2] already note that usually there exist too many different expression changes
that correct a type error; most of these expression changes do not agree with the programmer’s
intentions. Hence, unlike Lerner et al. [7] but like Chen and Erwig [2], our aim is to suggest type
changes and leave it to the programmer to select the appropriate expressions.

Counter-Factual Types

Chen and Erwig [2] first proposed to assist type debugging by automatically enumerating po-
tential type error locations with counter-factual types. So a message suggests changing the actual
type of a given program location to the counter-factual type. Chen and Erwig use a new type
checking algorithm based on variational types. Because these variational types are monomorphic,
they restrict counter-factual types to be monomorphic as well. Potential type error locations that
require polymorphic types are not identified. In contrast, our approach produces in such a case

15

a list of expected monomorphic types, which could also be transformed into a single expected
polymorphic type.

Interactive Type Debugging

Interactive type debugging systems have been proposed to enable the programmer to include
their intentions in the search for the error location. Chitil [3] developed an algorithmic debugger
for type debugging, using a compositional type inference algorithm. Based on his work, Tsushima
and Asai [9] designed an algorithmic type debugger for OCaml that uses the compiler’s own type
checker rather than a tailor-made type checking algorithm. Algorithmic debugging guarantees to
find a type error location correctly. However, answering the questions of an algorithmic debugger
requires a good understanding of types, especially intended types, by the programmer. Our
approach of enumerating counter-factual type error messages is easier to use.

Type Error Slicing

The idea of type error slicing is to determine for a type error a small slice of the program
which contains all the program parts responsible for the type error. To correct the type error, a
program change within the slice is required. Haack and Wells [4] define and implement type error
slicing for ML using their own type checking algorithm which solves annotated type constraints.
Later Schilling [8] obtains type error slices for a large subset of Haskell using the compiler’s type
checker as a black box. The advantage of type error slicing is that the process is fully automatic
and the programmer does not have to answer any questions. A disadvantage is that even minimal
slices can be still relatively big and slices do not explain an error or how to correct it. Although
looking very different to the programmer, type error slicing and our approach are related. All the
potential locations identified by our approach together form a type error slice. When a program
contains several type errors, we search for potential error locations similar to type error slicing
(cf. Section 4.5).

7 Conclusion and Future Work

In this section, we fleshed out our thesis that we can produce type error messages about all
single potential type error locations using a compiler’s type checker. If the program includes
polymorphic errors, our approach produces enough good error messages to locate the causes of
the type error. Our idea is very simple; we make hole(s) in the program and obtain their type(s).
We have illustrated the thesis with simply-typed lambda calculus expanded with let-expressions.
We show the possibility of interactive type debugging using our approach and handling of the
programs including several type errors.

Our future work is twofold. First, we want to extend our approach and implementation to apply
many constructors in real languages. Because we confirmed that we could extend our approach
with patterns, objects and etc., our work about these advanced features is just to implement it.
We want to confirm about the other features, such as GADTs, modules, and etc.. At this time
there are a problem about bindings. Because the elimination of bindings will cause unbounded
variables, we did not treat them as candidates of the causes of the type errors in this paper.
However, they may sometimes be the source of the type error. Therefore we need a way to treat
them as candidates but avoid the problem of unbounded variables. Second, we want to check our
approach for the viewpoints of scalability for large programs and usability. About scalability, our

16

implementation works for 7 lines program, it infers types for about 30 transformed programs and
finds 3 candidates soon. If we find a candidates, we can use the programmer’s thinking time for
searching the other candidates. To confirm whether our approach scales in many examples, it will
need an implementation with advanced features and users of our implementation. The user tests
will give us a direction for improvements of this work.

参考文献
[1] Braßel, B. “Typehope: There is hope for your type errors,” 15th International Workshop on Imple-

mentation of Functional Languages (IFL’04).

[2] Chen, S., M. Erwig. “Counter-Factual Typing for Debugging Type Errors,” Proceedings of the 41th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages (POPL’14), to appear
(2014).

[3] Chitil, O. “Compositional Explanation of Types and Algorithmic Debugging of Type Errors,” Pro-
ceedings of the sixth ACM JOPLIN international conference on Functional programming (ICFP’01),
pp. 193–204 (2001).

[4] Haack, C., J. B. Wells. “Type Error Slicing in Implicitly Typed Higher-Order Languages,” Science
of Computer Programming - Special issue on 12th European symposium on programming (ESOP’03),
Volume 50 Issue 1-3 (2004).

[5] Heeren, B., J. Hage. “Parametric Type Inferencing for Helium,” Technical Report UU-CS-2002-035,
Utrecht University, 2002.

[6] Lee, O., K. Yi. “Proofs about a Folklore let-polymorphic Type Inference Algorithm,” ACM Transactions
on Programming Languages and Systems, pp. 707-723 (1998).

[7] Lerner, B. S., M. Flower, D. Grossman, C. Chambers. “Searching for Type-Error Messages,” Pro-
ceedings of the 2007 ACM SIGPLAN conference on Programming language design and implementation
(PLDI’07), pp. 425–434 (2007).

[8] Schilling, T. “Constraint Free Type Error Slicing,” Proceedings of the 12th international conference on
Trends in Functional Programming (TFP’11), pp. 1–16 (2012).

[9] Tsushima, K., and K. Asai. “An Embedded Type Debugger,” Proceedings of the 24th International
Workshop on Implementation of Functional Languages (IFL’12), pp. 190–206, Springer (2013).

[10] Wand, M. “Finding the Source of Type Errors,” Proceedings of the 13th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages (POPL’86), pp. 38–43 (1986).

17

