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We present a Bayesian nonparametric approach for modelling
wildlife migration patterns using capture-recapture (CR) data. Ar-
rival times of individuals are modelled in continuous time and as-
sumed to be drawn from a Poisson process with unknown inten-
sity function, which is modelled via a flexible nonparametric mixture
model. The proposed CR framework allows us to estimate: i) the
total number of individuals that arrived at the site, ii) their times
of arrival and departure and hence their stopover duration, and, iii)
the density of arrival times, providing a smooth representation of the
arrival pattern of the individuals at the site. We apply the model to
data on breeding great crested newts (Triturus cristatus) and on mi-
grating reed warblers (Acrocephalus scirpaceus). For the former, the
results demonstrate the staggered arrival of individuals at the breed-
ing ponds and suggest that males tend to arrive earlier than females.
For the latter, they demonstrate the arrival of migrating flocks at the
stopover site and highlight the considerable difference in stopover
duration between caught and not-caught individuals.

1. Introduction. Many wildlife populations migrate between their overwintering sites
and breeding sites twice a year. This is especially true for populations of birds but also
mammals and amphibians. In recent years, several species have been observed to change
their phenology with populations spending less time at their overwintering sites and moving
earlier to their breeding sites than in the past. These changes are mostly attributed to the
warming climate (see for example Bauer et al., 2008; Van Buskirk et al., 2009; Sullivan
et al., 2015). We note here that phenology is defined by the Oxford English dictionary
as “The study of cyclic and seasonal natural phenomena, especially in relation to climate
and plant and animal life” and hence we use the term to refer to migration and breeding
patterns, which are of course interlinked.

As Seebacher and Post (2015) state “...(the) global geographical scale (of migration)
makes migrating individuals particularly vulnerable to climate change, and at the same
time, the process of migration has fundamental impacts on ecological processes and biodi-
versity”. According to Both et al. (2009), changes in climate have in some cases led to a
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mismatch between the peak food availability and phenology which has resulted in declines
of numbers in some species.

Hence, it is crucial to monitor phenology of populations, as well as the duration of time
that individuals spend at the site(s), termed stopover duration, and population sizes. This
information can be useful in assessing for example the importance of a particular site or in
informing about the effect of, or need for, conservation strategies.

The work in this paper is motivated by capture-recapture (CR) data, such as the data
represented in Fig. 2 (a), that are often collected at sites of interest. CR data result from
repeatedly sampling a population and uniquely marking newly caught individuals before
releasing them back into the population. We consider two case studies:

i) CR data on great crested newts (GCN) (Triturus cristatus) collected in the UK
(Section 3.1). GCN are a European protected species. They overwinter away from
water and in late winter they migrate to ponds in order to breed, their phenology
influenced by weather conditions (Lewis, 2012);

ii) CR data on reed warblers (RW) (Acrocephalus scirpaceus) collected in Switzerland
(Section 3.2). RW overwinter in Africa and migrate to Europe by travelling short
distances at a time and utilising stopover sites along the way. Kovács et al. (2012)
reported that in Hungary spring migration of RW has in recent years shifted a week
earlier while autumn migration a week later, agreeing with patterns reported for
migrating species in general.

CR data can be analysed using Jolly-Seber (JS) type models (Jolly, 1965; Seber, 1965;
Schwarz and Arnason, 1996; Pledger et al., 2009; Matechou et al., 2013b) which account
for the sampling scheme and for new individuals arriving into the population, as well as
for individuals leaving the population (Cormack, 1964; Lebreton et al., 1992). Typically
fitted using a frequentist approach, JS models are not built at the individual level so as
to avoid dealing with a large number of latent variables, which is challenging. Instead,
they are built at the population level and hence estimate the proportion of individuals
that were new arrivals at each sampling occasion, instead of individual arrival times. Any
inference drawn is restricted to the population as a whole. But as Charmantier and Gienapp
(2014) note, it is the information at the individual level that will allow us to study and
understand any changes in phenology. Additionally, arrival is modelled in discrete time
and the total number of individuals that became available for detection at least once,
termed the “super-population”, is estimated instead of the total number of individuals
that visited the site. Hence, inference does not account for individuals that had shorter
stopover durations and departed before ever becoming available for detection. Therefore,
the population size estimates obtained by these models can be different depending on the
length of the intervals between sampling occasions, an undesirable feature similar to the
issue of length-biased sampling in survival analysis.

More recently, Bayesian formulations of the JS model have also been considered, as in
Royle et al. (2007) and Lyons et al. (2015). These can be used to estimate individual arrival
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times but they still model arrival in discrete time and hence share some of the limitations
of their frequentist predecessors. In addition, since the population size is unknown and
possibly updated at each iteration of the algorithm used to fit the model, trans-dimensional
algorithms, such as reversible jump Markov chain Monte Carlo (MCMC) (Green, 1995) or
data-augmentation techniques (Royle and Young, 2008) are employed to deal with the
changing dimensions of the model. However, the former can be difficult to set up and tune
and the latter requires the specification of an upper bound for the population size, which
is not typically known.

In this paper we adopt a Bayesian nonparametric approach for modelling the arrival
of individuals into the population in continuous time using a flexible mixture model. We
propose a CR model which allows us to estimate the total number of individuals that
visited the site and to reconstruct the unknown presence histories of individuals, i.e. to
estimate their times of arrival and departure, and hence the total amount of time they
spent at the site. This allows us to compare estimated arrival times and stopover duration
between individuals that were eventually caught and those that were never caught, as well
as between individuals with different characteristics, such as sex. Additionally, the use of
our proposed mixture model to represent the arrival pattern enables us to overcome the
issue of length-biased sampling mentioned above since individuals that arrived at the site
but never became available for capture are also accounted for in the population. Finally, we
propose an elegant MCMC update for the population size using forward simulation from
the model which is an alternative to data-augmentation techniques commonly employed in
similar models.

We treat the data as generated by a marked Poisson process which consists of three
parts: the arrival, departure and capture processes. For the arrival process, we model the
unknown arrival times of individuals as a shot-noise Cox process (Wolpert and Ickstadt,
1998; Brix, 1999; Møller, 2003). More precisely, arrival times are assumed to be drawn
from a Poisson process whose intensity is itself random, and modelled by a mixture (Lo
and Weng, 1989; Kuo and Ghosh, 1997; Nieto-Barajas and Walker, 2004; Ishwaran and
James, 2004; Kottas and Sansó, 2007; Taddy and Kottas, 2012). We allow for an unknown
number of mixing components and to accommodate them, we assume that the intensity
takes the form of an infinite mixture of normal distributions, whose mixing distribution is a
gamma process (Wolpert and Ickstadt, 1998; Brix, 1999). We derive an MCMC sampler for
posterior inference on the size of the population as well as on the arrival and departure times
of individuals; importantly, due to the analytic properties of our Bayesian nonparametric
model, the sampler does not require designing explicit trans-dimensional moves (Green,
1995), which, as mentioned above, may be difficult to tune.

The marked Poisson process model for CR data is described in Section 2 with more
details about the gamma process given in Appendix A. The hierarchical representation
of the model is given in Appendix B and an MCMC algorithm for posterior inference in
Appendix C. The two case studies are presented in Section 3 and a comparison of the
results to those obtained by an existing JS type model is presented in the supplementary
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material.

2. Model.

2.1. Data. Data are collected at the defined study site on K sampling occasions, which
are assumed to be instantaneous, taking place at times t1 < t2 . . . < tK and indexed by
k = 1, . . . ,K. On each of these sampling occasions, the population is sampled appropriately,
for example using nets or traps, and all caught individuals are uniquely marked, unless they
were already marked, and then released back into the population.

Let N be the unknown population size and D ≤ N the observed number of individuals
caught at least once. We use i to index individuals with i = 1, . . . , N . We denote by
Hi ∈ {0, 1}K the capture history of individual i, with an entry of 1 denoting that individual
i was caught on that particular sampling occasion and 0 otherwise. The N −D individuals
that were never caught share the capture history with all entries equal to 0. The data set
D consists of all the D capture histories with at least one non-0 entry. We note here that N
does not correspond to the total number of individuals that became available for capture
at least once during the study, which is the definition of the “super-population” size in
for example Schwarz and Arnason (1996) and other JS-type models. Instead, in our case
individuals that arrived and departed without ever becoming available for capture are also
accounted for.

For an example of a CR data set the reader is directed to Figure 2 (a).

2.2. Marked Poisson process. Each of the N individuals entered and exited the study
site during one of the

T0 = (−∞, t1), T1 = [t1, t2), . . . , TK = [tK ,+∞)

intervals. Note that if an individual exited in T0 or entered in TK , or entered and exited in
the same interval then it never became available for capture. Individuals that were already
present at the start of the study entered in T0 while individuals that were still present after
the end of the study exited in TK .

The arrival time of individual i is denoted by ζi, with ζi ∈ R. We denote by bi ∈
{0, 1, . . . ,K} the index of the interval in which individual i entered the population and by
di the index of the interval in which it departed, with bi ≤ di ∈ {0, . . . ,K}.

We consider that the points {(ζi, di,Hi)}i=1,...,N are the points of a marked Poisson pro-
cess (Kingman, 1993; Daley and Vere-Jones, 2008). Specifically, the arrival times (ζi)i=1,...,N

are drawn from a non-homogeneous Poisson process of intensity ν(ζ|G) and for i = 1, . . . , N
the marks (departure di and capture Hi) are generated from

di|ζi ∼ Pr(di|ζi, γ)

Hi |ζi, di, β ∼ Pr(Hi |ζi, di, β),

where (G, β, γ) is a set of hyperparameters. We present the details on the arrival, departure
and capture processes in the following sections.
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2.3. Arrival process. The unknown intensity function ν tunes the arrival pattern of the
individuals at the study site. Note that the Poisson process construction implies that the
population size N is drawn from a Poisson distribution with rate ω =

∫∞
−∞ ν(ζ|G)dζ, the

overall intensity level.
Arrivals of migrating individuals tend to be synchronised, with individuals either trav-

elling together towards specific sites or anyway arriving in a synchronised manner because
their migration is triggered by common environmental or individual factors. Hence, we as-
sume that individuals become part of the population by entering the study site in clusters,
which can potentially overlap in their arrival times. Specifically, we consider that the posi-
tive intensity function ν takes the form of a mixture of normal distributions, parametrized
by an unknown mixing distribution G, which is an (unnormalized) random measure,

(2.1) ν(ζ|G) =

∫ ∞
−∞

∫ ∞
0
N (ζ;µ, σ2)G(dµ, dσ2)

where N (ζ;µ, σ2) denotes the probability density function (pdf) of a normal random vari-
able with mean µ and variance σ2 evaluated at ζ. The choice of a normal pdf for repre-
senting the arrival pattern leads to an efficient MCMC algorithm and allows us to unearth
the major patterns in the arrival process.

We adopt a Bayesian nonparametric approach and assume that G is infinite-dimensional,
drawn from a gamma process (Kingman, 1993). The gamma process is parametrized by
two parameters α > 0, τ > 0 and a probability measure G0. Parameters α and τ both
tune the overall intensity level, ω, with ω ∼ Gamma(α, τ), where Gamma(a, b) denotes
the standard gamma distribution of shape a > 0 and inverse scale b > 0. α also tunes the
variability of the relative sizes of the different clusters, with lower values corresponding to
higher variability. Note that the overall intensity ω, and thus the population size N are
both almost surely finite.

Parameter G0 is a prior distribution on the means, µ, and variances, σ2, of the arrival
times of each cluster. For computational convenience, we set G0 to be a normal inverse
gamma distribution, which is a conjugate prior for the normal distribution: (µ, σ2) ∼ G0

stands for

µ|σ2 ∼ N (m0, σ
2/κ0)(2.2)

1/σ2 ∼ Gamma(ν0, λ0).(2.3)

where m0 ∈ R, κ0 > 0, λ0 > 0 and ν0 > 0 are tuning parameters.
The parameters α and τ are themselves considered to be unknown, with

α ∼ Gamma(aα, bα), τ ∼ Gamma(aτ , bτ ).

Details on the setting of the hyperparameters for the applications considered in this paper
are given in Section 2.7 while more details on the gamma process are given in Appendix
A.
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2.4. Departure process. We assume that each individual i departs from the study site
with a piecewise constant hazard rate Λ(t)

(2.4) Λ(t) =
K∑
k=0

λk1Tk(t),

where 1A(t) = 1 if t ∈ A and 0 otherwise and, for k = 0, . . . ,K,

(2.5) λk = log
(
1 + exp(−xᵀkγ)

)
where xk ∈ Rq is a vector of covariate values associated to interval k = 0, . . . ,K and
γ ∈ Rq is a vector of coefficients with γ ∼ N (0q̃, Iq̃). Hence, given arrival time ζi ∈ Tbi , the
probability that individual i departs in interval di is

Pr(di|ζi, γ) = e
−

∫ tdi
ζi

Λ(t)dt

(
1− e

−
∫ tdi+1
tdi

Λ(t)dt

)

=


e−(tbi+1−ζi)λbi

[∏di−1
k=bi+1 e

−(tk+1−tk)λk
] [

1− e−(tdi+1−tdi )λdi
]

if di > bi

1− e−(tdi+1−ζi)λdi if di = bi

Defining φ
(tk+1−tk)
k = e−(tk+1−tk)λk as the probability of surviving from time tk to time

tk+1 we obtain:

(2.6) Pr(di|ζi, γ) =

 φ
(tbi+1−ζi)
bi

{∏di−1
k=bi+1 φ

(tk+1−tk)
k

}{
1− φ(tdi+1−tdi )

di

}
if di > bi

1− φ(tdi+1−ζi)
di

if di = bi

We note that this expression is similar to those used in JS-type models, such as the
Pledger et al. (2009) model, and it allows us to consider a range of parameterisations for
φ, which can be for example considered to be constant for the duration of the study or
dependent on time-varying covariates.

2.5. Capture process. If x̃k ∈ Rq̃ is a vector of covariate values on sampling occasion
k = 1, . . . ,K and β ∈ Rq̃ is a vector of coefficients with β ∼ N (0q, Iq) then the probability
that the kth entry Hik of the observed capture history Hi is equal to 1, i.e. the probability
that individual i was caught on sampling occasion k, is

Pr(Hik = 1|ζi, di, β) =

{
1

1+exp(−x̃ᵀkβ)
if bi < k ≤ di,

0 otherwise.
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We note here that we have chosen the prior variance-covariance matrices for both γ
and β to be the identity matrices but we show in our supplementary material that our
inference is not affected by the choice of prior in this case since we obtain the same posterior
distributions for these parameters when we specify the diagonal of these matrices to be 102

or even 1002.

2.6. Model fitting. The hierarchical representation of the whole model is given in Ap-
pendix B and details on the MCMC algorithm for posterior inference on the model param-
eters are given in Appendix C. The accompanying R code (R Core Team, 2014) is available
at link to online supplementary material.

For both applications considered in this paper, we run three chains of the algorithm,
using starting values for the parameters randomly generated from the parameter space.
We discarded 50000 iterations and thinned the chains by keeping one every 300 samples.
We concluded convergence by visual inspection of trace plots and by the Gelman-Rubin di-
agnostic plot produced using the R-package coda (Plummer et al., 2006). These diagnostics
are presented in the supplementary material.

2.7. Hyperparameter settings. The parameters of G0 have to reflect our prior beliefs
and understanding about the arrival process of the population. We expect the arrival times
of clusters to be mostly within the study limits, by study design, as the populations are
non-resident and the sampling period is expected to encompass the residency period. Hence
we have chosen the parameters of G0 to reflect that, while also allowing for values outside
that range to be proposed with a lower frequency. The arrival times of each cluster are not
expected to span more than a few sampling occasions, with clusters potentially arriving in
short, abrupt bursts. We chose to set ν0 = 4 and λ0 = 1 so that 95% of the distribution
mass for the standard deviation of arrival times is between 0.3 and 0.96. This prior is
flexible enough to allow for the creation of clusters with arrival times which span anything
between one and a few (eg. four) sampling occasions. We set µ0 = τK/2 and chose the value
for κ0 so that, a priory, roughly 95% of the arrival times simulated from G0 fall within
the study limits, which is expected when studying migrating populations. In particular,
for the example shown in Section 3.1 we set κ0 = 0.01 while for the example in Section
3.2 we set κ0 = 0.03. Finally, we choose improper priors for parameters α and τ and set
aα = bα = aτ = bτ = 0.

3. Applications.

3.1. Great crested newts. The data set, collected by the Durrell Institute of Conser-
vation and Ecology, University of Kent, concerns a small population of GCN that breeds
in eight artificial ponds that are located on the university campus (Lewis, 2012). GCN
hibernate on land and migrate to ponds in spring in order to breed. Once their breeding
is complete, they return to land to overwinter. Individual GCN are uniquely identifiable
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by their belly patterns and male GCN are distinguished from females by the crest on their
backs. During the breeding season of 2012, D = 30 adult GCN were caught at least once
in K = 22 weekly sampling occasions. Here, t1 = 1 and tk − tk−1 = 1, k = 2, . . . ,K.

We assume that capture probability is a function of the number of traps placed in the
ponds, which is either 6 or 8, and that survival probability varies by calendar time, as all
of the GCN will leave the ponds by the end of the breeding season, and we use a logistic
regression model with standardised week number, 1-22, as the covariate to represent that
dependence.

We estimate that the probability that all of the GCN present that season were caught is
less than 20%, while the probability that more than 5 GCN were missed is ≈ 5% (Figure
1 (a)). The posterior mean for capture probability is equal to 0.40 with (0.30, 0.49) 95%
posterior credible interval (PCI) when the number of traps is 8. This is similar to summaries
obtained when the number of traps is 6 (mean = 0.39, 95% PCI = (0.33, 0.46)), which is
due to the fact that the number of individuals that can be caught each week is not limited
by the number of traps. Note that the PCI around capture probability in the second case
is marginally narrower since more samples where collected using 6 rather than 8 traps.

Figure 1 (b) plots posterior draws of the normalized intensity, or density of the arrival
times ζ at 500 randomly chosen iterations of the algorithm, shown by the gray lines, as well
as the posterior mean normalized intensity, shown by the black line. The mean normalized
intensity for ζ provides a smooth representation of the arrival pattern of the GCN at the
breeding site and suggests an almost continuous flow of arriving individuals, at least for
the first half of the season. The boxes at the bottom of the plot represent the values of ζ
that fall in the 95% highest posterior density (HPD) interval, constructed using R package
“hdrcde”. The figure suggests that a high proportion of GCN were already present at the
start of the study (roughly 47%). Almost 95% of GCN are estimated to have arrived by
week 12. Weeks 2 and 15-22 are outside the 95% HPD interval of arrival times, suggesting
possibly two major arrival groups with migration to the ponds concluding by roughly the
middle of the season.

The estimates of individual arrival times of GCN caught at least once suggest that male
GCN arrive at the breeding ponds earlier than females, agreeing with the literature on
the ecology of the species (Jehle et al., 2011). Specifically, almost 60% of caught males
are estimated to have been present when the study commenced, while the corresponding
proportion for females is around 10%. Additionally, males are estimated to be present at
the start of the study on average while females arrive much later, on average between weeks
5 and 6.

As expected, survival probability is estimated to decrease considerably by week (Figure
1 (c)). The 95% PCI for d includes weeks 4-22 and has posterior mean equal to 15.5 with
only around 1% of GCN estimated to still be present at the end of the study period, i.e.
with d ≥ 22.

Finally, to check the fit of the model, we generated CR data from the reconstructed
presence histories obtained at a random sample of iterations of the algorithm, and plotted
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the observed number of individuals caught each week together with the means and 95%
percentile intervals of the simulated values (Figure 1 (d)). The model provides a satisfactory
fit to the data as it is able to reconstruct the overall trend in the data, with numbers peaking
around the middle of the study and gradually decreasing towards the end, as the GCN are
leaving the ponds.

3.2. Reed Warblers. We consider the data set on migrating RW collected in a river
delta in southern Switzerland and analysed by Schaub et al. (2001). Captures took place
over 70 days but the data were pooled over 5-day periods, resulting in 14 capture occasions
and 567 birds caught at least once. Hence, t1 = 1 and tk+1 − tk = 1, k = 2, . . . ,K. A
representation of the data set is given in Figure 2 (a).

Schaub et al. (2001) used the recruitment approach of Pradel (1996) to estimate stopover
duration before the time of first capture for each individual and standard survival analysis
(Lebreton et al., 1992) to estimate stopover duration after the time of first capture. They
found that recruitment was time-dependent, while survival and capture probability were
constant.

Following Schaub et al. (2001), we assume that both φ and p are constant. The posterior
means and 95% PCI for φ and p are found to be 0.39 (0.32, 0.45) and 0.21 (0.15, 0.29),
respectively. We estimate that the population size was substantially greater than the sample
size (Figure 2 (b)) with posterior mean equal to 2957 (95% PCI = (2345, 3719)). The density
plot of ζ, presented in Figure 2 (c) shows that arrival times span the whole study duration
with sampling occasions 3, 6, 11 and 14 outside the 95% HPD interval for ζ. The estimated
arrival pattern clearly demonstrates the arrival of around four or five waves or flocks of
birds at the breeding site. The synchronous arrival of migrating birds at stopover sites is
the result of favourable weather, eg. wind and rain (Erni et al., 2002; Schaub et al., 2004)
which is typically synchronous over large spatial scales. This results in migration waves,
such as the ones shown in Figure 2 (c). Finally, the fit of the model is assessed in Figure 2
(d) using the posterior predictive distribution.

To estimate the average stopover duration, we can use the reconstructed presence his-
tories, as obtained at each iteration of the algorithm. The proportions of the estimated
difference between d and b for marked and unmarked individuals are given in Table 1. It
can be seen that over 50% of marked birds are estimated to have spent at least 10 days at
the site while 44% of unmarked birds have d− b = 0. Since the interval between sampling
occasions is equal to 5 days, we use the midpoint of each interval as an approximation to
the number of days birds that departed in that interval spent at the site. We note here
that since we model arrival in continuous time, we could instead use the average individual
estimated ζ, but this way our results for marked birds are directly comparable to those
obtained by Schaub et al. (2001). For example, birds that have d = b spent on average 2.5
days at the site, birds with d− b = 1 spent on average 7.5 days etc. The average stopover
duration of caught birds is equal to 12.5 days, which is similar to the value obtained by
Schaub et al. (2001) (12.3). However, the average stopover duration of unmarked birds is
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Fig. 1. Great crested newt data. (a): Posterior distribution of N . (b): Draws from the normalized intensity
of the arrival times ζ obtained at 500 randomly selected iterations of the algorithm (gray lines), with the
black line showing the mean normalized intensity and the tick marks on the x-axis indicating sampling
occasions. The position of the boxes on the x-axis indicates the values of ζ that fall in the 95% HPD interval
while their height is equal to the lowest density value in the interval. (c): Posterior mean and 95% PCI
of φk = e−λk as a function of week number, k = 1, . . . , 22. (d): Number of individuals caught each week,
together with summaries of values simulated from the model.
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Fig. 2. Reed warbler data. (a): Representation of the data with black blocks indicating captures and white
non-captures. Individuals are ordered first by the number of times they were caught, in decreasing order,
and subsequently by the time of their first capture. (b): Posterior distribution of N . (c): Density estimates
for ζ obtained at 500 randomly chosen iterations of the algorithm (gray lines), with the black line showing
the mean density and the tick marks on the x-axis indicating sampling occasions. The position of the boxes
on the x-axis indicates the values of ζ that fall in the 95% HPD interval while their height is equal to the
lowest density value in the interval. (d): Number of individuals caught each week, together with summaries
of values simulated from the model.
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considerably lower (6.5 days), resulting in an overall average stopover duration of around 8
days. This difference in the stopover duration between marked and unmarked birds high-
lights the importance of using models, such as the one presented in this paper, that take
into account the individuals that were never caught, which are likely to be the ones with
the shorter stopover durations and thus overcome length-biased sampling issues.

Table 1
Reed warbler data. Proportion table of estimated values of d− b obtained for marked and unmarked birds.

d− b 0 1 2 3 4 5 6

marked 0 44 30 15 7 3 1
unmarked 44 40 12 3 1 0 0

4. Discussion. In recent years, birds and other animals have been observed to change
their phenology as they adapt to a changing climate. At the same time, site suitability
is also changing due to increasing temperatures and other environmental changes. As a
result, the distribution of wildlife populations is changing over time and space. It is crucial
to monitor these adaptations and record changes in numbers or behaviours of individuals.
We have presented a flexible model which provides estimates of ecologically important
parameters such as population size, time spent at the site and density of arrival times,
for open non-resident populations using CR data. The model can be fitted to data sets
collected in different years and/or at different sites to detect any potential patterns or
changes and inform about the need of policy implementation.

Our approach is an alternative to JS-type models and we present a comparison of our
results to those obtained by the Pledger et al. (2009) parameterisation of the JS model in
Section 3 of our supplementary material. The results between the two approaches are gener-
ally in agreement but our approach has four main advantages over the existing, frequentist
and Bayesian, JS-type methods:

1. Smooth representation of the arrival pattern. By modelling arrival of individuals in
continuous time, we obtain a smooth representation of the arrival pattern at the site.
This is not only ecologically interesting but it can be especially useful when comparing
analyses of data sets collected in different years, as potential patterns or trends over time
can be detected more easily by simply comparing the posterior mean intensity function.
We note here that we have treated the problem of estimating the arrival pattern as a
density estimation problem and clustering of individuals arose in the process. However,
these clusters can overlap, making interpretation of the number, size and other cluster
characteristics challenging, hence we have not tried to interpret them from an ecological
perspective.

2. Overcoming the issue of length-biased sampling. Our model allows us to estimate the
total number of individuals that arrived at the site as opposed to the number that became
available for detection at least once. As our results in Section 3 of our supplementary
material demonstrate, these two values can be considerably different if the intervals between
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sampling occasions are long compared to the average stopover duration of individuals in
the population. In addition, individuals that arrived but departed before the start of the
study are also accounted for, which is not the case in for example Lyons et al. (2015) who
mention that, typically, studies at stopover sites are planned so that they start before most
individuals have arrived. However, since phenology is changing in recent years, satisfying
this criterion can become increasingly more difficult. This kind of bias is often encountered
in ecological applications where detection is imperfect. For example, Gilbert et al. (2014)
state that “Estimates of survival from neonates that are opportunistically captured might
be inaccurate because some individuals die before sampling, resulting in data that are left
truncated.”. Hence, our approach could be modified for modelling time of birth instead
of time of arrival to account for individuals that never became available for detection and
correct such bias.

3. Estimation of individual arrival/departure times. Since we are estimating individual
arrival and departure times, similarly to Lyons et al. (2015), we are able to estimate indi-
vidual stopover durations as well as other statistics that are potentially of interest, such
as number of individuals present at any time point. However, in contrast to Lyons et al.
(2015), we do not assign an arrival time of one to all individuals that were already present
at the start of the study as our mixture model allows us to extend arrival to times prior
to the start of the study, while accounting for the probability of remaining at the site until
the start of the study. For the applications considered in this paper, estimated individual
arrival and departure times allowed us to compare the arrival pattern of individuals of
different sex as well as the estimated stopover duration of individuals that were caught at
least once with that of individuals that were never caught. Additionally, if data for multiple
years are available, our model enables monitoring the arrival times of specific individuals
over different years, and potentially linking them to other ecological processes of interest.

4. Estimation of N . When updating the population size, N , the parameter vector di-
mension also changes. However, our approach for estimating the size of the population
does not require the use of reversible jump MCMC algorithms, or the specification of an
upper bound, as in data-augmentation techniques, to perform this update. Our proposed
framework is general and it can be applied to other similar models when only a subset
of the population is observed and updates of N are performed as part of the estimation
process. A similar, and topical, application where data-augmentation has been considered
is in the area of spatially-explicit CR models (see Royle et al., 2009, for example) where
the probability of detecting an individual is a function of the (unknown) distance of the
trap from the centre of its home-range.

We have chosen to model the unknown intensity of arrivals as a shot-noise gamma pro-
cess. There is a rather large literature on Cox processes, see e.g. (Møller and Waagepetersen,
2004, Chapter 5). A standard alternative is the log-Gaussian Cox process, where the log-
intensity is drawn from a Gaussian process (Møller et al., 1998; Brix and Diggle, 2001).
The approach we have chosen has however a number of advantages over the log-Gaussian
Cox process: i) it directly provides a prior over continuous intensity functions, without the
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need for a transformation, ii) it can naturally capture multiple modes, corresponding to the
arrival pattern of different arrival groups and iii) it ensures that the overall intensity ω is
finite almost surely, and its (gamma) distribution is explicitly known; in the log-Gaussian
process case, this intensity may be infinite; even if finite, it is unclear how to relate the over-
all intensity, and thus the number of individuals, N , to the parameters of the log-Gaussian
process.

With regard to the specification of the hyperparameters of G0 (i.e. µ0, κ0, λ0, and ν0) we
note the following: our work has been motivated by data on migratory populations where
typically the study encompasses the stopover period and most individuals arrive within
the study season. Hence, we defined our prior on phenology to reflect this, as explained in
section 2.7. However, the results on the data set of great crested newts, where roughly 40%
of the individuals are estimated to have arrival times that are less than one, demonstrate
that if the data support it then our model is flexible enough to allow for individuals to arrive
before the start of the study. For demonstration purposes, we present a sensitivity analysis
for the data set of great crested newts as supplementary material. The analysis suggests
that the results, for example the posterior distribution for N and the posterior mean density
of arrival times, are robust with respect to the specification of the hyperparameters of G0

as long as the prior distribution of arrival times does not support arrival that occurs after
the end of the study. This is because there are no data available after the end of the study,
and hence the posterior will be dominated and completely determined by the prior for
that period. As a result, the posterior mean for N will be greater, because N will include
individuals that arrived after the end of the study. If this is indeed the prior expectation,
as for example suggested by experts, then the results will still be valid. However, in other
cases, such as in the case studies of this paper where the expert knowledge suggests that no
individuals will arrive after the end of the study, we advise to refrain from specifications of
such prior distributions. In our opinion, it is advisable to consider hyperparameters which
constain the prior to times that correspond within the study period as this 1) avoids the
aforementioned issue of the posterior being dominated by the prior for times when no data
are available while 2) does not constrain the posterior to extend to times beyond the study
period, or at least before the study commences, if the data suggest so, as demonstrated by
our analysis of the great crested newt data set and our sensitivity analysis.

Our approach is generally applicable to data collected on any non-resident wildlife pop-
ulation and our model can be extended in various ways. For example, although the data
sets we considered were obtained using only one type of sampling, namely capture, the
model can be readily extended for cases when multiple types of sampling are employed,
such as capture-resight data. Additionally, the model can be extended for the case of in-
tegrated analysis of different (independent) data sets (Besbeas et al., 2002; McCrea et al.,
2010; Matechou et al., 2013a; Lyons et al., 2015), to allow for heterogeneity in capture
probabilities between individuals (Basu and Ebrahimi, 2001; Rocchetti et al., 2011) and,
potentially, to account for misidentification of individuals (McClintock et al., 2014) which
is a feature of some non-invasive sampling techniques, such as DNA sampling.
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We have chosen to model the departure process using the assumption of a piecewise con-
stant hazard rate which resulted in a modelling framework for (apparent) survival proba-
bility similar to that established in the capture-recapture literature. However, more flexible
models, for example using continuous kernels as functions of covariates could also be con-
sidered. Finally, an interesting extension would be to relate phenology to environmental
covariates. One way to address this would be to have the base measure G0, which tunes
the arrival times of each cluster, to be parametrized by these covariates. Alternatively, a
different and even more flexible approach would be to consider dependent nonparametric
processes (MacEachern, 1999).

We note that there are very few applications of Bayesian nonparametric techniques
in population ecology. For example, S. Basu, in an unpublished technical report (Basu,
1998) and Manrique-Vallier (2016) presented a nonparametric Bayesian CR model with
heterogeneity in capture probabilities for closed populations based on a Dirichlet process
prior while Dorazio et al. (2008) used the same technique to account for heterogeneity in
abundance between different sites. However, to our knowledge, the model we presented
in this paper is the first Bayesian nonparametric CR model for open populations and we
believe that there is great scope for further extension of our work with a considerable range
of applications.
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5. Appendix A: details on the gamma process. A draw from a gamma process
is an almost surely discrete measure, and takes the following form:

(5.1) G = ω
∞∑
j=1

πjδ(µ?j ,σ
?2
j ),

where δa is the Dirac delta measure at a. Combining Eq. (5.1) and (2.1) we obtain the
following infinite mixture of Gaussian form for the unknown intensity ν

(5.2) ν(ζ|G) = ω
∞∑
j=1

πjN (ζ;µ?j , σ
?2
j ).

The (πj)j=1,2,... are positive weights which sum to one and follow a stick-breaking pro-

cess (Sethuraman, 1994) with πj = θj
∏j−1
`=1(1 − θ`) where θj ∼ Beta(1, α). The positive

scaling variable ω has distribution ω ∼ Gamma(α, τ) while the mixture means and vari-
ances (µ?j , σ

?2
j ), are i.i.d. from G0.

The above construction can be further simplified by the introduction of a suitable set of
latent variables and the use of the remarkable conjugacy properties of the gamma process.
Given G, the arrival times (ζi)i=1,...,N are drawn from a Poisson process with intensity
ν(ζ|G), or

N |G ∼ Poisson(ω)

and for i = 1, . . . , N

ζi|G
i.i.d.∼ ν(ζ|G)

ω
.(5.3)

As the intensity ν takes the mixture form (2.1), (5.3) can be alternatively represented
in the following hierarchical form, for i = 1, . . . , N,

(µ̃i, σ̃
2
i )|G ∼ G(5.4)

ζi|(µ̃i, σ̃2
i ) ∼ N (µ̃i, σ̃i).(5.5)
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where G = G/ω and the (µ̃i, σ̃
2
i ), i = 1, . . . , N are latent variables indicating the mean

and variance of the Gaussian component from which ζi originated. As G is almost surely
discrete, the latent variables may have duplicate values. We write (µj , σ

2
j )j=1,...,J the set of

unique values in (µ̃i, σ̃
2
i )i=1,...,N , and ΠN = {A1, . . . , AJ} the partition (or clustering) of the

N individuals, such that individuals k and ` are in the same cluster iff (µ̃k, σ̃
2
k) = (µ̃`, σ̃

2
` ).

J ≤ N is the number of different non-empty clusters.
As G is obtained by normalization of a gamma process, it is distributed from a Dirichlet

process (Ferguson, 1973; Kingman, 1993); using the conjugacy properties of the Dirichlet
process (Kingman, 1993; Pitman, 1996), it is actually possible to analytically integrate out
G. The associated marginal distribution over the partition ΠN of the N arrival times, is
given by

(5.6) Pr(ΠN = {A1, . . . , AJ}|α,N) =
Γ(α)

Γ(α+N)
αJ

J∏
j=1

Γ(nj)

where nj = card(Aj), j = 1, . . . , J is the size of cluster j. The generative process for such
partition is known as the Chinese restaurant process (CRP):

Pr(individual N + 1 joins an existing cluster j|ΠN ) =
nj

α+N
, j = 1, . . . , J

Pr(individual N + 1 joins a new cluster|ΠN ) =
α

α+N
(5.7)

This marginalization is important in practice for MCMC inference, as it allows us to per-
form inference with a set of parametric parameters, although the model actually involves
an infinite-dimensional parameter.

6. Appendix B: Overall hierarchical model. Let J be the number of clusters in
ΠN . Let ci ∈ {1, . . . , J} indicate the index of the cluster to which individual i belongs, i.e.
i ∈ Aci . The overall model can be described as

α ∼ Gamma(aα, bα) [Tunes the nb of clusters and overall intensity](6.1)

τ ∼ Gamma(aτ , bτ ) [Tunes the overall intensity](6.2)

β ∼ N (0q, Iq) [Coefficients for capture](6.3)

γ ∼ N (0q̃, Iq̃) [Coefficients for departure](6.4)

ω|α, τ ∼ Gamma(α, τ) [Overall intensity of the arrival process](6.5)

N |ω ∼ Poisson(ω) [Overall size of the population](6.6)

ΠN |N,α ∼ (5.6) [Partition of the individuals](6.7)

for j = 1, 2, . . . , J

(µj , σ
2
j ) ∼ G0 [Means and variances of the clusters](6.8)
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and for i = 1, 2, . . . , N

ζi|ci, µci , σ2
ci ∼ N (µci , σ

2
ci) [Arrival times](6.9)

di|ζi, γ ∼ Pr(di|ζi, γ) [Departure indices](6.10)

Hi |ζi, di, β ∼ Pr(Hi |ζi, di, β) [Capture histories](6.11)

7. Appendix C: Posterior inference. The vector of unknown parameters consists
of:

α, τ, ω,N,ΠN , (µ1:J , σ
2
1:J), ζ1:N , d1:N , β and γ.

Our objective is to approximate the posterior distribution

P (α, τ, ω,N,ΠN , ζ1:N , d1:N , µ1:J , σ
2
1:J , β, γ|D).

This distribution is not analytically tractable, and we resort to an MCMC algorithm to
provide samples asymptotically distributed from it. Note that the number of clusters J is
not set in advance, and may change at each iteration of the algorithm.

We use indices 1, . . . , D to indicate individuals observed, and D+1, . . . , N for individuals
unobserved. The MCMC algorithm iterates as follows:

1. Jointly update (α, ω):

(a) First we sample α given all variables except ω (see details below):

α|rest except ω ∼ Gamma

(
J + aα, log

(
1 +

1

τ

)
+ bα

)
(b) Then we sample ω given the rest:

ω|rest ∼ Gamma(α+N, τ + 1)

2. Update τ :
τ |α, ω ∼ Gamma(aτ + α, bτ + ω).

3. For i = 1, . . . , N , update ci:
This update is the MCMC update for conjugate models in Dirichlet process mix-
tures (MacEachern, 1994; Escobar and West, 1995), see e.g. Neal (2000, Algorithm
3).
For a subset of the arrival times S ⊆ {1, . . . , N} let ζS = {ζi|i ∈ S} and

f(ζS) =

∫ ∞
−∞

∫ ∞
0

∏
i∈S
N (ζi;µ, σ

2)G0(dµ, dσ2)
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As the normal inverse gamma distribution G0 is a conjugate prior for a normal
likelihood, f(ζS) can be evaluated analytically. Then, let I be the set of different
indices of cj , j 6= i, and for c ∈ I let Sc,−i be the set of individuals j 6= i in cluster c
and nc,−i = card(Sc,−i) the number of individuals j 6= i in cluster c. Then individual
i will join an existing cluster c ∈ I with probability

Pr(ci = c|rest) ∝ nc,−i
f(ζSc,−i∪{i})

f(ζSc,−i)

or be allocated to a new cluster with probability

Pr(ci = new|rest) ∝ αf(ζ{i}).

Note that at the end of this step, we obtain an updated partition ΠN with a poten-
tially different number of clusters J .

4. For j = 1, . . . , J update (µj , σ
2
j ):

These are updated for cluster j, j = 1, . . . , J , as:

µj |σ2
j ∼ N

(
mj , σ

2
j /κj

)
(7.1)

1/σ2
j ∼ Gamma(νj , λj)(7.2)

where

νj = ν0 + nj/2

κj = κ0 + nj

mj =
κ0m0 + njζj
κ0 + nj

λj = λ0 +
1

2

nj∑
i=1

(ζi − ζj)2 +
njκ0

nj + κ0

(ζj −m0)2

2

with ζj = 1
nj

∑
i|ci=j ζi and nj = card({i|ci = j}).

5. For i = 1, . . . , N , update ζi:
We use a random walk Metropolis-Hastings step where we propose to update ζi to
ζ ′i = ζi + Gaussian noise. The acceptance probability is:

min

(
1,

Pr(ζ ′i;µci , σ
2
ci) Pr(Hi |ζ ′i, di, β) Pr(di|ζ ′i, γ)

Pr(ζi;µci , σ
2
ci) Pr(Hi |ζi, di, β) Pr(di|ζi, γ)

)



22 E. MATECHOU AND F. CARON.

6. For i = 1, . . . , N , update di.
We use a Metropolis-Hastings step where we propose either d′i = di + 1 or d′i = di− 1
with equal probability, unless di = 0 when d′i = 1 or di = K when d′i = K − 1 with
probability 1. Hence, q(d′i|di) = 1/2 for di = 1, . . . ,K − 1, q(d′i = 1|di = 0) = q(d′i =
K−1|di = K) = 1 and 0 otherwise while the same holds for q(di|d′i). The acceptance
probability is:

min

(
1,

Pr(Hi |ζi, d′i, β) Pr(d′i|ζi, γ)q(d′i|di)
Pr(Hi |ζi, di, β) Pr(di|ζi, γ)q(di|d′i)

)
7. Update β and γ:

These are coefficients of logistic regression models so their update is performed using
a Metropolis-Hastings algorithm, described for example in Chapter 8 of King et al.
(2009).
We note here that for the Metropolis-Hastings steps the proposal variances were
chosen after tuning i.e. running a small number of trial runs and visually inspecting
the resulting trace plots for good mixing of the chain.

8. Update N, cD+1:N , ζD+1:N , dD+1:N :
The colouring theorem for marked Poisson processes implies that, conditional on G,
the set of points {ζD+1:N , dD+1:N} is independent of {ζ1:D, d1:D} and distributed from
a non-homogeneous Poisson process with intensity

ν0(ζ, d|G) = ν(ζ|G) Pr(d|ζ, γ) Pr(H = (0, . . . , 0)|ζ).

As the normalized measure G is marginalized out, some dependency is retained
through the cluster variables c1:D. We sample from the conditional distribution of
(N, cD+1:N , ζD+1:N , dD+1:N ) given the rest by rejection as follows.
First, sample N0 ∼ Poisson(ω). For i = 1, . . . , N0, sample the latent cluster variables
from the Chinese restaurant process

c∗i |c1:D, c
∗
1:i−1 ∼ (5.7)

and whenever c∗i takes a new value, sample the new cluster location from G0.
For i = 1, . . . , N0, sample

ζ∗i |c∗i , µ, σ2 ∼ N (µc∗i , σ
2
c∗i

)

d∗i |ζ∗i , γ ∼ Pr(d∗i |ζ∗i , γ)

H∗i |d∗i , ζ∗i , β ∼ Pr(H∗i |d∗i , ζ∗i , β)

We only keep the Ñ0 ≤ N0 individuals i for which H∗i = (0, 0, . . . , 0), set N = D+ Ñ0

and relabel them from D+1 to N to obtain updated values (cD+1:N , ζD+1:N , dD+1:N ).
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Details of Step 1(a). We have

Pr(N |α) =

∫ ∞
0

Pr(N,ω|α)dω

=

∫ ∞
0

Pr(N |ω, α)p(ω|α)dω

=
Γ(N + α)τα

N !Γ(α)(1 + τ)N+α

=
Γ(N + α)

N !Γ(α)
exp

{
−α log

(
1 +

1

τ

)
−N log(1 + τ)

}
which gives, together with Eq. (5.6) and the gamma prior on α

Pr(α|rest except ω) ∝ Pr(ΠN |α,N) Pr(N |α)p(α)

∝ αJ+aα−1 exp

[
−α

{
log

(
1 +

1

τ

)
+ bα

}]
.
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