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Sliding Mode Observer Based-Controller Design

for Nonlinear Systems with Time Varying Delay

Xing-Gang Yan, Sarah K. Spurgeon and Yuri Orlov

Abstract A class of nonlinear time varying delay systems in the presence of time

delay uncertainties is considered in this chapter. The input distribution of the system

is nonlinear. Under mild limitations on the uncertainty, an observer is synthesised

using sliding mode techniques such that the error dynamics are ultimately uniformly

bounded in the presence of uncertainties and time delay. Then, a nonlinear control

scheme is developed based on the estimated states, and a set of sufficient conditions

is presented such that the corresponding closed-loop systems are uniformly ulti-

mately bounded using the well-known Lyapunov-Razumikhin approach. It is not

required that the structure of the uncertainty is known. Finally, a numerical example

is presented to demonstrate the approach and simulation results show the effective-

ness of the developed paradigm.

1 Introduction

Theoretical studies often assume that all system states are available for control de-

sign. This assumption is not valid for many real systems. In order to implement such

control schemes, a pertinent way forward is to construct an appropriate dynamic sys-

tem which is called an observer, to estimate the state variables. Unfortunately, the

traditional separation principle for linear control systems usually does not hold for

the nonlinear counterpart, which implies that for nonlinear systems, the properties

of a state feedback control law may not be achieved when the control law is imple-
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mented with the estimated states ( [26]). Therefore, it is necessary to develop and

formally analyse control strategies based upon observer state estimates in this case.

During recent decades, several approaches have been developed for observer de-

sign, such as the geometric approach, high-gain techniques and error linearisation

( [16, 25]). The earliest work can be traced to the well-known Luenberger observer

for linear systems. In Luenberger’s approach, the observer dynamics are driven by

the system input and the difference between the output of the system considered

and the output of the observer designed. This output error should become zero in

the ideal case. The need to achieve zero output error naturally suggests generating

a sliding motion on the subspace for which the output is zero, which has motivated

the development of sliding mode observers. Although sliding mode control has been

widely studied due to its high robustness, observer design using sliding mode tech-

niques is much less mature especially for nonlinear time delay systems (see survey

paper [22]).

Time delay systems widely exist in the practical world. Such systems have been

studied extensively (see [21] and the references therein) since Krasovskii extended

the Lyapunov theory to time-delay systems and Razumikhin proposed a method to

avoid the functional in Lyapunov stability analysis. Although the problem of ob-

server design for time delay systems has been studied for a relatively long period

( [3,4,24]), results concerning sliding mode observer design for time delay systems

are very few and only a very limited literature is available ( [2, 13, 18]). Two inte-

gral sliding mode control compensators were designed to suppress disturbances for

stochastic systems with input and observation delays in [2]. Later, a sliding mode

observer was proposed for a class of systems with parametric uncertainty in [18].

However, in both [2] and [18], the considered systems are linear. Higher order slid-

ing mode techniques are employed in [5, 7] where time delay is not considered and

the uncertainties are required to satisfy a linear growth condition.

[13] proposed a sliding mode observer for both delayed and non-delayed systems

but only matched uncertainty and matched nonlinearities are considered. A sliding

mode observer have been designed for nonlinear systems in [23] but time delay is

not considered. More recently, [28] proposed a sliding mode observer for nonlinear

time delay systems where the focus was on state and parameter estimation. Adaptive

techniques were utilised but the control problem was not considered. Moreover, the

error dynamics between the system considered and the observer designed in [28]

are uniformly ultimately bounded instead of asymptotically stable.

Observer-based control for time delay systems has received much attention (see

e.g., [11, 12, 15, 17, 29]). The backstepping approach is employed in [11] where it

is required that the nominal system has a triangular structure. By choosing an ap-

propriate Lyapunov-Krasovskii functional, a high gain linear controller is presented

in [12]. In both [11] and [12], it is required that the systems considered have a par-

ticular structure. An observer-based sliding mode control is proposed in [17] where

it is required that the nonlinear term is matched. [15] studied a class of time-delay

systems using static and dynamic output feedback but it is required that the uncer-

tainty is matched. Moreover, all the existing results require that the bounds on the

mismatched uncertainties satisfy a linear growth condition (i.e. the bounds are linear
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functions of ‖x‖ and/or ‖x(t− d)‖). Since uncertainty bounds may have nonlinear

forms in reality, it is pertinent to consider the case when the bounds on the uncer-

tainties are nonlinear. Recently, a sliding mode control scheme has been proposed

for a class of nonlinear systems in [29] where the bounds on uncertainties have been

extended to nonlinear case but it is required that the input distribution matrix is

constant and the designed observer is actually not a sliding mode observer. A finite-

time stabilization scheme is proposed using observer based output feedback control

in [1] and [20] where the considered systems are linear time-invariant with matched

disturbances and delay is not considered.

This paper is focused on the observer-based output feedback control synthesis for

a class of nonlinear time varying delay systems with uncertainties. The bounds on

the uncertainties are nonlinear and time delayed. The accessible parts of the bounds

and the nonlinear terms are fully employed in the observer and controller design

to reduce the effects of the uncertainty and nonlinearity. Unlike the work of [28], a

robust sliding mode observer is designed for the system by employing the system

structure and the uncertainty distribution structure to ensure that the error dynamics

are uniformly asymptotically stable. Then, based on the designed observer, a dis-

continuous control law is proposed to stabilise the system uniformly asymptotically

even in the presence of the uncertainties and time delay. The well known Lyapunov-

Razumikhin approach is employed to deal with the time delay in the stability anal-

ysis of the closed-loop system formed by the system, observer, and the proposed

control law. It is not required that either the nonlinear term or the uncertainty acts

on the input channel and thus they are mismatched. The input distribution matrix

is a nonlinear function matrix. The only limitation on the time varying delay is that

it is continuous and bounded. There is no limitation on the rate of change (time

derivative) of the delay. Simulation results reflect the effectiveness of the approach

proposed.

2 System Description and Preliminaries

Notation: The set of n × m matrices with elements defined in R will be denoted

by R
n×m. For A ∈ R

n×n, A > 0 denotes a symmetric positive definite matrix, and

λmin(A) (λmax(A)) denotes the minimum (maximum) eigenvalue of A. The symbol

In represents the nth order unit matrix and R
+ represents the set of non-negative real

numbers. A function f(x1, . . . , xn1
, y1, . . . , yn2

) is also written as f(x, y) where

x = [x1 . . . xn1
]
T
∈ R

n1 and y = [y1 . . . yn2
]
T
∈ R

n2 . The Lipschitz constant

or the generalised Lipschitz constant of a function f will be written as Lf . Finally,

‖ · ‖ denotes the Euclidean norm or its induced norm.

Definition 1. A continuous function α : [0, a) 7→ [0,∞) is called a class K function

if it is strictly increasing and α(0) = 0 (see, [14]).

Definition 2. A function vector/matrix f(x1, x2) (xi ∈ Ωi ⊂ R
ni for i = 1, 2) is

said to satisfy the generalised Lipschitz condition with respect to (w.r.t.) x2 in Ω2

for x1 ∈ Ω1 if there exists a function Lf (·) defined in x1 ∈ Ω1 such that for any
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x2, x̂2 ∈ Ω2

‖f(x1, x2)− f(x1, x̂2)‖ ≤ Lf (x1)‖x2 − x̂2‖, x1 ∈ Ω1

where the function Lf (·) is called the generalised Lipschitz constant.

Remark 1. It should be noted that the generalised Lipschitz condition defined in

Definition 2 is for partial variables. It can be considered as an extension of the

normal Lipschitz condition. The generalised Lipschitz constant Lf (·) is usually a

function instead of a constant. However for simplicity, the symbol Lf is used instead

of Lf (·) throughout the paper unless it is necessary.

Consider nonlinear systems described by

ẋ = Ax+G(t, y)u+ Φ(t, x, xd) + Ψ(t, x, xd) (1)

y = Cx, (2)

where x ∈ Ω ⊂ R
n, u, y ∈ R

m (m < n) are the system states, inputs and out-

puts respectively; A and C are constant matrices with appropriate dimensions; the

nonlinear function matrix G(·) ∈ R
n×m is assumed to be known and full rank; the

nonlinear term Φ(·) is known and satisfies generalised Lipschitz condition w.r.t. the

variables x and xd for t ∈ R
+; the term Ψ(·) includes all the uncertainties. The

symbol xd := x(t − d) represents the delayed state where d := d(t) is the time

varying delay which is assumed to be known, continuous, nonnegative and bounded

in R
+ := {t | t ≥ 0}, that is

d := sup
t∈R+

{d(t)} < ∞

The initial condition related to the delay is given by

x(t) = φ(t), t ∈ [−d, 0] (3)

where φ(·) is continuous in [−d, 0]. It is assumed that all the nonlinear functions

are smooth enough for the subsequent analysis, which guarantees that the unforced

system has a unique continuous solution.

Firstly, the following Assumptions are imposed on the system (1)–(2).

Assumption 1. The matrix pair (A,C) is observable with C being of full rank.

Under Assumption 1, there exists a matrix L such that the inequality

(A− LC)TP + P (A− LC) < 0 (4)

is solvable for P > 0.

Remark 2. Assumption 1 is a limitation on the triple (A,E,C). The solvability of

the Lyapunov equation (4) with limitation (5) is called the Constrained Lyapunov

Problem (CLP). A similar condition has been imposed by many authors (see e.g,

[?, 8,13,17]). Necessary and sufficient conditions for solving the CLP can be found

in [8] and [6].

Assumption 2. The uncertainty Ψ(·) satisfies
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‖Ψ(t, x, xd)‖ ≤ ξ1(t, y) ξ2(t, x, xd) (5)

where ξ1(·) is a known C1 function with ξ1(t, 0) = 0 and ξ2(t, x, xd) is a known

generalised Lipschitz function w.r.t. x and xd for t ∈ R
+.

Remark 3. Assumption 2 is the limitation on the uncertainty Ψ(·). It requires that

the bounds on the uncertainty Ψ(·) is known which is to be employed in both ob-

server and controller design to reduce/reject the effects of the uncertainty.

Assumption 3. There exist a continuous function ua(·) : R+ ×R
n 7→ R

m which is

generalised Lipshitz w.r.t x for t ∈ R
+, and a C1 function V0(t, x) : R

+×R
n 7→ R

+

such that

i). α1‖x‖
2 ≤ V0(t, x) ≤ α2‖x‖

2

ii). ∂V0

∂t
+
(

∂V0

∂x

)T (
Ax+G(·)ua(t, x)

)
≤ −α3‖x‖

2

iii).
∥
∥∂V0

∂x

∥
∥ ≤ α4‖x‖

for positive constants αi for i = 1, . . . , 4, where x := col (x1, · · · , xn) and ∂V0

∂x
:=

[
∂V0

∂x1
· · · ∂V0

∂xn

]T

.

Remark 4. Assumption 3 has been used in the converse Lyapunov theorems (see,

pages 162-163 in [14]). Due to the complex of nonlinear input channel G(t, y),
Assumption 3 is introduced to guarantee that the system ẋ = Ax + G(t, y)u is

stabilisable using state feedback u = ua(t, x).
Assumption 4. There exist continuous function matrices N(·) and M(·) where

M(·) is nonsingular such that

GT (t, y)∂V0

∂x
= M(t, y)y (6)

ΦT (t, x, xd)
∂V0

∂x
= N(t, x, xd)y (7)

where V0(·) is given in Assumption 3 and N(·) ∈ R
n×m is generalised Lipschitz

w.r.t. x and xd for t ∈ R
+.

Remark 5. Assumptions 4 and 3 together can be considered as an extension of CLP

for nonlinear case. It is straightforward to see that the equation (8) will be satisfied

if (7) holds and Φ(·) is matched (i.e. Φ(·) = G(·)Φ̄(·) for some continuous Φ̄(·)).
However, condition (8) does not imply that the nonlinear term Φ(·) is matched (see,

e.g. the simulation example in Section 5).

3 Sliding Mode Observer Design

In this section, a sliding mode observer will be proposed. Without loss of generality,

it is assumed that the output matrix C in equation (2) has the form

C =
[
0 Im

]
(8)
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Otherwise there exists a nonsingular transformation matrix Tc such that CTc =
[0 Im] because C is of full rank. Then, the transformed system will have the output

matrix in (9). Therefore, system (1)–(2) can be rewritten as

[
ẋ1

ẋ2

]

=

[
A1 A2

A3 A4

]

︸ ︷︷ ︸

A

[
x1

x2

]

+

[
G1(t, y)
G2(t, y)

]

︸ ︷︷ ︸

G(·)

u+

[
Φ1(t, x1, x2, x1d, x2d)
Φ2(t, x1, x2, x1d, x2d)

]

︸ ︷︷ ︸

Φ(·)

+

[
E1

E2

]

︸ ︷︷ ︸

E

Ψ(·)(9)

y=
[
0 Im

]
x (10)

where x = col (x1, x2) with x1 ∈ R
n−m, A1 ∈ R

(n−m)×(n−m) and E1 ∈
R

(n−m)×p. The terms G1(·) and Φ1(·) are the first n − m components of G(·)
and Φ(·) respectively. Introduce partitions of P and Q which are conformable with

the decomposition in (10)–(11):

P =

[
P1 P2

PT
2 P3

]

, Q =

[
Q1 Q2

QT
2 Q3

]

(11)

It is clear from P > 0 and Q > 0 that P1 > 0, P3 > 0, Q1 > 0 and Q3 > 0. Using

the matrix partitions in (12), it follows from (5) and (9) that

[0 F ] = FC =
[
ET

1 ET
2

]
P =

[
ET

1 P1 + ET
2 P

T
2 ET

1 P2 + ET
2 P3

]

=
[
(
P1(E1 + P−1

1 P2E2)
)T

ET
1 P2 + ET

2 P3

]

which implies that

P1(E1 + P−1
1 P2E2) = 0 (12)

Now, introduce a coordinate transformation:

z =

[

In−m P
−1

1
P2

0 Im

]

︸ ︷︷ ︸

T

x (13)

From (13), system (10)–(11) in the new coordinate system z, can be described by

ż1=(A1 + P−1
1 P2A3)z1 +

(
A2 −A1P

−1
1 P2 + P−1

1 P2(A4 −A3P
−1
1 P2)

)
z2 + [In−m P−1

1 P2]G(·)u

+[In−m P−1
1 P2]Φ(t, T

−1z, T−1zd) (14)

ż2=A3z1 +
(
A4 −A3P

−1
1 P2

)
z2 +G2(t, y)u+ Φ2(t, T

−1z, T−1zd) + E2Ψ(t, T
−1z, T−1zd) (15)

y=z2 (16)

where z = col (z1, z2) with z1 ∈ R
n−m. From (3), the initial condition related to

the delay is given by

z(t) = Tφ(t) := ρ1(t), t ∈ [−d̄, 0] (17)

For system (15)–(17), consider a dynamical system
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˙̂z1=(A1 + P−1
1 P2A3)ẑ1 +

(
A2 −A1P

−1
1 P2 + P−1

1 P2(A4 −A3P
−1
1 P2)

)
y

+[In−m P−1
1 P2]G(·)u+ [In−m P−1

1 P2]Φ(t, T
−1ẑy, T

−1ẑyd) (18)

˙̂z2=A3ẑ1 +
(
A4 −A3P

−1
1 P2

)
ẑ2 +D(y − ẑ2) +G2(t, y)u+ Φ2(t, T

−1ẑy, T
−1ẑyd) + ν(·)(19)

where

ẑy :=

[
ẑ1
y

]

, ẑyd :=

[
ẑ1d
yd

]

(20)

the matrix D is chosen such that A4 − A3P
−1
1 P2 − D is Hurwitz stable, and the

term ν(·) is defined by

ν(·) =
(
A4 −A3P

−1
1 P2 −D

)
(y − ẑ2) +

(

‖E2‖ξ1(t, y)ξ2(t, T
−1ẑy, T

−1ẑyd)

+k(·)
)

sgn(y − ẑ2) (21)

where sgn denotes the usual sign vector function and k(·) is to be determined later.

The initial condition related to the delay is given by

ẑ(t) = ρ2(t), t ∈ [−d̄, 0] (22)

where ρ2(·) can be chosen as any continuous function such that

‖ρ1(t)− ρ2(t)‖ ≤ b0 (23)

for some constant b0, where ρ1(·) is given in (18).

Let ez1 = z1 − ẑ1 and ez2 = z2 − ẑ2. Then by comparing (15)–(17) with (19)–

(20), the error dynamical equation is described by

ėz1=(A1 + P−1
1 P2A3)ez1 + [In−m P−1

1 P2]δ(Φ) (24)

ėz2=A3ez1 +
(
A4 −A3P

−1
1 P2 −D

)
ez2 + δ(Φ2) + E2Ψ(t, T

−1z, T−1zd)− ν(·)(25)

where ν(·) is defined by (22), and the functional operator δ(·) is defined by

δ(Θ) := Θ(t, T−1z, T−1zd)−Θ(t, T−1ẑy, T
−1ẑyd) (26)

where Θ(·) is a function of z, zd and t, T is defined in (14), and ẑy and ẑyd are

defined by (21).

For system (25)–(26), consider a sliding surface

S := {(ez1 , ez2) | ez2 = 0} (27)

In order to study the stability of the associate sliding motion, it is necessary to prove

the following result at first.

Lemma 1 Assume that the function Θ(t, z, zd) is Lipschitz w.r.t. z and zd in their

definition domain, and the operator δ(·) is defined in (27). Then
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‖δ(Θ)‖ ≤ ‖T−1‖LΘ(‖ez1‖+ ‖ez1d‖) (28)

‖δ(Θ)‖2 ≤ ‖T−1‖2L2
Θ

(
‖ez1‖

2 + ‖ez1d‖
2
)

(29)

where T is defined in (14), ez1 := z1 − ẑ1 and ez1d := ẑ1d − ẑ1d.

Proof: Since Θ(t, z, zd) is Lipschitz w.r.t. the variables z and zd in their definition

domain, it follows from the structure of T in (14) that

‖δ(Θ)‖=
∥
∥Θ(t, T−1z, T−1zd)−Θ(t, T−1ẑy, T

−1ẑyd)
∥
∥

≤LΘ

∥
∥
∥
∥
diag{T−1, T−1}

[
z − ẑy
zd − ẑyd

]∥
∥
∥
∥

≤LΘ‖T
−1‖

∥
∥
∥
∥
∥







z1 − ẑ1
0

z1d − ẑ1d
0







︸ ︷︷ ︸

Y

∥
∥
∥
∥
∥

(30)

It is clear that

‖Y ‖≤‖z1 − ẑ1‖+ ‖z1d − ẑ1d‖ = ‖ez1‖+ ‖ez1d‖

‖Y ‖2=‖z1 − ẑ1‖
2 + ‖z1d − ẑ1d‖

2 = ‖ez1‖
2 + ‖ez1d‖

2

Hence the conclusion follows. ∇
Note the inequality (30) cannot be obtained directly from (29). The following

result is ready to be presented:

Theorem 1. Under Assumptions 1 and 2, the sliding motion of system (25)–(26)

associated with the sliding surface (28) is uniformly asymptotically stable if there

exists a constant q0 > 1 such that

q := λmin(Q1)− 2‖[P1 P2]‖ ‖T
−1‖LΦ

(

1 +
√

q0
λmax(P1)
λmin(P1)

)

> 0

where P1, P2 and Q1 are given in (12).

Proof: From the definition of the sliding surface in (28), it is clear that system (25)

is the sliding mode dynamics which govern the sliding motion, and thus it is only

necessary to prove that (25) is uniformly asymptotically stable.

Applying matrix block multiplication to equation (4), it follows from the partition

(12) that

AT
1 P1 +AT

3 P
T
2 + P1A1 + P2A3 = −Q1

This implies

(A1 + P−1
1 P2A3)

TP1 + P1(A1 + P−1
1 P2A3) = −Q1 (31)

From (29) in Lemma 1,

‖δ(Φ)‖ ≤ ‖T−1‖LΦ (‖ez1(t)‖+ ‖ez1d(t)‖) (32)
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For system (25), consider the Lyapunov function candidate Ve = eTz1P1ez1 . If there

is a constant q0 > 1 such that Ve(ez1d) ≤ q0Ve(ez1), then,

λmin(P1)‖ez1d‖ ≤ ez1dP1ez1d ≤ q0e
T
z1
P1ez1 ≤ λmax(P1)‖ez1‖

and thus

‖ez1d‖ ≤
√

q0
λmax(P1)
λmin(P1)

‖ez1‖ (33)

Using (32), (33) and (34), the derivative of Ve along the trajectories of the system

(25) is described by

V̇e = −eTz1Q1ez1 + 2eTz1P1[In−m P−1
1 P2]δ(Φ)

≤−λmin(Q1)‖ez1‖
2 + 2‖ez1‖ ‖[P1 P2]‖ ‖T

−1‖LΦ (‖ez1‖+ ‖ez1d‖)

≤−λmin(Q1)‖ez1‖
2 + 2‖ez1‖ ‖[P1 P2]‖ ‖T

−1‖LΦ

(

‖ez1‖+
√

q0
λmax(P1)
λmin(P1)

‖ez1‖
)

=−q‖ez1‖
2 (34)

Hence the conclusion follows from q > 0. ∇
Remark 6. Theorem 1 has shown that ez1(t) is uniform asymptotic stable. From

(35) and the definition of Ve, it follows that

V̇e ≤ −q‖ez1‖
2 ≤ −

q

λmax(P1)
Ve =⇒ Ve ≤ Ve0 exp{−

q

λmax(P1)
t}

and thus

‖ez1(t)‖ ≤

√

Ve0

λmin(P1)
exp{−

q

2λmax(P1)
t} =: b1(t), t ≥ 0 (35)

From (24) and (36),

‖ez1d(t)‖≤max {b1(t), b0} =: b2(t) (36)

where b0 is given in (24).

Theorem 2. Under Assumptions 1 and 2, the error dynamical system (25)–(26) is

driven to the sliding surface (28) in finite time and remains on it thereafter if k(·) is

chosen as

k=‖A3‖b1(t) +
(

LΦ2
+ ‖E2‖ ξ1(t, y)Lξ2

)

‖T−1‖ (b1(t) + b2(t)) + η (37)

where the functions b1(·) and b2(·) are determined by (36) and (37) respectively,

ξ1(·) and ξ2(·) are defined in (6), and η is any positive constant.

Proof: From equation (26)

eTz2 ėz2=e
T
z2
(A4 −A3P

−1
1 P2 −D)ez2 + eTz2

(

A3ez1 + δ(Φ2) + E2Ψ(t, T
−1z, T−1zd)

)

− eTz2ν(·)(38)
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It is clear that for any vector ez2 ,

eTz2sgn(y − ẑ2) = eTz2sgn(ez2) ≥ ‖ez2‖ (39)

Then, by applying (6), (40) and (22) to (39),

eTz2(t)ėz2(t)≤‖ez2‖
(

‖A3‖ ‖ez1‖+ ‖δ(Φ2)‖+ ‖E2‖ξ1(t, y)ξ2(t, T
−1z, T−1zd)

)

−
(

‖E2‖ξ1(t, y)ξ2(t, T
−1ẑy, T

−1ẑyd) + k(·)
)

eTz2sgn(y − ẑ2)

≤‖A3‖ ‖ez1‖ ‖ez2‖+
(

‖E2‖ξ1(t, y)δ(ξ2) + δ(Φ2)
)

‖ez2‖ − k(·)‖ez2‖ (40)

where δ(·) is a functional operator defined in (27). From (29) in Lemma 1, (36) and

(37),

‖δ(ξ2)‖≤Lξ2‖T
−1‖(b1(t) + b2(t)) (41)

‖δ(Φ2)‖≤LΦ2
‖T−1‖(b1(t) + b2(t)) (42)

Applying (38), (42) and (43) to (41) yields

eTz2 ėz2≤b1(t)‖A3‖‖ez2‖+ (LΦ2
+ ‖E2‖ ξ1(t, y)Lξ2) ‖T

−1‖(b1(t) + b2(t))‖ez2‖ − k(·)‖ez2‖

=−η‖ez2‖ (43)

which shows that the reachability condition is satisfied. Hence the conclusion fol-

lows. ∇
By combining Theorem 1 with Theorem 2, it follows from sliding mode theory

that the system (25)–(26) is uniformly asymptotically stable. Therefore, (19)–(20)

is a sliding mode observer for the system (15)–(17). Clearly , the formula

x̂ = T−1ẑy (44)

provides an estimate for the states x of the dynamical system (1), where T is defined

in (14) and ẑy is defined in (21) with ẑ1 given by (19)–(20). In fact, from z = Tx,

‖x− x̂‖ =
∥
∥T−1z − T−1ẑy

∥
∥ ≤ ‖T−1‖ ‖ez1‖ (45)

and thus x̂ defined in (45) gives an estimate for the state x. From (45), it is clear to

see that the operator δ(·) defined in (27) can be expressed by

δ(Θ) = Θ(t, x, xd)−Θ(t, x̂, x̂d) (46)

and both (29) and (30) hold.
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4 Stabilising Controller Synthesis

In this section, it is assumed that the observer (19)–(20) has been well designed. A

discontinuous control law based on the associated state estimates will be proposed

to stabilise the system (1)–(2) uniformly asymptotically.

For system (1)–(2), consider the control law

u := ua(t, x̂) + ub(t, y, x̂, x̂d) + uc(t, y, x̂, x̂d) (47)

where ua(·) satisfies Assumption 3, and ub(·) and uc(·) are, respectively, defined by

ub(·) :=

{

− ε1M
−T (t,y)y
2‖y‖2 α2

4 ‖E‖2 ξ21(t, y) ξ
2
2(t, x̂, x̂d), y 6= 0

0 y = 0
(48)

uc(·) :=

{

−M−T (t, y)y
(

ε2
2 + ‖yTN(t,x̂,x̂d)‖

‖y‖2

)

, y 6= 0

0 y = 0
(49)

where x̂ is given by (45), ε1 and ε2 are positive constants, and M(·) satisfies (7).

Remark 7. Consider the control (48). From the condition that ξ1(·) is of class C1

with ξ1(t, 0) = 0 for t ∈ R
+, it is straightforward to see that limy→0 u

b(t, y, x̂, x̂d) =
0 which implies that the control component ub(t, y, x̂, x̂d) defined in (49) is contin-

uous. The value of the control component uc(t, y, x̂, x̂d) = 0 at y = 0 has been

pre-specified in (50) according to the equivalent control method. The extension of

this method to time delay systems has been justified in [19].

Theorem 3. Under Assumptions 1-4, system (1)–(2) is stabilised uniformly asymp-

totically by the controller (48) if the matrix W (·) := [wij(·)]3×3 is positive definite

with γ0 := inf{λmin(W (·))} > 0 where

w11:=α3 −
1

2ε1
− α2γ

w22:=λmin(Q1)−
L2
N

2ε2
‖T−1‖2 − 2LΦ ‖[P1 P2]‖ ‖T

−1‖ − λmax(P1)γ

w33:=λmin(P1)−
L2
N

2ε2
‖T−1‖2

w12=w21 := −
1

2
α4‖T

−1‖ (‖G(t, y)‖Lua + Lξ2 ξ1(·)‖E‖)

w23=w32 := −LΦ ‖[P1 P2]‖ ‖T
−1‖

w13=w31 := −
1

2
α4 Lξ2 ξ1(·)‖E‖ ‖T−1‖

for some ε1 > 0, ε2 > 0 and γ > 1, where P1, P2 and Q1 are given in (12).

Proof: By applying the control law in (48) to system (1)–(2), the closed loop system

is described by system (19), (20) and the system
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ẋ=Ax+G(t, y)(ua(t, x̂) + ub(t, y, x̂, x̂d) + uc(t, y, x̂, x̂d)) + Φ(t, x, xd) + EΨ(t, x, xd)(50)

where x̂ is determined by (45). Let ez1 = z1 − ẑ1 and ez2 = z2 − ẑ2. Based on the

analysis in Section 3, the closed-loop system in col(x, ez1 , ez2) coordinates can be

described by (51), (25) and (26). For the closed-loop system, consider the sliding

surface

S := {(x, ez1 , ez2) | ez2 = 0} (51)

It follows that the sliding mode dynamics are described by (25) and (51). Theorem 2

has provided a reachability condition. It remains to prove that the sliding mode dy-

namics (25) and (51) which govern the sliding motion, are uniformly asymptotically

stable.

consider the Lyapunov candidate function

V (t, x, ez1 , ez2) = V0(t, x) + eTz1P1ez1 (52)

where V0(·) satisfies Assumption 3, and P1 is given in (12). Then, the time derivative

of V (·) along the trajectories of the closed-loop system is described by

V̇=∂V0

∂t
+
(

∂V0

∂x

)T (
Ax+G(t, y)ua(t, x̂)

)
+
(

∂V0

∂x

)T

G(t, y)ub(·) +
(

∂V0

∂x

)T

EΨ(t, x, xd)

+
(

∂V0

∂x

)T

G(t, y)uc(·) +
(

∂V0

∂x

)T

Φ(t, x, xd) + ėTz1(t)P1ez1(t) + eTz1P1ėz1 (53)

From Assumption 3 and equation (7),

∂V0

∂t
+
(

∂V0

∂x

)T (
Ax+G(t, y)ua(t, x̂)

)

=∂V0

∂t
+
(

∂V0

∂x

)T (
Ax+G(t, y)ua(t, x)

)
+
(

∂V0

∂x

)T

G(t, y)
(

ua(t, x̂)− ua(t, x)
)

≤−α3‖x‖
2 + α4 ‖x‖Lua ‖G(t, y)‖ ‖x− x̂‖

≤−α3‖x‖
2 + α4Lua‖G(t, y)‖ ‖T−1‖ ‖ez1‖ ‖x‖ (54)

where (46) is employed above. From (7), Assumptions 2 and 3, and Young’s in-

equality ab ≤ 1
2εa

2 + ε
2b

2 for any ε > 0,

(
∂V0

∂x

)T

G(t, y)ub(·) +
(

∂V0

∂x

)T

EΨ(t, x, xd)

≤yTMT (t, y)ub(·) + α4 ‖x‖ ‖E‖ ξ1(t, y) ξ2(t, x, xd)

=yTMT (t, y)ub(·) + α4‖x‖ ‖E‖ξ1(t, y)ξ2(t, x̂, x̂d) + α4‖x‖ ‖E‖ξ1(t, y)δ(ξ2)

≤yTMT (t, y)ub(·) +
ε1

2
α2
4 ‖E‖2ξ21(t, y)ξ

2
2(t, x̂, x̂d) +

1

2ε1
‖x‖2 + α4‖x‖ ‖E‖ξ1(t, y)δ(ξ2)(55)

where the operator δ(·) is defined in (47). From the definition of ub(·) in (49), if

y 6= 0, then,
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yTMT (t, y)ub(·) +
ε1

2
α2
4 ‖E‖2ξ21(t, y)ξ

2
2(t, x̂, x̂d)

=−yTMT (t, y)
ε1M

−T (·)y

2‖y‖2
‖E‖2 α2

4 ξ
2
1(t, y)ξ

2
2(t, x̂, x̂d) +

ε1

2
α2
4 ‖E‖2ξ21(t, y)ξ

2
2(t, x̂, x̂d)

=0 (56)

and if y = 0, it is easy to see from ξ1(t, 0) = 0 that (57) holds. Then, From (29)

‖x‖ ‖E‖ξ1(t, y)δ(ξ2) ≤ ξ1(t, y)‖E‖ ‖T−1‖Lξ2

(
‖ez1‖+ ‖ez1d‖

)
‖x‖ (57)

Substituting (57) and (58) into (56) yields

(
∂V0

∂x

)T

G(t, y)ub(·) +
(

∂V0

∂x

)T

EΨ(t, x, xd) ≤
‖x‖2

2ε1
+ α4 ξ1(t, y)‖E‖ ‖T−1‖Lξ2

(
‖ez1‖+ ‖ez1d‖

)
‖x‖(58)

From (8), (46) and Young’s inequality, it follows that for any ε2 > 0

(
∂V0

∂x

)T

Φ(t, x, xd)=y
T (N(t, x, xd)−N(t, x̂, x̂d)) + yTN(t, x̂, x̂d)

≤‖y‖ ‖δ(N)‖+ ‖yTN(t, x̂, x̂d)‖

≤
1

2ε2
‖δ(N)‖2 +

ε2

2
‖y‖2 + ‖yTN(t, x̂, x̂d)‖

≤
1

2ε2
‖T−1‖2L2

N

(
‖ez1‖

2 + ‖ez1d‖
2
)
+

ε2

2
‖y‖2 + ‖yTN(t, x̂, x̂d)‖(59)

where (30) in Lemma 1 is employed above. From (7), it follows that

i) if y = 0, then

(∂V0

∂x

)T

G(t, y)uc(·)+
(∂V0

∂x

)T

Φ(t, x, xd) = yTMT (·)uc(·)+yTN(t, x, xd) = 0

(60)

ii) if y 6= 0, then From (60), the definition of uc(·) in (50), and by the similar

reasoning as for (59), it follows that

(∂V0

∂x

)T

G(t, y)uc(·)+
(∂V0

∂x

)T

Φ(t, x, xd) ≤
1

2ε2
‖T−1‖2L2

N

(
‖ez1‖

2 + ‖ez1d‖
2
)

The analysis in i) and ii) implies that the inequality

(
∂V0

∂x

)T

G(t, y)uc(·) +
(

∂V0

∂x

)T

Φ(t, x, xd) ≤
1

2ε2
‖T−1‖2L2

N

(
‖ez1‖

2 + ‖ez1d‖
2
)
(61)

holds. From (25), (32) and (33),

ėTz1(t)P1ez1(t) + eTz1(t)P1ėz1(t)

=−eTz1Qez1 + 2eTz1P1

[
In−m P−1

1 P2

]
σ(Φ)

≤−λmin(Q1)‖ez1‖
2 + 2‖ez1‖ ‖[P1 P2]‖ ‖T

−1‖LΦ(‖ez1‖+ ‖ez1d‖) (62)
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Substituting (55), (59), (62) and (63) into (54) yields

V̇≤−α3‖x‖
2 + α4 Lua‖G(t, y)‖ ‖T−1‖ ‖ez1‖ ‖x‖+

‖x‖2

2ε1

+α4 ξ1(t, y)‖E‖ ‖T−1‖Lξ2

(
‖ez1‖+ ‖ez1d‖

)
‖x‖+

1

2ε2
‖T−1‖2L2

N

(
‖ez1‖

2 + ‖ez1d‖
2
)

−λmin(Q1)‖ez1‖
2 + 2‖ez1‖ ‖[P1 P2]‖ ‖T

−1‖LΦ(‖ez1‖+ ‖ez1d‖) (63)

In order to apply Lyapunov-Razumikhin approach, it is assumed that for any d ∈
[0, d̄]

V (t− d, xd, ez1d) ≤ γV (t, x, ez1)

for γ > 1. Then, from Assumption 3 and the definition of V (·) in (53)

0 ≤ γV (t, x, ez1)− V (t− d, xd, ez1d)

= γV0(t, x) + γeTz1P1ez1 − V0(t− d, xd)− eTz1dP1ez1d

≤ α2γ‖x‖
2 − α1‖xd‖

2 + γλmax(P1)‖ez1‖
2 − λmin(P1)‖ez1d‖

2 (64)

From (65) and (64),

V̇≤−α3‖x‖
2 + α4 Lua‖G(t, y)‖ ‖T−1‖ ‖ez1‖ ‖x‖+

‖x‖2

2ε1
+ α4Lξ2 ξ1(t, y)‖E‖ ‖T−1‖ ‖ez1‖ ‖x‖

+α4Lξ2 ξ1(t, y)‖E‖ ‖T−1‖ ‖ez1d‖ ‖x‖+
L2
N

2ε2
‖T−1‖2‖ez1‖

2 +
L2
N

2ε2
‖T−1‖2‖ez1d‖

2

−λmin(Q1)‖ez1‖
2 + 2LΦ ‖[P1 P2]‖ ‖T

−1‖ ‖ez1‖
2 + 2LΦ ‖[P1 P2]‖ ‖T

−1‖ ‖ez1‖ ‖ez1d‖

+α2 γ‖x‖
2 − α1‖xd‖

2 + γλmax(P1)‖ez1‖
2 − λmin(P1)‖ez1d‖

2

≤−
[

‖x‖ ‖ez1‖ ‖ez1d‖
]

W (·)





‖x‖
‖ez1‖
‖ez1d‖



− α1‖xd‖
2

≤−γ0
(
‖x‖2 + ‖ez1‖

2 + ‖ez1d‖
2
)
− α1‖xd‖

2

≤−γ0
(
‖x‖2 + ‖ez1‖

2
)

where γ2 > 0 is used to obtain the last two inequalities. From Razumikhin Theorem

(see, e.g. [9] and [10]), the conclusion follows from γ0 > 0. ∇
Remark 8. It should be emphasised that if Φ(t, x, xd) = Φ(t, x1, x2, x1d, x2d)
where y = x2, then the condition that Φ(·) is generalised Lipschitz w.r.t. x and xd

for t can be relaxed to the condition that Φ(t, x1, x2, x1d, x2d) is generalised Lips-

chitz w.r.t. the variables x1 and x1d for the variables t, x2 and x2d. This is applicable

to all nonlinear functions which is required to satisfy the generalised Lipschitz con-

dition throughout the paper.
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5 Illustrative Example

Consider a nonlinear time varying delay system

ẋ=

[
−5 0
1 1

]

︸ ︷︷ ︸

A

x+

[
0
1

1+sin2(t+x2)

]

︸ ︷︷ ︸

G(·)

u(t) +

[
0.2x2

0.2x1dx2 exp{−t}

]

︸ ︷︷ ︸

Φ(·)

+

[
1
−5

]

︸ ︷︷ ︸

E

Ψ(·)(65)

y=
[
0 1

]

︸ ︷︷ ︸

C

x (66)

where x = col(x1, x2) ∈ R
2, u ∈ R and y ∈ R are respectively the states, input

and output of the system. The term Ψ(·) includes all uncertainties which satisfy

‖Ψ(·)‖ ≤
1

4
(|x1d|+ |x2d|) exp{−2− t} sin2 x2

The domain considered here is

Ω = {(x1, x2) | x1 ∈ R, |x2| < 9.15}

Clearly system (66)–(67) has the form in (10)–(11). It is easy to see that (A,C)
is observable, and Φ(·) is generalised Lipschitz w.r.t. x1d for t and x2 with LΦ =
0.2|y| exp{−t}. Let

E =
[
1 −5

]T
, L =

[
−1 6

]T
,

ξ1 = sin2 y, ξ2 = 1
4 (|x1d|+ |x2d|) exp{−2− t},

F = −5, Q = 10I2.

Then,

P =

[
1.041667 0.208333

0.208333 1.041667

]

=

[
P1 P2

P3 P4

]

, T =

[
1 0.2
0 1

]

and Assumption 2 is satisfied. Let

ua = −(1 + sin2(t+ y))(x1 + 6y), V0 = 0.1(x2
1 + x2

2)

It follows that Assumption 3 holds with α1 = α2 = 0.1, α3 = 1 and α4 = 0.2. Let

M(·) = 0.2
1+sin2(t+y)

, N(·) = 0.04 (x1 + x1dx2 exp{−t})

It is straightforward to check that Assumptions 4 holds. Choose q0 = 1.01. By

computation directly,

LN = 0.04
√

1 + x2
2 exp{−2t}, Lua = 1 + sin2(t+ y), LΦ = 0.2|y| exp{−t},

Lξ2 = 0.0677 exp{−t}, γ = 1.01, q > 10− 0.9414|y| exp{−t}
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and the entries of the matrix W is given by

w11=1−
1

2ε1
− 0.1γ

w22=10−
9.768×10−4

ε2

(
1 + x2

2 exp{−2t}
)
− 0.4695|y| exp{−t} − 1.0417γ

w33=1.0417−
9.768×10−4

ε2

(
1 + 0.5x2

2 exp{−2t}
)

w12=w21 = −(0.1105 + 0.0763 sin2 y exp{−t})
w23=w32 = −0.2348|y| exp{−t}
w13=w31 = 0.0382 sin2 y exp{−t}

By direct computation, all the conditions in Theorems 1–3 are satisfied in the do-

main Ω with γ = 1.01. Both the observer (19)-(20) and the controller (48) are well

defined. According to (48), (49) and (50), the designed control is given by

u = −(1 + sin2(t+ y))(x1 + 6y) + ub(t, y, x̂, x̂d) + uc(t, y, x̂, x̂d) (67)

where ub and uc are defined by

ub =

{
− 0.5099ε1y

y2 (1 + sin2(t+ y))y2d(sin y)
4(|x̂1d|+ |x̂1|)

2 exp{−4− 2t}, y 6= 0

0, y = 0

uc =

{

− 1+sin2(t+y)
0.2

(
ε2
2 + 0.04|x̂1yd+x̂1dy exp{−t}|

|y|

)

y, y 6= 0

0, y = 0

For implementation purposes, choose η = 5 and b0 = 5. The time-varying delay

d(t) is chosen as d(t) = 5 + 2 sin t. The delay related initial condition is chosen as

φ(t) = col(cos(t), 1− sin(t))

The simulation results shown in figure 1 confirm that the proposed approach is ef-

fective.

Fig. 1 The time responses of the system states, observer states, estimation errors and control signal

6 Conclusion

A sliding mode observer-based control design approach has been proposed for a

class of nonlinear time delay systems. The sliding mode observer can estimate the

system state uniformly asymptotically and is insensitive to the uncertainty. Suffi-

cient conditions have been derived using the Lyapunov-Razumikin approach under

which the observer-based control law can stabilize the corresponding closed-loop

system uniformly asymptotically. There is no limitation to the rate of change of the
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time delay. The accessible parts have been employed in the control design to reduce

conservatism.
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