
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

Energy Efficient Execution of POMDP Policies
Marek Grześ, Pascal Poupart, Xiao Yang, and Jesse Hoey

Abstract—Recent advances in planning techniques for partially
observable Markov decision processes (POMDPs) have focused on
online search techniques and offline point-based value iteration.
While these techniques allow practitioners to obtain policies for
fairly large problems, they assume that a nonnegligible amount
of computation can be done between each decision point. In con-
trast, the recent proliferation of mobile and embedded devices
has lead to a surge of applications that could benefit from
state-of-the-art planning techniques if they can operate under
severe constraints on computational resources. To that effect, we
describe two techniques to compile policies into controllers that
can be executed by a mere table lookup at each decision point.
The first approach compiles policies induced by a set of alpha
vectors (such as those obtained by point-based techniques) into
approximately equivalent controllers, while the second approach
performs a simulation to compile arbitrary policies into approx-
imately equivalent controllers. We also describe an approach
to compress controllers by removing redundant and dominated
nodes, often yielding smaller and yet better controllers. Further
compression and higher value can sometimes be obtained by con-
sidering stochastic controllers. The compilation and compression
techniques are demonstrated on benchmark problems as well as a
mobile application to help persons with Alzheimer’s to way-find.
The battery consumption of several POMDP policies is compared
against finite-state controllers learned using methods introduced
in this paper. Experiments performed on the Nexus 4 phone
show that finite-state controllers are the least battery consuming
POMDP policies.

Index Terms—Energy-efficiency, finite-state controllers,
knowledge compilation, Markov decision processes,
mobile applications, partially observable Markov decision
processes (POMDPs).

I. INTRODUCTION

PARTIALLY observable Markov decision processes
(POMDPs) provide a natural framework for sequential

decision making in partially observable domains. Tremendous
progress has been made in recent years to develop scal-
able planning techniques for POMDPs. Point-based value
iteration methods for factored and continuous domains can
compute good value policies for a wide range of real-world
problems [1], [2]. In addition, online resources can be used to

Manuscript received January 9, 2014; revised August 7, 2014 and
November 7, 2014; accepted November 16, 2014. This work was supported
in part by the Ontario Ministry of Research and Innovation, in part by the
Natural Sciences and Engineering Research Council of Canada, in part by the
Toronto Rehabilitation Institute, and in part by the Alzheimer’s Association
Grant ETAC-10-173237. This paper was recommended by Associate Editor
S. E. Shimony.

Marek Grześ, Pascal Poupart, and Jesse Hoey are with the
David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada (e-mail: mgrzes@cs.uwaterloo.ca).

Xiao Yang is with Amazon, Toronto, ON, Canada.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCYB.2014.2375817

perform a search at run time to directly select the next action
or refine a precomputed policy [3], [4].

In this paper, we are motivated by an emerging class of
applications that pose new challenges for POMDP solvers.
We consider monitoring and assistive applications that run
on smart-phones, wearable systems, or other mobile devices.
While computational resources are rapidly increasing, energy
consumption remains an important bottleneck due to limited
battery life. This is especially important in monitoring and
assistive applications that need to be continuously running, but
should be as power efficient as possible. For such applications,
online planning is not an option due to the high computational
costs. Computed policies that require online belief monitoring
at execution time also consume too much energy. While it is
sometimes possible to offload computation through cloud solu-
tions, this requires a data connection, which may not always be
available or stable, and which has a high battery consumption.

An effective solution can be found by noting that a
POMDP policy can be represented very simply by using a
finite state controller (FSC) [5], which only requires simple
table look-ups during execution. However, controller opti-
mization is notoriously difficult. The nonconvex nature of the
optimization makes it difficult for many approaches (e.g., gra-
dient ascent [6], quadratically constrained optimization [7],
bounded policy iteration (BPI) [8], and expectation maxi-
mization (EM) [9]) to reliably find the global optimum. An
exhaustive search of the space of controllers can avoid local
optima, but is clearly intractable [10], [11].

In this paper, we describe two novel techniques for compil-
ing an existing POMDP policy (as generated by a point-based
method, for example) into a FSC (Section III). The first
method requires a policy specified as a set of α-vectors and
witness belief points to construct a FSC directly that approx-
imates the given policy. The second method needs only a
simulation of the policy to build a controller incrementally by
constructing a policy tree and then detecting equivalent condi-
tional plans. We also describe a novel method for compressing
a FSC into an equivalent, but smaller, FSC by removing redun-
dant nodes (Section IV). We demonstrate our techniques on a
set of large benchmark POMDP problems (Section VI), and
we use policies generated by two state-of-the-art point-based
techniques, namely GapMin [12] and SARSOP [13]. We show
how we can construct very compact controllers that are equiv-
alent, and sometimes better, than the policies they are derived
from. We also demonstrate our methods on a set of POMDPs
that are used to provide mobile assistance for persons with
Alzheimer’s disease for way-finding.

This paper is structured as follows. Section II reviews
POMDPs. Section III explains our two techniques for pol-
icy compilation into a FSC, and Section IV shows how to

2168-2267 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30708389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mgrzes@cs.uwaterloo.ca
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

compress the resulting FSCs by removing redundant nodes.
Section V shows experiments about battery consumption for
various POMDP policies using a Nexus 4 phone. Section VI
reports experiments with benchmark problems and a wayfind-
ing application to assist people with Alzheimer’s disease.
Section VIII concludes this paper.

II. BACKGROUND

A POMDP is formally defined by a tuple
〈S,A,O,T,Z,R, b0, γ 〉 that includes a set S of states s,
a set A of actions a, a set O of observations o, a transition
function T(s′, s, a) = Pr(s′|s, a), indicating the probability of
reaching s′ after executing a in s, an observation function
Z(o, a, s′) = Pr(o|s′, a), indicating the probability of observ-
ing o after executing a and reaching s′, a reward function
R(s, a) ∈ �, indicating the immediate reward earned after
executing a in s, an initial belief b0(s) = Pr(s), indicating
the probability of starting the process in each state s, and
a discount factor 0 ≤ γ ≤ 1 indicating the rate at which
rewards are discounted at each step. In this paper, we assume
that the planning horizon is infinite, although the proposed
algorithms can be modified easily for finite horizon problems.
The goal is to find an optimal policy that maximizes the
discounted sum of rewards. A policy determines the choice of
action at each time step based on the observable quantities.
Since the observable quantities are the past actions and
observations, a policy π : Ht → At can be defined as a
mapping from histories Ht ≡ A0 × O1 × · · · × At−1 × Ot

of past actions and observations to actions At, however, this
definition is problematic for an infinite horizon since histories
may be arbitrarily long. Two approaches are often used to
circumvent this issue: 1) replace histories by finite length
sufficient statistics such as beliefs or 2) represent policies as
FSCs, which are mappings from cyclic histories to actions.

A belief b(s) is a distribution over states reflecting the deci-
sion maker’s belief that the process may be in each state s.
We can update a belief b after executing a and observing o
according to Bayes’ theorem

bao(s′) ∝
∑

s

b(s)Pr(s′|s, a)Pr(o|s′, a) ∀s′. (1)

Given the initial belief b0 and a history ht =
〈a0, o1, . . . , at−1, ot〉, we can compute the belief bt at time
step t by repeatedly applying the above equation for each
action-observation pair in the history. Since beliefs have an
|S|-dimensional vector representation regardless of the length
of the process, they provide a practical alternative to histo-
ries. Hence, we can equivalently define policies as mappings
π : B → A from beliefs to actions. The value Vπ (b0)

of policy π when starting in b0 is the discounted sum
of expected rewards Vπ (b0) = ∑∞

t=0 γ
tR(bt, π(bt)) where

R(b, a) =∑
s b(s)R(s, a).

We can also consider policies represented by a FSC
π = 〈N, φ, ψ〉, which is defined by a set N of nodes n, a
mapping φ : N → A indicating which action a to execute
in each node n and a mapping ψ : N × O → N indicating
that the edge rooted at n and labeled by o should point to n′.
A controller is executed by alternating between executing the

action φ(n) of the current node n and moving to the next node
ψ(n, o) by following the edge rooted at n that is labeled with
the current observation o. The value αn of the controller when
starting in n is an |S|-dimensional vector computed as follows:

αn(s) = R(s, φ(n))

+ γ
∑

s′,o
Pr(s′|s, a)Pr(o|s′, a)αψ(n,o)(s

′) ∀n, s. (2)

Here, αn(s) is an |S|-dimensional vector indicating the value
of the conditional plan rooted at node n for any starting state s.

Policy optimization algorithms can be classified in two
broad categories: 1) offline techniques that precompute a pol-
icy before the start of the execution [14]–[18] and 2) online
techniques that perform all their computation at run time by
searching for the best action to execute after receiving each
observation [3]. Online techniques can take advantage of the
history so far to focus their computation only on the current
belief. When computational resources are not constrained and
there is sufficient time between decisions to search for the
next action to execute, online techniques can perform very
well and can scale to very large problems. In contrast, offline
techniques do not scale as well, but permit the deployment
of POMDP policies on mobile and/or embedded devices with
severe resource constraints due to energy, memory or CPU
limitations.

Among the offline techniques, we can further classify algo-
rithms based on the type of policies (belief mapping or FSC)
that they produce. Algorithms that produce belief mappings
often exploit the fact that the value V∗ of an optimal policy
satisfies Bellman’s equation

V∗(b) = max
a

∑

s

b(s)

⎡

⎣R(s, a)+ γ
∑

s′,o
Pr(s′|s, a)

Pr(o|s′, a)V∗(bao)

]
∀b. (3)

In theory, the optimal value function could be computed by
value iteration, which repeatedly updates V∗ by computing the
right hand side of (3). However, the continuous nature of the
belief space prevents us from performing value iteration at all
beliefs and therefore the important class of point-based tech-
niques performs point-based Bellman backups only at a finite
set of beliefs [15]. An approximation of the value function
at all beliefs is obtained by computing the gradient in addi-
tion to the value at each belief. This allows the formation of
a set of linear value functions that are often represented by
α-vectors, similar to the value functions of controller nodes.
While the details of point-based value iteration are not impor-
tant for the rest of this paper (see [19] for more information),
what is important to know is that they produce a set � of
〈αi, bi, ai〉-tuples that associate each αi with an action ai and
a witness belief bi [i.e., belief for which αi yields the high-
est value: αi(bi) ≥ αj(bi) ∀j where α(b) =∑

s b(s)α(s)]. The
policy π induced by � is obtained by computing

π(b) = abest where best = arg max
i

αi(b). (4)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRZEŚ et al.: ENERGY EFFICIENT EXECUTION OF POMDP POLICIES 3

Although point-based value iteration techniques compute
the set � offline, they still require a certain amount of
computation at each decision point. The belief must be updated
after each action and observation according to (1) [complexity
O(|S|2)] and the best α-vector must be identified according
to (4) [complexity O(|S||�|)]. This amount of computation
may still be prohibitive when S and � are large and there is
not enough memory, time, or energy.

Alternatively, the other group of offline techniques pro-
duces policies represented as FSCs [10]. Since the execution
of a controller merely consists of a table lookup, they are the
most convenient type of policies for deployment in resource
constrained applications. A substantial amount of research
has, however, been devoted to point-based techniques; there-
fore, existing point-based methods can either solve larger
POMDP instances or are more robust against local optima
issues than direct controller optimization. Point-based meth-
ods are traditionally robust against local optima because they
use upper bounds to guide their search. Except for exact
enumeration [11], it is not clear how to use upper bounds effi-
ciently in direct controller optimization when the size of the
controller is bounded or fixed [8], [20], i.e., when a small
controller is sought. Instead of directly optimizing a FSC, in
this paper, we propose two techniques to compile policies into
approximately equivalent controllers. This has the benefit that
we can use existing scalable algorithms such as point-based
value iteration to quickly obtain a good policy. In addition, the
controller compilation allows those policies to be executed on
devices that are much more constrained.

III. CONTROLLER COMPILATION

Kaelbling et al. [5] observed that an optimal controller can
be extracted from an optimal value function. Unfortunately, the
best value functions found by state-of-the-art algorithms are
approximate/suboptimal for most problems. Hansen [21] wrote
“it is unclear how to construct suboptimal controllers from
[such value functions].” Hence, for the past 15 years, research
has focused on directly optimizing controllers. We propose two
approaches to compile suboptimal policies into approximately
equivalent controllers. The first approach is limited to policies
implicitly represented by sets of α-vectors as produced by
point-based value iteration techniques. The second approach
works with arbitrary policies.

A. Compiling Controllers From Alpha Vectors

As explained in Section II, point-based value iteration tech-
niques produce a set � of 〈αi, bi, ai〉-tuples from which a belief
mapping policy is extracted. Algorithm 1 shows how to com-
pile � into an approximately equivalent controller 〈N, φ, ψ〉.
We create a node ni for each vector αi (Line 4). Each node ni is
labeled with the action φ(ni) = ai associated with αi (Line 5).
To determine where the edge rooted at ni and labeled with
o should point to, we update the witness bi of αi according
to (1) based on action ai and observation o. Let the resulting
belief be bai,o

i . We then find which α-vector has the high-
est value at bai,o

i (Line 9) and assign the corresponding node
to ψ(ni, o) (Line 10). The complexity of this compilation

Algorithm 1 Compilation of α-Vectors Into an Approximately
Equivalent Controller 〈N, φ, ψ〉
ALPHA2FSC(�)

1: Let � be a set of 〈αi, bi, ai〉-tuples
2: N ← ∅
3: for i = 1 to |�| do
4: N ← N ∪ {ni}
5: φ(ni)← ai

6: for i = 1 to |�| do
7: for all o ∈ O do
8: if Pr(o|bi, ai) > 0 then
9: best← arg maxj αj(b

ai,o
i)

10: ψ(ni, o)← nbest

11: else
12: ψ(ni, o)← ni

13: return 〈N, φ, ψ〉

technique is O(|�|2|O||S|2), however, in practice the depen-
dence on |O| and |S| can often be reduced by exploiting
sparsity. Note that edges that have zero probability, as com-
puted using Pr(o|b, a) = ∑

s,s′ b(s)Pr(s′|s, a)Pr(o|a, s′), are
skipped in Line 8. The time to compile a policy from � is
typically a fraction of the time taken by point-based value
iteration to obtain �. The quality of the resulting controller
varies. The following guarantee can be made.

Theorem 1: When the initial belief b0 is the witness of
some vector α0 and the controller starts in the node n0 associ-
ated with α0, the ALPHA2FSC compilation technique ensures
that the actions selected at the first two time steps are identical
to that of the policy induced by �, but not for the following
time steps.

Proof: At the first time step, the policy induced by �

executes the action associated with α0 while the controller
executes the action associated with n0. Since the node asso-
ciated with each α-vector is labeled with the action of that
α-vector, the first action is the same in both policies. Let bao

0
be the belief at the second time step. The policy induced by
� executes the action associated with the maximal α-vector
for bao

0 . Since the edge rooted at n0 and labeled with o is
constructed to point to the node associated with the maximal
α-vector for bao

0 , the same action is executed at the second
time step. We cannot follow the same reasoning at the third
timestep since bao

0 may be different than the witness of the
maximal α-vector at the second time step. Hence, the policies
may execute different actions after the second time step.

Note, however, that a much stronger guarantee can be made
when the α-vectors in � correspond to the optimal value
function.

Theorem 2: If the set of α-vectors in � corresponds to
the optimal value function, then the ALPHA2FSC compilation
technique produces an optimal controller.

Proof: Let Bα be the set of beliefs for which α is maxi-
mal. When � corresponds to the optimal value function, then
the action associated with each vector α is optimal for all
beliefs in Bα . This ensures that the action associated with each
node is also optimal for the same beliefs. Furthermore, when

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 1. Policy tree up to a depth of 5 for the classic tiger problem. Nodes are labeled with actions (listen, open-left, or open-right) whereas edges with
observations (tiger-left or tiger-right). The numbers in parentheses indicate the order in which the nodes are generated.

� is optimal, all beliefs bao reached by executing the action
associated with α from some belief b ∈ Bα and observing o
have the same maximal vector(s). This ensures that the edges
constructed by the compilation procedure are optimal.

When the set of α-vectors is suboptimal, which is the case
most of the time, then actions selected after the second time
step may be different than those selected by the policy induced
by �, leading to a controller that may be better or worse. In
the next section, we describe an approach that ensures that
the resulting controller is at least as good as the original pol-
icy in the limit where the limit is an infinitely deep policy
tree used for compilation. Although our goal is to obtain a
FSC that is as good or better than the original policy, the
reader should note that one can construct a POMDP which
would require an infinite number of alpha vectors [22]; equiv-
alently, the POMDP would require an infinite number of nodes
in its FSC. The existing literature has shown, however, that
bounded memory controllers [12], [14] or policies with a
finite number of alpha vectors can yield solutions that are near
optimal [8], [13], [23].

B. Compiling Controllers From Arbitrary
Policies by Simulation

We describe an approach to compile arbitrary policies into
approximately equivalent controllers. The approach simulates
the policy up to a certain depth and ensures that the controller
will execute the same actions up to that depth. In the limit,
with an infinite depth, we obtain a controller that matches
the policy exactly. Although, as we show in the experiments,
we can often obtain a controller that is at least as good by
simulating up to a reasonable depth.

The approach works in two steps: 1) first, we generate a
policy tree up to a certain depth and then 2) we compress
the policy tree into a controller by detecting matching sub-
trees. Algorithm 2 shows how to generate a policy tree up
to a certain depth by simulating the policy. Since simulation
does not require the policy to be in any format, the approach
works with arbitrary policies. We just need to generate the
next action given the current observation at each time step,

Algorithm 2 Policy Tree Generation
POLICYTREE(π, b, depth)

1: N ← ∅
2: j← 1
3: queue← {〈b, 0, j〉}
4: while ¬isEmpty(queue) do
5: 〈b, d, i〉 ← removeFirst(queue)
6: N ← N ∪ {ni}
7: φ(ni)← π(b)
8: if d = depth then
9: ψ(ni, o)← ∗ ∀o ∈ O

10: else
11: for all o ∈ O do
12: j← j+ 1
13: addLast(queue, 〈bφ(ni)o, d + 1, j〉)
14: ψ(ni, o)← nj

15: return 〈N, φ, ψ〉

which is always possible since this is how all policies are
executed in practice. To be concrete, Algorithm 2 shows how
to generate a policy tree for policies that are belief mappings,
but we could easily modify the algorithm to work with poli-
cies that are represented as history mappings or any other type
of mapping. The algorithm generates a policy tree in breadth
first order, which will become handy in the compression step.
Since leaves do not have edges, we set ψ(n, o) to ∗ for all
edges rooted at a leaf n (Line 9).

Fig. 1 shows the policy tree generated by Algorithm 2 up to
a depth of 5 for the classic tiger problem [5]. In this problem,
there are three actions (listen, open-right, and open-left), two
observations (tiger-right and tiger-left). Nodes are labeled with
actions and edges are labeled with observations. Nodes are also
numbered according to the breadth-first order in which they
were generated.

In the second step, the policy tree is compressed into a con-
troller by identifying matching conditional plans. Each node
of the policy tree is the root of a conditional plan. Conditional
plans rooted at each node are compared to conditional plans

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRZEŚ et al.: ENERGY EFFICIENT EXECUTION OF POMDP POLICIES 5

Fig. 2. Policy tree up to a depth 5 for the classic tiger problem with dashed edges indicating nodes whose conditional plans match according to Algorithm 3.

Algorithm 3 Equivalent Conditional Plans
EQUIVALENTCP(n1, n2, φ, ψ)

1: if φ(n1) �= φ(n2) then
2: return false
3: for all o ∈ O do
4: if ψ(n1, o) �= ∗

and ¬EQUIVALENTCP(ψ(n1, o), ψ(n2, o), φ, ψ)
then

5: return false
6: return true

Algorithm 4 Compilation of Arbitrary π Into Approximate
Equivalent Controller 〈N, φ, ψ〉
POLICY2FSC(π, b, depth)

1: 〈N, φ, ψ〉 ← POLICYTREE(π, b, depth)
2: for all ni ∈ N in increasing index i do
3: for all nj ∈ N such that j < i do
4: if EQUIVALENTCP(ni, nj, φ, ψ) then
5: N ← N \ {ni, descendents(ni)}
6: for all n ∈ N, o ∈ O do
7: if ψ(n, o) = ni then
8: ψ(n, o)← nj

9: return 〈N, φ, ψ〉

rooted at previous nodes in the breadth-first order. When two
conditional plans match, we replace the node with highest
breadth-first index by the node with the lowest breadth-first
index. Two conditional plans are said to match when they
select the same actions in each path up until a leaf is encoun-
tered. Hence, conditional plans with different depths can still
match since we stop the verification as soon as a leaf is
encountered in a path. Algorithm 3 shows how to verify
whether two conditional plans match. Algorithm 4 uses this
verification procedure to prune nodes whose conditional plans
match the conditional plan of an earlier node in the breadth-
first order. This process gives rise to a controller that is often
much smaller than the original policy tree and yet ensures that

Fig. 3. Controller obtained by reducing a five-step policy tree according to
Algorithm 4 for the classic tiger problem.

the same actions are executed up to the depth of the original
policy tree.

Fig. 2 shows again the policy tree for the tiger prob-
lem with additional dashed edges indicating that the parent
node is replaced by the child node due to matching condi-
tional plans. For instance, node 4 will be replaced by node 0
since their conditional plans match. Fig. 3 shows the result-
ing reduced controller once all node substitutions indicated
by dashed edges in Fig. 2 are performed. Since leaf nodes
have a trivial one-step conditional plan and they are last in
the breadth-first order, they will be replaced by interior nodes
as long as there is an interior node with the same action.
Since actions eventually repeat in a large enough tree, the
compilation procedure generally produces controllers without
leaves (i.e., all nodes have a full set of edges). The breadth-
first order also ensures that Algorithm 3 terminates since in
each pair of conditional plans that we compare, the one rooted
at the node with the highest index is necessarily a tree of
finite depth (i.e., no loop). In addition, when we replace the
node with the highest index we can delete the entire subtree
below it since there is no way to reach that subtree other than
through the node that is being replaced. This pruning greatly
improves the running time. Finally, the breadth first order also
helps to produce a small controller since nodes are always
replaced by nodes with a lower index and therefore earlier in
the tree.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

The complexity of Algorithm 4 is quadratic in the size
of the policy tree. However, due to the pruning of subtrees
each time a node is replaced, we can show that the com-
plexity is really linear in the size of the policy tree times
the size of the reduced controller. The experiments show that
the reduced controller is often significantly smaller than the
policy tree, yielding a substantial speed up. That being said,
the linear dependence on the size of the policy tree is still
significant since the size of policy trees is exponential in
the depth [i.e., O(|O|depth)]. We can often reduce the base
|O| of the exponential by exploiting sparsity or consider-
ing only observations with a probability greater than some
threshold.

Theoretical guarantees of the approximate equivalence
between the original and compiled polices are shown in the
following theorems.

Theorem 3: The POLICY2FSC compilation procedure guar-
antees that the controller executes the same actions for a
number of time steps at least equal to D where D is the depth
of the tree in the compilation.

Proof: Whenever a subtree rooted at nj is replaced by a
subtree rooted at ni, ni occurs before nj in the breath-first
order. This means that the subtree rooted at ni is at least as
deep as the subtree rooted at nj. Since the subtree rooted at nj

is replaced by a matching subtree rooted at ni that is at least
as deep, then all actions of nj are preserved by ni. This means
that all actions of the entire tree of depth D are preserved in
the resulting controller.

Theorem 4: For a policy tree of depth D, the loss in
the value of the initial belief, b0, due to controller com-
pilation using the POLICY2FSC procedure is bounded by
γD(Rmax − Rmin)/(1− γ).

Proof: The maximal loss in any belief is (Rmax − Rmin)/

(1 − γ). Since, the controller is equivalent with the original
policy up to depth D, the loss is discounted by γD.

The theorem shows that the loss goes to zero when depth
D goes to infinity. Furthermore, tighter bounds would be pos-
sible if the value of the policy is known in all beliefs since
the maximal loss in any belief could be much smaller than
(Rmax − Rmin)/(1− γ).

IV. CONTROLLER COMPRESSION

Once a policy is compiled to a controller, it often con-
tains redundant or dominated nodes. Two nodes are redundant
when they have identical α-vectors. In the base case, redun-
dant nodes have identical conditional plans [11]. Additionally,
redundant nodes occur when some observations have zero
probability, leading to multiple conditional plans with the
same value—nodes that lead to different conditional plans
can still be redundant. Dominated nodes often occur when the
original policy is suboptimal and the compilation process gen-
erates suboptimal conditional plans. We describe a technique
to compress a controller while ensuring that its value does not
decrease and in some cases it increases. The idea is to prune
all nodes with α-vectors that are dominated in value by other
α-vectors. This approach was first used by Hansen [14] in
his policy iteration algorithm. Algorithm 5 describes how to

Algorithm 5 Deterministic FSC Compression
DETERMINISTICFSCCOMPRESSION(N, φ, ψ)

1: repeat
2: Eval controller by solving (2)
3: for each n1 ∈ N do
4: for each n2 ∈ N \ {n1} do
5: if αn1(s) ≤ αn2(s) ∀s then
6: N ← N \ {n1}
7: for all n ∈ N, o ∈ O do
8: if ψ(n, o) = n1 then
9: ψ(n, o)← n2

10: break
11: if αn1(s) ≥ αn2(s) ∀s then
12: N ← N \ {n2}
13: for all n ∈ N, o ∈ O do
14: if ψ(n, o) = n2 then
15: ψ(n, o)← n1
16: until N doesn’t change
17: return 〈N, φ, ψ〉

repeatedly compress a deterministic controller until there are
no dominated nodes. The approach alternates between policy
evaluation and node substitution. The evaluation step com-
putes the α-vector of each node by solving a system of linear
equations. Then the α-vector of each node is compared to the
α-vectors of the other nodes. When α1(s) ≤ α2(s) ∀s then n1
can be replaced by n2.

Theorem 5: The compression procedure in Algorithm 5
returns a controller with a value equal to or higher than the
value of the original controller.

Proof: Suppose that n1 is replaced by n2 in Algorithm 5.
Since the value of n2 (measured by its vector α2) is at least
as good as that of n1 (measured by its vector α1) in all
states, then pruning n1 and replacing it by n2 does not lower
the value of the controller. The value will go up if there is
an s such that α2(s) > α1(s). We prove this formally by
induction.

Consider (2) for policy evaluation. This system of lin-
ear equations can be solved by dynamic programming by
repeatedly computing the right hand side

αi+1
n (s)← R(s, φ(n))

+ γ
∑

s′,o
Pr(s′, o|s, a)αi

ψ(n,o)(s
′) ∀n, s. (5)

Here, the superscript i indicates the step in dynamic pro-
gramming. As i→∞, the α-vectors converge. Let us initialize
each α0

n with the values of the nodes in the original con-
troller. When replacing n1 by n2, we are effectively replacing
all instances where ψ(n, o) = n1 by ψ ′(n, o) = n2. We will
show that

αi
n(s) ≥ α0

n(s) ∀s, n, i (6)

and therefore when i → ∞ the compressed controller does
not decrease in value in comparison to the original controller.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRZEŚ et al.: ENERGY EFFICIENT EXECUTION OF POMDP POLICIES 7

Fig. 4. (a) n1 is jointly dominated by n2 and n3. (b) Application screenshot.

Let i = 0 be the base case. Suppose (6) holds for i, then at
i+ 1 we have

αi+1
n (s) = R(s, φ(n))+ γ

∑

s′,o
Pr(s′, o|s, a)αi

ψ ′(n,o)(s
′) ∀s, n

≥ R(s, φ(n))+ γ
∑

s′,o
Pr(s′, o|s, a)α0

ψ ′(n,o)(s
′) ∀s, n

≥ R(s, φ(n))+ γ
∑

s′,o
Pr(s′, o|s, a)α0

ψ(n,o)(s
′) ∀s, n

= α0
n(s) ∀s, n.

The complexity of the policy evaluation step in Algorithm 5
is O(|N|3|S|3|O|), however, sparsity often allows to reduce the
dependence on |S| and |O|. The complexity of the pruning step
is O(|N|2|S|). Overall, compression time is a small fraction of
compilation time.

The above compression technique can only detect nodes that
are dominated by a single node. In some cases, the α-vector
of a node is not entirely dominated by any single α-vector,
but it is dominated by the upper surface of several α-vectors.
In that case, it is possible to remove the dominated node and
replace any link to that node by stochastic links to the domi-
nating nodes [8]. Consider the α-vector of n1 in Fig. 4(a). It
is jointly dominated by α-vectors of n2 and n3. The following
linear program computes a convex combination of α-vectors
that uniformly increases the value of a dominating node by
the largest δ possible:

max
δ, Pr(n′)∀n′

δ s.t. αn(s)+ δ ≤
∑

n′
Pr(n′)αn′(s) ∀s

∑

n′
Pr(n′) = 1, Pr(n′) ≥ 0 ∀n′. (7)

Here, Pr(n′) denotes the probability of choosing n′ in the
convex combination of dominating nodes. In Fig. 4(a), the
value of the convex combination of n2 and n3 that uniformly
increases the value of n1 the most is denoted by the dashed
line.

We can use the above linear program to define a more
aggressive compression technique that yields stochastic con-
trollers. In fact, it is well known that the optimal controller
for a fixed number of nodes may be stochastic [8]. The reader
should realize that stochastic FSCs require a random number
generator to implement stochastic edges or stochastic actions.

Algorithm 6 Stochastic FSC Compression
STOCHASTICFSCCOMPRESSION(N, φ, ψ)

1: repeat
2: Eval controller by solving (8)
3: for each n ∈ N do
4: Compute δ and Pr(n′) by solving the LP in (7)
5: if δ > 0 then
6: N ← N \ {n}
7: ψ(n′|n′′, o)←ψ(n′|n′′, o)+Pr(n′)ψ(n|n′′, o)∀n′n′′o
8: until N doesn’t change
9: return 〈N, φ, ψ〉

While devices such as mobile phones usually have software
that includes pseudo-random number generators by default,
it may be challenging to access random number generators
on wearable or other small devices, although techniques for
embedded and hardware random generators exist [24], [25]
and energy efficient solutions may still be implemented.

A stochastic controller is parametrized by probability distri-
butions over actions and reachable nodes. We abuse notation
by using φ(a|n) and ψ(n′|n, o) to denote those distributions.
The value of a stochastic controller can be computed by
solving a system of linear equations similar to the one in (2)

αn(s) =
∑

a

φ(a|n)[R(s, a)+ γ
∑

s′,o
Pr(s′|s, a)Pr(o|s′, a)

×
∑

n′
ψ(n′|n, o)αn′(s

′)] ∀n, s. (8)

Algorithm 6 describes a compression technique that yields
stochastic controllers. It uses the above system of linear equa-
tions to compute the α-vectors of each node and the LP in (7)
to detect nodes dominated by a convex combination of several
nodes. Links to dominated nodes are replaced by stochastic
links to the dominating nodes.

Theorem 6: The compression procedure in Algorithm 6
returns a controller with a value equal to or higher than the
value of the original controller. Furthermore, Algorithm 6 finds
controllers with value at least as high and size at least as small
as that of the deterministic controllers found by Algorithm 5.

Proof: Algorithm 6 replaces a node by a convex combina-
tion of nodes such that the value of the convex combination
is δ(≥ 0) higher than the value of the original node according
to the linear program in (7). We can then prove by induction
that the value of the compressed controller does not decrease
in the same way as the proof for Theorem 5.

Since pruning nodes dominated by a single node is a spe-
cial case of domination by a convex combination of nodes,
Algorithm 6 will produce controllers that are at least as small
as those produced by Algorithm 5. Furthermore, since the
algorithm finds convex combinations with values at least as
high as the value of singly dominating nodes, Algorithm 6 will
produce controllers with value at least as high as the value of
the controllers produced by Algorithm 5.

Note that there is a significant time cost to solve linear
programs and therefore the running time of Algorithm 6 is
much longer in practice than for Algorithm 5.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

V. EXPERIMENTS ABOUT BATTERY CONSUMPTION

We start with a battery consumption experiment that shows
that controllers are important when energy efficient POMDP
execution is required. The battery consumption experiment
demonstrates that different types of policies will drain a bat-
tery at different rates. In particular, FSCs emerge as the most
energy efficient type of policy, which motivates our experi-
ments about controller compilation in Section VI. The need
for battery efficient execution of POMDP policies is impor-
tant for mobile devices such as mobile phones and wearable
sensors. In this paper, we consider an application on a smart
phone that assists people with cognitive disabilities to find
their way to a destination. The use of an energy efficient pol-
icy is critical since the battery must not run out before the
end of the wayfinding task. The next section introduces the
application domain.

A. LaCasa Domain

Wandering is a common behavior among people with
dementia (PwD). It is also one of the main concerns of care-
givers since it can cause the person to get lost and injured. The
frequency and manner in which a person wanders is highly
influenced by the person’s background and contextual factors
specific to the situation. We developed a POMDP model for
a mobile application called “LaCasa” [11], [26] that estimates
the risk faced by the PwD and decides on the appropriate
action to take, such as prompting the PwD or calling the
caregiver. The model was designed and instantiated using our
technique for engineering POMDPs [27]. Contextual infor-
mation gathered from sensors is integrated into the model,
including current location, battery power, and proximity to the
caregiver. The system can reason about the costs of sensors
(e.g., battery charge) and the relative costs of different types
of assistance. A preliminary version of the system has been
instantiated in a wandering assistance application for mobile
devices running on an Android platform. However, in the cur-
rent system, the necessary POMDP belief updates and policy
queries are computationally too demanding and are done on a
remote server that communicates with the smartphone using
simple XML messages. This is a problem since the server
communications can be expensive battery-wise, and rely on
a data connection. The FSCs we find using the method pro-
posed in this paper alleviate this problem, allowing the policy
to run directly and cheaply on the smartphone. Additionally, it
is not necessarily the case that persons with dementia will be
able to carry a smartphone, and may require a much smaller,
embedded or wearable device. In such cases, the memory and
computation power available becomes a more serious con-
straint, making the use of FSCs imperative. We experimented
with three LaCasa versions of different sizes. The battery con-
sumption experiment was conducted on the largest version of
LaCasa (lacasa4.batt) whereas compilation and compression
were performed on all three versions and those compilation
results are reported in the next section.

B. Experimental Design

In order to examine how a mobile phone battery is
drained by different POMDP policies, we conduct a series

TABLE I
CONFIGURATIONS EVALUATED IN THE BATTERY

CONSUMPTION EXPERIMENT

of experiments and record the time per 1% battery depletion
for each implementation involving the configurations shown
in Table I. All those configurations—except client/server—run
entirely on a mobile phone. For the client/server configuration,
the POMDP policy is executed on the server whereas obser-
vations are generated on the mobile phone. Observations and
actions are communicated over a WIFI connection. The mobile
phone obtains observations from its own sensors and then acts
like a client and queries actions from the server. The process
of querying actions involves updating the belief state on the
server.

All the experiments were conducted on the same smart-
phone (Nexus 4, Android 4.2). Each experiment started with a
battery level above 95% and kept running for 3 h, during which
battery changes were recorded. We closed as many unrelated
user applications as possible. No SIM card was installed on the
smartphone in order to avoid uncontrollable interference. WIFI
was turned on only when necessary (baselines with WIFI and
client/server). The screen was on and set to fixed brightness
throughout every 3-h experiment. Since Android OS consid-
ers screen-off as a signal of low usage, it may slow down the
CPU and turn off WIFI, which would impact the results and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRZEŚ et al.: ENERGY EFFICIENT EXECUTION OF POMDP POLICIES 9

TABLE II
BATTERY CONSUMPTION RESULTS ON THE NEXUS 4 PHONE

prevent a fair comparison between different policies. All com-
parisons were performed with the same screen configuration.
A screenshot of the application is shown in Fig. 4(b).

The execution frequency (i.e., the number of policy queries
per second) has a significant impact on battery consumption.
For example, reading observations from the sensors, updating
the belief state, querying the policy, and executing the action
selected every 10 s consumes much less energy than execut-
ing all these steps several times per second. Therefore, we
experiment with frequencies. The program runs in an infinite
loop where policy queries are made at different time inter-
vals: 10 s (0.1 Hz), 2 s (0.5 Hz), 1 s (1 Hz), and 0.125 s
(8 Hz). During each evaluation, the program obtains observa-
tions, updates its belief state, queries a policy, executes the
action and then sleeps for the rest of the interval. For exam-
ple, if it takes 0.1 s to finish the above sequence of steps,
the program will then sleep 9.9 s for the 10-s interval experi-
ment, 1.9 s in the 2-s interval experiment. For some policies
(e.g., client/server, flat or symbolic Perseus policies), it may
take longer than some intervals to finish a round. For example,
it may take 0.3 s, which means that shorter intervals, such as
0.125 s, are infeasible. In such a case, the program raises a flag
and “n.a.” is indicated in the corresponding cells of Table II.

C. Results

The lacasa4.batt POMDP with 2880 states, six actions, and
72 observations is evaluated. The finite-state controller for this
POMDP was computed using the POLICY2FSC method intro-
duced in Algorithm 4 and contained 87 deterministic nodes.
The flat policy was computed using SARSOP [13] and con-
tained 27 α-vectors. The SARSOP policy was used in the flat
experiment where the model is represented using sparse matri-
ces. The symbolic Perseus planner [28] was used to compute
a factored policy (symbolic Perseus in results) and the number
of factored α-vectors was bounded to 27 in order to have the
same number of α-vectors in both flat and factored methods.

The results for lacasa4.batt are in Table II where eight con-
figurations from Table I are compared. Fig. 5 shows the same
battery depletion results graphically. For every frequency and
every configuration, two numbers are reported: the average
time measured in minutes for the battery to deplete itself by
1% and the standard error of this average. Across all fre-
quencies, the flat and symbolic Perseus policies are the most
energy intensive policies, which is natural since they do both
belief updates and policy queries on the phone. The symbolic

Fig. 5. Battery consumption results on the Nexus 4 phone. Missing values
indicate that the policy did not return fast enough for a given frequency.

Perseus policy consumed more energy than the flat policy.
The fact that this factored policy is more resource demanding
than a flat policy represented by sparse α-vectors shows that
a factored policy needs a substantial amount of structure (i.e.,
conditional and context-specific independence) to outweigh the
overhead introduced by algebraic decision diagrams in order
to consume less energy than a flat policy. The lacasa prob-
lem has a natural factored representation, but the amount of
structure was not sufficient for the factored representation to
payoff. The client/server solution was more battery efficient
than both flat and factored policies since belief updates and
policy queries happened on the dedicated server. The finite-
state controller was the most energy efficient POMDP policy
across all frequencies and with a frequency of 8 Hz, it is the
only method that is sufficiently fast to return an action within
0.125 s (n.a. in columns that correspond to a frequency of
8 Hz means that the policy was too slow for the required
frequency). The last column in Table II shows how long, on
average, it takes to process one query for each policy. Here,
the processing time of the finite-state controller is compara-
ble with baselines that do not do any computation related to
policy execution.

It should be noted that in the above experiments, both flat
and symbolic Perseus policies had a considerably small num-
ber (27) of α-vectors. In many applications, this number is
much larger (e.g., 100–10 000), which slows down the pro-
cess of querying a policy since each policy query costs N
dot products, where N is the number of α-vectors. The com-
putational cost of querying a finite-state controller does not

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

depend on the size of the controller, which suggests that the
gap between the results for finite-state controllers and policies
based on α-vectors will widen as the number of α-vectors
increases.

VI. EXPERIMENTS ON CONTROLLER COMPILATION

AND COMPRESSION

We evaluate our compilation and compression methods
with policies computed by two state-of-the-art point-based
POMDP algorithms: GapMin [12] and SARSOP [13]. GapMin
returns 〈αi, bi, ai〉-tuples and, therefore, we can compile its
policies into finite-state controllers using both of our com-
pilation methods. SARSOP was used to compute policies
for the largest POMDP benchmarks, however, it returns
only α-vectors, which is sufficient to apply POLICY2FSC

(Algorithm 4), but not ALPHA2FSC (Algorithm 1). Witness
beliefs are also needed, but SAROP’s interface does not expose
them. The experiments are conducted with some benchmark
problems and the lacasa POMDPs for smart phones. The run-
ning time of compilation algorithms—reported in the column
time—corresponds to the time of actual compilation whereas
the time to compute initial policies before compilation can be
found in parentheses in the same column. High time limits
were selected in order to compute policies of high quality.
Thus, this time could be considerably shorter if one stops the
planning algorithms as soon as a policy of sufficient quality
is obtained. This could lead to a substantial reduction of the
planning/initialization time since longer planning times (e.g.,
104 s instead of 103 s in the case of SARSOP [13]) do not
usually lead to dramatically improved policies.

A. Results

Tables III and IV compare the results obtained by compil-
ing policies produced by GapMin and SARSOP, respectively,
to five techniques that directly optimize controllers: BPI with
escape [8], quadratically constrained linear programming for
Moore (QCLP) [7] and Mealy automata (QCLP-Mealy) [29],
EM with forward search [30], and branch&bound (B&B) with
isomorph pruning [11]. POLICY2FSC was used in an itera-
tive deepening fashion, starting from depth 2, up to a depth
where the resulting controller was at least as good as the orig-
inal policy or a time limit was exceeded. Hence, the time
reported for POLICY2FSC is the cumulative time (seconds) to
process all compilations from depth 2 up to the depth reported
in column depth. Tree size is the size of the policy tree for
that depth (note that edges with zero probability reduce the
size of the policy tree considerably). Column nodes displays
the number of nodes in the final controller after compres-
sion (before compression in the parentheses). Column value
shows the value of controllers after compression (analogously,
before compression in the parentheses). Column “c” indicates
the number of iterations of the compression until there is no
compression possible. QCLP and QCLP-Mealy experiments
that did not complete on the NEOS1 server are indicated with
n.a. as well as experiments on EM and BPI when 3 GB of

1http://www.neos-server.org which imposes the following restrictions:
3 GB RAM, 8 h CPU time, and 16 MB task size in AMPL.

memory was not sufficient. A “*” besides the value of B&B
indicates that B&B did not complete its search in 24 h and
that the value reported is for the best controller found in 24 h.
Since our POLICY2FSC procedure can be applied with any pol-
icy, we could also compile GapMin upper bound policies into
finite-state controllers.

Table III compares our two compilation methods for
policies computed by GapMin. Method GM-LB stands for
POLICY2FSC applied to the GapMin lower bound policy
whereas GM-UB to the upper bound policy. Note that on
domains where QMDP [31] or the fast informed bound [31]
are near optimal, POLICY2FSC can be used with such poli-
cies and no extra planning is required. Results confirm that
our methods are successful in compiling POMDP policies
into finite-state controllers of approximately equivalent qual-
ity. The highest value found for each problem is bolded.
ALPHA2FSC compiles |lb| α-vectors into controllers with sim-
ilar value, though sometimes the value is significantly worse
(e.g., lacasa4.batt and machine). In contrast, POLICY2FSC

finds better controllers by simulating the input policy to a
larger depth, but this takes more time. It was stopped as
soon as the value of the controller matches GapMin’s lower
bound or 1 h was reached. In many cases, the number of
nodes is still less than or equal to the size of the input pol-
icy (e.g., 4x5x2.95, cheese-taxi, lacasa2, machine). The direct
optimization techniques (B&B, QCLP, QCLP-Mealy, EM,
BPI) generally take much longer and/or do not consistently
produce good controllers.

Table IV summarizes the results for some problems that
are among the largest available benchmarks for point-based
value iteration techniques that do not exploit factored rep-
resentations. In this case, SARSOP was used to obtain a
lower bound policy that is then compiled by POLICY2FSC.
Even though SARSOP returned value functions with thousands
of α-vectors, we compiled those policies into considerably
smaller controllers (up to three orders of magnitude reduction)
of the same or better quality (e.g., underwaterNav) demonstrat-
ing that our method scales to large problems. POLICY2FSC

produced the best value for all problems except underwaterNav
where the direct optimization techniques produced better con-
trollers. This simply indicates that the policy compiled from
SARSOP was not the best as opposed to any weakness in
POLICY2FSC.

B. Stochastic Finite-State Controllers

The compilation and compression techniques tested in the
previous section produce deterministic controllers, however,
the space of stochastic controllers is larger and the optimal
controller for a fixed number of nodes may be stochastic. In
fact, some of the techniques that directly optimize controllers
(e.g., BPI, QCLP, QCLP-Mealy, and EM) work in the space
of stochastic controllers for this reason. In this section, we
investigate to what extent the deterministic controllers found
so far can be improved by expanding the search to stochastic
controllers. We experiment with the compression technique in
Algorithm 6 since it produces stochastic controllers that are
potentially smaller and better than the deterministic controllers
produced by Algorithm 5. We also initialized BPI with the

http://www.neos-server.org

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRZEŚ et al.: ENERGY EFFICIENT EXECUTION OF POMDP POLICIES 11

TABLE III
COMPILATION OF GAPMIN POLICIES USING (1) ALPHA2FSC APPLIED TO GAPMIN LOWER BOUND α-VECTORS; (2) POLICY2FSC APPLIED TO GAPMIN

LOWER BOUND POLICY (GM-LB); AND (3) POLICY2FSC APPLIED TO GAPMIN UPPER BOUND POLICY (GM-UB). THE NUMBERS IN

PARENTHESES IN COLUMNS “NODES” AND “VALUE” INDICATE THE NUMBER OF NODES AND A VALUE OF CONTROLLERS

BEFORE COMPRESSION. IN COLUMN “TIME,” VALUES IN PARENTHESES SHOW THE TIME REQUIRED TO COMPUTE

THE INITIAL GAPMIN POLICY THAT IS USED FOR COMPILATION BY ALPHA2FSC AND POLICY2FSC

deterministic controllers found in previous experiments to see
whether it could improve them by searching in the space of
stochastic controllers.

The results of the evaluation are shown in Table V, where
all deterministic FSCs from the previous section are reported
in the first group of columns named deterministic FSC. Those

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

TABLE IV
COMPILATION AND COMPRESSION OF SARSOP POLICIES. THE NUMBERS IN PARENTHESES IN COLUMNS NODES AND VALUE INDICATE THE NUMBER

OF NODES AND A VALUE OF CONTROLLERS BEFORE COMPRESSION. IN COLUMN TIME, VALUES IN PARENTHESES SHOW THE TIME REQUIRED TO

COMPUTE THE INITIAL SARSOP POLICY THAT IS USED FOR COMPILATION BY POLICY2FSC

TABLE V
DETERMINISTIC FINITE-STATE CONTROLLERS FROM TABLES III AND IV (SHOWN HERE IN THE “DETERMINISTIC FSC” COLUMN) CONVERTED TO

STOCHASTIC FINITE-STATE CONTROLLERS; THE RESULT IS NOT SHOWN WHEN NEITHER THE SIZE WAS REDUCED NOR THE QUALITY OF THE

STOCHASTIC CONTROLLER WAS INCREASED. COLUMNS “STOCHASTIC FSC” ARE FOR STOCHASTIC CONTROLLERS OBTAINED USING

ALGORITHM 6 THAT DETECTS NODES DOMINATED BY MORE THAN ONE NODE AND THEN REMOVES THEM. COLUMNS

“FSC FROM BPI” SHOW STOCHASTIC FINITE-STATE CONTROLLERS OBTAINED WHEN BPI [8] IS INITIALIZED WITH

CORRESPONDING DETERMINISTIC CONTROLLERS. THE VALUES ARE PRINTED IN BOLD WHEN

STOCHASTIC CONTROLLERS YIELD CONSIDERABLE IMPROVEMENT

results are repeated from Tables III and IV for convenience.
The columns under stochastic FSC and FSC from BPI show,
respectively the results of the compression technique described
in Algorithm 6 and BPI [8] initialized with the deterministic
controllers of the first set of columns.

Before the results are discussed in detail, we note that
our deterministic finite-state controllers are already optimal
for several POMDPs, i.e., for 4x5x2.95, chainOfChains3,
hhepis6obs_woNoise and no improvement is expected from
stochastic finite-state controllers in terms of value, although
the stochastic controllers can be smaller due to the use of

stochastic actions and/or stochastic edges. The percentage of
stochastic actions and stochastic edges for each stochastic con-
troller is shown in the columns “% stochastic actions” and “%
stochastic edges.”

Let us first look at the columns under stochastic FSC in
Table V. A comparison with deterministic FSCs shows that
there is only one case where removing nodes jointly dominated
by several nodes yields a nonnegligible increase in the qual-
ity of the policy—lacasa4.batt GM-LB. For POMDPs where
deterministic controllers are optimal, the compression proce-
dure did not remove any node except for rockSample-7_8.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRZEŚ et al.: ENERGY EFFICIENT EXECUTION OF POMDP POLICIES 13

For POMDPs, where the deterministic controllers are not
optimal, the procedure reduced the size of some controllers
by introducing stochastic nodes. The biggest reduction in
controller size was for aloha.10 GM-LB and GM-UB.

The second group of results under FSC from BPI shows the
average of 21 executions of BPI initialized with our determin-
istic FSCs. BPI is a planning algorithm that can improve our
deterministic policies with its optimization module that cre-
ates improved nodes in the controller leading to controllers of
larger size when existing nodes are not dominated by the new
nodes. BPI improved most policies for the LaCasa POMDPs
where both a larger numbers of nodes in the stochastic con-
trollers, and stochastic actions and edges were utilized. In other
cases, e.g., aloha.10, even if the quality of the policy could not
be improved, the size of the stochastic finite-state controllers
is substantially smaller benefiting from stochastic actions and
edges.

Overall, our thorough evaluation of methods for stochas-
tic finite-state controllers indicates that deterministic finite-
sate controllers are usually very good. This is in line with
Hansen [32] who also found that the stochastic FSCs found
by BPI are mostly deterministic. Our methods for controller
compilation depend on policies computed by point-based value
iteration or other methods. If these algorithms are improved
and yield better policies, then our compilation and compres-
sion techniques will naturally produce better controllers. Since
point-based solvers do not always find near optimal policies
for large problems, a translation to stochastic controllers can
be seen as a way to potentially improve the quality (and the
size) of policies before deployment in practice.

VII. DISCUSSION AND RELATED WORK

Before we conclude, we discuss several relevant lines of
research that were not critical to understand this paper, yet
they examine similar challenges and apply related algorithmic
approaches.

The goal of this paper was to compile existing policies
into FSCs where a policy can be queried on demand for
different execution trajectories. There is a growing interest—
especially within theoretical computer science and com-
putational linguistics—in the related problem of automata
identification [33]. Those communities investigate a more chal-
lenging problem than policy compilation because the number
of trajectories may be large, those trajectories may contain
repeated transitions, yet not cover all possible realizations of
the automaton, and the process of merging those trajectories
introduces an additional computational challenge when con-
structing or approximating a policy tree [33]. Trajectory and
sample-based approaches become useful for POMDP plan-
ning, however, when the policy is not available as shown
in [34] where FSCs are compiled from a set of trajectories
sampled according to an exploration policy (e.g., a random
policy). A large set of trajectories is sampled first, and after
that the trajectories that yield highest rewards are considered to
be realizations of the desirable policy, and they are merged into
a FSC. A similar approach with a richer policy representation
was investigated subsequently in [35].

The algorithm in [34] seeks a policy, and it tries to compile
it into a FSC at the same time whereas the transition probabil-
ities of the underlying Markov decision process are available,
and they can be used at all stages of the algorithm. In contrast,
reinforcement learning aims to find a policy—which can be in
the form of a FSC as well—when transition probabilities of
the Markov process are not known [36]. The absence of those
probabilities introduces yet another level of complexity. To
this end, various reinforcement learning algorithms have been
proposed as shown in [37]. A particular approach that is rele-
vant to this discussion is batch reinforcement learning where
the algorithm has access to a set of trajectories sampled from
a real or a simulated environment [38]. One of the most recent
implementations of this approach for POMDPs was proposed
in [39] and [40]. The combination of a missing policy that is
sought, missing transition probabilities, and partial observabil-
ity make the task particularly difficult. As a result, the current
algorithms are most efficient when rewards of the underlying
Markov decision process are sparse, i.e., rewards are zero for
most states except for the goal state.

VIII. CONCLUSION

We presented two novel methods to compile policies for
POMDPs into approximately equivalent FSCs. Our motiva-
tion is that these FSC representations are very useful in
resource-constrained applications such as on mobile or wear-
able devices. Methods that can create FSC policies open
up new possibilities for using POMDP controllers on these
devices, where battery, computation, and memory resources
are at a premium. We showed how we can get very compact
policy representations that are equivalent to those generated
by two state-of-the-art offline planners. We also performed
battery consumption experiments on a real device—Nexus 4
smartphone—which confirmed that finite-state controllers are
the most energy efficient POMDP policies and they can
increase battery life significantly in comparison with existing
methods. The battery consumption experiment was set up in
a way that was challenging for finite-state controllers because
alternative policies had a small number of α-vectors. For larger
POMDPs, the number of α-vectors will likely increase, which
will also increase the performance gap and finite-state con-
trollers will display further battery savings. Increases in battery
life are always welcome by users of mobile devices.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments and C. Amato for help with running
the QCLP algorithm.

REFERENCES

[1] J. D. Williams and S. Young, “Scaling POMDPs for spoken dialog
management,” IEEE Audio, Speech, Language Process., vol. 15, no. 7,
pp. 2116–2129, Sep. 2007.

[2] J. Hoey et al., “People, sensors, decisions: Customizable and adaptive
technologies for assistance in healthcare,” ACM Trans. Interact. Intell.
Syst., vol. 2, no. 4, p. 20, Dec. 2012.

[3] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online planning algo-
rithms for POMDPs,” J. Artif. Intell. Res., vol. 32, no. 1, pp. 663–704,
May 2008.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CYBERNETICS

[4] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in
Proc. Adv. Neural Inform. Process. Syst. (NIPS), pp. 2164–2172, 2010.

[5] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artif. Intell., vol. 101,
nos. 1–2, pp. 99–134, 1998.

[6] D. Braziunas and C. Boutilier, “Stochastic local search for POMDP
controllers,” in Proc. 19th Nat. Conf. Artif. Intell. (AAAI),
2004, pp. 690–696. [Online]. Available: citeseer.ist.psu.edu/
braziunas04stochastic.html

[7] C. Amato, D. Bernstein, and S. Zilberstein, “Optimizing fixed-
size stochastic controllers for POMDPs and decentralized POMDPs,”
J. Auton. Agents Multi-Agent Syst., vol. 21, no. 3, pp. 293–320, 2009.

[8] P. Poupart and C. Boutilier, “Bounded finite state controllers,” in Proc.
Adv. Neural Inform. Process. Syst. (NIPS), 2003, pp. 823–830.

[9] M. Toussaint, S. Harmeling, and A. Storkey, “Probabilistic inference for
solving (PO)MDPs,” School Inform., Univ. Edinburgh, Edinburgh, U.K.,
Tech. Rep. EDI-INF-RR-0934, 2006.

[10] N. Meuleau, K.-E. Kim, L. P. Kaelbling, and A. R. Cassandra, “Solving
POMDPs by searching the space of finite policies,” in Proc. 15th Conf.
Uncertainty Artif. Intell. (UAI), 1999, pp. 417–426.

[11] M. Grześ, P. Poupart, and J. Hoey, “Isomorph-free branch and bound
search for finite state controllers,” in Proc. 23rd Int. Joint Conf. Artif.
Intell. (IJCAI), 2013, pp. 2282–2290.

[12] P. Poupart, K.-E. Kim, and D. Kim, “Closing the gap: Improved bounds
on optimal POMDP solutions,” in Proc. 21st Int. Conf. Autom. Plan.
Sched. (ICAPS), 2011, pp. 194–201.

[13] H. Kurniawati, D. Hsu, and W. Lee, “SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces,”
in Proc. Robot. Sci. Syst. (RSS), 2008, pp. 65–72.

[14] E. Hansen, “An improved policy iteration algorithm for partially observ-
able MDPs,” in Proc. Adv. Neural Inform. Process. Syst. (NIPS), 1998,
pp. 1015–1021.

[15] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” in Proc. 23rd Int. Joint Conf. Artif.
Intell. (IJCAI), 2003, pp. 1025–1032.

[16] M. T. J. Spaan and N. Vlassis, “Perseus: Randomized point-based value
iteration for POMDPs,” J. Artif. Intell. Res., vol. 24, no. 1, pp. 195–220,
2005.

[17] G. Shani, R. I. Brafman, and S. E. Shimony, “Prioritizing point-based
POMDP solvers,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38,
no. 6, pp. 1592–1605, Dec. 2008.

[18] G. Shani, “Evaluating point-based POMDP solvers on multicore
machines,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 4,
pp. 1062–1074, Aug. 2010.

[19] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers,” J. Auton. Agents Multi-Agent Syst., vol. 27, no. 1, pp. 1–51,
2013.

[20] C. Amato, D. Bernstein, and S. Zilberstein, “Solving POMDPs using
quadratically constrained linear programs,” in Proc. 20th Int. Joint Conf.
Artif. Intell. (IJCAI), 2007, pp. 2418–2424.

[21] E. A. Hansen, “Finite-memory control of partially observable systems,”
Ph.D. dissertation, Dept. Comp. Sci., Univ. Massachusetts Amherst,
Amherst, MA, USA, 1998.

[22] E. Sondik, “The optimal control of partially observable decision pro-
cesses over the infinite horizon: Discounted cost,” Oper. Res., vol. 26,
no. 2, pp. 282–304, 1978.

[23] T. Smith and R. Simmons, “Point-based POMDP algorithms: Improved
analysis and implementation,” in Proc. Uncertainty Artif. Intell. (UAI),
2005, pp. 542–555.

[24] V. Fischer and M. Drutarovsky, “True random number generator
embedded in reconfigurable hardware,” in Proc. 4th Int. Workshop
Cryptographic Hardware Embedded Syst. (CHES), 2002, pp. 415–430.

[25] R. Davies, “Hardware random number generators,” presented at the 15th
Australian Statistics Conference, Adelaide, SA, Australia, 2000.

[26] J. Hoey, X. Yang, E. Quintana, and J. Favela, “LaCasa: Location and
context-aware safety assistant,” in Proc. 6th Int. Conf. Pervasive Comp.
Techn. Healthcare, San Diego, CA, USA, 2012, pp. 171–174.

[27] M. Grześ et al., “Relational approach to knowledge engineering for
POMDP-based assistance systems as a translation of a psychological
model,” Int. J. Approx. Reason., vol. 55, no. 1, pp. 36–58, 2014.

[28] P. Poupart, “Exploiting structure to efficienty solve large scale partially
observable Markov decision processes,” Ph.D. dissertation, Dept. Comp.
Sci., Univ. Toronto, Toronto, ON, Canada, 2005.

[29] C. Amato, B. Bonet, and S. Zilberstein, “Finite-state controllers based on
Mealy machines for centralized and decentralized POMDPs,” in Proc.
24th Conf. Artif. Intell. (AAAI), 2010, pp. 1052–1058.

[30] P. Poupart, T. Lang, and M. Toussaint, “Analyzing and escap-
ing local optima in planning as inference for partially observ-
able domains,” in Proc. Eur. Conf. Mach. Learn. Knowl. Discovery
Databases (ECML/PKDD), 2011, pp. 613–628.

[31] M. Hauskrecht, “Value-function approximations for partially observ-
able Markov decision processes,” J. Artif. Intell. Res., vol. 13, no. 1,
pp. 33–94, 2000.

[32] E. A. Hansen, “Sparse stochastic finite-state controllers for POMDPs,”
in Proc. 24th Conf. Uncertainty Artif. Intell. (UAI), 2008, pp. 256–263.

[33] D. Jurafsky and J. H. Martin, Speech and Language Processing, 2nd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2009.

[34] C. Amato and S. Zilberstein, “Achieving goals in decentralized
POMDPs,” in Proc. 8th Int. Conf. Auton. Agents Multiagent Syst., 2009,
pp. 593–600.

[35] J. Pajarinen and J. Peltonen, “Periodic finite state controllers for efficient
POMDP and DEC-POMDP planning,” in Proc. Adv. Neural Inf. Process.
Syst., 2011, pp. 2636–2644.

[36] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Scientific, 1996.

[37] R. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[38] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learn-
ing,” in Reinforcement Learning: State of the Art, M. Wiering and
M. van Otterlo, Eds. Berlin, Germany: Springer, 2011.

[39] H. Li, X. Liao, and L. Carin, “Multi-task reinforcement learning in par-
tially observable stochastic environments,” J. Mach. Learn. Res., vol. 10,
pp. 1131–1186, Jan. 2009.

[40] M. Liu, X. Liao, and L. Carin, “The infinite regionalized policy repre-
sentation,” in Proc. Int. Conf. Mach Learn., Bellevue, WA, USA, 2011,
pp. 769–776.

Marek Grześ received the M.Sc. degree in software engineering from the
Bialystok University of Technology, Bialystok, Poland, and the Ph.D. degree
in computer science from the University of York, York, U.K.

He is a Post-Doctoral Research Fellow with the University of Waterloo,
Waterloo, ON, Canada. His current research interests include artificial intel-
ligence, decision-theoretic planning, probabilistic reasoning, and applications
thereof.

Pascal Poupart received the B.Sc. degree in mathematics and computer
science from McGill University, Montreal, QC, Canada, in 1998, and the
M.Sc. and Ph.D. degrees in computer science from the University of British
Columbia, Vancouver, BC, Canada, and the University of Toronto, Toronto,
ON, Canada, in 2000 and 2005, respectively.

He is an Associate Professor with the Cheriton School of Computer
Science, University of Waterloo, Waterloo, ON, Canada. His current research
interests include the development of algorithms for decision-theoretic planning
and machine learning with application to assistive technologies and natural
language processing.

Xiao Yang received the M.Math. degree from the University of Waterloo,
Waterloo, ON, Canada, supervised by Prof. Hoey.

He is a Software Development Engineer at Amazon, Toronto, ON, Canada.
His current research interests include leveraging the advantages of mobile
devices in health informatics.

Jesse Hoey received the B.Sc. degree in physics from McGill University,
Montreal, QC, Canada, the M.Sc. degree in physics, and the Ph.D degree
in computer science from the University of British Columbia in Vancouver,
BC, Canada, in 1992, 1995, and 2004, respectively.

He was a Post-Doctoral Researcher at the Department of Computer Science
and Occupational Science and Occupational Therapy, University of Toronto,
Toronto, ON, Canada, from 2004 to 2006. From 2004 to 2010, he was
a Lecturer (assistant professor) at the School of Computing, University of
Dundee, Dundee, Scotland. He is an Associate Professor with the Cheriton
School of Computer Science, University of Waterloo, Waterloo, ON, Canada.
He is also an Adjunct Scientist with the Toronto Rehabilitation Institute,
Toronto, ON, Canada, where he is currently a Co-Leader of the AI and
Robotics Research Team. His current research interests include artificial
intelligence and health informatics.

http://citeseer.ist.psu.edu/braziunas04stochastic.html
http://citeseer.ist.psu.edu/braziunas04stochastic.html

