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Abstract

Beamforming is a widely used technique for source localization in signal processing and
neuroimaging. A number of vector-beamformers have been introduced to localize neuronal
activity by using magnetoencephalography (MEG) data in the literature. However, the ex-
isting theoretical analyses on these beamformers have been limited to simple cases, where
no more than two sources are allowed in the associated model and the theoretical sensor
covariance is also assumed known. The information about the effects of the MEG spatial
and temporal dimensions on the consistency of vector-beamforming is incomplete. In the
present study, we consider a class of vector-beamformers defined by thresholding the sensor
covariance matrix, which include the standard vector-beamformer as a special case. A gen-
eral asymptotic theory is developed for these vector-beamformers, which shows the extent
of effects to which the MEG spatial and temporal dimensions on estimating the neuronal
activity index. The performances of the proposed beamformers are assessed by simulation
studies. Superior performances of the proposed beamformers are obtained when the signal-
to-noise ratio is low. We apply the proposed procedure to real MEG datasets derived from
five sessions of a human face-perception experiment, finding several highly active areas in
the brain. A good agreement between these findings and the known neurophysiology of the
MEG response to human face perception is shown.

Keywords: MEG Neuroimaging, Vector-beamforming, Sparse Covariance Estimation,
Source Localization and Reconstruction

1. Introduction

MEG is a non-invasive imaging technique that records brain activity with high temporal
resolution. Postsynaptic current flow within the dendrities of active neurons generates a
magnetic field that can be measured close to the scalp surface by use of sensors (Hamalainen
et al., 1993). The magnitude of these measured fields is directly related to neuronal current
strength, and hence their measurement will reflect the amplitude of brain activity. The
major challenge, however, is to localize active regions inside the head, given the measured
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magnetic fields outside the head (i.e., given MEG data). This is an ill-posed problem
of source localization since the magnetic fields could be caused by an infinite number of
neuronal regions. Mathematically, the problem can be stated as follows: one observes a
vector of time-series Y(t) = (Y1(t), ..., Yn(t))

T ∈ R
n, t = tj , 1 ≤ j ≤ J from n sensors,

which are linked to candidate sources located at rk, 1 ≤ k ≤ p in the brain via the model

Y(t) =

p
∑

k=1

Hkmk(t) + ε(t), (1.1)

where Hk is an n × 3 lead field matrix at rk (i.e., the unit output of the candidate source
at location rk, which is derived from Maxwell’s equations), mk(t) with covariance matrix
Σk is a 3× 1 moment (time-course) at time t and location rk, ε(t) with covariance matrix
σ20In represents white noises at the MEG channels, and In is the n × n identity matrix.
See Mosher et al. (1999) for more details. In practice, when candidate source locations
(i.e., voxels) are created by discretizing the source space in the brain, the number of these
sources can be substantially larger than the number of available sensors. Moreover, unlike
the traditional functional data, not only source time courses but also sensor readings are
spatially correlated. Therefore, searching for a small set of latent sources of non-null powers
from a large number of candidates poses a challenge to standard i.i.d. sample-based methods
in functional data analysis (Ramsay and Silverman, 2005). Here, the source power at
location rk is referred as the trace of the covariance matrix Σk.

Two types of approaches have been proposed for handling the above problem in the
literature: global approach and local approach (e.g., Henson et al., 2011; Bolstad et al.,
2009; Van Veen et al., 1997; Robinson and Vrba, 1998; Huang et al., 2004; Quraan et al.,
2011). In the global approach, one puts all candidate sources into the model and solves a
sparse estimation problem. In the local approach, on other hand, one invokes a list of local
models, each is tailored to a particular candidate region. The global approach often requires
to specify parametric models, while the local approach is model-free. When the number of
candidate sources p is small or moderate compared to the number of available sensors n, one
may use a Bayesian method to infer latent sources, with helps of computationally intensive
algorithms (e.g., Henson et al., 2011). To make an accurate inference, a large p should be
chosen. However, when p is large, the global approach may be computationally intractable
and the local approach is preferred. Here, we focus on the so-called linearly constrained
minimum variance (LCMV) beamforming (also called vector-beamforming), a local method
for solving the above large-p-small-n problem. It involves two steps as follows:

• Projection step. For location rk in the source space, one searches for the optimal
n × 3 weighting-matrix W by minimizing the trace of the sample covariance of the
projected data W TY (tj), 1 ≤ j ≤ J , subject to W THk = I3, where I3 is a 3 × 3
identity matrix. This gives the optimal trace

Ŝk = tr([HT
k Ĉ

−1Hk]
−1), (1.2)

where Ĉ is a sensor covariance estimator and for any invertible matrix A, A−1 denotes
its inverse, and tr(·) stands for the matrix trace operator. See van Veen et al. (1997)
for the details.
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• Mapping step. For location rk, calculate the neuronal activity index Ŝk/(σ
2
0tr([H

T
k Hk]

−1)),
where σ20 is estimated by certain baseline noise data such as the pre-stimulus data.
Plot the index against the grid points, creating a neuronal activity map over a given
temporal window.

In the projection step, the procedure aims at estimating the desired signal from each
chosen location while minimizing the contributions of other unknown locations in the pres-
ence of noises by optimizing the variation of the projected data. This can be easily seen from
the following decomposition of the projected covariance under the constrain W THk = I3:

tr
(

cov(W TY(t))
)

= tr(Σk) + tr(W T cov(
∑

j 6=k

Hjmj(t) + ε(t))W )

+2tr(cov(mk(t),W
T (
∑

j 6=k

Hjmj(t) + ε(t)))),

where the first term is the underlying signal strength at rk and the last two terms are the
contributions of other locations and background noises to the estimated strength of the
signal at rk. Therefore, minimizing the trace of the projected covariance of the data with
respect to W is equivalent to minimizing the the contributions of other locations and back-
ground noises to estimating the true signal strength at rk. The further mathematical details
can be found in Sekihara and Nagarajan (2010) As pointed out before, in practice, we often
have the baseline noise data. Performing the above projection procedure on the noise data
under the assumption that the noise covariance matrix is approximately σ20In, we obtain the
optimal trace of the covariance matrix of the projected noise at rk, σ

2
0tr([H

T
k Hk]

−1). This
implies that the above neuronal activity index is a signal-to-noise ratio (SNR) at location
rk. Therefore, the map generated in the mapping step is a SNR map. A similar formula
can be derived under a general model of the noise covariance. However, to avoid high-
dimensional effects on estimating sensor covariance matrices, we often employe a diagonal
noise covariance model even when the true one is not diagonal.

Both theoretical and empirical studies have suggested that the vector-beamforming can
provide excellent performance given a sufficient number of observations (e.g., Sekihara et
al., 2004; Brookes et al., 2008; Quraan et al., 2011). However, the existing theoretical anal-
yses have been limited to simple cases, where no more than two sources are allowed in the
model and the theoretical sensor covariance is assumed known. In limited data scenarios
the estimated sensor covariance may possess considerable variation and thus deteriorate the
performance of localization. Empirical studies have also demonstrated that the sampling
window and rate are generally required to increase as the number of spatial sensors increases.
For example, when using the sample covariance matrix to estimate the sensor covariance
matrix, the number of statistically independent data records should be three or more times
the number of sensors in order to obtain statistically stable source location estimates (e.g.,
Rodrguez-Rivera et al., 2006). Consequently, the potential advantages of having a large
number of sensors are offset by the requirement for increased sampling window and rate.
Therefore, it is important to develop a general framework for users to examine the extent
of effects to which the spatial dimension (i.e., the lead field matrix) and the temporal di-
mension (i.e., the temporal correlations of sensor measurements) of MEG on the accuracy
of source localization. Furthermore, most brain activities are conducted by neural networks
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which consist of multiple sources. For example, in the so-called evoked median-nerve MEG
response study, scientists have found the relatively large number of neuronal sources ac-
tivated in a relatively short period of time by the median-nerve stimulation with typical
repetition rates, which challenges covariance-based analysis techniques such as beamformer
due to source cancellations (Huang et al., 2004). We need to understand how the accuracy
of localization is affected by source cancellations both theoretically and empirically. In
particular, we need to address the fundamental questions of whether the neuronal activity
map can reveal the true sources when the number of sensors and the width of the sampling
window are large enough and of how much multiple source cancellation effects are reduced
by increasing spatial and temporal dimensions of MEG.

The goal of the present study is to demonstrate at both theoretical and empirical levels
the behavior of a class of vector-beamforming techniques which includes the standard vector-
beamformer as a special example. These beamformers are based on thresholding the sample
sensor covariance matrix. By thresholding, we aim at reducing the noise level in the sample
sensor covariance. We provide an asymptotic theory on these beamformers when the sensor
covariance matrix is consistently estimated and when multiple sources exist. We show
that the estimated source power is consistent when multiple sources are asymptotically
separable in terms of a lead field distance. We further assess the performance of the proposed
procedure by both simulations and real data analyses.

The paper is organized as follows. The details of the proposed procedures are given in
Section 2. The asymptotic analysis is provided in Section 3. Other covariance estimator-
based beamformers are introduced in Section 4. The simulation studies on these beamform-
ers and an application to face-perception data are conducted in Section 5. The discussion
and conclusion are made in Section 6. The proofs of the theorems and corollaries are de-
ferred to Section 7. Throughout the paper, let ||A|| denote the operator norm of matrix
A. For a sequence of matrix An, we mean by An = O(1) that ||An|| is bounded and by
An = o(1) that ||An|| = o(1). Similarly, we define the notations Op and op for a sequence of
random matrices An. For non-negative matrices A and B, we say A < B if aTAa < aTBa
for any a with ||a|| = 1. We say that random matrix An is asymptotically larger than ran-
dom matrix Bn in probability if min||a||=1 a

T (An − Bn)a is asymptotically bounded below
from zero in probability.

2. Methodology

Suppose that the sensor measurements (Y(tj) : 1 ≤ j ≤ J) are weakly stationary time-
courses observed from n sensors. We want to identify a small set of non-null sources that
underpin these observations. To this end, we introduce a family of vector-beamformers
based on thresholding sensor covariance as follows.

2.1 Thresholding the sensor covariance matrix

The sensor covariance matrix of Y(t), C can be estimated by the sample covariance matrix

Ĉ = (ĉij) =
1

J

J
∑

j=1

Y(tj)Y(tj)
T − ȲȲ

T
,
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where Ȳ is the sample mean of (Y(tj) : 1 ≤ j ≤ J). It is well-known that the sample
covariance estimator can breakdown when the dimension n is large (Bickel and Levina,
2008). In the statistical literature, various sparse estimation procedures have been proposed
to fix the sample covariance, including the following thresholded estimator:

Ĉ(τnJ) = (ĉij(τnJ))

with ĉij(τnJ) = ĉijI(|ĉij | ≥ τnJ), where τnJ is a varying constant in n and J (Bickel and
Levina, 2008).

As with the i.i.d. case (Bickel and Levina, 2008), the above thresholded estimator will
be shown to converges to positive definite limit with probability tending to 1 in the Lemma
7.2 in Section 7 below. Although the thresholded estimator has good theoretical properties,
it may not be always positive definite when the sample size is finite or when sensors are
spatially too close to each other. To tackle the issue, we assume that Ĉ(τnJ) has the eigen-
decomposition Ĉ(τnJ) =

∑n
k=1 λ̂kv

T
k vk and then a positive semidefinite estimator can be

obtained by setting these negative eigenvalues to zeros. We further shrinkage the covariance
matrix estimator by artificially adding ǫ0In to it in our implementation, where we choose
ǫ0 to be a tuning constant which is equal to or slightly larger than the maximum eigenvalue
of the noise covariance matrix. We will show in the following sections that adding ǫ0In to
the thresholded covariance matrix does not affect the consistency of the neuronal activity
index.

2.2 Beamforming

As before, let Σk denote the covariance matrix of the moment mk(t) at the location rk.
Based on the thresholded sensor covariance estimator Ĉ(τnJ), we estimate Σk, 1 ≤ k ≤ p
and create a neuronal activity map in the following two steps.

In the projection step, for 1 ≤ k ≤ p, we search for an n×3 weight matrix Ŵk which at-
tains the minimum trace ofW T Ĉ(τnJ)W subject toW THk = I3.When Ĉ(τnJ) is invertible,
it follows from Van Veen et al. (1997) that

Ŵk = Ĉ(τnJ)
−1Hk

[

HT
k Ĉ(τnJ)

−1Hk

]−1

with the resulting moment covariance matrix and trace estimators

Σ̂k =
[

HT
k Ĉ

−1(τnJ)Hk

]−1
, Ŝk = tr

{

[

HT
k Ĉ(τnJ)

−1Hk

]−1
}

respectively. In the mapping step, we calculate the so-called neuronal activity index

NAI(rk) = Ŝk/
(

σ20tr
(

[

HT
k Hk

]−1
))

,

creating a brain activity map, where σ20 is estimated from baseline data (i.e., called pre-
stimulus data in the next subsection). One of the underlying sources can be then estimated
by the global peak on the map with the associated latent time-course estimated by projecting
the data along the optimal weighting vector. The multiple sources can also be identified by
grouping the local peaks on the transverse slices of the brain.
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2.3 Choosing the thresholding level

In practice, the MEG imaging is often run on a subject first without stimulus and then
with stimulus. This allows us to calculate the sample covariance Ĉ for the stimulus data
as well as the sample covariance Ĉ0 for the pre-stimulus data. The latter can provide
an estimator of the background noise level. In the next section, we will show that the
convergence rate of the thresholded sample covariance is O(

√

log(n)/J). In light of this,

we set τnJ = c0σ̂
2
0

√

log(n)/J with a tuning constant c0 and threshold Ĉ by τnJ , where σ̂
2
0 is

the minimum diagonal element in Ĉ0 and c0 is a tuning constant. Note that, when c0 = 0,
the proposed procedure reduces to the standard vector-beamformer implemented in the
software FieldTrip (Oostenveld et al., 2011). For each value of c0, we apply the proposed
procedure to the data and calculate the maximum neuronal activity index

NAIc0 = max{NAI(r) : r is running over the grid}. (2.3)

In simulations, we will show that c0 ∈ D0 = {0, 0.5, 1, 1.5, 2} has covered its useful range.
Our simulations also suggests that there is an optimal value of c0, which depends on several
factors including the strengths of signals and source interferences. To exploit these two
factors, we choose c0 in which NAIc0 attains maximum or minimum, resulting in two proce-
dures called ma and mi respectively. By choosing c0, the procedure ma intends to increase
the maximum SNR value, while the procedure mi tries to reduce source interferences. The
simulation studies in Section 5 suggest that mi can perform better than ma when sources
are correlated.

2.4 Two sets of stimuli

Suppose now that MEG measurements (Y(1)(t)) and (Y(2)(t)) are made under two dif-
ferent sets of stimuli and pre-stimuli with the associated neuronal activity indices de-
noted by NAI(1)(rk) and NAI(2)(rk) respectively. The previous strategy for selecting the
tuning constant c0 can be adopted here when we calculate these indices. To identify
source locations that respond to the change of stimulus set, we calculate a log-contrast
log(NAI(1)(rk)/NAI(2)(rk)) between the two sets of stimuli at location rk, 1 ≤ k ≤ p, creat-
ing a log-contrast map. The resulting log-contrast map is equivalent to the map based on
index ratio NAI(1)(rk)/NAI(2)(rk), which was often seen in the literature (e.g., Hillebrand et
al., 2005). We further take the global peak of the log-contrast as the maximum location
estimator for a source location that contributes to the difference between the two sets of
MEG measurements.

3. Theory

In this section, we develop a theory on the consistency as well as the convergence rate of the
hard thresholding-based beamformer estimator under regularity conditions. In particular,
we show that the consistency holds true under regularity conditions if we let the hard
threshold τnJ = A

√

log(n)/J with constant A. This provides a theoretical basis for using
the proposed procedures ma and mi.

Without loss of generality, we assume that the first q ≤ p moment vectors are of non-
zero covariance matrices Σk, 1 ≤ k ≤ q, where q is unknown and often much smaller than
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p in practice. For the simplicity of mathematical derivations, we also assume that Σk does
not grow with the number of sensors n. Our task is to identify the unknown true model

Y(t) =

q
∑

k=1

Hkmk(t) + ε(t), (3.4)

from the working model (1.1) by using the proposed procedure, where the unknown moments
mk(t), 1 ≤ k ≤ q are of non-zero powers tr(Σk), 1 ≤ k ≤ q. To establish a theory for the
proposed procedures, we assume that

(A1): Both the moment vectors (mk(t) : 1 ≤ k ≤ q) and the white noise process (ε(t))
are stationary with zero means and temporally uncorrelated with each other. Also, mk(t)
is temporally uncorrelated with mj(t) for k 6= j.

Under Condition (A1), the sensor covariance matrix of Y(t), C can be expressed in the
form

C =

q
∑

k=1

HkΣkH
T
k + σ20In.

As pointed out by Sekihara and Nagarajan (Chapter 9, 2010), Condition (A1) is one of
fundamental assumptions in the vector-beamforming. However, source activities in the
brain are inevitably correlated to some degree, and in strict sense, (A1) cannot be satisfied.
The theoretical influence of temporally correlated sources has been investigated by Sekihara
and Nagarajan (Chapter 9, 2010). The equation (9.3) in Sekihara and Nagarajan (Chapter
9, 2010) implies that the influence can be ignored if the partial correlations between sources
are close to zeros in order of o(1/n) when the number of sensors n is sufficiently large. Note
that although in practice the number of sensors is limited to a few hundreds, we still ideally
let n tend to infinity to identify potential spatial factors that affect the performance of a
vector-beamformer. In the next section, by using simulations, we will demonstrate that the
source correlations can mask some true sources.

To show the consistency of the estimators Σ̂k and Sk, we need more notations and
condition as follows. Let Hk denote the lead field matrix at the location rk. For the
simplicity of the technical derivations later, we further assume that the lead field matrices
satisfy the condition that for any location rk, H

T
k Hk/n→ G in terms of the operator norm

as n tends infinity, where G is a 3× 3 positive definite matrix.
Under the above condition, we can find a positive definite matrix Qk satisfying that

HT
k Hk = nQkQ

T
k and Q−1

k HT
k HkQ

−T
k = nI3 when n is large enough, where I3 is an identity

matrix. Letting H∗
k = HkQ

−T
k , m∗

k(t) = QT
kmk and Σ∗

k = QT
kΣkQk, we reparametrize the

model (1.1) as follows:

Y(t) =

p
∑

k=1

H∗
km

∗
k + ε(t)

with the covariance matrix C =
∑p

k=1H
∗
kΣ

∗
kH

∗T
k + σ20In. Then, under the reparametrized

model, the estimators

Σ̂∗
k =

[

H∗T
k Ĉ(τnJ)

−1H∗
k

]−1
=
[

Q−1
k HT

k Ĉ(τnJ)
−1HkQ

−T
k

]−1
= QT

k Σ̂kQk.

Ŝk = tr(Q−T
k Σ̂∗

kQ
−1
k ).
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Consequently, Σ̂∗
k is consistent with Σ∗

k if and only if Σ̂k is consistent with Σk. Therefore,
without loss of generality, hereinafter we assume that

(A2): HT
k Hk = nI3 for any location rk.

We process the remaining analysis in two stages: In the first stage, we develop an
asymptotic theory for the proposed vector-beamformers when the sensor covariance matrix
C is known. The sensor covariance matrix can be assumed known if the width of the
sampling window can be arbitrarily large. In the second stage, we extend the theory to the
case where C is estimated by Ĉ(τnJ).

3.1 Beamformer analysis when C is known

We begin with introducing some more notations. For any locations rx and ry, let Hx and Hy

denote their lead field matrices. Define the lead field coherent matrix by ρxy = ρ(rx, ry) =
HT

x Hy/n. Note that ρxy+ρyx = I3−(Hx−Hy)
T (Hx−Hy)/(2n). Therefore, I3−(ρxy+ρyx)

indicates how close rx is to ry. In general, the partial coherence factor matrices (or called
partial correlation matrices) ayx|k, 1 ≤ k ≤ q are defined iteratively by the so-called sweep
operation (Goodnight, 1977) as follows:

ayx|1 = σ−2
0 ρ(ry, r1, rx) = σ−2

0 (ρ(ry, rx)− ρ(ry, r1)ρ(r1, rx)) ,

ayx|(k+1) = ayx|k − ay(k+1)|k

[

a(k+1)(k+1)|k

]−1
a(k+1)x|k, 1 ≤ k ≤ q − 1.

For example, we have

σ20ayx|1 = ρyx − ρy1ρ1x, σ20a22|1 = I3 − ρT12ρ12,

σ20a33|2 = I3 − ρT13ρ13 −
(

ρ23 − ρT12ρ13
)T [

I3 − ρT12ρ12
]−1 (

ρ23 − ρT12ρ13
)

.

Note that σ20a(k+1)(k+1)|k gauges the partial variability of rk+1 given the previous r′ks while
σ20ayx|(k+1) shows the partial coherence between rx and ry given {r1, ..., rk+1}. We expect
that ayx|(k+1) will be small if ry and rx are spatially far away from each other. We define

byx|k, 1 ≤ k ≤ q, by letting byx|1 = ρy1Σ
−1
1 ρ1x and

byx|k = byx|(k−1) − byk|(k−1)

[

akk|(k−1)

]−1
akx|(k−1) − ayk|(k−1)

[

akk|(k−1)

]−1
bkx|(k−1)

+ayk|(k−1)

[

akk|(k−1)

]−1 {
Σ−1
k + bkk|(k−1)

} [

akk|(k−1)

]−1
akx|(k−1).

We also define cjj|k, 1 ≤ j ≤ k ≤ q by

cjj|k =

{

−Σ−1
k

[

akk|(k−1)

]−1
Σ−1
k , j = k

cjj|(k−1) − bjk|(k−1)

[

akk|(k−1)

]−1
bTjk|(k−1), 1 ≤ j ≤ k − 1.

Let anq = nmin1≤k≤q−1 ||a(k+1)(k+1)|k||, and let km = 0 if anq → ∞ and km = min{1 ≤
k ≤ q−1 : n||a(k+1)(k+1)|k|| = O(1)} if anq = O(1). Let dx|q = max2≤k≤q ||akx|(k−1)a

−1
kk|(k−1)||,

which measures the maximum absolute partial correlation among q sources by using their
lead field matrix. As the lead field matrix measures the unit outputs of sources recorded by
sensors, the maximum absolute partial correlation may increase when the number of sensors
n increases. In the following theorem, for any location rx of interest, the condition that
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dx|q = O(1) (i.e., the maximum absolute partial correlation will be bounded) is imposed
on the lead field matrix. The condition is used to ensure the coherence stability for the
grid approximation to the lead field. Our numerical experience suggests that the condi-
tion roughly holds when the underlying sources are asymptotically not close to each other.
See the discussion in Section 7. The following theorem shows when the source covariance
estimator is consistent and when it is not.

Theorem 1 Under Conditions (A1)∼(A2) and C is known, we have:

(1) If anq = O(1) and max1≤k≤q dk|q = O(1), then the estimated source covariance at

rkm+1

[

Hkm+1
TC−1Hkm+1

]−1
is asymptotically larger than Σkm+1.

(2) If anq → ∞, then for 1 ≤ j ≤ q, the estimated source covariance at rj admits

[

HT
j C

−1Hj

]−1
= Σj +

1

n
Σjcjj|qΣj +O(a−2

nq ),

provided max1≤k≤q dk|q = O(1), where ||Σjcjj|qΣj/n|| = O(a−1
nq ) as n→ ∞.

(3) If anq → ∞, then for rx 6∈ {r1, ..., rq}, the estimated source covariance at rx admits

[

HT
x C

−1Hx

]−1
=

1

n
a−1
xx|q −

1

n2
a−1
xx|qbxx|qa

−1
xx|q +O(a−3

nq ),

provided max1≤j≤q dj|q = O(1), ||naxx|q|| → ∞, and dx|q = O(1) as n tends to infinity,
where bxx|q = O(1) as n→ ∞.

The following lemma shows when the source power estimator is consistent.

Corollary 3.1 Under Condition (A1)∼(A2), we have:

(1) If anq = O(1) and max1≤k≤q dk|q = O(1), then the estimated source power at rkm+1

tr
(

[

Hkm+1
TC−1Hkm+1

]−1
)

is asymptotically larger than tr (Σkm+1).

(2) If anq → ∞, then for 1 ≤ j ≤ q, the estimated source power at rj admits

tr
(

[

HT
j C

−1Hj

]−1
)

= tr(Σj) +
1

n
tr(Σjcjj|qΣj) +O(a−2

nq ),

provided max1≤k≤q dk|q = O(1), where ||Σjcjj|qΣj/n|| = O(a−1
nq ) as n→ ∞.

(3) If anq → ∞, then for rx 6∈ {r1, ..., rq}, the estimated source power at rx admits

tr
(

[

HT
x C

−1Hx

]−1
)

=
1

n
tr(a−1

xx|q)−
1

n2
tr(a−1

xx|qbxx|qa
−1
xx|q) +O(a−3

nq ),

provided max1≤j≤q dj|q = O(1), ||naxx|q|| → ∞, and dx|q = O(1) as n tends to infinity,
where bxx|q = O(1) as n→ ∞.
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Remark 3.1 It follows from the definition that cjj|q is proportional to σ20, which implies
the convergence rate of the neuronal activity index is of order O(σ20/(σ

2
0anq)), where σ

2
0anq

is independent of σ20. Therefore, the effect of adding ǫ0In to C on the above convergence rate
is increasing or decreasing the rate by the amount of O(ǫ0/((σ

2
0 + ǫ0)anq)). In particular,

adding ǫ0In to C does not affect the consistency of the neuronal activity index if anq tends
infinity.

Remark 3.2 From the proof in Section 7, we can see that if we relax the coherence stability
condition max1≤k≤q dk|q = O(1) to max1≤k≤q dk|q = O(log(n)), then the convergence rates
in the theorem will be reduced by a factor of log(n).

Remark 3.3 If there are MEG measurements made under two different sets of stimuli and

pre-stimuli, we let C(1) =
∑p

k=1H
T
k Σ

(1)
k Hk + σ201In and C(2) =

∑p
k=1H

T
k Σ

(2)
k Hk + σ202In

be the corresponding sensor covariance matrices. We perform the proposed beamformers on
C(1) and C(2) respectively. Then, under certain conditions, Theorem 1 can be extended to
this setting. When rk is a source location for both sets of stimuli, the log-contrast tends to
the true one as n → ∞; when rk is a source for stimulus set 1 but not for stimulus set
2, the log-contrast tends to infinite; when rk is a source location for stimulus set 2 but not
for stimulus set 1, the log-contrast tends to −∞; when rj is neither a source for stimulus
set 1 nor a source for stimulus 2, the log-contrast tends to a finite value depending on the
associated values of axx|q. The details are omitted here.

3.2 Beamformer analysis when C is estimated

We now estimate the sensor covariance matrix by using the sensor observations over J
time instants. Following Bickel and Levina (2008) and Fan et al. (2011), we establish the
asymptotic theory for the resulting beamformer estimators when both n and J are tending
to infinity.

In addition to Conditions (A1) and (A2), we need the following two conditions for
conducting the asymptotic analysis above. The first one is imposed to regularize the tail
behavior of the sensor processes.

(A3): There exist positive constants κ1 and τ1 such that for any u > 0 and all t,

max
1≤i≤n

P (||Yi(t)|| > u) ≤ exp(1− τ1u
κ1)

and max1≤i≤nE||Yi(t)||2 < +∞, where the noise covariance matrix is σ20In and || · || is the
L2 norm.

Note that Condition (A3) holds if Y(t) is a multivariate normal.
In the second additional condition, we assume that the sensor processes are strong

mixing. Let F0
−∞ and F∞

k denote the σ-algebras generated by {Y(t) : −∞ ≤ t ≤ 0} and
{Y(t) : t ≥ k} respectively. Define the mixing coefficient

α(k) = sup
A∈F0

−∞,B∈F∞
k

|P (A)P (B)− P (AB)|.

The mixing coefficient α(k) quantifies the degree of the temporal dependence of the process
{Y(t)} at lag k. We assume that α(k) is decreasing exponentially fast as lag k is increasing.

10
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(A4): There exist positive constants κ2 and τ2 such that

α(k) ≤ exp(−τ2kκ2).

Condition (A4) is a commonly used assumption for studying asymptotic behavior of
time series.

For a constant A, let τnJ = A
√

log(n)/J . As before, let Ȳi be the sample mean of the
i-th sensor and

ĉik =
1

J

J
∑

j=1

(Yi(tj)− Ȳi)(Yk(tj)− Ȳk), Ĉ(τnJ) = (ĉikI(ĉik ≥ τnJ)),

where I(·) is the indicator.
We are now in position to generalize Theorem 1 to the case where the sensor covariance

is estimated by the thresholded covariance estimator.

Theorem 2 Under Conditions (A1)∼(A4) and assuming that n2
√

log(n)/J = o(1) as n
and J tend to infinity, we have:

(1) If anq = O(1) and max1≤k≤q dk|q = O(1), then as n and J tend to infinity, the

estimated source covariance at rkm+1 Σ̂km+1 is asymptotically larger than Σkm+1 in
probability.

(2) If anq → ∞, then as n and J tend to infinity, for 1 ≤ j ≤ q, the estimated source
covariance at rj admits

Σ̂j = Σj +
1

n
Σjcjj|qΣj +Op(a

−2
nq + n2

√

log(n)/J),

provided max1≤k≤q dk|q = O(1), where ||Σjcjj|qΣj/n|| = O(a−1
nq ) as n→ ∞.

(3) If anq → ∞, then as n and J tend to infinity, for rx 6∈ {r1, ..., rq}, the estimated source
covariance at rx admits

Σ̂x =
1

n
a−1
xx|q −

1

n2
a−1
xx|qbxx|qa

−1
xx|q +O(a−3

nq + n2
√

log(n)/J),

provided max1≤j≤q dj|q = O(1), ||naxx|q|| → ∞, and dx|q = O(1) as n tends to infinity,
where bxx|q = O(1) as n→ ∞.

Corollary 3.2 Under Conditions (A1)∼(A4) and assuming that n2
√

log(n)/J = o(1) as
n and J tend to infinity, we have:

(1) If anq = O(1), max1≤k≤q dk|q = O(1), as n and J tend to infinity, the estimated source

power at rkm+1, Ŝkm+1 is asymptotically larger than tr (Σkm+1).

(2) If anq → ∞, then as n and J tend to infinity, for 1 ≤ j ≤ q, the estimated source
power at rj admits

Ŝj = tr(Σj) +
1

n
tr(Σjcjj|qΣj) +O(a−2

nq + n2
√

log(n)/J),

provided max1≤k≤q dk|q = O(1), where ||Σjcjj|qΣj/n|| = O(a−1
nq ) as n→ ∞.
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(3) If anq → ∞, then as n and J tend to infinity, for rx 6∈ {r1, ..., rq}, the estimated source
power at rx admits

Ŝx =
1

n
tr(a−1

xx|q)−
1

n2
tr(a−1

xx|qbxx|qa
−1
xx|q) +O(a−3

nq + n2
√

log(n)/J),

provided max1≤j≤q dj|q = O(1), ||naxx|q|| → ∞, and dx|q = O(1) as n tends to infinity,
where bxx|q = O(1) as n→ ∞.

Remark 3.4 Theorem 2 indicates the convergence rate of the vector-beamformer estimation
is much slower than the empirical rate suggested by Rodrguez-Rivera et al. (2006). However,
the result is in agreement with an empirical result of Brookes et al. (2008). In fact, using
their heuristic arguments, we can show that the error of the power estimation at location rx
is determined by the factor Hx(Ĉ(τnJ)

−1 − C−1)Hx, which has a rate of n2
√

log(n)/J.
Theorem 2 can be also extended to the scenarios where MEG data are obtained under

two different sets of stimuli.

Remark 3.5 From the proof of Theorem 2, we can see that the thresholded covariance is
still consistent with the true C even when the underlying sources are correlated.

4. Other covariance estimator-based beamformers

There are various ways to estimate the sensor covariance matrix. Each can be used to
construct a beamformer. These covariance estimators can be roughly divided into two cat-
egories, namely global shrinkage-based methods and elementwise thresholding-based meth-
ods. In shrinkage-based settings, the sample covariance is shrinking toward a target struc-
ture (for example, a diagonal matrix). The so-called optimal shrinkage estimator belongs
to this category (Ledoit and Wolf, 2004). In thresholding-based settings, an elementwise
thresholding is applied to the sample covariance estimator. Examples of these approaches
include hard thresholding, generalized thresholding and adaptive thresholding (Bickel and
Levina, 2008; Rothman et al., 2009; Cai and Liu, 2012). Here, we focus on the following
three methods recommended by the above authors.

The optimal shrinkage covariance matrix is defined by

Ĉopt =
b2n
d2n
µnIn +

d2n − b2n
d2n

Ĉ,

where

µn =
〈

Ĉ, In

〉

, d2n =
〈

Ĉ − µnIn, Ĉ − µnIn

〉

,

b̄2n =
1

J2

J
∑

j=1

〈

YjY
T
j − Ĉ,YjY

T
j − Ĉ

〉

, b2n = min(b̄2n, d
2
n),

and the operator < A,B >= tr(ABT )/n for any n × n matrices A and B. The idea
behind the above estimator is to find the optimal weighted average of the sample covariance
matrix Ĉ and the identity matrix via minimizing the expected squared loss. Under certain
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conditions Ĉopt converges to the true covariance C as n tends infinity, implying that Ĉopt

can be degenerate if C is degenerate (Ledoit and Wolf, 2004). As before, we tackle the
issue by adding ǫ0In to Ĉopt, where ǫ0 is determined by the maximum eigenvalue of the
pre-stimulus sample covariance matrix. The beamformer based on the above covariance
estimator is denoted as sh.

A family of generalized thresholding-based covariance estimators indexed by tuning
constants c0 ≥ 0 and δ0 > 0 can be defined by replacing the hard thresholding in Subsection
2.1 with the generalized thresholding, i.e.,

Ĉg = (g(ĉij))

with g(ĉij) = ĉij(1− (τnJ/|ĉij |)δ0), where τnJ = c0σ̂
2
0

√

log(n)/J and σ̂20 is estimated from a
baseline sample. Following the suggestion of Rothman et al. (2009), we choose δ0 = 4. The
same maximum/minimum strategy as in Subsection 2.3 can be adapted to choose the tuning
constant c0 when we use the above estimator to construct a beamformer. The corresponding
beamformers are denoted by gmax and gmin respectively.

Similarly, an adaptive thresholding estimator can be introduced by replacing the above

τnJ in the g function by λij = 2
√

θ̂ij log(n)/J, where θ̂ij is the estimated variance of the

(i, j)-th entry ĉij and is defined by

θ̂ij =
1

J

J
∑

k=1

[(Yik − Ȳi)(Yjk − Ȳj)− ĉij ]
2

and Ȳi and Ȳj are the sample means of the i-th and the j-th sensors. See Cai and Liu
(2012). The corresponding beamformer is denoted by adp.

5. Numerical results

In this section, we compare the proposed procedures to the standard vector-beamformer
(with the tuning c0 = 0) and to the other covariance estimator-based beamformers in terms
of localization bias by simulation studies and real data analyses. Here, for any estimator
r̂ of a source location r, the localization bias |r̂ − r| is the L1 distance between r̂ and r.
The spatial correlation ρmax between locations r1 and r2 is measured by the maximum
correlation between the projected lead field vectors at r1 and r2:

ρmax(r1, r2) =

{

max
||η1||=1,||η2||=1

(l(r1)η1)
T l(r1)η1

||l(r1)η1||| · |l(r2)η2||

}

.

By simulations, we attempted to answer the following questions:

• Has the vector-beamformer been improved by using the thresholded covariance esti-
mator?

• To what extent will the performance of the proposed beamformer procedure deterio-
rate by source interferences (or source cancellations) and source spatial correlations?

• Can the proposed beamformers ma and mi be superior to the other covariance
estimator-based beamformers?

13



Jian Zhang and Chao Liu

5.1 Simulated data

We started with specifying the following two head models (Sarvas, 1987). The simple head
model that uses a homogeneous sphere in simulating the magnetic fields emanating from
current electric dipole neuronal activity possesses the advantage that the lead field matrix
can be calculated analytically. However, with more realistic head models, the numerical ap-
proximations such as a finite element method have to be used when we calculate the lead field
matrix. Here, we considered both of them: the simple one is a spherical volume conductor
with 10cm radius from the origin and with 91 sensors, created by using the software Field-
Trip (Oostenveld et al., 2011), and the realistic one is a single shell head model by using the
magnetic resonance imaging (MRI) scan of a human brain provided by Henson et al. (2011).
We then discretized the inside brain space into a 3D-grid of resolution 1 cm. This yielded a
grid with 2222 points for the simple model and 1487 points for the realistic model. The grids
was further sliced into 10 and 14 transverse layers along the z-axis of the brain respectively.
We put two non-null sources at r1 and r2 or three sources at r1, r2 and r3 respectively, where
two sources {r1, r2} are equal to {(3,−1, 4)T , (−5, 2, 6)T } cm or {(−5, 5, 6)T , (−6,−2, 5)T }
cm, and three sources {r1, r2, r3} are equal to {(3,−1, 4)T , (−5, 2, 6)T } and (5, 5, 6) in the
Subject Coordinate System (SCS/CTF). Note that the second set of source locations was
obtained in our real data analyses which will be presented later. These sources were located
in the region of the parietal and occipital lobes, where visual, auditory and touch informa-
tion is processed. We considered two types of sources in the brain: evoked responses that
are phase-locked to the stimulus and induced responses that are not. The induced responses
often have oscillatory patterns. Combining these sources with the two head models, we had
the following four scenarios:

• Scenario 1: For the simple head model, we put two oscillatory sources at locations
r1 = (3,−1, 4)T and r2 = (−5, 2, 6)T with time-courses

mk(t) = ηk cos(20tπ), k = 1, 2,

respectively, where η1 = (10, 1, 1)T and η2 = (8, 0, 0)T . We considered two values of
the signal-to-noise-ratio (SNR): 0.04 and 1/0.64 = 1.5625.

• Scenario 2: For the simple head model, we put the above oscillatory sources at
locations r1 = (−5, 5, 6)T and r2 = (−6,−2, 5)T . We also considered two values of the
SNR: 0.04 and 1/0.64 = 1.5625.

• Scenario 3: For the realistic head model, we put the following evoked response
sources at locations r1 = (3,−1, 4)T and r2 = (−5, 2, 6)T with moments (i.e., time-
courses)

mk(t) = αk exp(−(t− τk1)
2/ω2

k) sin(fk2π(t− τk2)), k = 1, 2,

respectively, where α1 = (5, 0, 0)T , α2 = (20, 0, 0)T , τ11 = 0.239, τ12 = 0.139, τ21 =
0.199, τ22 = 0.139, f1 = 4.75, f2 = 6.25, and ω1 = ω2 = 0.067. We considered three
values of the SNR: 1/0.352 = 8.16, 1/0.42 = 6.25, 1/0.52 = 4.
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• Scenario 4: For the realistic head model, we put the following evoked response
sources at locations r1 = (−5, 5, 6)T and r2 = (−6,−2, 5)T with moments (i.e., time-
courses)

mk(t) = αk exp(−(t− τk1)
2/ω2

k) sin(fk2π(t− τk2)), k = 1, 2,

respectively, where α1 = (2, 0, 0)T , α2 = (18, 0, 0)T , τ11 = 0.439, τ12 = 0.139, τ21 =
0.399, τ22 = 0.139, f1 = 6, f2 = 9, and ω1 = ω2 = 2. We considered three values of
the SNR: 1/0.72 = 2.04, 1/0.762 = 1.73, 1/0.782 = 1.64.

• Scenario 5: We added another evoked response source at location r3 = (5, 5, 6)T to
the model in Scenario 3 with moment

m3(t) = α3 exp(−(t− τ31)
2/ω2

3) sin(f32π(t− τ32)),

where α3 = (2.5, 0.25, 0.25), τ31 = 0.1, τ32 = 0.139, f3 = 1.25, and w3 = 0.067. The
three source locations are highly spatially correlated with the pairwise spatial corre-
lations ρ(r1, r2) = 0.7289, ρ(r1, r3) = 0.7935, and ρ(r2, r3) = 0.5924. We considered
the same SNR values as in Scenario 3.

The pair sources mk(t), k = 1, 2 for the first four scenarios and the treble sources mk(t), k =
1, 2, 3 for Scenario 5 are plotted respectively in Figure 1. By Scenarios 1 and 2, we com-
pared the proposed procedure to the standard vector-beamformer (with c0 = 0) and to
the other estimator-based beamformer, when there existed two highly correlated oscillatory
sources (they have the same frequency and phase, but with slightly different amplitudes).
By Scenarios 3 and 4, we tested these beamformers when there existed two unbalanced
evoked response (or slightly dumped-oscillatory) sources. By Scenario 5, we assessed these
beamformers when there were three spatially correlated source locations. In each scenario,
with time-window width 1 and sample rate J , we sampled 30 datasets of Y(t) from the
model

Y(t) =

p
∑

k=1

Hkmk(t) + ε(t), (5.5)

where in Scenarios 1∼4, mk(t), k = 1, 2 are non-null time-courses at the two locations and
mk(t), 3 ≤ k ≤ p are null time-courses at other grid points, while in Scenario 5, mk(t),
k = 1, 2, 3 are non-null time-courses at the three locations and mk(t), 4 ≤ k ≤ p are null
time-courses at other grid points. As before, {ε(t)} is a white noise process with noise
level σ20. We considered various combinations of (n, p) = (91, 2222) and (102, 1487), and
J = 500, 1000, 2000, and 3000. Note that p is substantially larger than n and that the
sources are sparse in the sense that there are only two or three non-null sources among p
candidates.

We first applied the proposed procedures ma, mi and sh to each dataset. We calculated
the maximum indices over the grids and the L1-biases of the maximum location estimates
to two sources respectively. For each combination of (n, p, J) and the SNR, we then summa-
rized these values in the form of a box-whisker plot as in Figures 2, 3, 4, and 5 corresponding
to Scenarios 1, 2, 3, and 4 respectively. The results demonstrate that the proposed hard
thresholding-based procedure mi can outperform both the conventional vector-beamformer
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Figure 1: The amplitude plots ofmk(t), k = 1, 2 for Scenarios 1 to 4 and the amplitude plots
of mk(t), k = 1, 2, 3 for Scenario 5. In these plots, the blue, green and red colored
curves are corresponding to the amplitudes of mk(t), k = 1, 2, 3 respectively.

and the procedures ma and sh in all four scenarios, in particular when the SNR is low. We
note that in several cases, the localization bias and the maximum index were degenerate to
a single value with some outliers, indicating that random variations have not changed the
global peak location although they have effects on local peaks on the map. The simulations
also suggest that the proposed procedure may be unable to detect evoked response sources
of low SNR values. The local peak box-whisker plots in these figures reveal that all the
local peaks on the transverse slices are not close to the source location r1, implying that
the source at r1 has been masked on the neuronal activity index-based map even when two
sources have a similar power level. This may be due to source cancellations as the lead
field vectors at these two locations were correlated and the sensor positions might favor the
detection of r2. Finally, we note that the results are robust to the choice of J in the sense
that increasing sampling frequency has only slightly reduced both the mean and standard
error of localization bias.

[Put Figure 2 here.]
[Put Figure 3 here.]
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[Put Figure 4 here.]
[Put Figure 5 here.]

To compare the proceduresma,mi and sh with the generalized and adaptive thresholding-
based procedures, gma, gmi and adp, we again generated 30 datasets from model (5.5)
for each of the above four scenarios and for each combination of (n, p) = (91, 2222) and
(102, 1487), and J = 500, 1000, 2000, and 3000. We applied these procedures to each dataset
and calculated their localization biases respectively. As before, we displayed these biases by
multiple box-whisker plots in Figures 6, 7 and 8. From these figures, we can see a dramatic
improvement in localization performance of the hard thresholding-based procedure mi over
the other procedures in Scenarios 1 and 2 and a slightly better or similar performance toma,
gma, gmi, adp and sh in Scenarios 3 and 4. This is striking because the existing studies
have already shown that the soft (or generalized) and adaptive thresholding-based covari-
ance estimators can improve the hard thresholding-based covariance estimator in terms of
estimation loss. The potential explanations for this phenomena are as follows: (1) The
procedure adp may lose efficiency by not using the pre-stimulus data. (2) The existing
covariance estimators were aimed to improve the estimation accuracy by reducing the es-
timation loss (the distance between the estimator and the true covariance matrix) or by
increasing the sensitivity and specificity in recovering sparse entries in the true covariance
matrix (Rothman et al., 2009; Cai and Liu, 2012). Unfortunately, the sparsity in MEG
means a sparse signal distribution, which is quite different from the entry sparsity of the
sensor covariance matrix. Therefore, these estimators may be not efficient for improving
the accuracy of the beamformer estimation which is related to the signal sparsity. In fact,
our simulation experience suggests that besides the covariance estimation, there are other
factors that can affect the performance of a beamformer such as the lead field matrix and
the spatial distribution of signals in the brain. Therefore, the covariance estimator with a
smaller estimation loss may not give rise to a beamformer with a lower localization bias.

To assess the performances of the six procedures ma, mi, gma, gmi, adp and sh when
there are more than two spatially correlated sources, we applied these procedures to the
30 datasets generated for Scenario 5. We calculated the average localization bias for each
procedure and presented them in Figure 9. It can be seen from these plots that like in two-
source scenarios, mi can have superior performance over the other procedures. However,
compared the above result to those in Scenario 3, we can see that the source cancellation
from r3 has increased the average localization bias from zero to the value of three.

Note that although Theorem 2 suggests that in general the localization bias will be
reduced as the sampling rate increases, it does not implies the localization bias is a monotone
function of the sampling rate (or the number of time instances). In fact, from row 4 in
Figure 2 and row one in Figure 9, it can be seen that the localization bias when J = 500 is
smaller than when J = 1000, 2000 and 3000. A potential explanation is that in finite cases
a higher sampling rate may cause a higher amount of leakage of background noises (in a
neighborhood of the target location) into the neuronal activity index calculation.

Finally, we notice that we also carried out simulations with the soft thresholding (δ0 = 1).
The result is very similar to the case with δ0 = 4. For reasons of space, we do not report it
here.

[Put Figure 6 here.]
[Put Figure 7 here.]

17



Jian Zhang and Chao Liu

[Put Figure 8 here.]
[Put Figure 9 here.]

5.2 Face-perception data

We applied the proposed methodology to human MEG data acquired in five sessions by
Wakeman and Henson (Henson et al., 2011). In each session, 96 face trials and 50 scrambled
face trials were performed on a healthy young adult subject. Each trial started with a
central fixation cross (presented for a random duration of 400 to 600 ms), followed by a face
or scrambled face (presented for a random duration of 800 to 1000 ms), and followed by a
central circle for 1700 ms. The subject used either his/her left or right index finger to report
whether he/she thought the stimulus was symmetrical or asymmetrical vertically through
its center. The data were collected with a Neuromag VectorView system, containing a
magnetometer and two orthogonal, planar gradiometers located at each of 102 positions
within a hemispherical array situated in a light, magnetically shielded room. The sampling
rate was 1100Hz. We focused our analysis on localizing non-null source positions, where
neuronal activity increases for the face stimuli relative to the scrambled face stimuli.

For this purpose, we normalized the subject’s MRI scan to a MRI template by using the
FieldTrip, on which a grid CTF system of 1 cm resolution was created with 1487 points.
For each session, we applied the neuroimaging software SPM8 to read and preprocess the
recorded data, and to epoch and average the data generated from the face stimulus trials and
the scrambled face stimulus trials respectively. This gives rise to five 306×771 data matrices:
the first 220 columns for 200ms pre-stimuli and the later 551 columns for the stimuli. For
each session, we calculated the sample covariance Ĉ and noise covariance Ĉ0 by using the
stimulus data and the pre-stimulus data respectively. We estimated the baseline noise level
by σ̂20, the minimum diagonal element in Ĉ0. We applied the beamforming procedures ma,
mi, gma, gmi, adp, and sh to the face dataset and the scrambled face dataset respectively,
obtaining the log-contrasts at each grid point. Here, if there exist the negative eigenvalues
of the covariance estimators (used in ma, mi, gma, gmi, adp and sh), we set them to zeros
and added ǫ0 to them to make the resulting covariance estimators positive definite, where ǫ0
was determined by the maximum eigenvalue of the noise matrix Ĉ0. For each procedure, we
interpolated and overlaid its log-contrasts on the structural MRI of the subject, obtaining
its index map. There were no visible differences among the maps derived from ma, mi,
gma, gmi and sh. The map derived from the adp slightly differed from the rest. So, we
reported only the mi-based and adp-based maps below.

For each session, we first identified the global peak location from each map, followed by
slicing the maps through their global peak locations as shown in Figure 10. For sessions
1 ∼ 4, the global peaks derived from the mi and adp were the same, which were located
at (−4, 3, 8)cm, (−1,−6, 8)cm, (−6,−2, 5)cm, and (−4,−4, 6)cm respectively. However,
for session 5, the global peaks derived from the mi and the adp were located at two
slightly different positions, (−4,−4, 6)cm and (−7,−3, 6)cm. We then projected the data
along the associated optimal weight directions, obtaining estimated time-courses at these
global peaks. For reasons of space, we presented only these time-courses derived from the
procedure mi. See Figure 12. Finally, we made 20 transverse slices along the z-axis to
identify the local peaks. There were some subtle differences between the mi-based and the
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adp-based local peaks. For example, in session 1, the mi-based local peaks were located
at (1, 5, 2) cm, (0,−1, 11) cm, (3, 2, 10) cm, (3, 4, 9) cm, (−5,−3, 3) cm, (−4,−3, 4) cm,
(−2, 1, 1) cm,(−4,−3,−1) cm,(−2, 1, 0) cm,(−4,−5, 5) cm,(−4, 2, 6) cm,(−5, 3, 7) cm and
(−4, 3, 8) cm, whereas the adp-based local peaks were located at (3, 2, 2)cm, (0,−1, 11)cm,
(−4, 3, 9)cm, (−6,−2, 1)cm, (−4,−3, 4)cm, (2, 3, 10)cm, (−4,−3,−1) cm, (−1, 1, 0) cm,
(−3, 6, 3) cm, (−4,−4, 5) cm, (−4, 2, 6) cm, (−5, 3, 7) cm, and (−4, 3, 8)cm. They are not
the same as shown in Figure 11. Note that the previous simulations demonstrated that
the procedure mi was expected to give a more accurate localization result than did the
procedure adp.

Although the areas highlighted in Figures 10 and 11 were varying over sessions, they did
reveal the following known regions of face perception: the occipital face area (OFA), the
inferior occipital gyrus (IOG), and the superior temporal sulcus (STS), and the precuneus
(PCu). Interestingly, in each session, we identified a pair of nearly symmetric sources, of
which one was strongly powered while the other was weakly powered. This phenomenon
occurred due to source cancellations that prevented the second source from identification as
we have demonstrated in our simulation studies. The time-courses plots in Figure 12 showed
the response differences under face stimuli and scrambled face stimuli during the time period
100ms∼300ms. The results are consistent with recent findings in face-perception studies
by using an MEG-based multiple sparse prior approach (Friston et al., 2006; Henson et
al., 2011) and by other empirical approaches (e.g., Pitcher et al., 2011; Kanwisher et al.,
1997). However, in the first two papers, the authors made a parametric model assumption
on source temporal correlation structures and imposed a limit on the number of candidate
sources in the model, whereas in our approach, the model is non-parametric and allows for
arbitrary number of candidate sources.

[Put Figure 10 here.]
[Put Figure 11 here.]
[Put Figure 12 here.]

6. Discussion and Conclusion

In the present study, we have proposed a class of vector-beamformers by thresholding the
sensor sample covariance matrix. The consistency and the convergence rate of the pro-
posed vector-beamformer estimation have been proved in the presence of multiple sources.
The theory has provided a basis for choosing the threshold τnJ = c0σ

2
0

√

log(n)/J in the
beamformer construction. However, it requires a number of conditions. As pointed out in
Section 3, conditions (A1)∼(A4) are commonly used assumptions in literature for studying
multiple time series (Sekihara et al., 2010; Fan et al., 2011). We only need to validate the
coherence stability condition which is new. Intuitively, the strength of correlations between
sensors (therefore the absolute partial correlation) will increase when the number of sensors
increases in general. Taking the face-perception data (session 1) as an example, we show
how to validate it empirically by random sub-samples of the 306 sensors below. We take
the first two peaks in Figure 8 as two true sources. They are located at CTF (-4,3,8) cm
and (-4,-5,5) cm respectively. First, we reparametrize the lead field matrix as in Section
3. Then, for k = 1, 2, ..., 306, we randomly choose k sensors, obtaining a k × 4461 sub lead
field matrix for the 1487 voxels in the brain. We calculate the maximum absolute partial
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correlation d12(k) = max{d1|2, d2|2} between the two sources and the maximum absolute
correlation dmax(k) = max dx|2 for all voxels, where x is running over these voxels. Finally,
we plot d12(k), dmax(k), and log(log(k)) against k = 1, 2, ..., 306 respectively as displayed
in Figure 13. As expected, the result shows that both d12(k) and dmax(k) change very
slowly when the number of sensors k changes, with a rate much slower than log(log(k)).
This implies that the coherence stability condition nearly holds.

[Put Figure 13 here.]

In real world situations, the underlying number of true sources, q needs to be estimated.
The influence of q on the beamformer estimators can be measured by the lead field partial
correlation coefficient anq defined in Section 3. In this paper, local peaks on transverse
slices have been used to reduce the search space of sources. We can cluster the local peak
values into two groups, one of which is taken as a group of potential sources. The size of the
selected group gives an estimate of q. In the face-perception data, we have only presented
the first two sources which are ranked higher than the remaining local peaks, because these
two are of clear neurological implications. Our approach is non-parametric in the sense
that we have not made any parametric assumptions on the model (1.1). However, if we
are willing to assume a family of parametric models for background noises, then we can
determine q via model selection criteria such as Bayesian information criterion.

By theoretical and empirical studies, we have shown that due to source cancellations,
the beamformer power estimator can be inconsistent if the underlying multiple sources are
not well separated in terms of a lead field distance. Unlike the existing theories in the
literature, the new theory is applicable to more general scenarios, where multiple sources
exist and the sensor covariance matrix are estimated from the data. In the new theory, we
do assume that the powers of the unknown no-null sources as well as the underlying number
q are not growing with the number of sensors n. This assumption is natural to neurologists
and has simplified mathematical derivations of the theory very much. However, the theory
can be extended to the case where these quantities are growing with n. In the theory, we
have not impose any constraint on p as we only consider local behavior of beamformers. If
we want to investigate global properties of the neuronal activity map, then some constraints
need to be imposed on the growth rate of p with respect to n.

The performances of the proposed beamformers have further been assessed by simula-
tions and real data analyses. We have demonstrated that thresholding the sensor covariance
matrix can help reduce the source localization bias when the data have a low SNR value. We
have applied the vector-beamformer to an MEG dataset for identifying the active regions
related to human face perception. Some excellent agreements have been found between the
current results and the existing neurological facts on human face perception. Finally, we
note that there are other ways to measure the contrast between two source covariances such
as the information-divergence. The theory can be easily extended to this case. The details
will be presented elsewhere.

7. Proofs

In this section we prove the theorems and corollaries in Section 3.

To prove Theorem 1, we need the following lemma.
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Lemma 7.1 If anq → ∞ as n→ ∞, then we have

HT
j C

−1
k Hj = bjj|k +

cjj|k

n
+O(a−2

nk ), bjj|k = Σ−1
j , for 1 ≤ j ≤ k

HT
j1C

−1
k Hj2 =

cj1j2|k

n
+O(a−2

nk ), for 1 ≤ j1 6= j2 ≤ k

HT
j C

−1
k Hx = bjx|k +

cjx|k

n
+O(a−2

nk ), for 1 ≤ j ≤ k, x /∈ Rk

HT
y C

−1
k Hx = nayx|k + byx|k +O(a−1

nk ), for x, y /∈ Rk

where ank = nmin1≤j≤k−1 tr
(

a(j+1)(j+1)|j

)

, Rk = {r1, . . . , rk}, Ck =
∑k

j=1H
T
j ΣjHj+σ

2
0In,

and ayx|k, byx|k and cjj|k are defined before and the other c′s are defined iteratively as follows:

cj1j2|k =











bj1k|(k−1)Σ
−1
k a−1

kk|(k−1), 1 ≤ j1 ≤ k − 1, j2 = k

Σ−1
k a−1

kk|(k−1)bkj2|(k−1), 1 ≤ j2 ≤ k − 1, j1 = k

cj1j2|(k−1) − bj1k|(k−1)a
−1
kk|(k−1)bkj2|(k−1), 1 ≤ j1 6= j2 ≤ k − 1.

cjx|k =































(

akk|(k−1)Σk

)−1 {
bkx|(k−1)

−
(

I3 + bkk|(k−1)

) (

akk|(k−1)Σk

)−1
akx|(k−1)

}

, j = k

cjx|(k−1) − cjk|(k−1)a
−1
kk|(k−1)akx|(k−1)

−bjk|(k−1)a
−1
kk|(k−1)bkx|(k−1) 1 ≤ j ≤ k − 1

+bjk|(k−1)a
−1
kk|(k−1)

[

Σ−1
k + bkk|(k−1)

]

a−1
kk|(k−1)akx|(k−1).

Proof Note that under the stability condition and the assumption that anq → ∞, we have
byx|k = O(1), 1 ≤ k ≤ q. And for any rx in the source space,

c1x|1

n
= O(n−1),

cyx|k

n
= O(a−1

n(k−1)), 1 ≤ y ≤ k, 2 ≤ k ≤ q.

We prove the lemma by induction. For k = 1, we have

C−1
1 = σ−2

0 In − σ−4
0 H1(Σ

−1
1 + nσ−2

0 I3)
−1HT

1 ,

HT
1 C

−1
1 H1 = nσ−2

0 I3 − n2σ−4
0 (Σ−1

1 + nσ−2
0 I3)

−1

= nσ−2
0

(

I3 −
(

I3 +Σ−1
1

σ20
n

)−1
)

= nσ−2
0

(

I3 + nΣ1σ
−2
0

)−1

= Σ−1
1

(

I3 − σ20Σ
−1
1 /n

)

+O(n−2)

= Σ−1
1 − Σ−1

1 σ20Σ
−1
1 /n+O(n−2)

= b11|1 +
c11|1

n
+O(n−2),

where

b11|1 = Σ−1
1 , c11|1 = −σ20Σ−2

1 .
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Analogously,

HT
1 C

−1
1 Hx = σ−2HT

1 Hx − σ−4
0 n(Σ−1

1 + nσ−2
0 I3)

−1HT
1 Hx

=
(

I3 −
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I3 +Σ−1
1 σ20/n

)−1
)

HT
1 Hx

=

(
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n

σ20
Σ1

)−1

HT
1 Hx
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1

(

I3 +
σ20
n
Σ−1
1
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ρ1x

= Σ−1
1 ρ1x − Σ−1

1 σ20Σ
−1
1 ρ1x/n+O(n−2)

= b1x|1 +
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n
+O(n−2),

where
b1x|1 = Σ−1

1 ρ1x, c11|1 = −Σ−2
1 σ20ρ1x.

And

HT
y C

−1
1 Hx = σ−2

0 HT
y Hx − σ−4

0 HT
y H1(Σ

−1
1 + nσ−2

0 I3)
−1HT

1 Hx
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0 ρyx − σ−4
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(
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−1
1 /n

)−1
HT

1 Hx

= nσ−2
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0 ρy1
(
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−1
1 /n
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ρ1x +O(n−1)

= nσ−2
0 ρy1x + ρy1Σ

−1
1 ρ1x +O(n−1)

= nayx|1 + byx|1 +O(n−1),

where
ρy1x = ρyx − ρy1ρ1x, ayx|1 = σ−2

0 ρy1x, byx|1 = ρy1Σ
−1
1 ρ1x.

This implies the lemma holds for k = 1.
Assuming the lemma holds for the cases with less or equal to k sources, we show that

it is also true for the case with k + 1 sources by invoking the matrix inversion formulas

C−1
k+1 = C−1

k − C−1
k Hk+1

(

Σ−1
k+1 +HT

k+1C
−1
k Hk+1

)−1
HT

k+1C
−1
k , (7.6)

C−1
k = C−1

k+1 + C−1
k+1Hk+1Σk+1H

T
k+1C

−1
k .

The details are as follows.
For 1 ≤ j ≤ k,

HT
j C

−1
k+1Hj = HT

j C
−1
k Hj −

(

HT
j C

−1
k Hk+1

)

×
(
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−1
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k+1 + na(k+1)(k+1)|k + b(k+1)(k+1)|k +O(a−1
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×
(

bj(k+1)|k +
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n
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)T
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n
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−
(

bj(k+1)|k +O(a−1
nk

)

(

(na(k+1)(k+1)|k)
−1 −O(a−2

n(k+1))
)

(

bj(k+1)|k +O(a−1
nk )
)T

= bjj|k +
cjj|k

n
− 1

n
bj(k+1)|ka

−1
(k+1)(k+1)|kb

T
j(k+1)|k +O(a−2

n(k+1))

= bjj|(k+1) +
cjj|(k+1)

n
+O(a−2

n(k+1)).

For j = k + 1, we have
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This completes the proof of the first equation in the lemma.
To prove the second equation in the lemma, we let
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Similarly, when 1 ≤ j1 6= j2 ≤ k, we have
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=
1
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We complete the proof of the second equation in the lemma.

To prove the third equation in the lemma, we let
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Note that for k = j,

ajx|j = ajx|(j−1) − ajj|(j−1)a
−1
jj|(j−1)ajx|(j−1) = 0.

Assuming that for k = j + m,m > 0, the statement is true, i.e. ajx|(k+m) = 0 for all x.
Then,
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By induction, we have that ajx|k = 0 for all x, j ≤ k. This implies that and
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by the definition of bjx|(k+1). Combining this with (7.9), we complete the proof of the third
equation in the lemma.

Finally, we turn to the last equation in the lemma. Assume that the equation holds for
the case k. We show that it also holds for k + 1 below. For x, y /∈ Rk+1 (thus x, y /∈ Rk),
by the assumption, we have
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This together with (7.6) yields
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k+1C
−1
k Hk+1

)−1
HT

k+1C
−1
k Hx

= nayx|k + byx|k +O(a−1
nk )−

(

nay(k+1)|k + by(k+1)|k +O(a−1
nk )
)

×
(

Σ−1
k+1 + na(k+1)(k+1)|k + b(k+1)(k+1)|k +O(a−1

nk )
)−1

×
(

na(k+1)x|k + b(k+1)x|k +O(a−1
nk )
)

= nayx|k + byx|k +O(a−1
nk )−

(

nay(k+1)|k + by(k+1)|k +O(a−1
nk )
)

×
(

(na(k+1)(k+1)|k)
−1 − a−1

(k+1)(k+1)|k

(

Σ−1
k+1 + b(k+1)(k+1)|k

)

a−1
(k+1)(k+1)|k/n

2

+O(a−3
n(k+1))

)

(

nay(k+1)|k + by(k+1)|k +O(a−1
nk )
)

= nayx|k + byx|k +O(a−1
nk )−

{

ay(k+1)|ka
−1
(k+1)(k+1)|k − ay(k+1)|ka

−1
(k+1)(k+1)|k

×
(

Σ−1
k+1 + b(k+1)(k+1)|k

)

a−1
(k+1)(k+1)|k/n+ by(k+1)|ka

−1
(k+1)(k+1)|k/n+O(a−2

n(k+1))
}

×
(

na(k+1)x|k + b(k+1)x|k +O(a−1
nk )
)

= n
[

ayx|k − ay(k+1)|ka
−1
(k+1)(k+1)|ka(k+1)x|k

]

+
[

byx|k − by(k+1)|ka
−1
(k+1)(k+1)|ka(k+1)x|k − ay(k+1)|ka

−1
(k+1)(k+1)|kb(k+1)x|k

+ay(k+1)|ka
−1
(k+1)(k+1)|k

(

Σ−1
k+1 + b(k+1)(k+1)|k

)

a−1
(k+1)(k+1)|ka(k+1)x|k

]

+O(a−1
n(k+1))

= nayx|(k+1) + byx|(k+1) +O(a−1
n(k+1)).

The proof is completed.

Proof of Theorem 1. Note that ayx|1 = σ−2
0 (ρyx−ρy1ρ1x) and byx|1 = ρ(ry, r1)Σ

−1
1 ρ(x1, x)

are bounded. By induction and the stability condition, it can be shown that ayx|k and
byx|k are bounded for 2 ≤ k ≤ q. If anq is bounded, then there exists km such that
na(km+1)(km+1)|km = O(1) and ankm = min1≤j≤km−1 na(j+1)(j+1)|j → ∞ as n tends to
infinity. By Lemma 7.1, we have

HT
km+1C

−1
km
Hkm+1 = na(km+1)(km+1)|km + b(km+1)(km+1)|km +O(a−1

nkm
),

which is bounded and non-negative definite. Furthermore, there exists an orthogonal matrix
Q and a diagonal matrix D = diag(d1, d2, d3) such that

Σ
1/2
km+1H

T
km+1C

−1
km
Hkm+1Σ

1/2
km+1 = QDQT .

Therefore,

HT
km+1C

−1
km+1Hkm+1

= HT
km+1C

−1
km
Hkm+1

(

I3 −
(

Σ−1
km+1 +HT

km+1C
−1
km
Hkm+1

)−1
HT

km+1C
−1
km
Hkm+1

)

= HT
km+1C

−1
km
Hkm+1

(

Σ−1
km+1 +HT

km+1C
−1
km
Hkm+1

)−1
Σ−1
km+1
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= HT
km+1C

−1
km
Hkm+1Σ

1/2
km+1

(

I3 +Σ
1/2
km+1H

T
km+1C

−1
km
Hkm+1Σ

1/2
km+1

)−1
Σ
−1/2
km+1

= Σ
−1/2
km+1QDQ

T
(

I3 +QDQT
)−1

Σ
−1/2
km+1

= Σ
−1/2
km+1

(

I3 +QD−1QT
)−1

Σ
−1/2
km+1

= Σ
−1/2
km+1

(

Q(I3 +D−1)QT
)−1

Σ
−1/2
km+1

= Σ
−1/2
km+1Q(I3 +D−1)−1QTΣ

−1/2
km+1. (7.8)

Note that Σ
1/2
km+1H

T
km+1C

−1
km
Hkm+1Σ

1/2
km+1 = O(1), which implies that dk ≥ 0, 1 ≤ k ≤ 3 are

bounded. We can find a positive constant ǫ0 such that max1≤k≤3(1 + d−1
k )−1 < (1 + ǫ0)

−1

when n is large enough. Consequently, for any vector a ∈ R
3 with ||a|| = 1, we have

aTΣ
1/2
km+1Q(I3 +D−1)QTΣ

1/2
km+1a > (1 + ǫ0)a

TΣ
1/2
km+1QQ

TΣ
1/2
km+1a,

which shows that Σ
1/2
km+1Q(I3 +D−1)QTΣ

1/2
km+1 (thus

[

HT
km+1C

−1
km+1Hkm+1

]−1
due to (7.8))

is asymptotically larger than Σkm+1(1 + ǫ0).
We now consider the case where anq → ∞. For j = q, by Lemma 7.1, we have

cqq|q

n
= −Σ−1

q

[

naqq|(q−1)

]−1
Σ−1
l = O(a−1

nq ),

[

HT
q C

−1
q Hq

]−1
=

[

Σ−1
q +

cqq|q

n
+O(a−2

nq )
]−1

,

= Σ1/2
q

[

I3 +Σ1/2
q

cqq|q

n
Σ1/2
q +O(a−2

nq )
]−1

Σ1/2
q

= Σ1/2
q

[

I3 − Σ1/2
q

cqq|q

n
Σ1/2
q +O(a−2

nq )
]

Σ1/2
q

= Σq −
[

naqq|(q−1)

]−1
+O(a−2

nq )

as n→ ∞. For 1 ≤ j ≤ q − 1, by Lemma 7.1, we have

HT
j C

−1
q Hj = Σ−1

j +
cjj|q

n
+O(a−2

nq ),

where
cjj|q
n = O(a−1

nq ). This entails

[

HT
j C

−1
q Hj

]−1
= Σ

1/2
j

(

I3 +
1

n
Σ
1/2
j cjj|qΣ

1/2
j +O(a−2

nq )

)−1

Σ
1/2
j

= Σ
1/2
j

(

I3 −
1

n
Σ
1/2
j cjj|qΣ

1/2
j +O(a−2

nq )

)

Σ
1/2
j

= Σj −
1

n
Σjcjj|qΣj +O(a−2

nq ).

For any location rx, by Lemma 7.1, we have

[

HT
x C

−1
q Hx

]−1
=

1

n

[

I3 +
1

n
a−1
xx|qbxx|q +O(a−2

nq )

]−1

a−1
xx|q

=
1

n

[

I3 −
1

n
a−1
xx|qbxx|q +O(a−2

nq )

]

a−1
xx|q

=
1

n
a−1
xx|q −

1

n2
a−1
xx|qbxx|qa

−1
xx|q +O(a−3

nq ).
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The proof is completed.

Proof of Corollary 3.1. First, let An =
[

Hkm+1
TC−1

l Hkm+1

]−1
. If anq = O(1)

and max1≤k≤q dk|q = O(1), then by Theorem (1), there exists a positive constant ǫ0 such

that min||a||=1 a
T (An − Σkm+1)a > ǫ0 for large n. Let a1 = (1, 0, 0)T , a2 = (0, 1, 0)T and

a3 = (0, 0, 1)T . Then, we have

tr(An) = tr(An

3
∑

k=1

aka
T
k ) =

3
∑

k=1

tr(Anaka
T
k )

=

3
∑

k=1

aTkAnak > 3ǫ0 +

3
∑

k=1

akΣkm+1a
T
k

= 3ǫ0 +
3
∑

k=1

tr(Σkm+1aka
T
k ) = 3ǫ0 + tr(Σkm+1

3
∑

k=1

aka
T
k )

= 3ǫ0 + tr(Σkm+1),

which implies tr(An) is asymptotically larger than Σkm+1.
To prove Theorem 2, we need two more lemmas as follows and the following condition

(A1′) : {Y(tj) : 1 ≤ j ≤ J} is stationary and has a finite covariance matrix.

Lemma 7.2 Under Conditions (A1’) and (A3)∼(A4), if nτnJ = o(1) with τnJ = O(
√

log(n)/J)
as n→ ∞ and J → ∞, then

(i) max1≤i,j≤n |ĉij − cij | = Op(
√

log(n)/J),

(ii) ||Ĉ(τnJ)− C|| = Op(mn

√

log(n)/J),

(iii) ||Ĉ(0)− C|| ≤ (mn + n)τnJ ,

where mn = max1≤i≤n
∑n

j=1 I(cij 6= 0) ≤ n.

Proof. Let κ3 = max{2(2/κ1+1/κ2)−1, (4/3)(1/κ1+1/κ2)−1/3, 1}. Then n
√

log(n)/J =
o(1) yields (log(n))κ3/J = o(1). We adopted the techniques of Bickel and Levina (2008),
Fan et al. (2011) and Zhang et al. (2013) to prove it. To prove (i), we set up more no-
tations. Let τ(t) be the so-called Dedecker-Prieur τ -mixing coefficients (see Merlevede
et al., 2009). Let Θ(u, t) = ∞{v > 0 : P (|y1(t)y2(t)| > v) ≤ u}, and ψy(M, t) =
max{min{yi(t)yj(t),M},−M}. It follows from Lemma 7 in Dedecker and Prieur (2004)
that

sup
t

Θ(u, t) ≤ b1(1− log(u))2/κ1 ,

which, under Condition (A4), gives τ(t) ≤ b2 exp(−b3tκ2). Similarly, it is derived from
Remark 3 in Merlevede et al. (2009) that

sup
M>0

[sup
t

var(ψy(M, t)) + 2
∑

t1>t2

|cov(ψy(M, t1), ψy(M, t2))]
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≤ sup
M>0

sup
t

var(ψy(M, t))

+2

(

sup
M>0

sup
t

var(ψy(M, t)) + 4
∑

t>0

∫ 2α(t)

0
(sup

t
Θ(u))2du

)

<∞.

Let 1/κ = 2/κ1 + 1/κ2. By Theorem 1 in Merlevede et al. (2009), we can find positive
constants dk, 1 ≤ k ≤ 5 that only depend on τ1, κ2, b2, b3 such that

P

(

| 1
J

∑

t=1

yi(t)yj(t)− cij | ≥ u

)

≤ J exp

(

−(Ju)κ

d1

)

+ exp

(

− (Ju)2

d2(1 + Jd3)
)

)

+exp

(

−(Ju)2

d4J
exp

(

(Ju)κ(1−κ)

d5(log(Ju))κ

))

.

Consequently,

P

(

max
1≤i,j≤n

| 1
J

J
∑

t=1

yi(t)yj(t)− cij | > u

)

≤ n2 max
1≤i,j≤n

P

(

| 1
J

J
∑

t=1

yi(t)yj(t)− cij | > u

)

≤ n2J exp

(

−(Ju)κ

d1

)

+ n2 exp

(

− (Ju)2

d2(1 + Jd3)

)

+n2 exp

(

−(Ju)2

d4J
exp

(

(Ju)κ(1−κ)

d5(log(Ju))κ

))

.

Let u = A
√

log(n)/J . Then Ju =
√

J log(n). When both n and J tend to infinity, we have

n2J exp

(

−(Ju)κ

d1

)

= exp

(

2 log(n) + log(J)− (A
√

J log(n))κ

d1

)

= exp

(

(2
(log(n))1−κ/2

Jκ/2
− A

d1
)(J log(n))κ/2 + log(J)

)

= o(1),

since (log(n))1−κ/2/Jκ/2 = o(1). Similarly, if we choose A >
√

2d2(d3 + 1), we have

n2 exp

(

− (Ju)2

d2(1 + Jd3)

)

= n2 exp

(

− A2J log(n)

d2(1 + Jd3)

)

= exp

((

2− A2

d2(d3 + 1/J)

)

log(n)

)

= o(1).

And

n2 exp

(

−(Ju)2

d4J
exp

(

(Ju)κ(1−κ)

d5(log(Ju))κ

))
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= exp

(

log(n)

(

2− A2

d4
exp

(

Aκ(1−κ)(J log(n))κ(1−κ)/2

d5(log(A
√

J log(n)))κ

)))

= o(1).

Therefore,

P

(

max
1≤i,j≤n

| 1
J

J
∑

t=1

yi(t)yj(t)− cij | > u

)

= o(1). (7.9)

Note that for u = A
√

log(n)/J , there exist positive constants dk, 1 ≤ k ≤ 5 so that

P ( max
1≤i,j≤n

|ȳi||ȳj | > u) = P ( max
1≤i≤n

|ȳi| >
√
u)

≤ n max
1≤i≤n

P (|ȳi| >
√
u)

= nJ exp

(

−(J
√
u)κ1

d1

)

+ n exp

(

− (J
√
u)2

d2(1 + Jd3)

)

+n exp

(

−(J
√
u)2

d4J
exp

(

(J
√
u)κ1(1−κ1)

d5(log(Ju))κ1

))

= o(1),

since (log(n))4/(3κ1)−1/3/J = o(1) and log(n)/J = o(1). This together with (7.9) yields that
for u = O(

√

log(n)/J),

P

(

max
1≤i,j≤n

|ĉij − cij | > u

)

≤ P

(

max
1≤i,j≤n

| 1
J

J
∑

t=1

yi(t)yj(t)− cij | > u

)

+P

(

max
1≤i,j≤n

|ȳi||ȳj | > u

)

= o(1),

which implies

max
1≤i,j≤n

|ĉij − cij | = Op

(

√

log(n)/J
)

.

We turn to Ĉ(τnJ) in (ii). Let T1 = ||(ĉijI(|ĉij | > τnJ)− cijI(|cij | > τnJ))||. We have

||Ĉ(τnJ)− C|| ≤ ||(ĉijI(|ĉij | > τnJ)− cijI(|cij | > τnJ))||+ ||(cijI(|cij | ≤ τnJ))||

≤ T1 +max
i

n
∑

j=1

|cij |I(|cij | ≤ τnJ)

≤ T1 + τnJmn. (7.10)

Similarly, we have

||Ĉ(0)− C|| ≤ T1 + τnJmn +max
i

n
∑

j=1

|ĉij |I(|ĉij | ≤ τnJ)

≤ T1 + (mn + n)τnJ .
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Note that

T1 ≤ max
i

n
∑

j=1

|ĉijI(|ĉij | > τnJ)− cijI(|cij | > τnJ)|

= max
i

n
∑

j=1

|ĉij (I(|ĉij | > τnJ , |cij | ≤ τnJ) + I(|ĉij | > τnJ , |cij | > τnJ))

−cij (I(|cij | > τnJ , |ĉij | > τnJ) + I(|cij | > τnJ , |ĉij | ≤ τnJ)) |
≤ I +II +III,

where

I = max
i

n
∑

j=1

|ĉij − cij |I(|ĉij | > τnJ , |cij | > τnJ),

II = max
i

n
∑

j=1

|ĉij |I(|ĉij | > τnJ , |cij | ≤ τnJ),

III = max
i

∑

J

|cij |I(|cij | > τnJ , |ĉij | ≤ τnJ).

We bound the above three terms as follows.

I ≤ max
i,j

|ĉij − cij |max
i

n
∑

j=1

I(|cij | > 0)

= Op

(

mn

√

log(n)/J
)

. (7.11)

For δ > 0, using the equality in (i), we have

II ≤ max
i

n
∑

j=1

|ĉij − cij |I(|ĉij | > τnJ , |cij | ≤ τnJ)

+max
i

n
∑

j=1

|cij |I(|cij | ≤ τnJ)

≤ max
i

n
∑

j=1

|ĉij − cij |I(|ĉij | > τnJ , |cij | ≤ δτnJ)

+max
i

n
∑

j=1

|ĉij − cij |I(|ĉij | > τnJ , δτnJ < |cij | < τnJ) + τnJmn

≤ max
i,j

|ĉij − cij |



max
i

n
∑

j=1

I(|ĉij | > τnJ , |cij | ≤ δτnJ) +mn



+ τnJmn

≤ Op(
√

log(n)/J)



max
i

n
∑

j=1

I(|ĉij − cij | ≥ (1− δ)τnJ) +mn



+ τnJmn

= Op(
√

log(n)/J)(op(1) +mn) + τnJmn = Op(τnJmn), (7.12)
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since

P



max
i

n
∑

j=1

I(|ĉij − cij | ≥ (1− δ)τnJ) > ǫ



 ≤ P

(

max
i,j

|ĉij − ci,j | ≥ (1− δ)τnJ

)

= o(1).

Similarly,

III ≤ max
i

n
∑

j=1

(|ĉij − cij |+ |ĉij ||) I(|cij | > τnJ , |ĉij | ≤ τnJ)

≤ max
i,j

|ĉij − cij |
n
∑

j=1

I(|cij | > τnJ) + τnJ max
i

n
∑

j=1

I(|cij | > τnJ)

≤ Op(τnJ)mn + τnJmn = Op(τnJmn).

Combining this with (7.11), (7.12) and (7.10), we obtain the desired result in (ii). The proof
is completed.

Lemma 7.3 Under Conditions (A1’) and (A3)∼(A4), if nτnJ = o(1) with τnJ = O(
√

log(n)/J)
as n→ ∞ and J → ∞, then

(i) ||Ĉ(τnJ)−1 − C−1|| = Op(mnτnJ) and ||Ĉ(τnJ)−2 − C−2|| = Op(mnτnJ),

(ii) ||Ĉ(0)−1 − C−1|| ≤ Op(τnJ(mn + n)); ||Ĉ(0)−2 − C−2|| ≤ Op(τnJ(mn + n)),

where mn = max1≤i≤n
∑n

j=1 I(cij 6= 0) ≤ n.

Proof. Let κ3 = max{2(2/κ1+1/κ2)−1, (4/3)(1/κ1+1/κ2)−1/3, 1}. Then n
√

log(n)/J =
o(1) yields (log(n))κ3/J = o(1). If let λmin(C) denote the minimum eigenvalue of C, then

we have that λmin(C) ≥ σ20. If let λmin(Ĉ(τnJ)) denote the minimum eigenvalue of Ĉ(τnJ),
then it follows from Lemma 7.2 that

λmin(Ĉ(τnJ)) = λmin(C) +Op(mnτnJ)

≥ σ20 +Op(mnτnJ),

which is bounded below by σ20/2 if τnJmn is small enough. Therefore, we have

||Ĉ(τnJ)−1 − C−1|| = ||Ĉ(τnJ)−1(C − Ĉ(τnJ))C
−1||

≤ ||Ĉ(τnJ)−1||(||C − Ĉ(τnJ)||)||C−1||
≤ λmin(Ĉ(τnJ))

−1λmin(C)
−1||C − Ĉ(τnJ)|| = Op(τnJmn).

||Ĉ(τnJ)−2 − C−2|| ≤ ||Ĉ(τnJ)−1(Ĉ(τnJ)
−1 − C−1)||+ ||(Ĉ(τnJ)−1 − C−1)C−1||

≤ ||Ĉ(τnJ)−1||||Ĉ(τnJ)−1 − C−1||+ ||Ĉ(τnJ)−1 − C−1||||C−1||
= (λmin(Ĉ(τnJ))

−1 + λmin(C)
−1)||Ĉ(τnJ)−1 − C−1||

= Op(τnJmn).

||Ĉ(0)−1 − C−1|| ≤ Op(τnJ(mn + n)),

||Ĉ(0)−2 − C−2|| ≤ Op(τnJ(mn + n)).
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Proof of Theorem 2. Note that for any x, HT
x Hx = n. We have

||
[

HT
j Ĉ(τnJ)

−1Hj

]−1
−
[

HT
j C

−1Hj

]−1 ||

= ||
[

HT
j Ĉ(τnJ)

−1Hj

]−1 (

HT
j C

−1Hj −HT
j Ĉ(τnJ)

−1Hj

)

[

HT
j C

−1Hj

]−1 ||

≤ 1

n
||
[

HT
j Ĉ(τnJ)

−1Hj/n
]−1

||||HT
j C

−1Hj/n−HT
j Ĉ(τnJ)

−1Hj/n||||
[

HT
j C

−1Hj/n
]−1 ||

≤ 1

n
||
[

HT
j Ĉ(τnJ)

−1Hj/n
]−1

||||C−1 − Ĉ(τnJ)
−1||||

[

HT
j C

−1Hj/n
]−1 ||,

which combining with Lemma 7.2 yields

||
[

HT
j Ĉ(τnJ)

−1Hj

]−1
−
[

HT
j C

−1Hj

]−1 ||

≤ Op(n
2
√

log(n)/J)||
[

HT
j Ĉ(τnJ)

−1Hj

]−1
||||
[

HT
j C

−1Hj

]−1 ||. (7.13)

Let λm and λ̂m denote the smallest eigenvalues of HT
j C

−1Hj and HT
j Ĉ(τnJ)

−1Hj respec-

tively. Invoking Theorem 1, (HT
j C

−1Hj)
−1 = Σj + o(1). There exists a positive constant

ǫ0 such that for large n, λm ≥ ǫ0. By the definition, there exists am ∈ R
3 with ||am|| = 1,

such that λ̂m = aTmH
T
j Ĉ(τnJ)

−1Hjam. So

|λ̂m − aTmH
T
j C

−1Hjam| = |(Hiam)T (Ĉ−1 − C−1)Hiam| ≤ n||Ĉ(τnJ)−1 − C−1||
≤ Op(n

2
√

log(n)/J),

which implies

λ̂m ≥ aTmH
T
j C

−1Hjam −Op(n
2
√

log(n)/J)

≥ λm −Op(n
2
√

log(n)/J) ≥ ǫ0 −Op(n
2
√

log(n)/J).

This shows that for large n, λ̂m is bounded below from zero. Consequently, we have

||
[

HT
j Ĉ(τnJ)

−1Hj

]−1
|| = O(1), ||

[

HT
j C

−1Hj

]−1 || = O(1).

This together with (7.13) proves that

||
[

HT
j Ĉ(τnJ)

−1Hj

]−1
−
[

HT
j C

−1Hj

]−1 || = Op(n
2
√

log(n)/J).

The proof is completed.
Proof of Corollary 3.2. It follows from Theorem 2 directly. The details are omitted.
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Figure 2: Scenario 1: Two sources located at CTF coordinates (3,−1, 4)T cm and
(−5, 2, 6)T cm respectively. The first four rows display the box-and-whisker
plots of the index values and the localization biases against the tuning con-
stant c0 = 0, 0.5, 1, 1.5, 2, ma, mi and sh for the combinations of n = 91,
SNR= 1/25, 1/0.64, and J = 500, 1000, 2000, 3000 respectively. Here, ma and mi

stand for the proposed hard-thresholded covariance based methods. sh stands
for the optimal shrinkage-based method. With a slightly abuse of notation,
c0 = ma,mi, sh refer to that ma, mi, and sh are used. The remaining rows
present the box-and-whisker plots of the local localization bias to the sources r1
and r2 against the transverse slice indices from 0 to 10 when c0 was selected by
the minimum strategy for the above combinations respectively. The red colored
lines in the boxes are the medians. Note that when the distribution of the lo-
calization biases are degenerate, the upper and lower quartiles and medians of
localization biases will be equal. Consequently, the box in the plot will reduce to
a red colored line. The plots in the last four rows show that all the local peaks
on the transverse slices are not close to the source location r1, implying that the
source 1 has been masked on the neuronal activity map by source cancellations.
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Figure 3: Scenario 2: Two sources located at CTF coordinates (−5, 5, 6)T cm and
(−6,−2, 5)T cm respectively. The first four rows display the box-and-whisker
plots of the index values and the localization biases against the tuning con-
stant c0 = 0, 0.5, 1, 1.5, 2, ma, mi and sh for the combinations of n = 91,
SNR= 1/25, 1/0.64, and J = 500, 1000, 2000, 3000 respectively. The remaining
rows present the box-and-whisker plots of the minimum local localization bias
to the sources r1 and r2 against the transverse slice indices from 0 to 10 when
c0 is selected by the minimum strategy for the above combinations respectively.
The red colored lines in the boxes are the medians. When the upper and lower
quartiles and medians of localization biases have the same value, the box in the
plot will reduce to a red colored line. The plots in the last four rows show that
all the local peaks on the transverse slices are not close to the source location r1,
implying the source 1 has been masked on the neuronal activity map by source
cancellations.
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Figure 4: Scenario 3: Two sources located at CTF coordinates (3,−1, 4)T cm and
(−5, 2, 6)T cm respectively. The first six rows show the box-and-whisker plots
of the index values and the localization biases against the tuning constant
c0 = 0, 0.5, 1, 1.5, 2, ma, mi and sh for the combinations of n = 102 sensors,
SNR= 1/0.352, 1/0.42, 1/0.52, and the sample rates J = 500, 1000, 2000, 3000 re-
spectively. The last six rows give the box-and-whisker plots of the minimum local
localization bias to the sources r1 and r2 against the transverse slice indices from
0 to 10 when c0 is selected by the minimum strategy for these combinations re-
spectively. The red colored lines in the boxes are the medians. When the upper
and lower quartiles and medians of localization biases are equal, the box in the
plot will reduce to a red colored line. The last six rows of the plots show all
the local peaks on the transverse slices are not close to the source location r1,
implying the source 1 has been masked on the neuronal activity map by source
cancellations.
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Figure 5: Scenario 4: Two sources located at CTF coordinates (−5, 5, 6)T cm and
(−6,−2, 5)T cm respectively. The first six rows show the box-and-whisker plots
of the index values and the localization biases against the tuning constant
c0 = 0, 0.5, 1, 1.5, 2, ma, mi and sh for the combinations of n = 102 sensors,
SNR= 1/0.352, 1/0.42, 1/0.52, and the sample rates J = 500, 1000, 2000, 3000 re-
spectively. The last six rows give the box-and-whisker plots of the minimum local
localization bias to the sources r1 and r2 against the transverse slice indices from
0 to 10 when c0 was selected by the minimum strategy for these combinations
respectively. The red colored lines in the boxes are the medians. When the upper
and lower quartiles and medians of localization biases are equal, the box in the
plot will reduce to a red colored line. The last six rows of the plots show all
the local peaks on the transverse slices are not close to the source location r1,
implying the source 1 has been masked on the neuronal activity map by source
cancellations.
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Figure 6: Performance comparison of the six different beamformers, namely ma, mi, gma,
gmi, adp and sh in Scenarios 1 and 2. Here, ma and mi stand for the hard-
thresholded covariance based methods when the tuning constant c0 is chosen
by use of the maximum strategy and the minimum strategy respectively; gma

and gmi stand for the generalized thresholded covariance based methods when
the tuning constant c0 is chosen by use of the maximum strategy and the mini-
mum strategy respectively; adp and sh stand for the adaptive thresholding-based
method and the optimal shrinkage-based method. The upper two rows of mul-
tiple box-whisker plots are for the combinations of n = 91, SNR= 1/25, 1/0.64,
and J = 500, 1000, 2000, 3000 in Scenario 1, while the lower two rows are for the
combinations of n = 91, SNR= 1/25, 1/0.64, and J = 500, 1000, 2000, 3000 in
Scenario 2. Each panel shows the localization biases against the above six dif-
ferent beamformer methods. The red colored lines in the boxes are the medians.
When the upper and lower quartiles and medians of localization biases are equal,
the box in the plot will reduce to a red colored line.
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Figure 7: Performance comparison of the six different beamformers, namely ma, mi, gma,
gmi, adp and sh in Scenario 3. Multiple box-whisker plots of localization biases
are displayed for the combinations of n = 102, SNR= 1/0.352, 1/0.42, 1/0.52,
and J = 500, 1000, 2000, 3000. Each panel shows the localization biases against
the six different beamformer methods, namely ma, mi, gma, gmi, adp and sh.
The red colored lines in the boxes are the medians. When the upper and lower
quartiles and medians of localization biases are equal, the box in the plot will
reduce to a red colored line.
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Figure 8: Performance comparison of the six different beamformers, namely ma, mi, gma,
gmi, adp and sh in Scenario 4. Multiple box-whisker plots of localization biases
are displayed for the combinations of n = 102, SNR= 1/0.352, 1/0.42, 1/0.52, and
J = 500, 1000, 2000, 3000 in Scenario 4. Each panel shows the localization biases
against the six different beamformer methods, namely ma, mi, gma, gmi, adp
and sh. The red colored lines in the boxes are the medians. When the upper and
lower quartiles and medians of localization biases are equal, the box in the plot
will reduce to a red colored line.
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Figure 9: Performance comparison of the six different beamformers, namely ma, mi, gma,
gmi, adp and sh in Scenario 5. Multiple box-whisker plots of localization biases
are displayed for the combinations of n = 102, SNR= 1/0.352, 1/0.42, 1/0.52, and
J = 500, 1000, 2000, 3000 respectively. Each panel shows the localization biases
against the six different beamformer methods, namely ma, mi, gma, gmi, adp
and sh.
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Figure 10: Plots of the log-contrasts between the faces and scrambled faces on three or-
thogonal slices through the peak locations for each of five sessions, which are
overlaid on the subject’s MRI scan. The plots in the left-hand two columns
and the right-hand two columns are derived from the procedures mi and adp

respectively. Rows 1 and 2, 3 and 4, 5 and 6, and 7 and 8 are for sessions 1 ∼ 5
respectively. The highlighted yellow colored areas revealed neuronal activity
increases or decreases for the faces relative to the scrambled faces. The areas
shown in the left-hand two columns are in or close to the IOG, STS, and PCu
regions which are known to be related to the human face perception.
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Figure 11: Plots of the log-contrasts between the faces and scrambled faces on 20 transverse
slices for each of five sessions, which are overlaid on the subject’s MRI scan.
The plots in the left-hand column and the right-hand column are derived from
the procedures mi and adp respectively. Rows 1 ∼ 5 are for sessions 1 ∼ 5
respectively. The highlighted yellow colored areas revealed neuronal activity
increases for the faces relative to the scrambled faces. The areas highlighted in
the first column are in or close to the OFA, IOG, STS, and PCu regions which
are known to be related to the human face perception.
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Figure 12: Plots of the estimated time-courses at the global peaks along x, y and z-axes
respectively for each of five sessions. The solid curve and the dashed curve in
each plot stand for the estimated time-courses under the faces and the scrambled
faces respectively. The plots are ordered from the top left panel to the right panel
to the bottom panel corresponding to sessions 1 ∼ 5.
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Figure 13: Plots of d12(k) and dmax(k) against k = 1, 2, ..., 306 respectively, where k stands
for k randomly chosen sensors from the 306 sensors in the face-perception data,
two sources are located at CTF (-4, 3,8)cm and (-4,-5,5) cm respectively, and
the dashed curve in each plot is for the function log(log(k)).
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