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Abstract—Codon usage bias (CUB) is the well known phenomenon that the frequency of synonymous codons is unequal. This is

presumably the result of adaptive pressures favouring some codons over others. The underlying reason for this pressure is unknown,

although a large number of possible driver mechanisms have been proposed; one of them is the decoding time. The standard model to

calculate decoding time is the Gromadski-Rodnina model. Yet, recently, there have been a number of studies arguing to the effect that

this conventional speed-model is not relevant to understand the dynamics of translation. However, results remain inconclusive so far.

This contribution takes a novel approach to address this issue based on comparing mRNA with random synonymous variants to

estimate the evolutionary pressures that have acted on the transcriptome. It emerges that over 70 percent of ORFs have been subject

to a strong selection pressure for translation speed and that there is also a strong selection pressure for the avoidance of traffic jams.

Finally, it is also shown that both homogeneous and very heterogeneous transcripts are over-represented. These results corroborate

the validity of the Gromadski-Rodnina model.

Index Terms—Translation, evolution, saccharomyces cerevisiae

Ç

1 INTRODUCTION

THE genetic code is highly degenerate—there are 20
amino-acids but 64 codons. Consequently, it is inevita-

ble that each amino acid sequence can be encoded by a very
large number of different mRNAs, the so-called synonymous
mRNAs. Large scale analyses of codons have shown that
individual species prefer some codons over others. This is
commonly referred to as the codon usage bias (CUB). While
the bare fact of CUB is well established, its underlying bio-
logical reasons are not. A number of drivers of the CUB
have been proposed, including the abundance of isoaccep-
tor tRNA, pre-mRNA level selection, mRNA concentration
[9], mRNA secondary structure [32], the efficiency of trans-
lation initiation [25], GC content [16], gene length [19],
translation error [26], [30], protein structure [20], [34] and
others [12], [22].

Perhaps one of the more important drivers of the CUB is
the decoding time [27]. The current best understanding of
the factors determining the decoding time go back to a
model by Gromadski and Rodnina [14]. The central idea of
the model is that cognate aa-tRNA species compete with
near matches (the so-called near-cognate aa-tRNA) for access
to the ribosome. The latter are thought to occupy the ribo-
somal A-site for significant amounts of time before eventu-
ally unbinding; while bound they prevent access for the
cognate aa-tRNA [11] and crucially prevent the translation
of the message from proceeding.

For many codons, near-cognates are much more abun-
dant than cognates. Even though each near-cognate occu-
pies the ribosome for a short time only, collectively they
cause a major bottleneck for translation as a whole [3].
Consequently, the elongation time depends primarily on
the ratio of cognate to near-cognates rather than on the abso-
lute number of cognates. This ratio varies strongly between
codons. The model of cognate/near-cognate interaction has
recently been corroborated experimentally [3].

Following from that is the key prediction of the Gromad-
ski-Rodnina model that the decoding time may vary
strongly even between synonymous codons. For example,
in Saccharomyces cerevisiae the fastest codon (AGA) is read
nearly 44 times faster than the slowest one (CUC), according
to the model. Similarly, among the synonymous codon
sequences for a given protein the predicted translation
times (i.e., average time to read one codon) of the fastest
sequence may be as much as five times lower than that of
the slowest. Despite these large differences, the importance
of speed for the evolution of CUB is currently unclear. The
prima facie argument why translation speed should be
selected for is as follows [21], [27]: Faster translation speeds
lead to higher achievable translation rates given a fixed ribo-
some pool; hence by decreasing the time required for a
ribosome to read a transcript, the cell can reduce the num-
ber of ribosomes while keeping the translation rate fixed.
Given that ribosomes are metabolically costly [3, SI], it
would seem natural to assume that there is a strong adap-
tive pressure towards faster mRNAs.

While this resource argument seems clear, it is unclear at
present whether there really are speed differences between
sequences and what precisely causes them. So far, empirical
methods have not been able to settle this question. Most
studies in the field do not explicitly consider the decoding
speed, but instead rely on various measures of codon adapt-
edness. Two of the best known ones are the codon adaptation
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index (CAI) [28] measuring how coding of an mRNA devi-
ates from some highly expressed reference genes, and the
tRNA adaptation index (tAI) [10] measuring gene adaptation
in relation to the tRNA composition of the cell. These are
often used as proxies for decoding speed and are able to pre-
dict various transcriptomic and proteomic key measures,
including expression levels of both mRNA and protein [12].
It can also be shown that both of these adaptedness measures
are good predictors for decoding speed (see Table 2 below).

Using E.coli as a host Kudla et al. [17] measured the
translation rates of an extensive library of synonymous
sequences with widely varying predicted speeds. The
authors reported no correlation between codon adaptedness
and translation rate. Similarly, Qian et al. [23] demonstrated
experimentally that the codon adaptedness of an open read-
ing frame (ORF) is not a good predictor for the translation
rate. Based on a thorough bioinformatics analysis of foot-
printing data Charneski and Hurst [1] found that codon
adaptedness is not a good predictor for codon speed at all,
but that amino-acid charge is. Indeed, these authors pointed
out that besides charge, all other previously considered pre-
dictors of codon-speed are insignificant. Hence, based on
their findings one should not expect transcripts to be opti-
mised for (Gromadski-Rodnina) speed.

This partial evidence contrasts with received wisdom in
biotechnology where codons of recombinant proteins are
engineered routinely to maximise expression [15] indicating
a link between codon reading time and expression rate.
Also, recently Chu et al. [3] showed for a Firefly Luciferase
transcript in a yeast host system that the translation speed
as shown by the Gromadski-Rodnina model is a very good
predictor for the expression rate. Even stronger evidence is
given by Tuller et al. [33] who found a correlation between
codon adaptedness and expression level in a genome wide
study involving both Saccharomyces cerevisiae and E.coli.

Closely related to speed is another dynamical effect of
translation. So-called “traffic jams” are collisions between
two or more ribosomes occupying the same mRNA. Such
traffic jams tend to reduce the translation rate per ribosome
and therefore are a source of inefficiency in the translational
machinery. At present it is not entirely clear whether or not
traffic jams actually have a large dynamical impact on trans-
lation. There are three main cellular parameters that influ-
ence the propensity for traffic jams: ribosome numbers, the
translation initiation rate and the speed distribution of
codons on the transcript. One can hypothesize that the cell
has evolutionarily optimised all three of these aspects to
minimise traffic jams.

Altogether, despite significant research efforts in this
field, empirical methods have so far not been able to
decide the selection pressures driving the evolution of
CUB. In this contribution we will therefore take a novel
approach. We will consider the transcripts themselves
and investigate to what extent they carry the hallmarks of
past adaptive pressures. Rather than considering foot-
printing data that reports ribosome locations or study the
expression levels of various genes, we compare transcript
sequences of Saccharomyces cerevisiae to random synony-
mous variants. This comparison then allows some conclu-
sions about the evolutionary origin of the sequences in
questions. For example, if there is a an evolutionary

pressure to increase the speed of transcripts, as predicted
by the Gromadski-Rodnina model, then one would also
expect that actual yeast sequences tend to be faster
than random variants. If on the other hand Gromadski-
Rodnina speed is irrelevant for the dynamics of transla-
tion, then the Saccharomyces cerevisiae transcriptome would
show no particularly strong bias towards faster speeds.

To do this comparison we considered for each yeast tran-
script 1,000 random synonymous variants. These variants
were obtained by replacing WT codons by random syno-
nyms. For each of the variant sequences we calculated the
quantity under investigation and ranked the wild-type
sequence against all the variants. We then took the rank of
the WT sequence as an indicator for the evolutionary pres-
sure that this particular sequence experiences.

Here, we consider three key measures: Average codon
speed, as measured by the Gromadski-Rodnina model, the
propensity of sequences for traffic jams (as derived from a
model based on the Gromadski-Rodnina model) and the
evenness of the decoding speed distribution across the tran-
script (in short: sequence homogeneity). We found a very
strong selection pressure for reading speed. We also found
that sequences optimised for traffic jams are over-repre-
sented. Surprisingly it also emerged that both heteroge-
neous and homogeneous sequences are over-represented.

2 MATERIALS AND METHODS

2.1 Sequences

The tAI values for yeast have been obtained from a link pro-
vided in the supplementary material in [18].1 Yeast mRNA
sequences are downloaded from the SGD database [2]. The
CAI values have been calculated using EMBOSS and their
standard comparison sequence for Saccharomyces cerevisiae.
The codon reading speeds are obtained from the computa-
tional model described in [7].

2.2 Rank Analysis

For the rank analysis of the decoding speed we generated
for each ORF 1,000 random synonymous sequences. We cal-
culated for each the reading time per codon by adding the
average reading times of each codon and dividing the sum
by the length of the transcript. For the rank analysis of the
standard deviation, we calculated the standard deviation of
the decoding times of codons across each transcript and
divided this by the mean reading time per codon. Then we
ranked sequences with respect to this measure. In order to
obtain the ranks for ribosome sequestration, we simulated
every ORF and each of its 1,000 synonymous variants using
a dynamic model of yeast translation based on the Gromad-
ski-Rodnina model to obtain the average number of ribo-
somes on each sequence. The simulation model is described
in [7]. For these particular simulations we assumed a satu-
rating ribosome affinity of 1 for each sequence and 200,000
ribosomes. This high number of ribosomes effectively de-
coupled the individual transcripts. We simulated the system
for a period of 1,500 s and calculated the average number of

1. http://longitude.weizmann.ac.il/pub/papers/Man2007_tai/
suppl/
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ribosomes on a transcript from a record of the number of
ribosome on a sequence over the entire simulation time.

2.3 Overlap between Sequences

To determine the significance between two sets of rankings,
we performed a x2-test (standard R function chisq.test

()) using the contingency table of the form:

P2 :P2

P1 I A1� I
:P1 A2� I 5862� ðA1þA2� IÞ.

Here P1 would be the property first listed in Table 1b
(i.e., Speed, Speed, Jam, Jam, Speed). The meaning of :P1

is “not having property P1.” Correspondingly, P2 stands
for the property listed second in Table 1b (i.e., hSD, lSD,
hSD, lSD, Jam). The symbols A1 represents the column
all1; correspondingly A2; I is the intersection column. The
cell (:P2, :P1) computes the number of ORFs that are
neither in P1 nor in P2.

3 RESULTS

3.1 Selection Pressures

We compared each codon sequence of Saccharomyces cerevi-
siaewith an ensemble of 1,000 random synonymous variants
(see Materials and Methods for details). We ranked each
yeast sequence and an ensemble of synonymous variants
with respect to the average translation speed. In this way
we obtained altogether about 5,600 rankings. This analysis
suggests a strong selection for high speed: Over 70 percent
of sequences are ranked within the top 2 percent within
their respective random ensembles (Fig. 1). If there were no
adaptive pressure for speed only 2 percent of sequences
would be expected to be ranked within the top 2 percent of
their ensembles.

Using comparisons with random sequences it is also pos-
sible to check whether yeast ORFs are selected to reduce
traffic jams. To this end we determined by simulation the
average number of ribosomes on each yeast ORF and on all
of the random variants. Given this it was possible to deter-
mine the ribosomal occupation ratio (ROR) which is the
ratio of the mean number of ribosomes (Nfocal) on the focal
sequence divided by the average of the numbers of ribo-
somes on random sequences (Ni) across the ensemble of
random control sequences.

ROR ¼ Nfocal

1
1;000

P1;000
i¼1 Ni

: (1)

To understand how typical the actual yeast transcripts
are among their synonymous codons, we considered the
distribution of RORs across the transcriptome. In particular
we compared two distributions: First, the distribution when
the focal sequence for each transcript was a sequence cho-
sen randomly from the set of random variants. Second, the
distribution when the focal sequence was the actual yeast
transcript. In the first case one would expect the ROR values
to follow a unimodal distribution around a mean of 1 and a
characteristic standard deviation. The second case may or
may not yield a different distribution. If it does, then this
indicates that the actual yeast sequence is different from the
random sequences with respect to the ROR.

Fig. 2 compares the two distributions graphically. Both
are approximated very well by a normal distribution
around 1, but the real RORs distribute with a much wider
standard deviation than the RORs derived from the random
variants. This means that a large proportion of the real
sequences are atypical among their synonymous mutants,
but there does not seem to be a systematic bias to a higher
or lower propensity to traffic jams.

To obtain additional insight, we ranked each of the ORFs
within the 1,000 random synonymous variants with respect

TABLE 1
The Abbreviations lSD and hSD Indicate the Set of Low and High Standard Deviation Corresponding to the ORFs Ranking

Top 2 Percent and Bottom 10 Percent with Respect to Standard Deviation

“Jam” and “Speed” indicate the top 2 percent ranked ORFs with respect to ribosome sequestration and average decoding speed. (a) The number of genes ranked
within the top 2 percent within the random ensemble. The total number of ORFs considered was 5862. (b) The intersection set. Roughly 80 percent of the SD and
Jam optimised ORFs are also Speed optimised. Column “intersection” shows the number of ORFs that are contained in both sets; all 1 and all 2 is the number of
ORFs that belong to the first and second set only (referring to the order in the first column). The column “fraction 1” shows the number in “intersection” as a
fraction of “all 1.” If this number is much higher than the relevant entry under “fraction” from table (a) then this indicates that the intersection is larger than one
would expect at random. The last column reports the significance level of the overlap using the x2 test (see Materials and Methods for details); according to this all
overlaps are significant except for (Jam, lSD).
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to the average number of ribosomes on the sequences over
the simulation period (i.e., the propensity for traffic jams). A
high rank means a relatively low propensity for traffic jams
when compared to a random control. We found that high
ranks are statistically over-represented in the sample
(Fig. 1), although the bias is not as strong as in the case of
the speed ranks. Slightly more than 7 percent of all ORFs
are ranked within the top 2 percent and 20 percent within
the top 10 percent.

A common mathematical model for traffic jams of this
sort are TASEPs. These are idealised systems of entities
performing a unidirectional one dimensional discrete

random walk in continuous time. Many variants of this
model can be solved analytically, mainly because they
assume a totally homogeneous transition rate, i.e., the
average time required to hop from one site to the next is
the same for all hops. As such TASEPs are a simplified
model of the dynamics of ribosomes on the transcript.
Using numerical simulations it can be shown that fully
homogeneous transition rates maximise the throughput
compared to non-homogeneous transition rates (with the
same overall average transition time) [6].

Based on this we hypothesise that codon sequences may
be tuned by evolution for greater sequence homogeneity

Fig. 1. For each yeast ORF 1,000 random synonymous variants were produced. Within the sample we determined the rank of the actual sequence for
speed, standard deviation, and ribosome sequestration/propensity for traffic jams. A low rank (i.e., 1,2,3,...) indicates a sequence with relatively high
speed, low standard deviation and a low ribosome sequestration respectively. The diagonal shows the distribution of ranks for all yeast ORFs. The off-
diagonal graphs are correlation plots for the entire set of ORFs. The bottom right graph shows how the ranks with respect to speed correlate with the rank
with respect to traffic jams. The figures also indicates the correlation coefficient. All ranks are weakly, but statistically significantly correlated (P < 0:05).

Fig. 2. This graph shows the distribution of the ribosomes occupation ratios across the entire yeast genome (see main text for an explanation). The
graph indicates that real ORFs are untypical compared to random synonyms with respect to their propensity to form traffic jams.
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(and hence maximal throughput). Here we measure homo-
geneity simply as the standard deviation of the codon
speeds divided by the average codon speed over the ORF
sequence. Surprisingly, from our analysis it emerged that
both very heterogeneous and very homogeneous sequences
are statistically over-represented compared to a random
sample (Fig. 1) with 11 percent and 18 percent of sequences
ranked within the top 2 percent and bottom 10 percent of
their random control ensemble respectively.

The ranks of ORFs within the individual sub-sets (i.e.,
high speed, high/low standard deviation, low occupation)
are only weakly correlated (Pearson’s coefficient between
�0:1 and 0:1). A different picture emerged when we ana-
lysed in more detail the ORFs shared by different sets (i.e.,
top 2 percent for speed, traffic jams, standard deviation
(lSD) and the bottom 10 percent of standard deviation
(hSD)). The highest ranking (i.e., top 2 percent) ORFs
for standard deviation and traffic jams do not overlap signif-
icantly (Table 1b). The two sets share 48 ORFs. This is 11 per-
cent and 7 percent of all elements within the Jam and lSD
group and corresponds exactly to the frequencies of Jam and
lSD within all ORFs as tabulated in table 1a. The two proper-
ties are statistically independent. The overlap between all
other sets is larger than what one would expect at random
(p-values < 0:05; see table 1b). Surprisingly, the sequences
that minimise traffic jams are substantially (factor of 2) over-
represented within the heterogeneous sequences and vice
versa about twice as many of the jam optimised sequences
are unusually heterogeneous. Similarly unexpected is that
the high-speed codons are over-represented both in the very
homogeneous and the most heterogeneous sequences. Fur-
thermore, among the heterogeneous sequences 84 percent
are speed optimised. This value climbs to over 90 percent if
we consider the top 2 percent of the heterogenous sequen-
ces, rather than the top 10 percent (data not shown).

4 DISCUSSION

In this article we analyse mRNA sequences in Saccharomyces
cerevisiae to understand some of the evolutionary pressures
that shaped the genome. In particular we analysed the aver-
age reading speed, the propensity for traffic jams and the
sequence homogeneity with respect to speed. The analysis
shows that a very large proportion of sequences are speed
optimised relative to random synonyms. This result was
surprising. While it can be easily argued theoretically that
high speed is beneficial for the cell (see above), it was not at
all clear that sequences actually are speed optimised to the
extent observed. Traditionally, the speed is often measured
by tAI or CAI values. These measures show a mono-modal
distribution across the transcriptome. This means that a few
sequences are highly enriched in terms of the fastest codons,
a few are highly enriched in terms of the slowest codons
and the vast majority is somewhere in-between.

Yet, this representation does not tell the whole story. It
hides the fact that even among this vastmajority of sequences
with seemingly unremarkable speed many are much faster
than one would expect by random. Over 70 percent of yeast
transcripts are ranked within the top 2 percent of synony-
mous sequences. This suggests strongly that yeast sequences
are under a significant selective pressure to optimise speed.

This pressure towards increased speed is not surprising
per se. After all, high reading speed means that costs due to
ribosome sequestration can be reduced. In this sense, it is
only to be expected that the reading speed is maximised.
However, what makes our results more significant is that
they are based on the assumption of the Rodnina-Gromadski
model. This model has for a long time been assumed to be
relevant for the description of decoding speeds, but its rele-
vance has recently become increasingly unclear, c.f. the
above cited article by Charneski and Hurst [1]. If the speed
model was indeed irrelevant then one would not have
expected to see in our study, which was based on the
Gromadski Rodnina model, a selection pressure for high
speed. However, such a selection pressure is present in the
data, suggesting that themodel is of relevance.

The next question is then whether or not the avoidance of
traffic jams has materially shaped the evolution of CUB.
This is a somewhat more subtle question because beside the
CUB there are a number of other factors that influence the
propensity for traffic jams. There has been some recent
interest in theoretical [8], [13], [24] and empirical [29] stud-
ies investigating ribosome-ribosome interactions. Yet, it still
remains unclear whether traffic jams are a dominant effect
impacting on the dynamics of translation in yeast and other
organisms. At least in yeast, circumstantial evidence points
to jams as a sub-ordinate effect [4], [5], [29]. Ribosomes are
an expensive cellular resource and it appears that there are
not enough of them available in a cell to cause substantial
traffic jams. Our results corroborate this conjecture. The
rank analysis of yeast ORFs suggests that there is only a
moderate selection pressure to reduce polysome. This
would be consistent with the cell avoiding traffic jams by
tuning ribosome numbers and affinities. The CUB is only
optimised in some genes to further reduce traffic jams.

It is possible that our approach under-estimates the selec-
tion against traffic jams. From previous numerical analyses
[5] it is apparent that there is a system-wide shortage of
ribosomes. In our traffic jam simulations we chose the
parameters such that ribosome initiation is saturating; phys-
iological rates are nearly certainly much lower [5], [29].
Consequently, our approach may not detect some of the
jam-reducing motifs in the yeast genome that are only effec-
tive when the initiation pressure from ribosomes is lower.
Further research is required to settle this question.

Intriguingly, we also found that very homogeneous and
very heterogeneous sequences are over-represented in the
yeast genome. It is not clear why this is the case. Based on
theoretical considerations one could conjecture that homoge-
neity is selected for in order to reduce traffic jams. However,
if this were the case, then onewould also expect a substantial
overlap between the least jam-prone sequences and the most
homogeneous ones. No significant overlap exists. Another
possibility is that homogeneity is but a side effect of high
speed. When more of the codons are faster, then this will
tend to remove speed variations along the sequence. Indeed,
fast sequences are over-represented among the homoge-
neous sequences, but only slightly so. However, note that
within the heterogeneous sequences (bottom 10 percent) fast
sequences are evenmore over-represented (table 1).

The apparent selection for heterogeneity in ORFs could be
a side effect of Tuller’s “slow ramps” [31], i.e., stretches of
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poorly adapted codons at the beginning of the sequence. If
this was the case, then one would expect that within the tail
ends of ORFs heterogeneous sequences are no longer over-
represented. Indeed, we find that the over-representation is
reduced, but some still remains (see Fig. 3). Ramps would
naturally tend to increase the heterogeneity of the sequence.
Our data does not indicate a significant correlation between
selection for reduced traffic jams andmRNA, protein expres-
sion respectively (data not shown). It is interesting to note
that sequences with high standard deviation are over-repre-
sented among those with a low propensity for traffic jams
(table 1). Only 7 percent of all sequences are within the top 2
percent with respect to jams, but among the highly heteroge-
neous ones, 14 percent are. This suggests that heterogeneity
could have a function in avoiding traffic jams.

Traditionally CUB is investigated using measures of
codon adaptedness (e.g., CAI, tAI and others) rather than
the speed directly. A tacit assumption that seems to be made
frequently is that adaptedness reflects speed. Indeed, we
found a very high correlation (Pearson > 0:9Þ between tAI/
CAI and average codon speed (Table 2). Similarly, it is now
well established that for many organisms there is a strong
correlation between various measures of codon adaptedness
and mRNA/protein expression ([18] and Table 2). Conse-
quently, decoding speed and mRNA/protein abundances
also correlate although in a somewhat weakened form.

This correlation between codon adaptedness and expres-
sion rate has often been interpreted in that highly expressed
proteins are under a higher selection pressure than lower
expressed ones and consequently more able to counteract
random drift [12]. While this seems plausible at first, it is
not at all clear that the assumption that rarely expressed
genes are under a lower selective pressure is true. One
could just as easily make the opposite argument that rare
conditions are often associated with stress and require even
more efficient translation. Another possibility is to argue
that the CUB has evolved as a regulator for gene expression
and low expression is a consequence rather than a cause of
the lower codon adaptedness.

Our ranking data can give some insight here because the
speed-rank of an ORF within a random ensemble is indica-
tive of the selection pressure for faster translation. We find
that the correlation between speed-rank and protein/
mRNA expression is weak. For proteins expressed below
14,000 the speed-rank and the protein expression rate corre-
late with a Pearson coefficient of � �0:08; the same value
for mRNA is � 0:06 . However, within the dataset there are
473 proteins expressed at 14,000 or higher. Within this sub-
set all but four ORFs rank within the top 5 percent

according to speed. This means that very highly expressed
genes are nearly always adapted for speed. Similarly for the
mRNA. In our dataset there are 249 ORFs with more than
six copies (on average); of those only four rank outside the
top 4 percent according to speed. Unlike the direct correla-
tion between codon adaptedness and expression levels, this
suggests that only the highest expressed genes are subject to
a particularly strong selection pressure for speed.

A prediction of the argument that higher expressed genes
are under a stronger selection pressure is that random drift
must be an important factor shaping codon usage. If this was
the case then one would expect longer ORFs to be altogether
less well adapted than shorter ORFs, because the former con-
tain many more micro-states corresponding to average
sequences. Hence, one would predict a negative correlation
between gene length and adaptedness. We could not find
such a correlation for the tAI (Pearson correlation coefficient
between tAI and length of ORF is 0:08) or the length of the
ORF and the average decoding time (Pearson � 0:04),
whereas predicted speed rank and gene length are mildly
correlated (Pearson� �0:29). So, genetic drift has shaped the
genome, but the rank analysis does not indicate a strong role.

5 CONCLUSION

When the speed-predictions of the Gromadski-Rodnina
model are used, then a strong adaptive pressure towards
increased speed is detectable in the transcriptome of Saccha-
romyces cerevisiae. Similarly, we could find a mild adaptive
pressure towards reduced traffic jams and high and low
sequence homogeneity.

While this indicates that the Gromadski-Rodninamodel is
relevant for the dynamics of translation in yeast, a number of
open questions remain. It is conceivable (though unlikely)
that additional drivers of CUB evolution somewhat bias this
investigation. In our random variants we have not taken into
account GC contents or mRNA secondary structure, nor
have we allowed non-synonymous but inconsequential sub-
stitutions. Future research needs to clarify whether or not
taking into account these effectsmakes amaterial difference.

Fig. 3. The ratio of the histograms for the standard deviation for the full
sequence (as in Fig. 1) and the same histogram but only using the last
40 codons (data not shown). A value of 1 would mean that for this partic-
ular bin the two samples have the same density of entries; a value
greater than one means that there are more of those bin values in the
full sequence than in the last 40 codons only. The graph indicates that
highly heterogeneous sequences are more common when the full
sequence is considered.

TABLE 2
Comparing How Various Measures of Codon Adaptedness

Correlate with Protein and mRNA Abundance

CAI tAI time mrna

protein 0.47 0.43 -0.39 0.39
mrna 0.77 0.66 -0.61 1.00
CAI 1.00 0.91 -0.85 0.77
tAI 0.91 1.00 -0.91 0.66

The table matrix lists the Pearson correlations between various key-character-
istics of ORFs.
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