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Summary

The spin-ice materials Ho2Ti2O7 (HTO) and Dy2Ti2O7 (DTO) are part of a large

family of compounds called magnetic pyrochlore oxides. Typically, the magnetism

of these systems arises from the rare-earth ions (RE3+) which sit at the vertices of

a lattice of corner-sharing tetrahedra and couple with the degrees of freedom of the

crystal leading to a wide spectrum of exotic phenomena.

In spin-ices the magnetic moments of the individual RE3+ ions are large enough to

let their mutual dipolar interactions be the leading factors for the thermodynamics.

Moreover, the strength and the symmetries of their local crystalline environment are

such that each ion behaves like a magnetic dipole with only two allowed configurations:

it points either parallel or opposite to the axis joining the vertex where it sits to the

centre of the tetrahedron. As a result, the ground state of the system is macroscopically

degenerate because the ferromagnetic interactions between the 4 Ising-like spins in each

tetrahedron cannot be satisfied simultaneously, and, in turn, the manifold of possible

configurations minimising the energy (2 spins inward - 2 spins outward) increases with

the size of the system. This exotic ground state is such that the Ising configurations

of the dipoles map to the disordered vector-displacements of the protons in the water

molecules of conventional ice; hence the name spin-ice. Violations of the (2in-2out) ice

rules take the systems out of the ground state into more energetic configurations. More

precisely, the flipping of a spin between two adjacent ground-state tetrahedra creates

a local excitation (1in-3out in a tetrahedron, 3in-1out in the neighbouring one) that is

made of two fractionalised opposite magnetic fluxes. Once the two fluxes are created

they can separate and freely hop across the lattice as their motion does not involve

any higher order violation of the ice-rules. The low temperature properties of spin-

ice depend heavily, if not exclusively, on the density and mobility of such flux-defects

which effectively behave as magnetic monopoles mutually interacting via a Coulomb

potential.

Beside the success of many experiments which exploit the physics of the monopoles in

their exclusively classical formulation, there has been an increasing curiosity about the

microscopic mechanisms which dictate their propagation across the lattice. At present,
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the dynamics of the monopoles are still puzzling showing different responses under

different probes and non-identical behaviours between the two compounds HTO and

DTO. As the monopoles themselves consist of packed magnetic fluxes originating from

the magnetic moments of the RE3+ ions, investigating the microscopical mechanisms

underlying their motion requires revisiting the foundations of the classicality which

emerges from the quantum substrate of the interactions of the magnetic ions. This is

the subject of the work presented in this thesis.

With particular focus on the interplay between the local crystal-symmetries and the

mutual interactions between the RE3+ ions, the present study gives an accurate de-

scription of the microscopic mechanisms which occur in the pyrochlore substrate in

the presence of a monopole. The results suggest that the motion of the monopoles is

achieved thanks to the spin-tunnelling of the RE3+ ions which accounts for the flipping

of the Ising spins, necessary for the propagation of a monopole. A major improvement,

compared to the standard theory of spin ice, is the role of the exchange interactions

that are overcome by the dipolar ones in the ice-state but possess a dynamical resilience

which manifests in the presence of a monopole. Furthermore, the present study brings

to light the articulated statistical structure of the kinematic spin-constraints which are

expected to dictate the diffusion of the free monopoles and their response under differ-

ent probes also in conditions out of equilibrium. From a more general perspective, the

mathematical and physical models developed during this work promise to be of interest

also in other magnetic systems. Primarily, in the other pyrochlore oxides whose micro-

scopical structure is akin to the spin-ice one; secondarily, in other RE3+ compounds

where the interplay between quantum and classical physics leads to the manifestation

of unusual dynamical effects.
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“We expect to encounter fascinating and, I believe, very fundamen-
tal questions in fitting together less complicated pieces into a more
complicated system and understanding the basically new types of
behavior that can result.”

P.W. Anderson [1]

1
Introduction

“Condensed matter physics is a branch of physics which studies systems of many par-
ticles in the ‘condensed’ (i.e. solid or liquid) states” [2]. As such, this discipline
characterises different compounds by analysing the collective behaviour they display
in the different states of matter. The various states which the system can possess are
called phases, and their characterisation is ultimately defined by the observable ther-
modynamics. In this perspective, it is often the case that systems which may look very
diverse are characterised by the same phases because of the similarities they exhibit in
their collective response to the respective external parameters [3]. This implies that
the character of a given phase does not necessarily reflect directly the actual state of
agglomeration of the entities constituting the system, but it merely refers to the state
of the degrees of freedom which couples to the external tuning parameters.

In magnetic systems, for example, it is typical to distinguish between liquid, gas
phases, etc., without referring to the actual state of the individual molecular, atomic or
subatomic bodies in the system. Terms such as spin-liquid, spin-glass, etc. instead refer
to the type of behaviour observed in the magnetism of a given material under certain
conditions. The conditions themselves are typically characterised by varying different
external parameters which pertain also to the local constituents of the material and in
effect dictate its state as an agglomerate. Usually, however, these are tuned to probe
specific degrees of freedom of the system within very specific ranges of parameters in
order not to create conflicts with the self organisation of the constituents. This is one
of the reasons why the experimental settings for investigating the exotic properties of
novel magnetic compounds typically require low temperatures, namely to guarantee
the actual stable phase of a given magnetic compound and “immerse” the system into
a particular state which allows the neat observation of the phenomena of interest.

A more general characterisation often used to characterise the different phases of a
system is the change of symmetries which occur in phase transitions. In this context the
system is described as entering in a phase where a symmetry is partially or totally lost
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with the consequent occurrence of a reorganisation of the available degrees of freedom.

A very original class of magnetic systems are the so called spin-ice materials. In these
systems, at very low temperatures, the magnetic degrees of freedom impose reciprocally
a very unusual kind of “constrained freedom” and, as such, they are said to be frustrated.

Geometrical frustration occurs in any physical system whose constituents are arranged
in such a way that it is impossible to minimise all the pairwise interactions simultane-
ously [4]. An archetypical case is shown in Fig. 1.1 where the frustration arises from
the antiferromagnetic interaction of Ising spins sitting at the vertices of an equilateral
triangle: the two spins at the bottom minimise their mutual interaction by pointing
in opposite directions; however, a third spin at the top vertex leads to frustration in
the system since a spin configuration which minimises the interaction energy with one
maximises it for the other. Moreover, extending the size of the system, for example by
making a two dimensional lattice of triangles with antiferromagnetic Ising spins would
lead to a larger frustration that can be estimated in the existence of non-zero entropy
of the ground state found from the amount of equivalent (frustrated) configurations
which minimise the energy of the system.

Spin-ice materials represent a three-dimensional realisation of a frustrated spin sys-
tem with ferromagnetic interactions [5]. As shown in Fig. 1.2C the three-dimensional
lattice consists in a network of corner sharing tetrahedra hosting the magnetic degrees
of freedom (spins) at the vertices joining them. The tetrahedral arrangement of the
network (pyrochlore lattice) is not exclusive of spin-ices; it characterises a large family
of compounds that are called magnetic pyrochlore oxides [6, 7]. The various pyrochlores
differ from each other in their chemical elements and in the anisotropies which charac-
terises the ions carrying the magnetic degrees of freedom. Different compounds have, in
general, different magnetic properties which span from superconductors, spin-glasses,
spin-liquids, etc. This thesis is only focused on the spin-ice materials Ho2Ti2O7 (HTO)
and Dy2Ti2O7 (DTO). In both systems the magnetic ions are only the rare earths
(RE), Ho3+ for the former and Dy3+ for the latter. In the periodic table these are the
elements with the largest magnetic moments ( |m| ≈ 10µB) in the lanthanide series
(RE). As such, once the spin-ice crystal is formed they sit at the vertices of the py-
rochlore lattice and, because of the local crystalline fields, they assume a very peculiar

?
Figure 1.1: Frustration in the antiferromagnetic interaction between spins in an equilat-
eral triangle. Either of the two allowed (up or down) states for a third spin on the upper
vertex leads to a frustrated configuration in the triangle, hence the symbolic question mark.
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type of anisotropy: each spin can either point inward or outward a tetrahedron only
in the direction of the axis (the local 〈111〉) joining the vertex to the centre of the
tetrahedron. From these anisotropies and the dipolar interactions which give a net fer-
romagnetic nearest neighbour (n.n.) coupling to the spins, the spin-ice ground state is
characterised by a manifold of degenerate states where each tetrahedron has to satisfy
the so called ice-rules: two of the spins point in, the other two point out (2in-2out) [5].

The name spin-ice was coined because of the type of frustration that was measured
from the zero-point entropy (in Ref. [8] it was found S0 = R

2 ln(3
2), the same as the

Pauling estimation for water-ice) and allowed a direct mapping between the 2in-2out
configurations and the disorder arrangement of the protons in the water molecules of
ordinary ice [9, 10] (see Fig. 1.2A,B). A particular signature of what is now consid-
ered the spin-ice physics, was the lifting of the ground state degeneracy under applied
magnetic field and the discovery of a liquid-gas type transition which, as a first order
phase transition, justified the absence of a long ranged ordered ground state as the
consequence of the absence of a broke symmetry change of phase [11]. Soon after the
pattern found in diffuse neutron scattering experiments confirmed the absence of long
range order and the leading role of the long ranged dipolar interactions in the spin-ice
ground state physics [12].

The frustration of the ground state was later understood in a simplified view which has
characterised ever since the history and understanding of the spin-ice physics. Starting
from the ground state manifold where all tetrahedra obey the ice-rules, in Ref. [13] it was
shown that energy excitations above the ground state behave as localised singularities of
magnetic flux which can be deconfined across the lattice. The frustration of the ground
state, is due to the absence of the monopoles which are the only dynamical objects
allowed by the topological constraints of the system. In other words the spin-ice ground

confirmed by neutron diffraction experiments
(7, 8).

Magnetic systems offer themselves as the
ideal benchmark for generic concepts pertain-
ing to collective phenomena in nature. This is
due in part to the availability of a large variety
of diverse magnetic materials that can be cho-
sen to approximate simple theoretical “toy
models” of collective behavior and, in part, to
their ease of study by a battery of experimental
techniques. Over the last 50 years, experimen-
talists have characterized new classes of frus-
trated magnetic behavior, and theoreticians
have been motivated by the broad conceptual
applicability of magnetic models to investigate
simple frustrated spin systems (9–11). These
include “energetic” generalizations of the ice
model that display a wealth of interesting ther-
modynamic phenomena in close resemblance
with those observed in real ice (12, 13). How-
ever, although theoretical studies of ice-like
phenomena in frustrated ice models have long
flourished, very few, if any, real magnets could
be found to display a close thermodynamic
resemblance to common ice. This remained for
some time a disappointing situation where close
contact between theoretical studies on magnetic
ice models and real systems was lacking, a
somewhat untenable predicament in science
where one is generally aiming at testing theo-
retical concepts against experiments and vice
versa.

Anderson had noticed in 1956 the formal
analogy that exists between the statistical me-
chanics of cation ordering on the cubic B-site
lattice in “inverse” spinel materials and the
statistical mechanics of antiferromagnetically
coupled two-state Ising magnetic moments on
the same lattice (referred to here as the pyro-

chlore lattice, Fig. 1C) (14). Both systems were
shown to map exactly onto Pauling’s model of
proton disorder in ice. The realization of Ander-
son’s model in an antiferromagnetic material
would require spins to point along or antiparal-
lel to a global z-axis direction. However, there
is no reason to prefer the z over the x or the y
direction in a lattice with global cubic symme-
try, and this renders the global antiferromag-
netic Ising model unrealistic with no direct
relation to any real magnetic material. The ex-
perimental situation changed in 1997, when it
was noticed by Harris et al. (15) that a model of
ferromagnetism on the pyrochlore lattice would
exactly map onto the ice model so long as each
Ising-like magnetic moment was constrained to
point along the axis joining the centers of the
two tetrahedra to which it belongs (Fig. 1C).
This was a surprising observation, because na-
ı̈vely one would not expect frustration in a
ferromagnet. However, the ferromagnetic mod-
el is compatible with cubic symmetry and was
observed to be approximated by the apparently
ferromagnetic pyrochlore material Ho2Ti2O7

(15). This constituted the first simple physical
realization of a real three-dimensional magnetic
analog of common ice, and the name “spin ice”
was coined to emphasize this analogy.

Experiments on spin ice have mirrored,
using modern sophistication, those originally
conducted on water ice. However, the spin
ice materials lend themselves more readily to
experiment than does water ice and more
closely approximate tractable theoretical
models. This has led to much recent interest
devoted to the problem of zero-point entropy
and to the study of the broad consequences of
geometric frustration. We review the recent
experimental and theoretical developments in

the study of spin ice materials, and discuss
what are possible new and exciting avenues
of research in this problem.

Discovery of Spin Ice
In a flux-grown crystal of Ho2Ti2O7 (16) (Fig.
2) the octahedral habit reflects the cubic sym-
metry of the pyrochlore structure; the amber
color and strong reflectivity are indicative of a
band gap near the visible/ultraviolet boundary
(3.2 eV). In Ho2Ti2O7, the Ho3! ions occupy a
pyrochlore lattice of corner-linked tetrahedra
(illustrated in Fig. 1C). Magnetism arises from
the Ho3! ions, as Ti4! is nonmagnetic. Ho3!

has a particularly large magnetic moment of
approximately 10"B that persists to the lowest
temperatures and makes the crystals sufficiently
paramagnetic to stick to a permanent magnet
even at room temperature (Fig. 2). The large,
temperature-independent moment is ensured by
the local crystallographic environment of Ho3!

in the pyrochlore structure (17–21). Each tetra-
hedron of Ho3! ions has an oxide ion at its
center, so two of these oxide ions lie close to
each Ho3! along the #111$ crystallographic axis
that connects the center of the tetrahedron to its
vertex. The anisotropic crystallographic envi-
ronment changes the quantum ground state of
Ho3! such that its magnetic moment vector has
its maximum possible magnitude and lies par-
allel to the local #111$ axis. In the language of
quantum mechanics the 5I8 free ion state is split
by the local trigonal crystal field such that the
ground state is an almost pure !J, MJ$ % !8,
&8$ doublet with #111$ quantization axis. The
first excited state lies several hundreds of
Kelvin above the ground state as revealed by
inelastic neutron-scattering measurements (21).
At temperatures on the order of 10 K or below,

Fig. 1. (A) Local proton arrangement in water
ice, showing oxide ions (large white circles) and
protons (hydrogen ions, small black circles).
Each oxide is tetrahedrally coordinated with
four other oxides, with two near covalently
bonded protons, and two are further hydrogen-
bonded protons. The low-energy configurations
obey the so-called “ice rules” (5), where each
oxide has two “near” and two “far” protons. (B)
Same as in (A), but where now the position of
the protons are represented by displacement
vectors (arrows) located at the midpoints of
the oxide-oxide lines of contact. The ice rules in
(A) translates into a two-in, two-out configu-
ration of the displacement vectors. (C) Pyro-
chlore lattice of corner-sharing tetrahedra, as occupied by the magnetic
rare-earth ions in the spin ice materials Ho2Ti2O7 and Dy2Ti2O7. The
magnetic Ising moments occupy the corners of the tetrahedra, as shown
on the lower left “downward” tetrahedron of the lattice (arrows). The
spins here are the equivalents of the proton displacement vectors in (B).
Each spin axis is along the local #111$ quantization axis, which goes from
one site to the middle of the opposing triangular face (as shown by the
disks) and meets with the three other #111$ axes in the middle of the
tetrahedron. In the spin ice materials the two-in, two-out condition
arises from the combined effect of magnetic coupling and anisotropy. For
clarity, other spins on the lattice are denoted by black and white circles,
where white represents a spin pointing into a downward tetrahedron;
black is the opposite. The entire lattice is shown in an ice-rules state (two

black and two white sites for every tetrahedron). The hexagon (thick gray
line) relates to the discussion in the section on open issues and avenues
for future advances. It shows the smallest possible loop move involving
multiple spins, and corresponds to reversing all colors (spins) on the loop
to produce a new ice-rules state. These extended type of excitations or
processes are the ones that allow the system to explore the quasi-
degenerate ice rule manifold at low temperature. Common water ice at
atmospheric pressure, ice Ih, has a hexagonal structure, whereas here, the
magnetic lattice has cubic symmetry. Strictly speaking, the Ising pyro-
chlore problem is equivalent to cubic ice, and not the hexagonal phase. Yet,
this does not modify the ice-rule analogy (or mapping) or the connection
between the statistical mechanics of the local proton coordination in water
ice and the low-temperature spin structure of the spin ice materials.
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Figure 1.2: This figure is from Ref. [5]. The diagram A illustrates a water molecule in the
tetrahedral coordination of the ice structure with proton positions located by displacement
vectors that occupy a lattice of linked tetrahedra (two protons near-two protons far). B
shows the case of spin ice where the displacement vectors are replaced by rare earth (RE)
magnetic moments (“spins”) sitting at the vertices of the coordination tetrahedron (two
spins in-two spins out). C illustrates the pyrochlore lattice of corner-sharing tetrahedra,
as occupied by the magnetic RE3+ ions in the spin ice materials (magnetic dipoles on
the vertices pointing along the local 〈111〉 axis). The filling colour for the vertices of the
tetrahedra accounts for the direction of the local spin and reproduces the ice-rules in this
lattice: 2 white (in) 2 black (out).
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state can be defined as the vacuum for the monopoles. The mapping between dipoles
and dumbbells of magnetic charges shown in Fig. 1.3, demonstrated that the magnetic
defects can hop across the lattice by flipping adjacent spins as a direct consequence
of the topological properties and the anisotropy of the spins on the pyrochlore lattice.
Moreover it was also realised that they mutually interact via a Coulomb potential, that
is also the reason why these magnetic defects are commonly called magnetic monopoles.
The magnetic monopoles then, consist of local violations of the ice rules, and remarkably
they are quasiparticles localised in real space. The charge of the monopoles is defined
exploiting the dumbbell model as Qα = ±2|m|/ad with |m| magnitude of the magnetic
moment of the dipole and ad the distance between the centres of two neighbouring
tetrahedra. One of the first insights brought by the picture of the monopole was the
explanation for the occurrence of a liquid-gas phase transition observed previously in
Ref. [14].

After the discovery of the monopoles a large variety of experiments verified the consis-
tency of their description. The first experiments involved neutron scattering techniques
to detect the Coulomb phase [15] and the traces of flipped spins the monopoles were
leaving under applied fields [16]. Soon after it was also proposed and measured via
muon-spin-rotation that the motion of the monopoles occurs as in a weak electrolyte
using the theory of Onsager for the Wien effect [17]; this was later contrasted by other
measurements done with analogous probes [18]. A considerable experimental effort has
been carried in trying to determine the dynamics of the monopoles under different kinds
of experimental setup. Some of these are based on ac-susceptibility techniques [19, 20],
other on squid-interferometry by studying the relaxations timescales after an applied
magnetic field is removed [21]. Other setups include the use of non-equilibrium tech-
niques such as thermal quenches [22], magnetic field quenches [23] and more recently
magnetothermal avalanche quenches [24].

The common response found in all experiments is that the relaxation timescales are

where Qa denotes the total magnetic charge at site a in the diamond
lattice, and rab is the distance between two sites. The finite ‘self-
energy’ u0/2 is required to reproduce the net nearest-neighbour inter-
action correctly. Equation (2)—which is derived in detail in the
Supplementary Information—is equivalent to the dipolar energy
equation (1), up to corrections that are small everywhere, and vanish
with distance at least as fast as 1/r5.

We consider first the ground states of the system. The total energy
is minimized if each diamond lattice site is net neutral, that is, we
must orient the dumbbells so thatQa5 0 on each site. But this is just
the above-mentioned ice rule, as illustrated in Fig. 2. Thus, one of the
most remarkable features of spin ice follows directly from the dumb-
bell model: the measured low-T entropy agrees with the Pauling
entropy (which follows from the short-distance ice rules), even
though the dipolar interactions are long-range.

We now turn to the excited states. Naively, the most elementary
excitation involves inverting a single dipole / dumbbell to generate a

local net dipole moment 2m. However, this is misleading in a crucial
sense. The inverted dumbbell in fact corresponds to two adjacent
sites with net magnetic charge Qa56qm562m/ad—a nearest-
neighbour monopole–antimonopole pair. As shown in Fig. 2e, the
monopoles can be separated from one another without further viola-
tions of local neutrality by flipping a chain of adjacent dumbbells. A
pair of monopoles separated by a distance r experiences a Coulombic
interaction,{m0q

2
m

!
4prð Þ, mediated by monopolar magnetic fields,

see Fig. 3.
This interaction is indeed magnetic, hence the presence of the

vacuum permeability m0, and not 1/e0, the inverse of the vacuum
permittivity. It takes only a finite energy to separate the monopoles
to infinity (that is, they are deconfined), and so they are the true
elementary excitations of the system: the local dipolar excitation
fractionalizes.

By taking the pictures from the dumbbell representation seriously,
we may be thought somehow to be introducing monopoles where
there were none to begin with. In general, it is of course well known
that a string of dipoles arranged head to tail realizes a monopole–
antimonopole pair at its ends17. However, to obtain deconfined
monopoles, it is essential that the cost of creating such a string of
dipoles remain bounded as its length grows, that is, the relevant string
tension should vanish. This is evidently not true in a vacuum (such as
that of the Universe) where the growth of the string can only come at
the cost of creating additional dipoles. Magnetic materials, which
come equipped with vacua (ground states) filled with magnetic
dipoles, are more promising. However, even here a dipole string is
not always a natural excitation, and when it is—for example, in an
ordered ferromagnet – a string of inverted dipoles is accompanied
by costly domain walls along its length (except, as usual, for one-
dimensional systems18), causing the incipient monopoles to remain
confined.

The unusual properties of spin ice arise from its exotic ground
states. The ice rule can be viewed as requiring that two dipole strings
enter and exit each site of the diamond lattice. In a typical spin-ice
ground state, there is a ‘soup’ of such strings: many dipole strings
of arbitrary size and shape can be identified that connect a given pair
of sites. Inverting the dipoles along any one such string creates a
monopole–antimonopole pair on the sites at its ends. The associated
energy cost does not diverge with the length of the string, unlike in
the case of an ordered ferromagnet, because no domain walls are
created along the string, and the monopoles are thus deconfined.

We did not make reference to the Dirac condition19 that the fun-
damental electric charge e and anymagnetic charge qmust exhibit the
relationship eq5 nh/m0 whence any monopoles in our universe must
be quantized in units of qD5 h/m0e. This follows from the monopole
being attached to a Dirac string, which has to be unobservable17. By
contrast, the string soup characteristic of spin ice at low temperature
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Figure 2 | Mapping from dipoles to dumbbells. The dumbbell picture
(c, d) is obtained by replacing each spin in a and b by a pair of opposite
magnetic charges placed on the adjacent sites of the diamond lattice. In the
left panels (a, c), two neighbouring tetrahedra obey the ice rule, with two
spins pointing in and two out, giving zero net charge on each site. In the right
panels (b, d), inverting the shared spin generates a pair of magnetic
monopoles (diamond sites with net magnetic charge). This configuration
has a higher net magnetic moment and it is favoured by an appliedmagnetic
field oriented upward (corresponding to a [111] direction). e, A pair of
separated monopoles (large red and blue spheres). A chain of inverted
dipoles (‘Dirac string’) between them is highlighted in white, and the
magnetic field lines are sketched.
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Figure 3 | Monopole interaction. Comparison of the magnetic Coulomb
energy {m0q

2
m

!
4prð Þ (equation (2); solid line) with a direct numerical

evaluation of the monopole interaction energy in dipolar spin ice (equation
(1); open circles), for a given spin-ice configuration (Fig. 2e), as a function of
monopole separation.
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antimonopole pair at its ends17. However, to obtain deconfined
monopoles, it is essential that the cost of creating such a string of
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tension should vanish. This is evidently not true in a vacuum (such as
that of the Universe) where the growth of the string can only come at
the cost of creating additional dipoles. Magnetic materials, which
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not always a natural excitation, and when it is—for example, in an
ordered ferromagnet – a string of inverted dipoles is accompanied
by costly domain walls along its length (except, as usual, for one-
dimensional systems18), causing the incipient monopoles to remain
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The unusual properties of spin ice arise from its exotic ground
states. The ice rule can be viewed as requiring that two dipole strings
enter and exit each site of the diamond lattice. In a typical spin-ice
ground state, there is a ‘soup’ of such strings: many dipole strings
of arbitrary size and shape can be identified that connect a given pair
of sites. Inverting the dipoles along any one such string creates a
monopole–antimonopole pair on the sites at its ends. The associated
energy cost does not diverge with the length of the string, unlike in
the case of an ordered ferromagnet, because no domain walls are
created along the string, and the monopoles are thus deconfined.

We did not make reference to the Dirac condition19 that the fun-
damental electric charge e and anymagnetic charge qmust exhibit the
relationship eq5 nh/m0 whence any monopoles in our universe must
be quantized in units of qD5 h/m0e. This follows from the monopole
being attached to a Dirac string, which has to be unobservable17. By
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Figure 2 | Mapping from dipoles to dumbbells. The dumbbell picture
(c, d) is obtained by replacing each spin in a and b by a pair of opposite
magnetic charges placed on the adjacent sites of the diamond lattice. In the
left panels (a, c), two neighbouring tetrahedra obey the ice rule, with two
spins pointing in and two out, giving zero net charge on each site. In the right
panels (b, d), inverting the shared spin generates a pair of magnetic
monopoles (diamond sites with net magnetic charge). This configuration
has a higher net magnetic moment and it is favoured by an appliedmagnetic
field oriented upward (corresponding to a [111] direction). e, A pair of
separated monopoles (large red and blue spheres). A chain of inverted
dipoles (‘Dirac string’) between them is highlighted in white, and the
magnetic field lines are sketched.

Distance (a)

En
er

gy
  (

K
)

−3

−2

−1

0

2 4 6 8 10

Figure 3 | Monopole interaction. Comparison of the magnetic Coulomb
energy {m0q
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evaluation of the monopole interaction energy in dipolar spin ice (equation
(1); open circles), for a given spin-ice configuration (Fig. 2e), as a function of
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Figure 1.3: This figure is from Ref. [13]. The left hand side shows the dumbbell picture
(c,d) obtained by replacing each spin in a and b by a pair of opposite magnetic charges
placed on the adjacent sites of the diamond lattice. Note the different configurations
between the ground state (2in-2out in a, no charges in c) and the excited state (central
shared spin flipped in b, bound pair of magnetic monopoles in d). On the right panel (e) a
pair of separated monopoles generates a magnetic field. Highlighted in white is the chain
of inverted dipoles connecting them.
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very slow, showing that the mobility of the monopole is heavily constrained by the
underlying spin structure of the pyrochlore lattice. Furthermore several experiments
measured more than one slope in the relaxation times, suggesting the occurrence of
more than a single mechanism regulating the propagation of the monopoles. However,
from a general perspective the picture of the monopole motion remains still an open
question. A theoretical model to account for the microscopic physics regulating the
propagation of the monopoles is needed to be able to answer the current puzzles. This
thesis gives a microscopic description of the physics which governs the magnetic ions
regulating the monopole dynamics. The main question to address is: which are the
mechanisms leading to a spontaneous flipping of a spin in the presence of a monopole?

The minimal model to investigate this and related questions has to include nearest-
neighbour exchange and long-range dipole-dipole interactions as in Refs. [12, 5]

H =
J

3

∑

〈ij〉

SiSj +Dr3
nn

∑

(ij)

[
zi · zj
|rij |3

− 3(zi · rij)(zj · rij)
|rij |5

]
SiSj , (1.1)

where, each of the variables Si = ±1 describes a classical Ising spin sitting at site
i defined along the local 〈111〉 axis, and the sum over 〈ij〉 runs only over nearest
neighbour pairs as opposed to (ij) which is over all pairs across the lattice (no double
counting in both cases). Typically the convention requires that Si = +1 (Si = −1) if
the spin is parallel (antiparallel) to the unit vector zi which points from a vertex of the
reference tetrahedron towards the centre (a set of zi for the sites of a tetrahedron will
be given in Eq. (4.22)). rij is the distance between any two spins on sites i and j and
rnn separates two neighbouring spins and set the scale of the pyrochlore lattice.

In the real compounds, Ho2Ti2O7 (HTO) and Dy2Ti2O7 (DTO), the Ising degrees of
freedom arise from the magnetic moments mi = mSizi of the RE3+ ions, respectively
Ho3+ and Dy3+ ions, which are forced by the local crystal-field symmetry to point
either in or out of a tetrahedron as pictorially represented in Fig. 1.2. The magnitude
|m| ≈ 10µB, with µB the Bohr magneton, and the nearest neighbour distance rnn ≈
3.54Å sets the energy scale for the dipolar interaction to D = µ0m

2/4πr3
nn = 1.41K.

In contrast, the (antiferromagnetic) exchange coupling is measured experimentally as
J ≈ −1.56K,−3.72K, respectively, for HTO and DTO.

This model accurately predicts the 2-in/2-out spin ice ground state manifold [5] and a
finite density of magnetic monopole excitations at finite temperatures [13]. A good un-
derstanding of the observed dynamics can be obtained by inserting phenomenologically
an adjustable monopole hopping time τ and studying the simulated time-evolution of
the model described by Eq. (1.1) through discrete steps of that duration [25, 26].

On the other hand, the above model per se does not lead to spin flip dynamics. At
the classical level, a purely transverse field on a spin makes the two states Si = ±1
degenerate. Quantum-mechanically, the transverse field induces a finite splitting ∆E01

between approximate bonding and anti-bonding combinations of these states which in
turn leads to a finite spin-flip timescale

τ ∼ h/∆E01 (1.2)

for spontaneous quantum mechanical tunnelling between the Si = +1 and Si = −1
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states. This calls for a study of the quantum dynamics of an individual RE spin in the
presence of a purely-transverse magnetic field in these materials as a way to estimate
the parameter τ . That is the main subject of the present work.

To build a realistic model for the quantum mechanics in spin-ice materials it is neces-
sary to go beyond the Ising dipolar approximation and take into account the quantum
mechanical properties of the magnetic ions that are expected to exhibit quantum dy-
namics. In simple words, it is necessary to revisit the fundamental structure of the
RE3+ ions immersed in the crystalline environment of spin-ice materials, with the aim
to understand how the local properties of the system are modified by the presence of a
monopole. To achieve this task it is necessary to understand more about the magnetism
of a RE3+ ion.

The magnetism of the rare earths has its origin in the angular momenta of the 4-f
electrons in the atoms [27]. To investigate the real dynamical degrees of freedom of
the Ising dipoles which account for the propagation of the monopoles it is necessary to
study the microscopic structure characterising the environment of the RE3+ ions. This,
as shown in the following, consists in revisiting the Schrödinger equation which governs
the electrons in the 4-f shell of the magnetic ions. More exactly, it requires to assess
which kind of representation is the most suitable to adopt for describing the magnetic
states resulting from the interaction of the RE3+ ion with its crystal-field environment.

The notion of the crystal-field (CF) potential is based on the crucial assumption that
any bound ion feels the global interaction of its surroundings in the form of a one-
electron potential [28]. Then, the effective Hamiltonian of the open-shell electrons of a
metal ion (in SI units) reads

Ĥ =

n∑

i=1

[
− ~2

2me
∇̂2
i −

ke Ze
2

|r̂i|

]
+

n∑

i>j

ke e
2

|r̂i − r̂j |
+

n∑

i=1

ζ(|ri|) l̂i · ŝi − e
n∑

i=1

Vext(r̂i) (1.3)

where the summation is limited to the open-shell electrons only, the n electrons in the
4-f shell for a RE3+ ion (ri is the coordinate of the i-th electron with charge e and mass
me in the reference frame centred in the nucleus of the ion; ke = 1/4πε0 is the Coulomb
constant). The Hamiltonian in Eq. (1.3) consists of the free-ion part and the ion-crystal
interaction part. The former includes, in sequence of appearance, the kinetic energy of
the electrons, their spherically symmetric potential energy, the inter-electron mutual
Coulomb interaction and the spin-orbit coupling energy; the latter accounts solely for
the interaction of electrons from the central ion with the surrounding environment in
the crystal. The so called crystal-field potential, which accounts for the electrostatic
interaction of the electrons in the ion with the neighbouring ligands, plays the leading
role in such ion-crystal interaction Vext [27, 28, 29].

Exact solutions of the Schrödinger equation for the Hamiltonian in Eq. (1.3) are
not possible. Nonetheless, an ensemble of symmetry-based assumptions together with
phenomenological parametrisation for the effective degrees of freedom of the magnetic
ions allow a meaningful description for the physics observed in a large variety of rare-
earth and transition-metal complexes [28].

Firstly, in the framework of the central field approximation, one assumes that it is
possible to construct a potential energy function Vc(ri) which is a spherically symmetric
one-electron operator and is a good approximation to the actual potential energy of
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the i-th electron in the field of the nucleus and the other n− i electrons [29]. Moreover,
the spherically symmetric part of the potential from the surrounding ligands can also
be absorbed in the central potential Vc(ri), since, even if dominating because of its
magnitude, it causes no energy splittings of the electronic levels. This assumption is
not a priori obvious particularly considering various complications arising from non-
orthogonality of interacting states and possibility of different electronic excitations
which could should mix the free-ion states. Fortunately, it has turned out, that a
phenomenological parameterisation of crystal-field effect by means of the one-electron
potential expanded in the series of spherical tensor operators works exceptionally well
[28].

Secondly, to construct the wave functions for a multi-electron atom on the basis of
the central field approximation, one needs to choose a coupling scheme of momentum
summation to determine the wave functions of the n independent electrons. For the 4-f
electrons of RE3+ ions it is convenient to adopt the Russell-Saunders coupling scheme
where the spins ŝi of the individual electrons are coupled by their exchange interactions
in the total spin Ŝ, while the direct Coulomb interaction similarly combines the l̂i into
the total orbital momentum L̂. Then, the Hund’s rules dictate how to combine these
in the total angular momentum Ĵ = L̂ + Ŝ depending on the number n of electrons in
the f subshell [29, 27].

In the context of trivalent rare earth ions, the Russell-Saunders coupling describes
completely a given electronic state as a linear combination of the basis

|fnSLJMJ〉 ≡ |MJ〉 , (1.4)

where L, S and J are the (conserved) quantum numbers for, respectively, the orbital
(L̂), the spin (Ŝ) and the total (Ĵ) angular momenta of the system of n electrons in the
f shell. MJ = −J,−J + 1, . . . , J are the allowed quantum numbers for the projection
of the total angular momentum along the quantisation axis. A table with the (ground
state) values of J, L, S for the trivalent RE3+ ions can be found in Ref. [27]; for Ho3+

and Dy3+ ions these are respectively 8, 6, 2 and 15/2, 5, 5/2.

As we shall see in the rest of thesis, the Hamiltonians and all the other quantum
mechanical observables are described in terms of the angular momentum operators
acting on such representation of kets. These are defined in the following set of equations:

Ĵ2 |MJ〉 = J(J + 1) |MJ〉 (1.5a)

Ĵz |MJ〉 = MJ |MJ〉 (1.5b)

Ĵ± |MJ〉 =
√
J(J + 1)−MJ(MJ ± 1) |MJ ± 1〉 , (1.5c)

with,

Ĵ2 ≡ Ĵ2
x + Ĵ2

y + Ĵ2
z (1.5d)

Ĵ+ ≡ Ĵx + i Ĵy (1.5e)

Ĵ− ≡ Ĵx − i Ĵy , (1.5f)



8

where the angular momentum operators are expressed as dimensionless operators1.

The theoretical study presented in this thesis starts with the effective crystal-field
Hamiltonian ĤCF for Ho3+ and Dy3+ in spin-ice materials. As thoroughly discussed
in Chapter 2, such Hamiltonian includes all the electrostatic effects in Eq. (1.3) and
characterises each system with a set of phenomenological parameters which can be
measured by different experimental means, ideally by inelastic neutron scattering.

The two (classical) Ising states Si = ±1 of the individual spins in Eq. (1.1), corre-
spond to the two (quantum) states of the ground state doublet of ĤCF in Ho2Ti2O7 and
Dy2Ti2O7 which are strongly polarised in both systems ( |ψ0〉 ≈ |+J〉 , |ψ1〉 ≈ |−J〉).
In general, only one of two is selected by the presence of a dipolar field longitudinal to
the local Ising axis, that is typical in the spin-ice state and act as a “projective” per-
turbation on the crystal-field Hamiltonian by splitting the energy for the two opposite
configurations. Nonetheless, as we shall see in the rest of this thesis, since the RE3+

ions are intrinsically quantum mechanical objects, transitions between the two oppo-
site states can occur spontaneously because of the perturbation carried by a monopole
which quenches the longitudinal field and leaves a purely transverse one. The results of
this theory suggest that, although the monopoles emerge from the (classical) substrate
of frozen RE3+ ions, their propagation across the lattice has a local quantum-dynamical
impact on the degrees of freedom of a RE3+ ion which in turn characterises the mech-
anisms dictating the hopping of the monopoles themselves.

Structure of the thesis

The original work presented in this thesis is distributed throughout the following four
chapters (2,3,4,5). Conclusions and an outlook for research in this field are immediately
afterwards, in Chapter 6. Appendix A and Appendix B complement, respectively,
Chapter 2 and Chapter 4. In the following paragraphs the content of each chapter is
summarised separately with references guiding the reader through the thesis.

Chapter 2 focuses on the emergence of quantum-dynamics in spin-ice pyrochlore
oxides. The first part of the chapter (sections 2.1-2.3) discusses how the Ising character
of the individual RE3+ ions, i.e. the classical spins in Eq. (1.1), results from the coupling
of their spin-orbit degrees of freedom with the crystalline environment hosting them.
The remaining part of the chapter presents a study of the quantum-mechanical effects
due to the interplay between perturbative magnetic fields and local symmetries of the
crystal. This culminates in section 2.5 which analyses the (quantum) spin-tunnelling
between the two (classical) Ising configurations of a spin-ice RE3+ ion under magnetic
fields transverse to the local Ising axis.

Chapter 3 investigates the internal magnetic fields resulting on the RE-sites of spin-
ice materials from the dipolar interactions between the magnetic moments of the RE3+

ions. The general form of such interaction is derived in section 3.1, while section 3.2
gives a detailed study of the dipolar fields resulting on the RE-sites in the presence of a
monopole. Such study, conducted over pyrochlore-clusters of two distinct sizes, reveals
different statistical weights of the spin configurations on the resulting fields on the RE-

1 This, as we shall see, is a convenient choice for the rest of the thesis as it allows a straightforward
description of the crystal-field interactions by tabulated matrix elements and experimentally fitted
parameters.
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sites next to a monopole. The two-tetrahedra cluster (section 3.2.2.1) shows that, in a
RE-coordination tetrahedron hosting a monopole, of the three spins which are energeti-
cally and topologically allowed to flip two experience a magnetic field purely transverse
to the local Ising axes, while the other has an identically null resulting field. The
eight-tetrahedra cluster (section 3.2.2.2) confirms these results, modulo minor pertur-
bations, suggesting that the monopoles stimulates only locally the quantum dynamics
of (a fraction of) the surrounding RE3+ ions.

Chapter 4 is a study of the most “intimate” quantum-mechanical interaction be-
tween neighbouring RE3+ ions: the effective magnetic coupling arising from the virtual
exchange of electrons. Firstly, in section 4.1, following the common (classical) approxi-
mation which treats the RE3+ ions as antiferromagnetically coupled magnetic moments,
a toy-model is used for studying the effective-exchange between nearest neighbours spins
distributed on a pyrochlore lattice with local Ising anisotropies. The resulting fields
found on a RE-site next to a monopole have exactly the same statistics obtained from
the dipolar fields in Chapter 3. The implications on the quantum dynamics due to
the strength of the resulting fields, however, undermine the classical approximation
and call for a fully quantum-mechanical model which is thoroughly derived in sections
4.2-4.5. These sections exploit and generalise the approach conducted by S. Onoda and
Y. Tanaka in Ref. [30] for similar pyrochlore oxides exhibiting collective quantum fluc-
tuations. Section 4.2 provides the mathematical framework necessary to formulate the
hybridisation Hamiltonian between the magnetic RE3+ ions on the pyrochlore lattice
and the interconnected oxygen ions (O1) on the diamond lattice (the latter mediate the
virtual exchange of electrons between the former). Section 4.3 gives such a hybridisation
Hamiltonian in the formalism of many-body fermionic operators. Section 4.4 describes
a strong-coupling perturbation theory which generalises the work of Onoda et al. in
Ref. [30] to obtain a fully quantum-mechanical Hamiltonian for the exchange coupling
between RE3+ ions in a pyrochlore oxide. Finally, in section 4.5, this (many-body)
exchange Hamiltonian is converted to a (one-body) quasi-quantum model which leads
to a straightforward implementation with the models in Chapter 2 and Chapter 3.

Chapter 5 gathers up the theoretical models presented in the preceding chapters
to give a realistic description of the quantum spin-flip which underpins the hopping
of a monopole in spin-ice. Section 5.1 presents an original model of quantum-quench
which implements both dipolar and effective-exchange fields in the time-evolution of a
quantum-mechanical RE3+ ion next to a monopole. Section 5.2 discusses the implica-
tions of this model in the more general context of a monopole propagating through the
lattice by means of consecutive spin-flips. The results, at least in a short-ranged view,
seem to suggest the following two deductions: i) the (random) walk of a monopole
acquires a correlated character from the statistics in the arrangements of the spins
that the monopole finds on its way; ii) the consecutive spin-flips consist of quantum
mechanical RE3+ ions which, because of environment-induced decoherence [31], cannot
maintain long-timed quantum dynamics and therefore collapse in more stable (classical)
states.

Chapter 6 concludes the whole thesis by highlighting the original results presented
in the main chapters and suggesting possible directions for future work on spin-ice and
related physical systems.
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“As it results from the very nature of things, the spherical sym-
metry of the surroundings of a site in a crystal lattice or an atom
in a molecule can never occur. Therefore, the eigenfunctions and
eigenvalues of any bound ion or atom have to differ from those of
spherically symmetric respective free ions. In this way, the most
simplified concept of the crystal field effect or ligand field effect in
the case of individual molecules can be introduced.”

J. Mulak, Z. Gajek [28]

2
The crystalline environment of a RE3+

ion in spin ice: a playground for
emerging magnetodynamics

The study of the crystal-field interactions is often the starting point for the characteri-
sation of new phases of matter in condensed matter systems. In spin ice, summarising,
the interaction between RE3+ ions with large dipolar moments and their electric crys-
talline environment sets the physical constraints driving the emergence of frustration in
a system which otherwise would typically freeze in a broken-symmetry ordered phase
[5]. This means that in general by studying the single-ion CF interactions of the mag-
netic atoms in spin ices, it is possible to revisit the physical mechanisms behind the
classical Hamiltonian in Eq. (1.1), thereby, in principle, opening up the investigation
of open questions from original points of view.

Since the population and the motion of the monopoles proposed in Ref. [13] is con-
trolled by flipping (real) individual RE3+ spins with large total angular momentum J ,
it is necessary to investigate how, and whether, a transition from a polarised “Ising-
like” state to the other can be achieved even against the very strong crystal field barrier
separating the two states. To tackle these questions we describe the single-ion inter-
action with the surrounding effective fields in a theoretical framework typically used
for mesoscopic systems, such as molecular magnets [32, 33, 34], where it is known that
(tuneable) magnetic fields can induce quantum tunnelling between states separated by
high crystal-field barriers.

Hence, to investigate the dynamical properties of the magnetic ions in spin ices it is
required to

i) study the most realistic model reproducing the ground state properties behind the
Ising physics of the single magnetic sites,

ii) investigate which mechanisms may induce transitions between the two opposite

11
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configurations,

iii) verify the likelihood that the internal degrees of freedom, i.e. the interactions
between the components, allow, or even favour under specific circumstances, the
occurrence of a spontaneous single “spin”-flip.

Such three steps summarise in loose words the whole work presented in this thesis.
The present chapter, however, is already “self exhaustive” as it contains, at least in gen-
eral perspective, all of them. More precisely, the following sections present, firstly, the
crystal-field environment characteristic of spin ice materials, and, secondly, the simplest
instance of competing fields, e.g. magnetic transverse fields, which can induce relevant
dynamical effects compatible with the local symmetries. The remaining chapters are
dedicated to the derivation and analysis of the internal interactions and local configura-
tions, which act as “dynamical stimulator” for the mechanism that here is presented as
the keystone for the flipping of a large magnetic ion to occur: the quantum mechanical
spin-tunnelling.

2.1 The microscopic structure of spin ice pyrochlores

The general formulae for magnetic pyrochlore oxides are A2B2O6 and A2B2O7 where the
A and B species are typically RE and transition metal (TM) cations [7, 6]. The so called
spin ices, Ho2Ti2O7 and Dy2Ti2O7, belong to the latter one, which has A+3

2 B+4
2 O7 as

formulation for the oxidation states. The ideal pyrochlore structure is governed by the
space group Fd3̄m which regulates the symmetries for both A and B sub-lattices shown
in Fig. 2.1. The two sub-lattices interpenetrate with each other, and consist of networks
of corner-sharing tetrahedra. Both A and B cations are at inversion centres and either
of these can be used as the origin for the unit cell; the preferred description has usually
A, Fig. 2.1a, as an inversion centre and B, Fig. 2.1b, as the origin (origin choice 2 in
table No. 227 of the International Tables of Crystallography [35]).

(a) (b)

Figure 2.1: The A and B sub-lattices, respectively left and right, in the cubic pyrochlore
unit cell. The two networks of corner-sharing tetrahedra interpenetrate each other. On
the right hand figure, showing the B lattice, the central site from the other network (A) is
left in the centre to emphasise the reciprocal positioning of the two sub-lattices.
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In the spin ice materials, Holmium titanate (HTO) and Dysprosium titanate (DTO),
the A magnetic sites host, respectively, the Ho3+ and Dy3+ ions, while the non-magnetic
B sites are occupied by the Ti4+ ions. All the mechanisms concerned with the mag-
netism of these materials, pertain then to the properties of the RE3+ ions; the non
magnetic ions Ti4+ act as structural ligands stabilising the stoichiometry of these sys-
tems.

The magnetic properties of the RE3+ ions, however, depend strongly on the environ-
ment surrounding them. The so called crystal-field interactions, i.e. the Stark effect due
to the negative charges of the oxygen ions, affect intrinsically their allowed quantum
states for the single magnetic ion, leading to collective features which differentiate or
assimilate each pyrochlore oxide with another. The physics dictated by the crystalline
fields of the oxygens is so fundamental that often it is preferred to use the expression
A2B2O6O′ (instead of A2B2O7) simply to emphasise the role played by the oxygens
according to their crystallographic and ligand character (this distinction will be more
clear in section 2.3 in the context of the spin ice crystal-field model). For now, making
use of Figs. 2.2-2.3, it is important to highlight that such distinction emerges already
in their simple positions in the crystal lattice. Referring to a given RE3+ (A) site,
e.g. a Ho3+ ion in the figures, the oxygens are arranged around it in an anti-prismatic
fashion which is often referred to as a distorted cube. The level of “distortion” is,
however, huge compared to the ideal cube, as two of the oxygens, often named O1,
form a linear O-A-O stick oriented normal to the average plane of the six-membered
O2 arranged in triangles above and below the central A ion. The A-O1 and A-O2
bond distances are different: the former, of around 2.2 Å, is among the shortest bonds
ever found in nature; the latter can vary depending on the compound although in gen-
eral is between 2.4−2.5 Å. This implies that each RE3+ ion is characterised locally
by a very pronounced axial symmetry along the local 〈111〉 axis which joins the two
centres (O1 sites) of the tetrahedra at whose shared vertex the magnetic ion sits (see
Figs. 2.2a,2.3a). The axial symmetry if affected by the anti-prismatic arrangement of
the O2 ions with respect to the central RE3+ ion. These, as shown more clearly in
Fig. 2.3a and in particular in Figs. 2.5,2.8 in the context of the D3d crystal-field sym-
metry, are grouped in triangles lying on planes, above and below the RE3+ ion, which
are parallel to each other. Another important role assigned to the O1 is the mediation
of the superexchange interaction between n.n. magnetic ions (Fig. 4.3) as extensively
discussed in Chapter 4.

For clarity, the central magnetic ion used as reference in Figs. 2.2-2.3 and later in
Figs. 2.5,2.8 is the same at the inversion centre in Fig. 2.1. This is an arbitrary choice
which is convenient as it features the local easy axis for the RE3+ ion parallel to the
global crystallographic 〈111〉 direction passing through the unit cell in Fig. 2.1 from
the origin to the opposite vertex. As we shall see in the following sections, another
convenient choice for the local coordinate system of the magnetic ion, consists in using
a local reference with the quantisation axis parallel to the 〈111〉 direction of the local
easy axis. To avoid confusion it is important to specify that the “local” reference
frame having the 〈111〉 axis joining the two centres of the tetrahedra is not only more
conventional but also a mere translation of the global coordinate system X,Y,Z. In
contrast, the coordinate system x0,y0, z0, together with the others, xi,yi, zi with i =
1, 2, 3, often used in this thesis, correspond to actual rotations of the global one (these
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are more convenient to tackle the quantum mechanical features at a localised single ion
level).

Before getting into the details of the local description of the quantum mechanics of a
RE3+ ion in spin ice pyrochlores it is first necessary to introduce the terminology and
framework of the crystal-field interaction. The simplest realistic approximation for it
is the so called point-charge model.

2.2 Point-charge model for magnetic ions in crystalline
electric fields

This section is dedicated to the point-charge model approximation for describing the
interaction between a magnetic ion and the crystalline electric fields due to the ligands
surrounding it [36, 37]. If the crystalline electric field effects are taken as a perturbation
on the appropriate free-ion wave functions and energy levels, the problem becomes
that of finding the perturbing Hamiltonian and its matrix elements. Even if, as an
approximation, this possess some weaknesses (it neglects the finite extent of charges in
the ions, the overlap of the magnetic ions’ wave functions with those of neighbouring
atoms, and the “screening” of the magnetic electrons by the outer electron shells of
the magnetic ion), it serves to illustrate the principles involved in the calculations,
in particular to see how crystalline symmetries play a leading role [36]. The basic
assumption of the point-charge model is that the electric field felt by the central metal
ion is generated by negative point-charges, which are situated around the central metal
ion according to the symmetry of the site. The negative charges are placed on the
atomic positions of the ligands. The perturbation of the central metal ion is considered
as purely electrostatic, neglecting every covalent contribution [37].

The present section is organised according to its aims:

i) provide a general expression for the crystal field Hamiltonian ĤCF in the point-
charge approximation (section 2.2.1),

ii) discuss the most common representations used in the literature for the calcula-
tion of its matrix elements 〈JM ′| ĤCF |JM〉 between the states |JM〉 of the total
angular momentum of the electrons in the magnetic ion (sections 2.2.2 and 2.2.3).

Following this, section 2.3 will give their explicit formulae in the case of the D3d point-
group symmetry which characterises the crystal-field environment of a RE3+ ion in spin
ice materials.

Determination of the Perturbing Hamiltonian

On the basis of a simple point-charge model the determination of the perturbing Hamil-
tonian consists in the evaluation of the electrostatic potential VCF (r, θ, φ) that the elec-
trons of the magnetic ion experience because of the surrounding point-like charges 1.

1 The main approximation is to neglect the distribution of electrons of the negative ions around the
central magnetic one considering them as single point-like charges.
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(a) Perspective view

(b) Side view (c) Top view

Figure 2.2: Microscopic picture of the environment surrounding a central magnetic ion
of a pyrochlore oxide. The compound used here is Ho2Ti2O7; replacing Ho3+ and Ti4+

respectively with the appropriate RE3+ and TM4+ ions any magnetic pyrochlore oxide
is represented. The central Ho3+ ion is labelled by means of a red arrow to represent
the orientation of the magnetic dipole pointing towards the upper tetrahedron. The axis
passing through the central Ho3+ and the two O1 ions, centred in the two respective
tetrahedra, gives the local quantisation axis (z0) for the central site. The transverse plane
x0,y0, shown explicitly in Fig. 2.8, here is parallel to the green ones, containing the two
triangles of the O2 sites, and the yellow one for the O1 sites further below.
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(a)

(b)

Figure 2.3: Sectioning of the chemical structure represented in Fig. 2.2 in the same
perspective view as Fig. 2.2a. This is done to help distinguishing between the different
chemical species of this complex structure (the green and yellow planes are left to show
consistently the positioning of the objects left or removed from Fig. 2.2a). In (a) only
the holmium and the O1 oxygen ions are left. These sit respectively at the vertices and
centres of the corner sharing tetrahedra for the magnetic pyrochlore lattice. The outer O1
oxygens are left to locate the centres of the neighbouring tetrahedra with respect to the
two shown. In (b) only the Titanium and the O2 oxygen ions neighbouring the central
holmium are represented. These, together with the two O1 ions along the local 〈111〉 axis
passing through the central holmium, constitute the crystal-field environment shown in
Fig. 2.5.
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The explicit expression

VCF (r, θ, φ) =
∑

j

Qj
|Rj − r| (2.1)

gives the potential in position r = (r, θ, φ) due to a finite number of surrounding point-
charges fixed at different positions Rj (see Fig. 2.4).

(a) (b)

Figure 2.4: a) Schematic example of a magnetic ion M (red-shaded region) in its crys-
talline environment; the ions (blue spheres) surrounding it create an electrostatic field on
M that is called crystal-field. The geometry of the ions gives the point group symmetry
for the crystal-field representation of the Hamiltonian. This example shows an octahedral
arrangement of the crystalline ions around M. b) Pictorial representation for the coordi-
nate Rj for an external ion (blue) compared to r for an electron (red) of the central ion
M. The reference frame is centred on the magnetic ion, the coordinate r is closer than
Rj to the origin because the electron belongs to the orbitals of M while the outer ion is
further away.

The perturbing potential energy of the magnetic ion, due to the interactions of its
electrons ei with the surrounding crystalline point-charges, is given by the crystal-field
Hamiltonian

ĤCF = −
∑

i

|ei|VCF (r̂i) . (2.2)

Each i-th electron feels a potential VCF (ri) ≡ VCF (ri, θi, φi) at position ri; only the
electrons in the unfilled shells of the magnetic ion have to be considered for the crys-
talline perturbation. Hence the

∑
i runs only over the external electrons, closed shells

are affected by the crystal-field only in high order of perturbation.

To study the effect of the crystalline electric fields on the outer electrons of a magnetic
ion, it is convenient to make use of spherical coordinates[36]. This comes from the
spherical symmetries of the electrons of any atomic system; the eigenfunctions of the
Schrödinger equation are conveniently factorised in terms of a radial function and an
angular one, the latter expressed as linear combination of spherical harmonics [38].
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2.2.1 The crystal-field potential from the spherical harmonic addition
theorem

In the following, summarising from Ref. [36] and Ref. [37], the evaluation of the angular
dependence of the crystalline electric potential near a magnetic ion is given, firstly in
terms of spherical harmonics, secondly in terms of tesseral harmonics 2. The method of
calculation is based on the spherical harmonic addition theorem, which expresses the
angle ωij between two vectors ri and Rj in terms of the polar angles of each vector,
(θi, φi) and (θj , φj) respectively:

P 0
k (cosωij) =

4π

2k + 1

k∑

q=−k
(−1)q Y −qk (θj , φj) Y

q
k (θi, φi) , (2.3)

where P 0
k are the Lengedre polynomials. These P qk are the Legendre functions 3:

P 0
k (µ) =

1

2k k!

dk

dµk
(µ2 − 1)k ,

P
|q|
k (µ) = (1− µ2)

|q|
2
d|q|

dµ|q|
P 0
k (µ) with µ = cos θ;

(2.4)

and the spherical harmonics, Y q
k , are defined as

Y q
k (θ, φ) = N |q|k P

|q|
k (cos θ) eiqφ (2.5)

with N |q|k normalisation constant

N |q|k = (−1)
q+|q|

2

√
2k + 1

4π

(k − |q|)!
(k + |q|)! . (2.6)

For discrete distribution of point-charges not penetrating the electronic shells of the
magnetic ion (Rj > ri), the distance |Rj − ri| can be expressed using the following
expansion

1

|Rj − ri|
=
∞∑

k=0

r ki

R
(k+1)
j

P 0
k (cosωij) , (2.7)

so that the crystalline potential in Eq. (2.1) is given by

VCF (ri, θi, φi) =
∑

j

Qj

∞∑

k=0

r ki

R
(k+1)
j

P 0
k (cosωij) , (2.8)

where
∑

j runs over the point-charges surrounding the magnetic ion [39, 37]. Here
the radial and angular dependence of the potential are factorised. The angular part
is known because of the harmonic addition theorem, Eq. (2.3), which relates the solid

2 A complete list of spherical harmonics and tesseral harmonics is given in Ref. [37]
3 The term Legendre functions here covers both the Legendre polynomials P 0

k and the associated
Legendre polynomials P qk with q 6= 0.
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angle ωij and the planar angles (θi, φi) and (θj , φj) by means of spherical harmonics and
Legendre functions. In the context of the crystal-field interaction, (θi, φi) represents
the angular position of the i-th electron and (θj , φj) gives the angular distribution of
the surrounding point-like ions.

To avoid using functions with imaginary quantities, it is often convenient to switch
from spherical harmonics to tesseral harmonics. These are real by definition:

Zk0 = Y 0
k and

Zckq =
1√
2

[Y −qk + (−1)qY q
k ]

Zskq =
i√
2

[Y −qk − (−1)qY q
k ]





q > 0 (2.9)

that is

Zk0 = Y 0
k ,

Zckq(θ, φ) =

√
2k + 1

2

(k − q)!
(k + q)!

P qk (cosθ)
cos(qφ)√

π
,

Zskq(θ, φ) =

√
2k + 1

2

(k − q)!
(k + q)!

P qk (cosθ)
sin(qφ)√

π
.

(2.10)

Zckq and Zskq are called respectively sine and cosine tesseral harmonic functions [36, 40].
Then, in terms of tesseral harmonics, the addition theorem in Eq. (2.3) reads

P 0
k (cosωij) =

4π

2k + 1

∑

α

Zkα(ri) Zkα(Rj) , (2.11)

where the Z functions are evaluated for the points Rj and ri. Note, the summation
over α means that for each k there are terms Zk0 and Zckq, Z

s
kq for all q.

Now, by sustituting this expression into Eq. (2.8), the crystal-field potential is an
explicit function of the tesseral harmonics

VCF (ri, θi, φi) =
∑

j

Qj

∞∑

k=0

r ki

R
(k+1)
j

[
4π

2k + 1

∑

α

Zkα(θi, φi) Zkα(θj , φj)

]
, (2.12)

with i indexing the electrons in the unfilled shells of the magnetic ion and j for the
point-like ions around it. For a finite number N of surrounding charges it is convenient
to define the following quantity

ξkα =

N∑

j=1

4π

2k + 1
Qj
Zkα(θj , φj)

R
(k+1)
j

(2.13)

so that the crystalline potential for the i-th electron reads [36]

VCF (ri, θi, φi) =
∞∑

k=0

r ki ξkα
∑

α

Zkα(θi, φi). (2.14)
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From this and Eq. (2.2), after applying the canonical transformation from variables
to operators (ri → r̂i), it is straightforward to obtain the crystal-field Hamiltonian in
Eq. (2.2) for the n magnetic electrons of a given atomic system.

2.2.2 Tensor operators for the crystal-field Hamiltonian

In analogy with the compact expressions in Eqs. (2.13-2.14), it is convenient to intro-
duce the following CF parameters

Bk
0 = −e 〈rk〉

√
4π

2k + 1

∑

j

Qj

Rk+1
j

Zk0(θj , φj)

Bk
q = −e 〈rk〉

√
2π

2k + 1

∑

j

Qj

Rk+1
j

Zckq(θj , φj)

B′
k
q = −e 〈rk〉

√
2π

2k + 1

∑

j

Qj

Rk+1
j

Zskq(θj , φj),

(2.15)

which depend on the angular distribution of the ligands, Rj = (Rj , θj , φj), but also
incorporate the charge of the electrons and the average 〈rk〉 of the central magnetic
ion. This is the radial integral 〈rk〉 =

∫∞
r=0R

2
nl(r) r

kdr, where Rnl here is the radial
part of the wave function characterised by the principal (n) and orbital (l) quantum
numbers. Such quantity often shows discrepancies with the values measured in experi-
ments, thereby it is often preferred to fit directly the B parameters in Eq. (2.15) if the
point group, and so the most symmetric representation of the Hamiltonian, are already
known [41, 42, 37].

This implies that the crystal-field Hamiltonian acts directly on the angular part of
the wave functions for the electrons of the magnetic ion. Whence the quantisation is
applied only to the angular dependence of the electrons in the unfilled shells of the
magnetic ion 4, and the CF Hamiltonian in Eq. (2.2) can be written explicitly as

ĤCF =
n∑

i=1

∞∑

k=0

{
Bk

0 Ĉ
k
0 (i) +

k∑

q=1

[
Bk
q

(
Ĉk−q(i) + (−1)qĈkq (i)

)

+ iB′
k
q

(
Ĉk−q(i)− (−1)qĈkq (i)

)]}
,

(2.16)

where (i) ≡ (θi, φi) indicates the angular dependence of the tensor operator (for the
i-th electron)

Ĉkq (i) =

√
4π

(2k + 1)
Ŷ q
k (θi, φi), (2.17)

which preserve the same transformation rules as the spherical harmonics [43, 44, 28, 37,

4 The other variables, including rk that is averaged in 〈rk〉, are left as classical quantities and
gathered together inside the CF parameters in Eq. (2.15).
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40]. In real physical systems the index k for the crystal-field expansion in Eq. (2.16)
runs over a limited number of terms. In RE3+ ions, being systems with f unfilled
shell, k = 0, 1, . . . , 7. The even and odd k-terms have different physical roles: the even
terms govern the crystal-field splitting, the odd ones determine the intensity of induced
electric-dipole transitions. The values of q are limited by the point group of the RE-site
with respect to the surrounding ions [37].

The representation for the kets defining the basis for the Hilbert space of ĤCF can
vary. In the context of trivalent RE ions, it is usually convenient to work in the Russell-
Saunders coupling scheme, that is

|fnSLJMJ〉 ≡ |JMJ〉 , (2.18)

where L, S and J are the quantum numbers for, respectively, the orbital (L̂), the
spin (Ŝ) and the total (Ĵ = L̂ + Ŝ) angular momenta for the whole system of the
n electrons in the f shell. These states are often referred to by |MJ〉, with MJ =
−J,−J + 1, . . . , J quantum numbers for the projection of the total angular momentum
along the quantisation axis, because they represent quantum states with strong spin-
orbit coupling, where J is a conserved quantum number for the 4-f electrons driving
the magnetism of these systems. The Clebsch-Gordan coefficients and Wigner-Eckart
theorem regulate the transformation from the single-electron angular representation to
these ones with the total angular momenta MJ [36, 43].

In the following subsection the crystal-field (CF) Hamiltonian for the magnetic py-
rochlore oxides is given in two different notations. After the tensor operators Ĉkq , used
for example in Ref. [45] to fit the B parameters of Ho2Ti2O7 to inelastic neutron-
scattering data, the Hamiltonian is given in terms of Stevens’ equivalent operators to
allow a more immediate action of ĤCF on the |JMJ〉 states of the RE3+ ion.

2.2.3 Stevens’ equivalent operators for crystal-field Hamiltonians

The magnetic ions of the rare earth pyrochlore oxides feature a point group symmetry
(D3d, see subsection 2.3) which allows only even k-terms in the expansion (2.16). For
such rare earth systems, the crystal electric field interaction for the f electrons is often
described in terms of the Stevens’ operators equivalent method. Being a function of
the total angular momentum operators,

Ôkq ≡ Ôkq
(
Ĵz, Ĵ±

)
, (2.19)

the Stevens’ operators simplify the calculation of the matrix elements 〈JM ′J | ĤCF |JMJ〉
of the crystal-field Hamiltonian in Eq. (2.2) over the states in Eq. (2.18). The explicit
formulae of all the operators for RE3+ ions in pyrochlore oxides will be listed below in
Eq. (2.28).

The definition of the Stevens’ operators is often given in terms of the following
equivalence with the tesseral harmonics, Eq. (2.9), expressed in Cartesian coordinates
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[36, 44, 28, 40]:

∑

i

Zk0(x̂i, ŷi, ẑi) = Dk
0 θk 〈rk〉 Ôk0

∑

i

Zc,skq (x̂i, ŷi, ẑi) = Dk
q θk 〈rk〉 Ôkq (c, s) .

(2.20)

The Dk
q are the factors outside the square brackets [. . . ] for the list of tesseral harmonics

in Cartesian coordinates in Table IV of Ref. [36]. The θk (with k = 2, 4, 6; θ2 = αJ , θ4 =
βJ , θ6 = γJ) calculated by Stevens for different RE ions [46] are given in Table VI of
the same Ref. [36]. In Table 2.2 the values for αJ , βJ , γJ are given for the two magnetic
ions Ho3+ and Dy3+ of interest for spin ice materials.

The Ôkq (c) are the most commonly used operator equivalents Ôkq , but the Ôkq (s) are the
sine-term operator equivalents. Thus, the even k-terms of the crystal-field Hamiltonian
in Eq. (2.16) for a RE ion give

ĤCF =
6∑

k=2(k:even)

〈rk〉 θk


Ak0 Ôk0 +

k∑

q>0

(
Akq (c) Ô

k
q (c) +Akq (s) Ô

k
q (s)

)

 . (2.21)

Exact diagonalisation of the matrix 〈JM ′J | ĤCF |JMJ〉 gives the crystal-field energy
levels as a function of the parameters Akq , θk, 〈rk〉. The following relationships relate

these CF parameters to the Bk
q parameters for the tensor operators [40] 5:

Ak0(c)〈rk〉
Bk

0

=

√
4π

2k + 1
Dk

0 ;

Akq (c)〈rk〉
Bk
q

=
Akq (s)〈rk〉

B′kq
= (−1)q

√
8π

2k + 1
Dk
q .

(2.22)

See also Ref. [47, 44] for more detailed tables. The Bk
q , B

′k
q and 〈rk〉 are defined here

in subsection 2.2.2 (from Ref. [37]).

In Table 2.1 the relationships in Eq. (2.22), between the CF parameters Bk
q and Akq ,

are given explicitly for the case of a RE3+ ion in a crystalline environment with a D3d

point-group symmetry. This is of interest in the context of the following subsection,
where the crystal-field Hamiltonian for spin ices is introduced in both formalisms.

Below, the CF parameters listed in Table 2.3 show directly the values estimated by
experimental results for both for Ho2Ti2O7 and Dy2Ti2O7 [45, 48].

Introducing a shorter notation for the cosine Stevens’ parameters

The choice of the parameters depends on the formalism used to describe the crystal-
field Hamiltonian. In the next subsection after introducing the Hamiltonian in the
tensor operator formalism, it is preferred to switch to Stevens’ operators mainly be-
cause of the simplicity to evaluate the matrix elements 〈JM ′J | ĤCF |JMJ〉 using the

5 The relationships in Eq. (2.22) are from Ref. [40], although in this thesis they have been re-adapted

to use the definitions for the Bk0 , B
k
q , B

′k
q operators from Ref. [37].
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B2
0 = 2A2

0 〈r2〉 B4
0 = 8A4

0 〈r4〉 B6
0 = 16A6

0 〈r6〉

B4
3 = − 2

35

√
35A4

3 〈r4〉 B6
3 = − 8

105

√
105A6

3 〈r6〉

B6
6 =

16

231

√
231A6

6 〈r6〉

Table 2.1: Relationship between the crystal-field parameters for the two different nota-
tions. Here are listed only the ones of interest for the CF Hamiltonian discussed in this
thesis. For a complete list see Refs. [47, 44, 37].

Ho3+ Dy3+

αJ
−1

450

−2

315

βJ
−1

30030

−8

135135

γJ
−5

3864861

4

3864861

Table 2.2: The θk values (respectively αJ , βJ , γJ for k = 2, 4, 6) for holmium and dyspro-
sium trivalent ions [36].

tables in Hutchings’ work [36]. The symmetry of the system discussed in this thesis is
such that only the cosine Stevens’ operators are necessary for the crystal-field Hamil-
tonian. Hence, to simplify the notation of the work presented below, the generic CF
Hamiltonian in the Stevens’ formalism will be

ĤCF =
6∑

k=2(k:even)

k∑

q≥0

B̃k
q Ô

k
q (2.23)

where Ôkq = Ôkq (c) and B̃k
q = 〈rk〉θkAkq (c). The B̃k

q parameters can be expressed also in

terms of the Bk
q parameters, using the following expressions equivalent6 to Eq. (2.22):

B̃k
0 =

√
4π

2k + 1
θkD

k
0B

k
0 ;

B̃k
q =(−1)q

√
8π

2k + 1
θkD

k
qB

k
q , for q > 0 .

(2.24)

6 After making this choice of notation we noticed that also Hutchings in his work on the point-charge
model introduces these same B̃kq parameters (see eq.(5.6) of page 265 Ref. [36]). Unfortunately they are
labelled as Bkq , which in our case would lead to confusion with the parameters introduced in Eq. (2.15)
and used in Refs. [37, 45, 40].
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2.3 Crystal-field Hamiltonians for RE3+ ions in spin ices

The local crystalline symmetry for the RE3+ ions in the RE2TM2O7 pyrochlores is a
trigonal D3d (-3m) point group symmetry. As schematically shown in Fig. 2.5, the
RE3+ ion sitting in the corner of the two neighbouring tetrahedra has a total of eight
oxygen ions and six Titanium ions surrounding it. The strong axial alignment of the
O1 ions (above and below the central RE3+ ion) gives the Ising anisotropy for the spin
ices. The antiprismatic character of the D3d symmetry is due to the arrangement of
the O2 ions displaced above and below the central ion (note the triangles emphasising
the O2 oxygens sitting on the same planes).

2.3.1 The crystal-field Hamiltonian for the D3d point-group symmetry

AllDnd with odd n have null odd k-terms in the crystal-field expansions of Eqs. (2.16,2.21)
[37]. In the tensor operators formalism, the CF Hamiltonian for a magnetic ion in a
crystalline D3d point-group symmetry reads 7

ĤCF =B2
0Ĉ

2
0 +B4

0Ĉ
4
0 +B4

3(Ĉ4
3 − Ĉ4

−3)

+B6
0Ĉ

6
0 +B6

3(Ĉ6
3 − Ĉ6

−3) +B6
6(Ĉ6

6 + Ĉ6
−6) .

(2.25)

This is for the central RE3+ ion with local quantisation axis along z0 parallel to the
〈111〉 direction of the crystallographic cell [45]. Exact diagonalisation of the crystal-field
Hamiltonian gives the energy levels regulating the electronic configurations allowed for
the RE3+ ion by the crystalline environment. Since J is a good quantum number, the
the CF Hamiltonian matrix is given with respect to the ket representation |JMJ〉 in
Eq. (2.18); the dimensions of the CF matrix are (2J+1)× (2J+1). The spectrum is in
general made of multiplets and singlets, as the Stark splitting, induced by the crystalline
electric fields, removes only partially the 2J+1 degeneracy of the ground state multiplet.
For example the HTO spectrum in Fig. 2.6a features singlets and doublets, whilst the
spectrum of DTO is only made of doublets Fig. 2.6b. This discrepancy is due to
Kramers’ theorem which states that singlets are not allowed for spectra of atoms with
an odd number n of unpaired electrons (Dy3+ has n = 9 electrons while Ho3+ has
n = 10).

7 As often used in the crystal-field literature, here the sum over the 4-f electrons (
∑n
i=1) is omitted

together with the index i. This CF Hamiltonian, together with many others for different symmetries,
can be found also in Ref. [37]; in this reference, where also the general Hamiltonian in Eq. (2.16) is
given, the convention for the operators with odd q are opposite in sign to the Hamiltonian in Eq. (2.25).
In this thesis the latter one is preferred in order to use the original set of CF parameters (Table 2.1)
fitted to the energies measured in Ref. [45].
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(a) Perspective view

(b) Side view (c) Top view

Figure 2.5: The crystal-field environment of a RE3+ ion in a magnetic pyrochlore oxide.
Here as example is shown Ho2Ti2O7: the eight O2− ions characterise the D3d trigonal
symmetry, the Ti4+ ions are arranged in an hexagon coplanar with the Ho3+ ion in the
centre. (a), (b) and (c) show respectively a top-side, side and top view of the same structure.
The edges of the triangles connect the coplanar O2 oxygens: there are three above and three
below (equidistant to) the plane of the RE3+ ion and the hexagon of the Ti4+ ions. The
two green planes shown are parallel with each other (they contain the respective upward
and downward triangles of the O2 ions). The antiprismatic arrangement of the six O2
gives the D3d point-group symmetry for the Ho3+ ion sitting in the centre. The O1 ions,
aligned along the 〈111〉 axis with the central RE3+, drive the local Ising anisotropy of the
magnetic ion.
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The CF Hamiltonian for the D3d point-group symmetry can be expressed also as 8

ĤCF = B̃2
0 Ô

2
0 + B̃4

0 Ô
4
0 + B̃4

3 Ô
4
3 + B̃6

0 Ô
6
0 + B̃6

3 Ô
6
3 + B̃6

6 Ô
6
6, (2.27)

where Ôkq = Ôkq (c) are the (cosine) Stevens’ operators and B̃k
q are the respective pa-

rameters, introduced in Eq. (2.24). A list of the Stevens operators and their matrix
elements in the |MJ〉 basis is given in Hutchings’ work [36]. The following is a complete
list of the Stevens’ operators for the crystal-field of a RE3+ ion in magnetic pyrochlore
oxides9:

Ô2
0 =

[
3Ĵ2

z − J(J + 1)
]
;

Ô4
0 = 35Ĵ4

z − 30J(J + 1)Ĵ2
z + 25Ĵ2

z + 3J2(J + 1)2 − 6J(J + 1);

Ô4
3 =

1

4

[
(Ĵ3

+ + Ĵ3
−)Ĵz + Ĵz(Ĵ

3
+ + Ĵ3

−)
]
;

Ô6
0 = 231Ĵ6

z −
[
315J(J + 1)− 735

]
Ĵ4
z

+
{

105J2(J + 1)2 − 525J(J + 1) + 294
}
Ĵ2
z

− 5Ĵ3(J + 1)3 + 40J2(J + 1)2 − 60J(J + 1);

Ô6
3 =

1

4

{(
Ĵ3

+ + Ĵ3
−

)[
11Ĵ3

z −
(

3J(J + 1) + 59
)
Ĵz

]

+
[
11Ĵ3

z −
(

3J(J + 1) + 59
)
Ĵz

](
Ĵ3

+ + Ĵ3
−

)}
;

Ô6
6 =

1

2

(
Ĵ6

+ + Ĵ6
−

)
.

(2.28)

The value J(J+1) comes from the eigenvalue of Ĵ2 as defined, together with Ĵz, Ĵ+, Ĵ−,
in Eq. (1.5).

2.3.2 Crystal-field energies and parameters for spin ice compounds

The experimental techniques based on inelastic neutron scattering are the most suit-
able to measure accurately the crystal-field energies in real compounds. From these
measurements a reliable estimation of the CF parameters can be inferred beyond the
level of accuracy allowed by the point-charge approximation. For RE3+ ions it is typi-

8 This is the shorter notation for the Stevens’ formalism that is introduced in this thesis in Eqs. (2.23-
2.24). The Hamiltonian equivalent to Eq. (2.25) and Eq. (2.27) reads

ĤCF =αJ 〈r2〉A2
0(c)Ô2

0(c) + βJ 〈r4〉
(
A4

0(c)Ô4
0(c) +A4

3(c)Ô4
3(c)

)

+ γJ 〈r6〉
(
A6

0(c)Ô6
0(c) +A6

3(c)Ô6
3(c) +A6

6(c)Ô6
6(c)

) (2.26)

which is the more extended and more common notation in the literature [46, 36, 44, 40].
9 Since in the Hamiltonian (2.26) only the (c) Stevens’ operators appear from now on Akq (c)Ôkq (c) =

Akq Ô
k
q .
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cal to consider the Russell-Saunders representation in Eq. (2.18) (with J fixed by the
number of n electrons in the f shell), set the full point charge Hamiltonian based on the
local symmetry of the surrounding negative ions (usually known from non-magnetic
diffraction techniques), and readjust the parameters by fitting the diagonalisation of
such Hamiltonian to the spectrum measured.

The crystal-field energies and parameters common in the literature of spin ice materials
are based mainly on the experiment presented by Rosenkranz et al. in Ref. [45]. In
this the neutron scattering measurement of all the CF energy levels allowed a complete
parametrisation of the Hamiltonian in Eq. (2.25). The full list of the Bq

k parameters for
HTO is reported, directly from Ref. [45], in Table 2.3a. To allow the implementation of
the Stevens’ equivalent Hamiltonian in Eq. (2.27), these have also been converted, by
means of Eq. (2.24), to the corresponding B̃q

k in Table 2.3b. For DTO, to the best of
our knowledge, no neutron scattering experiment has been carried out successfully to
determines the CF parameters. The parameters in Table 2.3 are converted directly from
the ones suggested in Ref. [48] as an interpolation of the values known for Ho2Ti2O7

and Tb2Ti2O7.

HTO DTO

B2
0 68.2 51.1

B4
0 274.8 306.2

B4
3 83.7 90.5

B6
0 86.8 100.4

B6
3 −62.5 −74.4

B6
6 101.6 102.9

(a)

HTO DTO

B̃2
0 −7.6× 10−2 −1.6× 10−1

B̃4
0 −1.1× 10−3 −2.3× 10−3

B̃4
3 8.2× 10−3 1.6× 10−2

B̃6
0 −7.0× 10−6 6.5× 10−6

B̃6
3 −1.0× 10−4 9.9× 10−5

B̃6
6 −1.3× 10−4 1.0× 10−4

(b)

Table 2.3: The crystal-field parameters (in meV) for both Ho2Ti2O7 (HTO) and
Dy2Ti2O7 (DTO). The table on the left (a) lists the Bqk for the tensor operators, while the

one on the right (b) lists the B̃qk for the Stevens’ equivalent correspondent. The param-
eters for HTO have been measured by means of inelastic neutron scattering in Ref. [45].
The ones for DTO were derived as an interpolation of the parameters know for Ho2Ti2O7

and Tb2Ti2O7 in Ref. [48]. The definitions of such parameters are given respectively in
Eq. (2.15) and Eqs. (2.23-2.24).

Since the total angular momentum quantum number is J = 8 for Ho3+ and J =
15/2 for Dy3+, the CF Hamiltonian, being a perturbation within the ground-state
J multiplet in the LS coupling in Eq. (2.18), is a matrix of small dimensions: 17
and 16 respectively for HTO and DTO. Using the set of parameters in Table 2.3b
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and the Stevens’ operators in Eq. (2.28) it is straightforward to perform numerical
diagonalisation and obtain the spectra illustrated in Fig. 2.6. As expected from Kramers
theorem, the two systems show different structure of the spectra; the order of magnitude
for the energies, however, is roughly the same. For Ho3+ the spectrum is made of five
singlets and six doublets (Fig. 2.6a), while for Dy3+, due to Kramers degeneracy, all the
eight energy levels are doublets (Fig. 2.6b). In both systems the energy gap between
the ground state energy and the first excited level exceeds 200 K, implying that even at
room temperatures only the lowest CF excited states are populated. This means also
that at low temperatures the CF ground state of the RE3+ ions characterise heavily
not only the static and dynamical properties at a microscopical (local) level, but also
from a macroscopic (collective) point of view, i.e. in the thermodynamics.
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Figure 2.6: The crystal-field spectra for HTO and DTO, left panel (a) and right panel
(b) respectively. The spectra can be found by exact diagonalisation of either of the Hamil-
tonians in Eqs. (2.25,2.27) using the respective coefficients in Table 2.3. The spectrum of
HTO features both doublets (solid lines) and singlets (dashed or dotted lines). In meV,
bottom to top, the series of doublets is 0, 21.96, 25.99, 59.59, 71.51, 76.80 while the one of
singlets is 20.42, 27.71, 69.36, 69.94, 80.52. In contrast DTO features only doublets since
Dy3+ is a Kramers ion. These are eight in total: 0, 25.23, 38.0, 38.21, 51.75, 77.49, 87.65,
89.16 (bottom to top in meV). Note the thicker line just below 40 meV is not a quadruplet
indeed, it corresponds to the two doublets 38.0, 38.21.

For both HTO and DTO the ground state is a doublet which can be described as
corresponding to states where the magnetic moment is pointing largely in opposite
directions along the local quantisation axis z0 in Fig. 2.8. The two eigenfunctions for
the ground state doublets are displayed in Fig. 2.7. These can be well approximated
to the fully polarised states |MJ〉 = |±J〉 which give the Ising-like behaviour to the
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magnetic ions of a spin ice material.

Once the magnetic ion sits in one of the two states with opposite polarisation in
Fig. 2.7, there is a very high crystal field barrier (the height of the spectra in Fig. 2.6)
which prevent the spontaneous “flip” to the other state. Hence, if on one side the CF
environment guarantees the local anisotropy which makes the ions alike classical Ising
spins, on the other hand it also imposes very strong energetic constraints in the possible
dynamics of the real magnetic ions. A microscopical description of the mechanisms
driving a single RE3+ ion from one ground state configuration to the opposite one
is necessary to account for the local flip of an Ising spin, i.e. to investigate how the
magnetic monopoles hop across the lattice. In the following section it is shown how
this transitions between the two states, and more in general dynamical effects, can be
stimulated by the presence of a transverse field pointing transversely to the local easy
axis of the RE3+ ion.

2.4 Perturbative effects of a magnetic field

The degeneracy of the crystal-field spectra is completely removed in the presence of a
magnetic field B:

Ĥ = ĤCF − gJµB Ĵ ·B. (2.29)

In this equation, µB = e~/2me is the Bohr magneton (e is the charge and me the
mass of an electron) and gJ is the Landé factor for the RE3+ ion with total angular
momentum Ĵ (gJ = 5/4 and gJ = 4/3, respectively, for Ho3+ and Dy3+). Now the
strength and direction of the field, together with the CF parameters, characterise the
resulting energies and states of the RE3+ ion.

To tackle the Hamiltonian in Eq. (2.29) it is convenient to use a coordinate system
locally defined at the RE-site. The local coordinate system x0,y0, z0 used for a RE-site
throughout this thesis is defined by

x0 =
1√
6

(1, 1,−2), y0 =
1√
2

(−1, 1, 0), z0 =
1√
3

(1, 1, 1), (2.30)

with respect to the canonical axes X,Y,Z of the global coordinate system of the crystal
lattice. This choice is preferred as the crystal-field Hamiltonian in Ref. [45] is expressed
in a coordinate system with the local quantisation axis along the global 〈111〉 direction.
Hence in all the previous figures the 〈111〉 axis passing through the central RE3+

ion is parallel to z0, the local quantisation axis for Eq. (2.29). Other sets of local
coordinate systems will be given in Eq. (4.22) in the context of the quantum mechanical
interaction between neighbouring RE3+ ions in a pyrochlore lattice. The coordinate
systems x0,y0, z0 and X,Y,Z are represented in Fig. 2.8 and later in Fig. 4.2.

As shown in the previous section, the crystal-field in spin ices is so strong that the
spectra are characterised by large energy gaps of the order of 100 Kelvin. This means
that the magnetic field is expected to represent a small perturbation for a wide set
of values, which in fact overlaps with most of the range allowed in common scientific
laboratories.

Here, however, particular interest is given to the magnetic fields that are present inside
spin ice compounds (the whole Chapter 3 is focused on dipolar fields on the RE-sites).
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Figure 2.7: Stationary wave functions, |ψ0〉, |ψ1〉, of a Ho3+ ion (top panel) and a Dy3+

ion (bottom panel) for the crystal field GS doublet of the Hamiltonian in Eqs. (2.25-2.27).
In colour solid lines are shown the states |ψ0〉 with positive polarisation along the local
quantisation axis z0; in grey dotted lines are the states |ψ1〉 with negative polarisation.
The explicit expression for both |ψ0〉 and |ψ1〉 in HTO is given in Eq. (A.35) in Appendix
A. The insets have rescaled vertical axes to visualise the non-zero values for intermediate
|MJ | < J (the states are actually almost polarised because the values for |MJ | = J are
much higher than the others). These quantities were obtained using the CF parameters
given in Table 2.3 from Ref. [45] for Ho2Ti2O7 and Ref. [48] for Dy2Ti2O7.
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holmium and dysprosium ions, indeed, possess large dipolar moments (≈ 10µB) which
are known to produce strong dipolar fields internal to the samples [12, 49]. Hence,
although the effect of an externally tuneable magnetic field on the single ion physics is
of relevant interest for spin ices, this would require a dilution of the magnetic ions in
order to neglect the presence of mutual dipolar interactions between them. Moreover,
investigating the interplay occurring between crystalline and internal dipolar fields on
the RE-sites in conventional spin ices is of higher interest because it gives the possibility
to comprehend how the presence of the monopoles locally affects the single ion physics
and eventually opens up the dynamics above the fully frustrated spin-ice ground state.
This question will be addressed in Chapter 5 by studying the dynamics of a RE3+ ion
in spin ice under in the presence of the local dipolar and (effective) exchange fields.

2.4.1 Zeeman splitting of the crystal-field ground state doublet

The removal of the degeneracy for the ground state doublet consists, typically, in the
selection of one of the two polarised states in Fig. 2.7. Which one of the two, depends on
the longitudinal component of the magnetic field in Eq. (2.29) along the polarisation
(easy) axis, and determine the Ising configuration in which the magnetic ion points
(in theory for a time indefinitely long). This mechanism is the reason for the spin
ice frustrated ground state that is peculiar of spin ices: the dipolar fields, which the
magnetic ions mutually induce into each other, possess a net longitudinal component
acting as a projector on the polarised states of the crystal-field of the RE-sites.

This implies that if the longitudinal component is suddenly removed, meaning that
only a (perturbative) field purely transverse to the local easy axis is left, then the RE3+

has the ground state and the first excited one consisting respectively of bonding and
anti-bonding combinations of the two opposite polarised states in Fig. 2.7. The energy
splitting ∆E01 between such states is still very small compared to the gaps due to the
presence of the crystal-field, and this, as we shall see in section 2.5, is the key element
giving to the magnetic ion a finite probability to tunnel through the CF barrier and
point into a configuration opposite to the initial one.

As show in Chapter 3, the presence of a monopole typically induces a dipolar field
purely transverse to a neighbouring RE3+ ion easy axis. Hence, understanding the
dynamics opened up by the monopoles requires studying the evolution of the RE3+

states under such fields.

The quantum mechanical expression for the coupling of the total angular momentum
to the transverse magnetic field is

Ĵ ·B⊥ =
1

2
|B|
(
e−iφĴ+ + eiφĴ−

)
. (2.31)

In the local coordinate system x0,y0, z0 for the RE3+ ion shown in Fig. 2.8 φ is the
angle of the field, with respect to x0, on the plane transverse to z0. It is spins subject
to such purely transverse field that may flip spontaneously via quantum-mechanical
tunnelling.

Diagonalisation of the Hamiltonian in Eq. (2.29) in the presence of the field in Eq. (2.31)
gives, as expected, a finite splitting between the two members of the CF ground state
doublet, ∆E01. We find that this splitting is the smallest gap in the energy spectrum,
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Figure 2.8: The same top-view used for the crystal-field environment in Fig. 2.5c. Here it
is emphasised the position of the coplanar O2 ions (yellow spheres), three above and three
below the central RE3+ ion (green sphere), with respect to the angle φ of a transverse
magnetic field B applied to the central ion. The three (red) axes x0,y0, z0 indicate the
local coordinate frame used for the Hamiltonian Eq. (2.31). Note this choice of coordinates
has the local quantisation axis z0, pointing perpendicularly outward the plane of the figure
itself, parallel to the 〈111〉 direction of the global coordinates X,Y,Z. More about the local
and global coordinate systems in magnetic pyrochlore oxides is discussed in section 4.2 in
the context of the superexchange of electrons, mediated by the O1 sites, between RE3+

ions with different local easy axes.

thereby setting the rate, τ ∼ ~/∆E01 in Eq. (1.2), for the spontaneous spin flips. The
dependence of ∆E01 on |B| is shown in Fig. 2.9 for both HTO and DTO at different
angles φ; vice versa, the splitting vs the angle φ is shown in Fig. 2.10 at different
magnitudes of the transverse field.

For very large fields the anisotropic effect of the CF environment becomes negligible;
all the curves merge into the single flat line of the Larmor frequency ωLcorresponding
to a splitting

∆E01 = ~ωL = gJµB |B| . (2.32)

As is clear from the plot, due to the strong crystal-fields in HTO and DTO, such
regime is experimentally unattainable; here it is displayed for clarity and completeness
10. It also serves the purpose of showing the strength of the energy scales set by the
crystal-field which allow the magnetic ones to be considered as small perturbations.

At lower fields, when the two competing terms in Eq. (2.29) have comparable energies,
the response of the system becomes anisotropic. This anisotropy is much stronger for

10 This, however, is the result of assuming that the spin-orbit coupling, making J = L + S a good
quantum number, is still quite strong with respect to the magnetic field applied. In reality for strong
enough fields the orbital and spin angular momenta, L and S, would decouple with each other and
precess around the field independently (Paschen-Back effect).
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Figure 2.9: Splitting of the ground state doublet of a rare earth ion in spin ice under the
influence of a magnetic field that is purely transverse to the local 〈111〉 direction. The red
curves correspond to the non-Kramers ion Ho3+, while the blue curves correspond to the
Kramers ion Dy3+. Note the y axis is dimensionless to allow a consistent comparison of
the two systems and detect clearly the power-law behaviours. For each case the different
curves correspond to fixed angles of the transverse field: φ = 0 ◦ (solid curve), φ = 10 ◦,
(short-dashed), φ = 20 ◦ (dotted) and φ = 30 ◦ (dotted-dashed). In (a) the two black
dashed lines show the limiting behaviours: at very hight fields corresponding to the Larmor
precession in Eq. (2.32); for the low fields regime only the black dashed line for HTO is
shown, derived analytically from degenerate perturbation theory, [see Eq. (2.36) and more
details in Appendix A]. Figures (b) and (c) show the same splittings for limited regime of
transverse fields, respectively in a log-log and a normal scale.
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Figure 2.10: The ground state splitting, in meV for both HTO (left) and DTO (right),
as a function of the angle φ of the magnetic field transverse to the 〈111〉 axis. Each curve
corresponds to a fixed strength of the field. In (a) and (b) the seven curves span, bottom
to top, the order of magnitudes from 10−3 to 103 Tesla. For HTO the magnitude of the
oscillations depends heavily on the strength of the field: the oscillations are suppressed at
low fields and more pronounced at intermediate ones. In contrast DTO have oscillations
always smooth and proportionate to the strength of the field applied. Note DTO shows
a change in the sign of the oscillations when the field is increased above around 10 Tesla.
The blue fragmented curve is an artefact due to the breakdown of the numerical reliability
for the splitting of DTO at fields 10−3 T. The panels (c) and (d) show the same curves only
for the smallest fields to emphasise the vanishing of the oscillations for HTO in contrast to
DTO (10−3, 10−2, 10−1 T for HTO and 10−2, 10−1 for DTO). The panels (e) and (f) are
at four particular values of the transverse field: B=0.03 T and B=0.55 T, the two lower
curves, are the typical dipolar fields on a RE-site next to a monopole found with Monte
Carlo simulations (see end of section 3.2.2.2); B=11.31 T and B=228.33 T, the two upper
ones, are the fields, for HTO, which make the splitting close at φ = 30 ◦.
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Ho3+ than for Dy3+ and, in particular, for φ = 30 ◦ it leads to some resonances (due
to level crossing between E0 and E1) shown in Fig. 2.9a (red dotted-dashed line) and
in Fig. 2.10e.

Finally, for lower still fields, of the order of 1 T or below, the ion enters the quantum
tunnelling regime where the behaviour of ∆E01 is given by the following power-laws:

∆E01 =α
(2)
HTO |B|

2 for HTO, (2.33a)

∆E01 =α
(3)
DTO |B|

3 for DTO. (2.33b)

Ground state splitting from degenerate perturbation theory

The above low-field behaviours can be understood, using degenerate perturbation the-
ory, by considering the Zeeman interaction in Eq. (2.31) as a small perturbation with
respect to CF Hamiltonian:

Ĥ = ĤCF − λV̂ . (2.34)

Here ĤCF is exactly solved and |ψ(0)
n 〉 is the (unperturbed) CF-eigenstate with en-

ergy E
(0)
n (n = 0, ..., 2J). The perturbation V̂ ≡ ECF Ĵ · B/|B| is tuned by λ =

gJµB |B| /ECF, where ECF is an arbitrary reference energy scale, e.g. related to the
CF bandwidth. A thorough perturbation theory is presented in Appendix A; here only
the result found for the splitting of a RE3+ ion in a spin ice crystalline environment is
given:

∆E01 =λ

√
(V00 − V11)2 + 4 |V01|2

+ λ2

√√√√
(∑

k>1

|V0k|2 − |V1k|2

∆E
(0)
0k

)2

+ 4

∣∣∣∣∣
∑

k>1

V0kVk1

∆E
(0)
0k

∣∣∣∣∣

2

+O
(
λ3
) (2.35)

In this expression Vnm ≡ 〈ψ(0)
n | V̂ |ψ(0)

m 〉 and ∆E
(0)
0k = E

(0)
k − E

(0)
0 . As discussed in

the appendix, the purely transverse field together with the D3d CF symmetry give a
very particular structure to the matrix elements Vnm of spin ice systems. In fact, for
both HTO and DTO we find no contribution at the first order (V00 = V11 = V01 = 0,
see appendix for details), meaning that the splitting occurs, in the lowest case, at the
second order. In Appendix A it is also shown that for doubly-degenerate unperturbed

energy levels, |ψ(0)
D 〉, |ψ

(0)
D+1〉, the matrix elements of the perturbation obey VD,1 =

V0,D+1, VD+1,1 = −V0,D, which translates into a vanishing contribution of the doublets
in the expressions for the quadratic term in Eq. (2.35).

Section A.3 describes more in details the occurrence of a different splitting in the
two systems. The main property that can be summarised by such analysis is that the
difference in the power-law dependence is already present intrinsically in the crystal-
field spectra. The main reason is that if the summation in Eqs. (2.35, A.42) is over the
whole excited spectrum (including both doublets and singlets), then this will be equal
to the sum of the contributions only from the singlets, like Eq.(A.37), since the terms
from the doublets cancel out due to the relationships in Eq.(A.40). This is the case for
HTO, where in fact we find a parabolic low field dependence, while for DTO this does



2.4 Perturbative effects of a magnetic field 36

not happen since no singlets are present (Kramers system) and all of the contributions
from doublets cancel out (parabolic dependence suppressed). These results show how a
quantum mechanical perturbation of the low field physics for HTO and DTO account
for a behaviour which would be otherwise missed by a classical approach! Moreover it
sheds light on the actual reason behind the numerical results showing different field-
dependence for the two different systems.

Then, since Dy3+ is a Kramers ion, all unperturbed energy levels in this case are
doublets and thus the quadratic correction vanishes identically, leading to the cubic
dependence on applied field in Eq. (2.35). On the other hand, Ho3+ is not a Kramers
ion and does feature some singlets in its unperturbed energy spectrum. These are
responsible for the quadratic regime, visible in Fig. (2.9), with the following coefficient
in Eq. (2.33a):

α
(2)
HTO = 2.68× 10−6 meV

T2 . (2.36)

For Dy3+ where, as remarked above, this quadratic term vanishes it is difficult to obtain
the cubic term using perturbation theory (see Appendix A.3). Fitting the numerical
results (blue curve in Fig. 2.10) for the coefficient in Eq. (2.33b) gives the angular
dependence on φ

α
(3)
DTO = 6.8× 10−7 (1 +A cos(6φ))

meV

T3 (2.37)

with A = 0.114.

Fig. 2.9a shows that the cubic power-law found for DTO has a smooth behaviour
from the smaller fields up to around 100 Tesla. In contrast, the quadratic power law
characterising HTO breaks around 0.1 Tesla, holding up to just below 10 Tesla only
for φ = 30 ◦. For the other angles, in the range from 1 to 10 Tesla also the splittings
for HTO follow a cubic behaviour together with an angular dependence similar to the
one for DTO. The results found with the perturbation theory seem to suggest that the
angular dependence is driven by the cubic terms of the field in the power expansion of
the energy splitting. The disappearance of such dependence at low fields in the case of
HTO can be understood in terms of the non vanishing second-order term. This does not
depend explicitly on the angle and suppresses the strength of the angular dependence.
The anisotropic effect arising for higher fields coincides with the manifestation of the
cubic law together with the angular dependence.

The anisotropic effects found for the ground state splitting have direct implications in
the magneto-static behaviour of the RE3+ ions. This is illustrated in Fig. 2.11 where
the different components of the magnetic moment, of the two Ho3+ and Dy3+ ions in
their ground state under a transverse field, are shown as surfaces depending on the
angle φ and strength |B| of the field. The similarities and discrepancies between the
two systems reflect, as expected, the behaviour found for the splitting. These figures
are interesting also from a pedagogical point of view, allowing the direct comparison
between the behaviour of a free ion under a magnetic field (here in the regime of
very strong fields) to the very peculiar case of the magnetic ions in the crystalline
environment of spin ices. The local CF anisotropy, in fact, is so strong that the two
components on the x0,y0 plane are negligible for all magnetic fields that are only a
perturbation for the crystal-field. Moreover the anisotropic effects characterise heavily
the magnetic moment along the z0 direction, which behave quite differently in the two
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Figure 2.11: The expectation values for the three components of the total angular mo-
mentum Ĵ over the (static) ground state of the Hamiltonian in Eq. (2.29) for a single RE3+

ion under the spin-ice crystal-field and a magnetic field transverse to the local easy axis
(this is z0 in the local system of coordinates x0,y0, z0 in Fig. 2.8). Each α component,
with α = z, y, x, from the top to the bottom panel, shows 〈Ĵα〉 =

∑
MJ
〈ψ|MJ〉 〈MJ | Ĵα |ψ〉

as function of the angle φ and the strength |B| of the field in Fig. 2.8. Consequently, the
three α-directions of the magnetic moment of the RE3+ ion are given by mα = gJµB 〈Ĵα〉.
For both HTO (left) and DTO (right) the x, y components are negligible for fields below
10 T. In contrast the mz components feature periodic dependence on the the angle φ below
10T; this is a manifestation of the strong axial anisotropy characterising the ground state
of the spin ice RE3+ ions. Note the different type of response in the two systems: smooth
in the angular dependence and with a constant periodicity across 3 orders of magnitude
(from 10 T down to 10−2 T) for DTO, more abrupt in the angular features and strongly
dependent on the strength for HTO (highest around 10 T, then smaller for lower fields).
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systems.

These results suggest that also in the magneto-dynamics of the RE3+ ions under
transverse fields, differences may arise between the two systems, HTO and DTO, and
for the different angles and strength of the fields. To this analysis is devoted the next
section, with particular emphasis on the probability of tunnelling between the two
polarised configurations corresponding to the Ising states of the classical picture.

2.5 Quantum spin tunnelling of a RE3+ ion in spin ice

In the previous sections it has been shown how the two Ising states of a single RE3+ ion
in spin ice are in fact related to the two states of the ground doublet obtained from the
crystal-field interaction. Moreover, it has been assessed how the local perturbation of
a magnetic field acts on the possible states of the CF Hilbert space (see also Appendix
A), allowing also the transition from a polarised ground state to the opposite one.

The first meaningful step in studying the dynamics of a complex system such as spin
ice, consists in probing the unitary time evolution under the type of fields that are
expected to induce the tunnelling of the local magnetic moment of a RE3+ ion between
the two lowest crystal-field states. To this end we focus on a particular rare-earth
ion and take an initial state, |ψ(0)〉 at time t = 0, which is fully polarised along the
local 111 axis, as assumed by the classical Ising model of Eq. (1.1) 11. This is a good
approximation to the ground state of the Hamiltonian in Eq. (2.29) for a RE3+ ion in
the presence of a net longitudinal field (this is the typical field of the spin ice state with
no monopoles as shown in Chapter 3). Then, at a time t > 0 a field purely transverse
to the local polarisation axis is applied and the system evolves under unitary dynamics:

|ψ(t)〉 = e−i Ĥt/~ |ψ(0)〉 . (2.38)

The evolution of the RE ions Ho3+ and Dy3+ is shown in Figs. 2.12-2.14 for different
magnitudes |B| and angles φ of a field transverse to the local quantisation axis z0

12.

The figures show the density plot of the probability distributions |〈MJ |ψ(t)〉|2 to find
the state of the RE3+ ion at a certain value MJ at a given time t > 0. The initial
condition at t = 0, as a reference for these examples is taken on the state |MJ〉 = |−J〉,
i.e. with the dipole moment on the RE-site pointing along the local 1̄1̄1̄ direction.
Overlaid to each plot for the probability density is a curve for the averaged polarisation
〈Ĵz(t)〉 =

∑
MJ

MJ |〈MJ |ψ(t)〉|2. The results, as predicted from the analysis on the
ground state splitting ∆E01 and the static magnetic moments in section 2.4.1, vary
depending on the strength |B| and angle φ of the transverse field, and shed light on
the implications of these for the dynamics of the two RE3+ ions.

As can be seen in all figures, the averaged polarisation 〈Ĵz(t)〉 oscillates coherently
between the initial state and one pointing in the opposite direction. Note that the
flipping is not always complete because in the crystal field the ground state and the
first excited state are only approximately bonding and anti-bonding combinations of

11 This axis, as previously underlined, corresponds to the local quantisation axis z0 for the CF
representation in Figs. 2.5,2.8 and Eqs. (2.26,2.29).

12 The evolution in Eq. (2.38) is under the Hamiltonian in Eq. (2.29), having the respective CF
parameters for HTO and DTO from Table 2.3.
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pointing along 111 and 1̄1̄1̄ 13. In addition, there is a faster “jitter” of this quantity
which is due to the approximation to the fully polarised states in the initial conditions.
These small oscillations found in the curve of the 〈Ĵz(t)〉 will be removed once more
realistic eigenstates of the Hamiltonian in Eq. (2.29) are used (see discussion in Chap-
ter 5). Here however, the focus is on presenting the occurrence of the tunnelling of a
RE3+ ion in the most simple and general context compatible with the implementation
of a realistic crystal-field Hamiltonian 14. The results are shown for three main values
of the field |B| which represent three different regimes of the behaviours found for the
two different systems. These are |B| = 0.1, 1, 10 Tesla because they mark the boundary
of three different regions in the behaviour of the splitting in Fig. 2.9.

For fields |B| ≤ 0.1 T the splitting ∆E01 is regulated by two different power laws in
Eq. (2.33), i.e. the two systems are expected to behave differently. In fact, as shown in
Fig. 2.12, the dependence of the tunnelling mechanism on φ is negligible for HTO while

clearly present for DTO. This is because the coefficient α
(2)
HTO regulating the quadratic

dependence of the splitting, found from perturbation theory in Eq. (2.36), is simply a
constant. According to this, the independent value of ∆E01 with respect to φ ensures
the same timescale τ for the full tunnelling at all angles φ. In contrast, the behaviour of
DTO depends clearly on the angle of the transverse field and features a full tunnelling
only for φ = 30 ◦. This is because of the cubic power law regulating the splitting ∆E01

for DTO, as the coefficient α
(3)
DTO in Eq. (2.37) has a neat angular dependence on φ.

These features are manifest in Fig. 2.12 where, for both HTO (left) and DTO (right),
the time evolution under a transverse field with |B| = 0.1 Tesla, is given at different
angles (φ = 0 ◦, 15 ◦, 30 ◦ from the top to the bottom). For this value of the field, the two
systems have characteristic tunnelling timescales differing by one order of magnitude
(τ ≈ 0.07 ms for HTO and τ ≈ 0.7 ms for DTO). For lower still fields the two timescales
evolve according to the different slopes of the splitting in Fig. 2.9, hence increasing and
diverging from each other.

For fields |B| > 0.1 T the behaviour of the splittings ∆E01 change and may vary dras-
tically depending on the angles φ (for example in the resonances for HTO in Figs. 2.9-
2.10). In the region between 0.1 and 1 Tesla the splitting for HTO start diverging
from the simple quadratic behaviour and becomes φ-dependent. The behaviour of the
tunnelling, in fact, shows more similarities between HTO and DTO. Note in Fig. 2.13
that the probability of tunnelling decreases in a similar manner for both systems for
angles smaller than 30 ◦. However, at φ = 30 ◦ the full tunnelling is present for both
systems and, in this particular case of |B| = 1 T features the same timescale τ ≈ 0.7µ s

13To be more precise, we find that (i) for the ground and first excited states the probability dis-
tributions |〈MJ |ψ(t)〉|2 are only approximately even; (ii) the phase differences between 〈J |ψ(t)〉 and
〈−J |ψ(t)〉 are only approximately equal to 0 in one case and π in the other case; and (iii) the probability
amplitudes are finite for other values of MJ as well.

14 Indeed a full tunnelling of a large magnetic ion, such as Ho3+ or Dy3+, can be modelled theoretically
by using simpler models. For example, in the context of this research, it was investigated the more ped-
agogical case of a magnetic ion under a fictitious CF environment with ĤCF ∝

∑
MJ
|MJ |2 |MJ〉 〈MJ |.

Also in this case the full tunnelling is found although, for a crystal-field well of the same height as the
spin ice one, fields of the order of 30 Tesla would be necessary to achieve it. Interestingly this kind of
potential has an algebraic expression similar to the one used for investigating tunnelling and density
of states for cold atoms trapped in optical lattices [50]. Although this result is not directly relevant for
spin ices, it is of general interest as it represents an instance in which the language of physics applies
to systems which may look very diverse but are fundamentally governed by analogous mechanisms.
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(this agrees with the occurrence of the intersection between the curves for the splitting
of HTO and DTO in Figs. 2.9 at |B| . 1 T).

For a transverse field of |B| = 10 T Fig. 2.14 shows a drastic change in the behaviour
of HTO while a simply rescaled behaviour for the timescales of DTO. In both cases
the full tunnelling is again found only at φ = 30 ◦, the timescales are now very short
and the difference in order of magnitudes is reversed (DTO is faster than HTO). Again
such behaviour is clarified by the dependence of ∆E01 for the two different systems,
although the total suppression of the tunnelling for HTO remains to be investigated (in
terms of the characterisation based on the dependence of the splitting ∆E01 it would
be expected to find very similar features with DTO since the curves almost overlap
around 10 T for φ = 0 ◦, 15 ◦).

From the analysis on the curves for the static magnetic moment in Fig. 2.14a it can
be argued that the tunnelling for HTO is prevented because of the plateaus character-
ising mz for the field values of around 10 Tesla. It is likely that because of interplay
between the magnetic field and the anisotropy in HTO, the magnetic ion Ho3+ is more
susceptible to the transverse field responding with a stronger anisotropy along preferred
directions of z0. On the other hand the smooth periodic behaviour found for 〈Ĵz(t)〉 in
Fig. 2.14a also agrees with the tunnelling features which are basically constant from 10
Tesla to all lower fields.

Nonetheless, in the context of the research presented here it is not necessary to assess
these questions for magnetic fields which, not surprisingly, compete more with the
strength of the crystal-field. Such fields are few order of magnitudes above the typical
dipolar fields characteristic of spin ice, as we shall see in Chapter 3. The study of
the dynamics presented in this chapter is only to give an overview on the behaviour
expected from the tunnelling rates, with particular emphasis on the dependence on the
strengths and directions of the transverse fields.

The remaining part of this thesis is dedicated to the investigation of the kind of
interactions induced on the RE3+ whenever a monopole is sitting nearby. Together
with the internal dipolar fields, thoroughly analysed in Chapter 3, it has been necessary
also to consider, in Chapter 4, the role of the exchange interactions. The results found
for the tunnelling under such interactions acting on a RE-site near a monopole are
compared in Chapter 5, in the context of a quantum-quench model proposed in this
thesis to describe the propagation of a monopole in spin-ice materials.
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(a) HTO (|B| = 0.1 Tesla, φ = 0 ◦)
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(b) DTO (|B| = 0.1 Tesla, φ = 0 ◦)
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(c) HTO (|B| = 0.1 Tesla, φ = 15 ◦)
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(d) DTO (|B| = 0.1 Tesla, φ = 15 ◦)
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(e) HTO (|B| = 0.1 Tesla, φ = 30 ◦)
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(f) DTO (|B| = 0.1 Tesla, φ = 30 ◦)

Figure 2.12: Time-evolution under a transverse field of strength |B| = 0.1 T. The density

plots show the probability density |〈MJ |ψ(t)〉|2, where |ψ(t)〉 is the state of a RE3+ ion
at time t after the application of the field. At t = 0 the state of the magnetic ion is

polarised in |ψ(0)〉 = |−J〉, which corresponds to |−8〉 and |−15

2
〉 respectively for HTO

(left) and DTO (right). The vertical axes show the time, in seconds, while the horizontal
ones account for the value of MJ = −J, . . . ,+J . The curve overlaid on each density plot
gives the expectation value 〈Ĵz(t)〉 =

∑
MJ

MJ |〈MJ |ψ(t)〉|2. The panels, top to bottom,
show the time-evolution for the angles φ = 0 ◦, 15 ◦, 30 ◦ of the field on the x0,y0 plane in
Fig. 2.8. At |B| = 0.1 T both systems show a finite probability of tunnelling from the initial
configuration to the opposite one. HTO accomplishes a full tunnelling for all values of φ,
while DTO only at φ = 30 ◦ (the lowest probability of tunnelling is found for φ = 0 ◦). Note
the flipping timescales differ by one order of magnitude for the two systems (at φ = 30 ◦,
τ ≈ 0.07 ms for HTO and τ ≈ 0.7 ms for DTO).
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(a) HTO (|B| = 1 Tesla, φ = 0 ◦)
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(b) DTO (|B| = 1 Tesla, φ = 0 ◦)
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(c) HTO (|B| = 1 Tesla, φ = 15 ◦)
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(d) DTO (|B| = 1 Tesla, φ = 15 ◦)

  |ψM(t)|
2
, mz(t) 

-8 -6 -4 -2  0  2  4  6  8

MJ

0

2e-07

4e-07

6e-07

8e-07

1e-06

1.2e-06

1.4e-06

t 
(s

e
c
)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(e) HTO (|B| = 1 Tesla, φ = 30 ◦)
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(f) DTO (|B| = 1 Tesla, φ = 30 ◦)

Figure 2.13: The same type of time-evolution shown in Fig. 2.12 but for fields of strength
|B| = 1 T. In this case also for HTO the probability of tunnelling is affected by the angle
φ of the field on the x0,y0 plane in Fig. 2.8. In both systems the probability of having the
wave function on the other end of the polarisation axis reaches its maximum for φ = 30 ◦

and its minimum at φ = 0 ◦. Here the flipping timescales differ less between the two
systems (at φ = 30 ◦, τ ≈ 0.7µ s for both HTO and DTO; see the intersection of the red
and blue dotted-dashed curves occurring around 1 Tesla in Figs. 2.9).
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(a) HTO (|B| = 10 Tesla, φ = 0 ◦)
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(b) DTO (|B| = 10 Tesla, φ = 0 ◦)
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(c) HTO (|B| = 10 Tesla, φ = 15 ◦)
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(d) DTO (|B| = 10 Tesla, φ = 15 ◦)
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(e) HTO (|B| = 10 Tesla, φ = 30 ◦)
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(f) DTO (|B| = 10 Tesla, φ = 30 ◦)

Figure 2.14: The same type of time-evolution shown in Figs. 2.12,2.13, here for fields
of strength |B| = 10 T. In this case also for HTO the probability of tunnelling is totally
suppressed for angles φ 6= 30 ◦. Both systems show full quantum tunnelling at φ = 30 ◦ but
with very different timescales (at φ = 30 ◦, τ ≈ 3µs for HTO while τ ≈ 0.6 ns for DTO).



“In contrast to electrostatics, the basic laws of magnetic fields did
not follow straightforwardly from man’s earliest contact with mag-
netic materials. The reasons are several, but they all stem from the
radical difference between magnetostatics and electrostatics: there
are no free magnetic charges. This means that magnetic phenomena
are quite different from electric phenomena and that for a long time
no connection was established between them. The basic entity in
magnetic studies was what we now know as a magnetic dipole.”

J. D. Jackson [51]

3
Dipolar fields inside spin ice

In the previous chapter it has been shown how the quantum mechanical features of
a RE3+ ion can manifest in a spin-ice system because of local magnetic fields. Sum-
marising, it has been found that such fields, in the regime where they act as small
perturbations with respect to the crystal-field interaction, act as stabiliser or dynam-
ical stimulator for the RE3+ depending on their directions with respect to the axes
characterising the local the D3d symmetry of the crystal-field.

Since the spin ices are known for being magnetic systems with strong classical corre-
lations [5], resulting from the dipolar interactions between the RE3+ ions, the present
chapter consists in a starting point for revisiting the local properties of the RE-sites
in terms of the interplay between the internal dipolar fields and the single-ion physics
discussed in Chapter 2. In the latter the focus was on analysing the local physics of
a RE-ion in spin ice from a quantum mechanical point of view; in the present chapter
the aim is to evaluate the typical dipolar fields found on RE3+ site depending on the
configurations of the surrounding dipoles. Particular attention is given to the fields
emerging in the presence of a monopole since these, as we shall see below, are purely
transverse to the local 〈111〉 axis. Such fields, as shown in section 2.5, induce quantum
dynamics of the magnetic moment of the RE3+. Consequently, as will be discussed in
Chapter 5, they play a pivotal role in the quantum spin tunnelling which drives the
propagation of the monopoles themselves.

The pyrochlore oxides Ho2Ti2O7 and Dy2Ti2O7 are characterised by RE ions with
large magnetic moments |m| ≈ 10µB. The strength of the internal magnetic fields
they generate inside the sample is a direct manifestation of the classical dipolar corre-
lations characterising these systems [5, 52]. At temperatures allowing the emergence
of monopoles the behaviour of the internal fields becomes more rich, since the former
act as sources and sinks of the latter. Moreover, the freedom of the monopoles to
move across the lattice suggests the presence of spatial and temporal fluctuations in
the distribution of magnetic fields resulting from that motion.

44
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Monte Carlo simulations together with NMR measurements have been used to inves-
tigate the dependence between field distributions across the lattice and the positions of
monopoles [49]. The monopole contribution has been considered by looking at the inter-
nal fields in the magnetic voids of a RE-pyrochlore lattice; these are the RE-tetrahedra
hosting the monopoles centred at the (non magnetic) O1 sites. The Monte Carlo simu-
lations in Ref. [49] have been carried out by keeping a monopole-antimonopole pair at
fixed distance and letting the dipoles span the available 2in-2out configurations. The
line shape for the histograms of the magnetic field strength at the O1 sites shows a very
good agreement with the zero-field NMR measurements carried out at temperatures
in the range of 0.1-0.6 K. The discrepancy between the theoretical distribution being
peaked at 4.5 Tesla versus the NMR one at 3.4 Tesla is interpreted as due to the classi-
cal Monte Carlo simulations which cannot grasp the physics beyond the dipolar picture
(for example the spatial distribution of the 4f RE-electrons or the RE-O1 chemical
bonding).

The results of the above study suggest that internal fields in spin ice are within the
order of magnitude where they can be considered as perturbation of the CF Hamil-
tonian. As noted above, the study presented in Ref. [49], however, is focused on the
estimation of fields only at the centres of the tetrahedra. These are not directly rel-
evant for the quantum spin tunnelling of the RE-spins (sitting at the corners of the
tetrahedra) discussed in section 2.5. Thus, having access to the internal fields at the
RE-sites is fundamental to investigate the role of quantum spin-tunnelling in the hop-
ping of a monopole. As we shall see, the internal fields can be very different on RE-sites
near a monopole 1, encouraging speculations on how the monopoles themselves modify
the local fields to propagate along certain directions rather than others (this will be
investigated more explicitly in Chapter 5).

This chapter discusses the type of dipolar fields on some of the RE-sites for different
types of spin-ice configurations of the magnetic dipoles. This is done by studying the
resulting magnetic fields on a central RE-site in spin ice clusters of dipoles. Different
sizes are investigated and compared with each other (also very briefly to results of Monte
Carlo simulations). We find that the presence of a monopole gives purely tranverse fields
on the RE-sites next to it, hence stimulating the quantum spin tunnelling which allows
the monopole to hop.

3.1 Preliminaries: magnetic dipolar fields

The magnetic dipoles are the basic entities in the studies of magnetostatics. Classically
a magnetic dipole can be represented as a little magnetic needle which tends to align
in a certain direction when placed near a magnetic material [51]. This tendency to
align consists in a mechanical torque that any magnetic dipole undergoes to minimise
its magnetic energy of interaction with the applied field.

The smallest magnetic dipoles known in nature are those originating from the electrons
bounded in atomic systems. As mentioned in the previous chapters, the relationship
between the electron quantum-numbers and the dipolar moment of a magnetic atom
lies at the foundation of quantum physics and relativity: it depends mainly on the

1Compared to the typical fields in the spin-ice (2in-2out) state.
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coupling between the orbital and the spin degrees of freedom of the electrons. In spite
of this, because of the strength of the dipolar moments of the RE-ions in Ho3+ and
Dy3+ , the simplified notion of atomic dipole as a microscopic needle is used in this
chapter since it represents a suitable way to discuss the internal magnetic fields found
in spin ices.

3.1.1 Magnetic dipoles and their fields

In classical physics the vector potential

A(r) =
µ0

4π

m× r

r3
(3.1)

of a magnetic dipole m produces a magnetic induction [51]

B(r) = ∇×A(r) =
µ0

4π

(
3(m · r)r

r5
− m

r3

)
. (3.2)

The vector r represents the position of a given point with respect to the location of the
dipole itself. Hence for a system of N dipoles

B(r) =
µ0

4π

N∑

i=1

(
3(mi · (r− ri))(r− ri)

|r− ri|5
− mi

|r− ri|3
)
. (3.3)

To derive the internal dipolar fields in a magnetic system such as spin ice, it is conve-
nient to rewrite Eq. (3.3) in the following form:

B(0) =
µ0|m|

4π

N∑

i=1

Si
3(êi · r̂i)r̂i − êi

|ri|3
, (3.4)

where ri = −ri0 = ri − r0. Here the resulting field is calculated at the origin of the
coordinates to emphasise the symmetries of the dipolar configurations. Furthermore
all the dipoles have the same magnitude |m| and the unit vectors êi point in several
fixed directions. Only two possible orientations Si = ±1 are allowed for each spin
(mi = Siêi|m|).
The expression in Eq. (3.4) helps to visualise the resulting field in cases where the

dipoles have a symmetrical arrangement. Moreover it facilitates the distinction between
constructive and destructive orientations of the spins; for example by looking at pairs of
dipoles with same easy axis êi. Fig. 3.2 represents an example of similar configurations
leading to different dipolar fields on the central site of a small spin-ice cluster (the
coordinate flip of two parallel spins gives a totally different resulting field). To describe
the way similar configurations could be constructive or destructive for the resulting
fields we discuss in what follows a few cases in detail.

3.1.2 Pairwise dipoles

We start by considering the simplest case: a dimer of magnetic moments m1,m2 with
the same strength |m| and the same easy axis ê. The resulting field (3.4) at the midpoint
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Figure 3.1: A dimer of dipoles with the same anisotropy and opposite orientations (S1 =
−S2). This configuration gives a null field at the midpoint.

between them is

B(0) =
µ0|m|
4π|r|3

{
S1

(
3(ê · r̂1)r̂1 − ê

)
+ S2

(
3(ê · r̂2)r̂2 − ê

)}

=
µ0|m|
4π|r|3

(
S1 + S2

)(
3(ê · r̂)r̂− ê

)
,

(3.5)

where the second line is obtained since (ê · r̂2)r̂2 = (ê · r̂1)r̂1 and r̂ = r̂1 = −r̂2. Hence if
the spins have opposite orientations (S1 = −S2), the total field at the midpoint is null
(see Fig. 3.1); if they have the same orientation (S1 = S2) the resulting field is twice
the field of one. Although this example is trivial, it turns out to be a useful tool to
calculate the total dipolar field in the centre of a spin ice cluster in terms of pairwise,
constructive or destructive, interaction between spins with the same anisotropy.

3.1.3 Nearest neighbour dipolar fields on a RE-site

In spin ice materials the simplest model for the internal fields on the RE-sites consists of
a cluster of 6 spins arranged as nearest neighbours to a central site of a two-tetrahedra
pyrochlore structure (Fig. 3.2); here for simplicity the origin of the reference frame is
on the central site itself to make the implementation of Eq. (3.5) straightforward.

The field of the central dipole is not considered because self-interaction is neglected
in Eqs. (3.1-3.5); only the magnetic fields due to the surrounding dipoles matter (this
is OK for point-like dipoles). The unit vector ê0 = 1√

3
(1, 1, 1) in the origin is used as

reference for the orientations of the other dipoles: S0
i = ±1 means that mi · ê0 ≷ 0

respectively 2, where mi = S0
i m̂i and i = 1, 2, . . . , 6. The three dipoles in the upper

(positive) octant are labelled m1,m2,m3, whilst the other three in the lower (negative)
one are m4,m5,m6.

The central site, in the origin, sits in the midpoint of the segments rj−rj+3 connecting
the pairs of dipoles with the same easy axis êj = êj+3 with j = 1, 2, 3; this allows the
calculation and visualisation of the resulting fields in terms of a convenient choice of

2 The suffix 0 in S0
i is used to emphasise that the orientation of mi is expressed with respect to ê0.

This is different from the “2in-2out notation” where the signs Si account for the inwardness/outwardness
of each spin in the frame of a given tetrahedron.
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(a)

(b)

Figure 3.2: Examples of similar dipolar configurations leading to different resulting fields
in a central site (2in-2out in the upper tetrahedron 3in-1out in the lower one). The green
arrow represents the direction of the resulting field (vectors in curly brackets); the size and
length of this field is only of illustrative purpose. The central spin has small probability to
flip because the resulting field has a finite longitudinal component along the 〈111〉 axis.
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(a)

(b) (c)

Figure 3.3: Different perspectives of the two-tetrahedra cluster with origin of coordinates
(purple) on the central site. The dashed line is the local 〈111〉 axis of the reference frame
(also the easy axis of the central dipole). This is used as reference direction for the Ising
states of all the dipoles (S0

i = m̂i · ê0 = ±1).
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(a) (b)

(c) (d)

Figure 3.4: An example of the dipolar field (green arrow) on the central site of a two-
tetrahedra cluster, resulting from the 6 nearest neighbour dipoles. (a) shows the config-
uration of the 6 spins: in this example all polarised up. The central dipole is not shown
for clarity and because it is irrelevant for the resulting field; if it points upward there is a
non-contractible monopole-antimonopole pair in the two-tetrahedra [22]. This is because
the flipping of the central site is energetically forbidden by the resulting longitudinal field
along its 〈111〉 axis. Figures (b), (c), (d) are guidelines to visualise the decomposition of
the 6 spins, giving the resulting field, in terms of the paired dipoles used in Eq. (3.8).
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pairwise combinations of dipoles, making use of Eq. (3.5). The spin-ice easy axes of
the dipoles are defined by the unit vectors

ê1 = ê4 =
1√
3

(−1, 1, 1),

ê2 = ê5 =
1√
3

(1,−1, 1),

ê3 = ê6 =
1√
3

(1, 1,−1),

(3.6)

while the unit vectors for the spin sites ri with respect to the origin are

r̂1 = −r̂4 =
1√
2

(0, 1, 1),

r̂2 = −r̂5 =
1√
2

(1, 0, 1),

r̂3 = −r̂6 =
1√
2

(1, 1, 0).

(3.7)

Then using Eq. (3.5) the calculation of the dipolar fields resulting in the central site of
the 6-spin cluster is given by

B(0) =
λµ0µB

4π|rnn|3

{(
S0

1 + S0
4

)(
3(ê1 · r̂1)r̂1 − ê1

)

+
(
S0

2 + S0
5

)(
3(ê2 · r̂2)r̂2 − ê2

)

+
(
S0

3 + S0
6

)(
3(ê3 · r̂3)r̂3 − ê3

)}
,

(3.8)

where the string of values {S0
1 , S

0
2 , . . . , S

0
6} together with λ = |m|/µB and |rnn|, the

nearest neighbour distance for the dipoles, uniquely determine the resulting field 3 (in
spin ice λ ≈ 10 and |rnn| ≈ 3.57Å ).

Eq. (3.8) can be generalised for the resulting field on a central site for a cluster of
N = 2n spin-ice dipoles

B(0) =
λµ0µB

4π

n∑

j=1

(
S0
j + S0

j+3

)(
3(êj · r̂j)r̂j − êj

)

|rj |3
, (3.9)

where each spin S0
j êj is in the region above the plane perpendicular to 〈111〉 and

passing through the origin; the spin S0
j+3êj is its symmetric with respect to the origin

(rj = −rj+3).

3 Note S0
0 is not considered since there is no self-interaction term in Eqs. (3.1-3.3).
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3.2 Dipolar fields on a RE-site next to a monopole

In general different spin configurations {S0
i } lead to different dipolar fields on a given

(central) RE-site. Since the subject of interest here is to investigate how the internal
magnetic fields characterise the motion of the monopole-like defects across the lattice,
the main focus of this section is on the dipolar fields induced in a RE-site next to a
monopole.

Whenever the magnetic fields resulting from the dipoles surrounding the RE-site are
transverse to its easy axis, as explained in the previous chapter, the tunnelling of
the magnetisation for the magnetic RE ion can occur. Hence the monopole can hop
across the lattice depending on the internal fields on the RE ions driven by the static
configurations of the surrounding dipoles. In spite of its simplicity this model can lead
to misinterpretations if tackled only from an intuitive point of view. Indeed it can
happen that very similar configurations, even identical in terms of energy of the whole
system, can feature quite different resulting fields. For example, the spin configurations
of two tetrahedra shown in Fig. 3.2 both have a north monopole (3in/1out) in the
lower tetrahedron and no monopole (2in/2out) in the upper one; yet the resulting
fields (green arrow) in the central site point along different directions (perpendicular
to each other). Furthermore in this case the resulting field is not purely transverse to
the 〈111〉 axis of the central RE-site, in either of the two cases, hence it cannot induce
the tunnelling (in the sense discussed in the previous chapter) of the central dipole.
These are two examples of a class of configurations where a site next to a monopole
(here the central one) cannot flip 4; its flipping in fact, would lead to a 4in energetically
costly configuration. This is quite distinct to the hopping of a monopole to the upper
tetrahedron. Eventually the monopole sitting on the lower tetrahedron can hop into
another of the neighbouring ones (not show in Fig. 3.2) linked to the other dipoles,
namely those pointing “in”. In the following the different type of resulting fields for
these “flippable” spins next to a monopole are discussed.

3.2.1 Analytical calculation (two-tetrahedra cluster)

The 1-monopole/no monopole configurations in a two-tetrahedra cluster are of interest
as they represent a “local snapshot” of a free monopole moving across the lattice. In
Fig. 3.2 we just observed a monopole whose motion towards the upper tetrahedron is
forbidden by the local constraints. To discuss the other configurations, which lead to
the hopping of the monopole via flipping of the central spin, a two-tetrahedra cluster
is again chosen as a “reference” to study in detail the possible configurations of the
dipoles and resulting fields. If the central dipole is opposite to ê0, any combination
of 2in/1out configurations 5 of the remaining 6 spins gives 1-north monopole in the
lower tetrahedron and no monopole in the upper one (see Figs. 3.5-3.6). Analogously
if the central dipole has the same orientation as ê0 then any combination of 2in/1out
configurations features one-north monopole in the upper tetrahedron and no monopole
in the lower one. Although these two “snapshots” account for the two “instants”
picturing the hopping of a monopole, no conclusions can be deduced at this stage

4 The only one pointing out of the tetrahedron hosting the monopole.
5Both for the 3 spins in the upper triangle (m1,m2,m3) and the 3 in the lower one (m4,m5,m6).
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about directionality of their motion. The focus is only on the type of resulting fields
induced by static configuration of the 6 dipoles nearest neighbours to a RE-site.

In the following the fields on the central site are calculated for configurations of dipoles
with a 1-north monopole in the lower tetrahedron and no monopole in the upper one.
Such 1Nm/0m model (for two-tetrahedra with only one north monopole) represents an
archetype for the study the resulting fields on the RE-site near a monopole; analogous
is the 1Sm/0m case (where S stands for South). In the figures representing these
1Nm/0m spin-cluster states the location of the monopole is not shown for clarity; the
aim is mainly to visualise the relationship between the pairwise configurations of the
dipoles and the resulting fields. In these examples the North monopole is kept always in
the tetrahedron below (3in-1out) to study the fields allowing the hopping into the one
above (here kept in a 2in-2out configuration). The same configurations are summarised
in Fig. 3.7, at the end of this section, where the North monopole is shown in the left
panels A,B,C, to allow an immediate comparison with the right panels A′,B′,C′,
where a South monopole is shown.

Transverse field Transverse field Null Field

(Config. A, Fig. 3.5a) (Config. B, Fig. 3.5b) (Config. C, Fig. 3.6)

S0
1 = +1 S0

1 = −1 S0
1 = −1

S0
2 = −1 S0

2 = +1 S0
2 = −1

S0
3 = −1 S0

3 = −1 S0
3 = +1

Table 3.1: In the two-tetrahedra cluster, these are the 3 possible configurations for {S0
j }

with j = 1, 2, 3 which combined with {S0
4 = 1, S0

5 = 1, S0
6 = −1} lead to a 1-north

monopole/no monopole state. Here the central spin can flip; the monopole is in the lower
or upper tetrahedron depending on whether S0

0 = −1 or S0
0 = 1 respectively. Pictorial

representations are given in Figs. 3.5-3.6.

Since the resulting fields do not depend on symmetry transformation of the whole
system, in this two-tetrahedra cluster only three configurations {S0

i } really matter; the
others, obtained as permutations of the S0

i , correspond to trivial rotations of the whole
two-tetrahedra system around the 〈111〉 axis passing through the origin.

The 3 non-equivalent configurations leading to a 1Nm/0m case are represented in
Figs. 3.5-3.6; they all give a null resulting field along the 〈111〉 axis. More precisely
A in Fig. 3.5a and B in Fig. 3.5b give a resulting field purely transverse to the easy
axis of the central dipole; whilst an identically zero field is found in the case C in
Fig. 3.6. The spin configurations are listed in Table 3.1, where only the upper ones are
shown since the lower spins are fixed as {S0

4 = 1, S0
5 = 1, S0

6 = −1}. Although these
configurations constitute specific choices for the present case, it is straightforward to
verify their general validity 6. The other 1Nm/0m configurations are obtained by two
rotations, clockwise and anticlockwise, of 120 degrees around the 〈111〉 axis of the whole

6 Notice these were chosen only as a convenient toy-model to summarise the main properties of the
dependence between spin-configurations and resulting-fields.
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(a) - Configuration A

(b) - Configuration B

Figure 3.5: The two configurations with a north monopole (1Nm/0m; 3in-1out below
and 2in-2out above) giving a purely transverse field in the central site (see Table 3.1).
These are shown again in Figs. 3.7 to allow a direct comparison with the analogous cases
featuring a south monopole. In the main text we refer to the top one as A and the bottom
one as B.
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Figure 3.6: Another configuration (C), the one on the right in Table 3.1, with a north
monopole (1Nm/0m; 3in-1out below and 2in-2out above); this gives a null resulting field in
the central site (third column in Table 3.1). Note how each dipole in the upper tetrahedron
is pointing opposite to its symmetric in the lower one (S0

j = −S0
j+3, with j = 1, 2, 3). This

is shown again in Figs. 3.7 to allow a direct comparison with the others in Fig. 3.5 and
with analogous cases featuring a south monopole.

two-tetrahedra systems shown in Figs. 3.5-3.6. Hence each two-tetrahedra cluster in a
1monopole/no monopole state has 6 spin configurations with a purely transverse field
and 3 with a null resulting field. In the following a brief calculation for the resulting
transverse field of Config. A shown in Fig. 3.5a is derived.

Analytical calculation of the resulting field in a two-tetrahedra cluster

In Table 3.1 the spin configuration on the left column gives

S0
1 + S0

4 = 2;

S0
2 + S0

5 = 0;

S0
3 + S0

6 = −2.

(3.10)

for Config. A in Fig. 3.5a. Substituting these in Eq. (3.8) we obtain

B(0) =
λµ0µB
4πr3

nn

{
2
(

3

√
2

3
r̂1 − ê1

)
+ 0 − 2

(
3

√
2

3
r̂3 − ê3

)}

=
λµ0µB
2πr3

nn

{
3

√
2

3
(r̂1 − r̂3)− (ê1 − ê3)

} (3.11)
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given that êj · r̂j =
√

2/3 for all j = 1, 2, 3. Then, using the explicit representation for
êj and r̂j from Eqs. (3.6-3.7), this becomes

B(0) =
λµ0µB
2πr3

nn




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3





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
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

=
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0
1
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(3.12)

which is manifestly perpendicular to the 〈111〉 axis passing through the central site. In
spin ice the strength of the field is ≈ 0.33 Tesla and its unit vector 7 is (− 1√

2
, 0, 1√

2
) as

shown in curly brackets in Fig. 3.5a.

Analogously it can be derived that for Config. B at the centre of Table 3.1 (Fig. 3.5b)
the resulting field points along (0,− 1√

2
, 1√

2
) and has also modulus ≈ 0.33 Tesla. An-

other 4 configurations with this same strength of the purely transverse field are obtained
by the 120 deg rotations of the whole two-tetrahedra system around the 〈111〉 axis.

The null resulting field found in Config. C (Fig. 3.6) can be quickly recognised as one
of the three 1Nm/0m cases where the paired dipoles in Eq. (3.8) are pointing opposite
to each other S0

j = −S0
j+3 (see right column in Table 3.1).

The preceding discussions and results can be easily transposed on two-tetrahedra
systems with a South monopole (1Sm/0m), where one of the tetrahedra is in a 1in-
3out configuration and the other in a 2in-2out one. This would imply changing the signs
of all the spin configurations {S0

i } discussed in this section, hence leading to resulting
fields on the RE-site with opposite directions with respect to the ones obtained here
for the 1Nm/0m cases. In Fig. 3.7 the right panels show the spin-configurations with a
South monopole in comparison with the cases with a north monopole on the left ones.
For symmetry reasons the magnitude of the resulting fields is the same for analogous
spin-configurations.

3.2.2 Dipolar field histograms

The use of histograms is very convenient to analyse the dipolar fields resulting on a
given site of the lattice. For example the same results discussed analytically in the
previous section are visually summarised in the histogram shown in Fig. 3.8b. This
represents the field distributions from all the dipole-configurations compatible with a
1Nm/0m state for the two-tetrahedra cluster depicted in Fig. 3.8a. The central spin is
fixed pointing down for the same reasons already discussed in the previous sections8.
The field-distributions in Fig. 3.8b confirm the results for the cases depicted in Figs. 3.7
and also for the other six equivalent configurations not shown (corresponding to 120
deg rotations of the whole system around the central 〈111〉 axis).

The three-dimensional histogram in Fig. 3.8, together with the others in the following

7Note the resulting field is also perpendicular to r̂2, whose associated dipoles m2,m5 have destructive
interaction in the case considered (S0

2 = S0
5).

8 A spin pointing up would correspond to configurations like the ones in Fig. 3.2 where the flipping
would be energetically unfavourable.
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(a) - Configuration A (a′) - Configuration A′

(b) - Configuration B (b′) - Configuration B′

(c) - Configuration C (c′) - Configuration C′

Figure 3.7: Examples of dipolar configurations in a two-tetrahedra cluster hosting
monopoles of opposite charge in the lower tetrahedron. The figures on the left have a
North magnetic monopole while those on the right a South pole. The resulting fields are
always purely transverse to the 〈111〉 axis apart from the bottom ones where the field is
identically zero.
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pages, have the following settings: the horizontal axes represent the magnitudes of the
transverse and longitudinal components of the resulting dipolar fields with respect to
the central 〈111〉 direction; the vertical axis corresponds to the probability of obtaining a
certain value for (BTransverse, BLongitudinal) from all the spin-configurations compatible
with the constraints imposed on the system.

3.2.2.1 Two-tetrahedra cluster

The histogram for the two-tetrahedra cluster configurations satisfying the 1Nm/0m
state is given in Fig. 3.8. The distribution of the field strengths is peaked at the two
values (0.33, 0) and (0, 0) Tesla for the respective transverse and longitudinal compo-
nents of the resulting fields in the central ion. The different size of the two columns
accounts for the respective probabilities, 2/3 and 1/3, of finding a purely transverse
field or a null one in agreement with the results discussed in subsection 3.2.1.

Analogously Fig. 3.9 shows the histogram for a two-tetrahedra cluster without monopoles
(2in-2out in both). The central spin is kept fixed pointing down to allow a direct com-
parison with the previous case where the lower tetrahedron hosts a monopole. Here
the histograms are peaked at different values with respect to the case with a monopole
1Nm/0m. More precisely these show the same net longitudinal component of the field
for both peaks: (0.19, 0.68) and (0.38, 0.68) Tesla. Note that for symmetry reasons also
in this case the two probabilities are 2/3 and 1/3 for the two respective values of the
total magnitude.

These results show how the histograms of the field distributions can be used as a
quick assessment in establishing the role of the magnetic monopoles in altering the
dipolar fields in the RE-sites surrounding them. For example the comparison between
the simple two-tetrahedra cases in Fig. 3.8 and Fig. 3.9 suggests that the presence
of the monopole (being the only one different constraint between the two) affects the
dipolar fields on the central site by removing the longitudinal component characterising
the ground-state. In the context of the dynamics discussed in this thesis, where the
spin-flip process consists in a spin-tunnelling driven by a purely transverse magnetic
field, this confirms that the monopole itself modifies the dipolar fields and can induce
the tunnelling for some of the dipoles which lead to the hopping of the monopole itself.
Since considering only a small cluster to investigate these mechanisms could represent
a restriction in the reliability of this model, it is convenient to consider a larger cluster.
In the following an analogous approach is used for a cluster of eight tetrahedra.

3.2.2.2 Eight-tetrahedra cluster

The eight-tetrahedra cluster considered in this section is a “natural extension” of the
two-tetrahedra one used so far; the former is obtained by considering the further neigh-
bouring tetrahedra 9 of the latter one. Again the lattice is chosen so that the central
dipole is the most symmetric of the sites 10. Fig. 3.10 gives a representation of the

9The arrangement of the tetrahedra follows the pyrochlore lattice structure.
10 This, as discussed in subsection 3.1.2, facilitates the visualisation of dipoles contributing to the

resulting fields on the central site and makes the analytical calculation by means of Eq. (3.9) straight-
forward.
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Figure 3.8: Two-tetrahedra cluster featuring a 1Nm/0m monopole state (3in-1out below;
2in-2out above). The top panel (a) reproduces the geometry of the cluster showing only
the central spin that is fixed throughout the calculation. The bottom panel (b) shows
the histogram of the dipolar-field distributions resulting on the central site from all the
possible states of the neighbouring dipoles. The resulting fields on the central RE-site
are characterised by null longitudinal component along the local 〈111〉 direction (i.e. the
dipolar fields are either null or purely transverse).
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Figure 3.9: Two-tetrahedra cluster without any monopole (2in-2out in both tetrahedra).
The top panel (a) reproduce the geometry of the cluster showing only the central spin
that is fixed throughout the calculation (in analogy with Fig. 3.8b). The bottom panel (b)
shows the histograms of the dipolar-field distributions resulting on the central site from all
the possible states of the neighbouring dipoles. The resulting fields on the central RE-site
now show the same strong longitudinal component along the local 〈111〉 direction.
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cluster with all the dipoles arranged in one of the possible configurations for the de-
generate ground state (2in-2out in all tetrahedron). Analogously to the two-tetrahedra
case, this model has been used to calculate the dipolar fields obtained on the central site
when the cluster has one monopole next to the central spin (Fig. 3.11a) and when there
are no monopoles in the whole lattice (Fig. 3.13a). Furthermore the larger size of the
cluster allows also the calculation of the resulting fields in the case when the monopole
is moved away from the tetrahedron next to the central site but is still present in the
cluster (Fig. 3.12a).

Figure 3.10: A pictorial representation of the full eight-tetrahedra cluster in one of the
6561 possible ground state configurations (2in-2out in all tetrahedra of the lattice). In the
following figures (3.11-3.12) only the “skeleton” of the lattice is kept since the calculations
are done for a large variety of spin states. This image has only illustrative purpose to show
the geometry and complexity of an eight-tetrahedra cluster.

For this larger cluster the use of histograms is crucial to compare the different types
of resulting fields. In fact the number of possible configurations compatible with a
given constraint, such as a monopole in a given site, is typically of the order of a few
thousands. Also for this large cluster all the configurations investigated are with the
central dipole pointing downward; this is again to ensure that this is a dipole that
could lead to the hopping of a North monopole by means of its upward flipping. The
histograms in Fig. 3.11b, Fig. 3.12b and Fig. 3.13b provide a tool to assessthe variation
of the resulting dipolar fields in the following cases respectively: when the monopole
sits in the tetrahedron just below the central ion, when it is placed into a neighbouring
one 11, and when it is no longer in the cluster.

11 The case shown in Fig. 3.12a represent just one out of the possible three lower-tetrahedra not next
to the central dipole.
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By direct comparison with the field distributions of the two-tetrahedra case it is in-
triguing to realise that, although the “shapes” of the field distributions look different,
the type of resulting fields shows a clear correlation between the two cluster calcula-
tions. This is evident both in the case when the monopole is next to the central dipole,
(Fig. 3.8 and Fig. 3.11), and also in the case with no monopoles (Fig. 3.9 and Fig. 3.13).
In the former the dipolar fields show a suppression of the longitudinal component with
respect to the latter one12. Moreover, although the field distributions are broadened in
the larger cluster, the position of the peaked values show similarities between the two
clusters. This in particular is strongly evident in the cases featuring one monopole next
to the central dipole, where a structure of two main peaks remains also in the larger
cluster.

As already mentioned, one of the greatest benefits of considering a larger cluster is
the possibility to investigate the dipolar fields resulting from the spin-configurations
featuring a monopole sitting further away from the central dipole. Remarkably the
corresponding dipolar field distribution in Fig. 3.12b looks more similar to the case
without a monopole in Fig. 3.13b than to the case of a monopole next to the central
dipole (Fig. 3.11b). Hence, although the larger cluster allows a more reliable description
on the dependence between the location of the monopoles and the resulting fields on
the RE-sites, it also proves that the presence of the monopole affects mainly the field
at the RE-sites just next to it.

A note on Monte Carlo simulations The dominant role played by the monopole
in modifying the magnetic field on a RE-site next to it, can be verified also by means
of classical Monte Carlo simulations. Unpublished work, done by our collaborators C.
Castelnovo and G. Sala besides Ref. [49], shows that also in a large cluster with 1024
spins the presence of a monopole characterises the field distribution on a nearby RE3+

ion with fields having longitudinal components peaked around zero. These results show
also a good quantitative agreement with the cluster calculation presented here: there
are only two neat peaks for the transverse fields found next to a monopole. These
are at 0.55 Tesla and 0.03 Tesla, very similar to the values shown in the histogram in
Fig. 3.11.

The localised effect of the monopole on a nearby RE-site, found in the eight-tetrahedra
cluster and supported by the Monte Carlo results, justifies the reliability of the sim-
ple two-tetrahedra cluster. From the latter it was already evident the suppression of
the longitudinal component as a direct consequence of the presence of a monopole.
Furthermore, this seems to suggest that the transverse field spin-tunnelling can be
spontaneously induced only when a monopole is sitting next to a given RE-site. This
is discussed in Chapter 5 in the context of a quantum-quench mechanism proposed for
the propagation of monopoles in spin ice materials. This model, as we shall see, is
consistent not only for the typical dipolar fields on a RE-site next to a monopole, but
also for the effective exchange ones which first will be derived in the next Chapter 4.

12 This means a purely transverse field only in the case of the two-tetrahedra cluster and in some of
the configurations of the eight-tetrahedra one.
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Figure 3.11: Eight-tetrahedra cluster with a North monopole in the lower tetrahedron
next to the central dipole. The top panel (a) shows the geometry of the 8-tetrahedra cluster
with the orientation of the central dipole and the position of the monopole fixed. The
bottom panel (b) shows the histogram with the dipolar-field distributions. The spin-states
corresponding to a 1-monopole next to the central ion are characterised by dipolar fields
on the central ion with almost null longitudinal component along its local 〈111〉 direction.
This result is analogous to what shown in Fig. 3.8 for the two-tetrahedra cluster; here the
peaks are broadened and shifted with respect to the former case.
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Figure 3.12: Eight-tetrahedra cluster with a North monopole in a tetrahedron further
below the one in Fig. 3.11. The top panel (a) shows the geometry of the 8-tetrahedra
cluster with the orientation of the central dipole and the position of the monopole fixed.
The bottom panel (b) shows the histograms with the dipolar-field distributions. Here the
spin-states are characterised by a broad distribution of resulting fields on the central site
with strong longitudinal component along its local 〈111〉 direction. This is an insightful
result as it shows the drastic variation in the resulting fields when the monopole hops only
one site away from the tetrahedron next to the central ion (Fig. 3.11). It is also remarkable
the similarity with the field histogram in Fig. 3.13b.
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Figure 3.13: Eight-tetrahedra cluster without any monopole (ground state). The top
panel (a) shows the geometry of the 8-tetrahedra cluster with only the fixed central dipole.
The bottom panel (b) shows the histograms with the dipolar-field distributions. Also in
this case the resulting fields on the central site have a net longitudinal component along
its local 〈111〉 direction (slightly stronger than Fig. 3.12). This result is analogous to what
shown in Fig. 3.8 for the two-tetrahedra cluster; here the peaks are broadened and shifted
with respect to the former case.



“The exchange interaction is subtle and not a little mysterious, since
it seems surprising that one has to go to the bother of thinking about
exchange operators and identical particles when all one is dealing
with is a bar magnet and a pile of iron filings. But this, as often
with the subject of magnetism, is a demonstration of how quantum
mechanics is at the root of many everyday phenomena. ”

S. Blundell [53]

4
The effective exchange coupling

The internal magnetism of condensed matter systems is characterised by another kind
of interaction whose features go beyond the intuitive representation of the classical
dipolar fields: the exchange interaction. The intricate relationships between indistin-
guishability of particles, their spin quantum numbers and the emergence of effective
magnetic fields, which can manifest at a macroscopic level, was originally investigated
by Heisenberg and Dirac in the mid twenties of the last century [54]. The quantum
theory of magnetism was at its early stages and the spin itself, as an intrinsic property
characterising the behaviour of all fundamental particles, had just been discovered. The
Pauli principle, in loose words, represents a sort of “manifesto” of this characterisation:
any two identical particles with half integer spin cannot occupy the same quantum state
at the same time. Focusing on electrons, as the fundamental elements whose allowed
states in solid state systems are constrained under this principle, a plethora of physical
mechanisms have been addressed mainly by studying their statistics or the statistics of
the low energy excitations arising from their coupling with the other degrees of freedom
of their environment [3, 55, 53, 56, 57, 58].

This chapter is entirely dedicated to the role of exchange interactions in the mi-
croscopic description of the spin-ice magnetic features. Primarily because in general
these represent the building blocks for the current understanding of this and similar
pyrochlore systems [6]; secondarily for the particular interest in investigating the influ-
ence of the exchange mechanism with respect to the quantum spin-tunnelling presented
in this thesis.

It is believed that, because of the strength of the dipolar fields, the exchange ones
do not play a major role in the spin-ice physics [59]; more precisely the frustrated
ground state of the system is characterised by an antiferromagnetic exchange interaction
that is overcome by the dipolar contribution, already at a nearest neighbour level [5].
Nonetheless, the effective ferromagnetic coupling between the neighbouring Ising spins
contains a “trace” of exchange, not least in its measured strength resulting from the sum

66
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of the dipolar and the exchange contributions [5, 12, 52]. The magnitudes of the two
respective constants are of comparable orders but the directions of the resulting fields
can in general be different. Studying how the resulting fields combine, beyond the level
of approximation where each magnetic ion is considered as a classical dipole with local
Ising anisotropy, is necessary when dynamical properties of the systems are investigated.
However, since the spin-flip mechanism accounting for the propagation of the monopoles
consists of quantum spin-tunnelling of one RE-ion surrounded by a multitude of others
sitting in their local Ising state (see Chapter 5), a static approximation for the fields
originating from their possible configurations is suitable as it accounts for the frozen
environment surrounding the monopole.

In the following sections the mechanism of exchange is discussed from the simplest and
most general cases to the more specific ones of interest for the spin ice systems. Since
the mathematical framework to describe it depends on the interplay between classical
and quantum mechanical features in the model considered, it is emphasised how each
level of approximation accounts for a certain level of agreement with what is already
known from theories and experiments.

4.1 Exchange interaction and effective spin Hamiltonian

The striking and charming feature of exchange interactions is the variety of possible
phenomena arising from something as simple as the practical consequences of dealing
with (quantum) objects that are not distinguishable. For example the low temperature
magnetic ordering, leading to the macroscopic magnetic fields in ferromagnetic mate-
rials, is a direct consequence of the Pauli principle interaction between the electrons
in solids. Typically in insulators the indistinguishability of particles with half-integer
spins translates into an effective form of magnetic interactions between the ionic sites.
Since these complex systems can be very diverse, offering a unique description of the
way exchange mechanisms lead to effective magnetic interactions would risk losing part
of the physical properties of some systems. The fundamental ingredients defining ex-
change, however, are the same for any kind of microscopic quantum systems. Hence,
to revisit the conceptual implications under the exchange interactions, it is convenient
to start by discussing the simplest case where indistinguishability leads to magnetism:
the two-electron problem.

4.1.1 Origin of exchange: two-electron wave functions

This section on the emergence of exchange interaction form the two-electron model
follows very closely the derivation given in sections 1.3 and 4.2 of Ref. [53].

The relationship between exchange interactions in quantum mechanics and the emer-
gence of magnetism in “everyday life” can be illustrated, in a simplified version, by
considering a two-electron system [53, 60]. The quantum state of a single electron is
defined by ψ(r)χs, the product of the spatial and spin wave functions. For a system
of two electrons the correct wave function for the joint system is deduced from the
spin-statistics theorem: the wave function of a system of identical fermions changes
sign (i.e. is antisymmetric) when two particles are swapped 1. In the following it is

1For a system of bosons (particles with integer spin) the wave function is symmetric when two
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discussed how the spin and the spatial parts of the wave function combine in a system
of two electrons; their allowed states, arising from the fermionic exchange properties,
lead to the emergence of an effective magnetic interaction.

In quantum mechanics the interaction of any two angular momenta j1, j2 is described
by the operator ĵ1 · ĵ2. Hence in a two-electron system the spin-interaction part of the
Hamiltonian will be proportional to

ŝ1 · ŝ2 (4.1)

where ŝi ≡ (ŝxi , ŝ
y
i , ŝ

z
i ) is the spin operator for each of the two electrons (i = 1, 2). From

the combination of angular momenta, the spin operator Ŝ = ŝ1 + ŝ2 for their joint
system gives

(Ŝ)2 = (ŝ1)2 + (ŝ2)2 + 2ŝ1 · ŝ2 , (4.2)

so that the interaction term in Eq. (4.1) can be expressed as

ŝ1 · ŝ2 =
(Ŝ)2 −

[
(ŝ1)2 + (ŝ2)2

]

2
. (4.3)

The single-spin operators (ŝ1)2 and (ŝ2)2 both have eigenvalue si(si + 1) = 3/4 (since
s1 = s2 = 1/2), while the joint-spin operator (Ŝ)2 has two possible eigenvalues (since
S = 0, 1; from |s1 − s2| ≤ S ≤ s1 + s2). Consequently, Eq. (4.3) gives two different
eigenvalues for the spin-interaction:

S(S + 1)−
[
3/2
]

2
=

{
1
4 if S = 1

−3
4 if S = 0 .

(4.4)

Table 4.1 gives the eigenstates corresponding to the singlet (S = 0) and the triplet
(S = 1) eigenstates in terms of the basis 2 |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 , built from the single-
spin states |↑〉 , |↓〉. The triplet states are clearly symmetric under exchange of the two
spins, while the singlet state is antisymmetric.

The overall wave functions Ψ, accounting for the physical states of the two-electron
system, needs to be antisymmetric. This means that the triplet χT and singlet χS spin-
states are coupled respectively to antisymmetric and symmetric spatial wave functions,
so that the whole state of the system is guaranteed fermionic statistics (Ψ antisymmet-
ric). Therefore also the global wave functions can be classified in terms of triplets and
singlets

ΨT =
χT√

2

(
ψa(r1)ψb(r2)− ψa(r2)ψb(r1)

)

ΨS =
χS√

2

(
ψa(r1)ψb(r2) + ψa(r2)ψb(r1)

)
,

(4.5)

particles are swapped.
2In this representation the first arrow refers to the z component of the spin ŝ1 and so the second

one does for ŝ2.
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Eigenstate Eigenvalue S mS

|↑↑〉 1/4 1 1

|↑↓〉+ |↓↑〉√
2

1/4 1 0

|↓↓〉 1/4 1 -1

|↑↓〉 − |↓↑〉√
2

−3/4 0 0

Table 4.1: Eigenstates and eigenvalues of ŝ1 · ŝ2 together with the corresponding quantum
numbers for S and mS .

where ψα(ri) = 〈ri|ψα〉 are the single-electron spatial wave functions. Their respective
energies are

ET =

∫
Ψ∗T ĤΨT dr1dr2

ES =

∫
Ψ∗SĤΨS dr1dr2 ,

(4.6)

with the spin parts χT and χS assumed normalised.

From Eqs. (4.3-4.4) we know that the triplet and singlet eigenstates of the opera-
tor ŝ1 · ŝ2 have eigenvalues 1/4 and −3/4 respectively, hence an effective Hamiltonian
parametrised as

Ĥ =
1

4
(ES + 3ET )− (ES − ET )ŝ1 · ŝ2 (4.7)

ensures ĤΨT = ETΨT and ĤΨS = ESΨS . This expression is the sum of a constant
energy term and a spin-dependent term whose coefficient J = ES − ET is obtained
using Eqs. (4.5-4.6):

J = ES − ET =

∫
ψ∗a(r1)ψ∗b (r2) Ĥ ψa(r2)ψb(r1) dr1dr2 . (4.8)

This expression makes explicit how the strength J of the spin-spin coupling of the
two electrons in Eq. (4.7) is related to the exchange of the spatial coordinate in the
single-electron wave functions ψα(ri). The spin-dependent part of the two-electron
Hamiltonian can be written as

Ĥspin = −J ŝ1 · ŝ2 (4.9)

where J > 0 (J < 0) implies ES > ET (ES < ET ) so that the system has a triplet
(singlet) ground state. If J is positive the interaction is ferromagnetic, otherwise, for
J negative, it is antiferromagnetic.



4.1 Exchange interaction and effective spin-spin Hamiltonian 70

4.1.2 Types of exchange interaction in solids

Generalising this model from a two electron system, such as the hydrogen molecule,
to a many-body magnetic system is far from trivial. In general the calculation of the
exchange integral J can be complicated, and the theoretical approach to take depends
on the class of materials considered [53, 54]. Later in this chapter we make use of a
strong-coupling perturbation theory to account for the (super) exchange interaction in
magnetic pyrochlore oxides [30]. Here we only give the Hamiltonian for the Heisenberg
model

Ĥspin = −
∑

i>j

Ji,j Ŝi · Ŝj , (4.10)

that is the generalisation of Eq. (4.9) to the case of a magnetic lattice (i > j avoids
double-counting the pairwise interactions). In general the spin operator Ŝi represents
the total spin of each magnetic atom; it is obtained from the coupling 3 between orbital
and spin degrees of freedom of the electrons localised on site i. Then from Eq. (4.10) the
magnetic interaction across the lattice is manifestly mediated by the exchange constant
Ji,j , which is often assumed to couple only nearest neighbour spins and to be constant
for all pairs of spins:

Ĥspin = −J
∑

〈i,j〉

Ŝi · Ŝj . (4.11)

The above Hamiltonian is the starting point for the theoretical study of most mag-
netic insulators, and accounts for the long range order measured both in ferromagnetic
and antiferromagnetic systems. In most magnetic compounds the so called direct ex-
change is often suppressed since it is unlikely that the magnetic sites, such as a RE-site,
can overlap their electron wave-functions, even if the ions are packed very closely with
each other. In most cases the exchange between magnetic ions is mediated by non
magnetic ones, often oxygens, arranged in between them throughout the lattice; this
is called superexchange because it is longer-ranged than the direct one and it requires
delocalisation of the electrons across the Mi-O-Mj units 4. Delocalisation and exchange
over the three sites allow states where the electrons can combine into more configura-
tions, which are equivalent to the ground state in terms of the magnetic coupling of
the whole M-O-M unit, but also unstable because of the Coulomb repulsion between
electrons. The admixture of the ground state with these (virtual) states, however,
plays a pivotal role in stabilising the magnetic interaction; it often implies an antiferro-
magnetic superexchange coupling between the magnetic ions M, since configurations of
anti-aligned electron-spins tend to satisfy the Pauli principle at lower energy cost than
the ferromagnetic ones. Examples of these mechanisms are shown in Fig. 4.1 where
antiferromagnetic and ferromagnetic coupling are compared for a simplified M-O-M
system (in the case discussed in the figure M represents a transition metal ion; Mn+2

in MnO for example).

3The coupling varies depending on the type of atoms; in general it gives a total angular momentm
Ĵi. Here, as often is the case, the notation Ŝi is preferred to avoid confusion with the exchange constant
Jij .

4 M-O-M represents two magnetic ions whose (super) exchange coupling is mediated via an oxygen.
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antiferromagnetic

(a)

(b)

(c)

ferromagnetic

(d)

(e)

(f)

Figure 4.1: Adapted from Fig.4.3 in Ref. [53]. A simplified case of an M-O-M unit where
antiferromagnetic superexchange between the M ions is compared to the ferromagnetic
case. The left panel shows three possible antiferromagnetic configurations of the electrons
across the three sites: (a) is the ground state which gives a net spin only on the M
sites; (b) and (c) are configurations with no on-site net spin but cost Coulomb repulsion
since the paired electrons are localised only on some sites. (b) and (c) are excited states
favoured by the lowering of the total kinetic exchange energy. The right panel shows the
ferromagnetic configurations for the same M-O-M system: (d) is the ground state with
net spin on the M sites and also a net magnetisation over the whole unit; (e) and (f)
are configurations with equivalent magnetisation but different net spin localisation. These
configurations violate Pauli if there is only one orbital per site, as two spins cannot point in
the same direction and be in the same orbital. In general the antiferromagnetic case is more
common since the anti-alignment of the spins satisfies the Pauli principle straightforwardly.
In this pictorial representation the exchange channels across the M-O-M are opened via
hybridisation between the p orbitals of the oxygens and the d of M (a transition Metal
ion).

The low temperature properties of a wide variety of magnetic materials are interpreted
in terms of the exchange interactions analogous to those described by the Hamiltonian
in Eq. (4.11) and shown in Fig. 4.1. In magnetic pyrochlore compounds one of the
new aspects is the type of exchange Hamiltonian which needs a few “readjustments”
with respect to Eq. (4.11) mainly because of two mechanisms: the particular type of
geometrical constraints arising from the pyrochlore structure and the classical Ising
physics emerging from the large number of unpaired electrons in Dy3+ and Ho3+ and
the strong spin-orbit coupling.

4.1.3 “Classical” exchange Hamiltonians in spin ice

As mentioned in the introduction the spin ice materials show an effective ferromagnetic
coupling between neighbouring RE3+ ions. This, however, refers to the overall interac-
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tion which leads to the spin-ice frustration between the (classical) spins with local Ising
anisotropy; in this case, in fact, a pictorial representation is not as immediate as the
one in Fig. 4.1, for several reasons. Firstly, the shell index and the number of unpaired
electrons in the RE3+ ions in the spin ices are higher than in the transition metal; this
means a stronger spin-orbit coupling and the occurrence of Ising physics arising from
the combination of Hund’s rules and the symmetries of the crystalline electric fields.
Secondly, a uniaxial description of the magnetic degrees of freedom is not allowed in
magnetic pyrochlores because of the absence of a unique crystalline axis [61]; this im-
plies that the magnetic-interaction Hamiltonian is often more appropriately described
in terms of a local Ising axes framework like the one introduced at the beginning of
this thesis.

Starting from these two arguments we deduce that a second-quantised description
of the exchange in terms of many-body fermionic operators is needed to describe the
role of quantum mechanical exchange in spin-tunnelling and monopole-hopping in spin
ice. Before dealing with many-body operators here we summarise a first attempt to
reproduce an effective magnetic field derived simply from the exchange interaction in
the classical Ising Hamiltonian given in the first chapter.

Although this model is not expected to give an entirely consistent quantum-mechanical
description, as it is derived from an effective classical picture, it allows a characterisation
of the symmetries expected for the exchange interactions whenever a monopole is sitting
in one tetrahedron of the two-tetrahedra cluster considered in the previous chapter. The
main purpose is to provide a direct comparison of the effective magnetic fields due to
the exchange with respect to the ones found from the dipolar interactions in Chapter 3.

We start from the classical Hamiltonian for spin ice, Eq. (1.1), truncated to the nearest-
neighbour approximation:

Hnn = Jeff

∑

〈i,j〉

SiSj . (4.12)

Here we restored the formalism that is typically used for spin ice [5, 13]: Si = 1,−1
depending on whether the (classical 5) Ising spin points inward or outward with respect
to one type of tetrahedron 6. The Hamiltonian in Eq. (4.12) is conveniently derived
to work with local Ising-axes (“in-out” formalism) from Eq. (4.11), where in contrast
the Ising-axis is global (“up-down” formalism), by noticing that êi · êj = −1/3 with êi
being the local unit vector, for a spin Si, pointing towards the centre of the tetrahedron.
Such notation is fully consistent with the sign convention typically ascribed to the
exchange coupling constants discussed for Eq. (4.9). In fact, the ground state of this
system is ferromagnetic and frustrated (2in-2out in each tetrahedron) for Jeff > 0, while
antiferromagnetic (4in/4out for neighbouring tetrahedra) for Jeff < 0.

In spin ices the effective nearest neighbour constant is Jeff = Jnn + Dnn, where Jnn

regulates solely the Ising exchange while Dnn is the result of the n.n. truncation on
the dipolar term (see Eq. (1.1)). These constants are typically expressed in Kelvin (K)
in the literature [5, 13]. Dnn = 2.35 K is obtained by considering the RE3+ ions as

5Here Si are scalar variables; these are obtained by taking the spin operators Ŝi/|S| in Eq. (4.11)
to the limit of an infinite (local) Ising anisotropy.

6There are two types of tetrahedra in the pyrochlore lattice oriented in opposite directions.



4.1 Exchange interaction and effective spin-spin Hamiltonian 73

magnetic dipoles with magnitude 10µB. Jnn = −0.52 K, −1.24 K for, respectively,
Ho2Ti2O7 and Dy2Ti2O7 have been measured experimentally [5]. Hence the effective
coupling in Eq. (4.12) is ferromagnetic (Jeff > 0) in both HTO (Jeff = 1.8 K) and DTO
(Jeff = 1.1 K) and accounts for the frustrated ground state which characterises spin-ice
materials.

For calculating the effective-exchange fields resulting on a central RE-site of a two-
tetrahedra cluster the focus is only on the antiferromagnetic coupling constant Jnn. To
facilitate comparisons with the results obtained from the analysis of the dipolar fields
in Chapter 3, it is convenient to write the exchange Hamiltonian in the same notation
used therein 7

H0
exc = −Jnn S

0
0

6∑

j=1

S0
j , (4.13)

where now the spins S0
i assume values ±1 depending on e0 ·S0

j ej ≷ 0. Setting Jnn = J/3
as in Ref. [5], this can be rewritten as

H0
exc = −JkB

3
S0

0

6∑

j=1

S0
j = −JkB S0

0 ê0 ·
6∑

j=1

S0
j êj

= −|m|S0
0 ê0 ·

(JkB
|m|

6∑

j=1

S0
j êj

)
= −m0 ·Bexc(0) ,

(4.14)

where the Boltzmann constant kB has been introduced to ensure energies in Joules and
magnetic inductions in Tesla. This gives on the central site an effective-exchange field

Bexc(0) =
JkB
|m|

6∑

j=1

S0
j êj , (4.15)

by comparison between the exchange Hamiltonian in Eq. (4.14) and a Zeeman-type
interaction with the resulting field. In analogy with the dipolar fields discussed for the
two-tetrahedra cluster in Eq. (3.8), it is convenient to give the exchange effective field
in Eq. (4.15) as

Bexc(0) = J
kB

10µB

3∑

i=1

(
S0
i + S0

i+3

)
êi , (4.16)

where the spin terms of the upper (S0
i ) and lower (S0

i+3) tetrahedra are shown explicitly
together with their mutual easy axis êi (we replaced directly |m| ≈ 10µB for spin ice
dipoles).

It is straightforward now to calculate the exchange contribution to the magnetic fields
resulting in a site nearby a monopole. We refer to the same examples discussed in
section 3.2.1 in the previous chapter, where a north monopole is sitting next to the

7 Here the overall sign is opposite to Eq. (4.12) because e0 · ej = 1/3, while the local Ising axis
notation gives êi · êj = −1/3. As we shall see, the local Ising axes coincide with the zi axes for the
local coordinate systems that will be given in Eq. (4.22).



4.1 Exchange interaction and effective spin-spin Hamiltonian 74

central spin of a two-tetrahedra cluster which can undergo a flipping. Of the nine
possible configurations featuring a north monopole in the lower tetrahedron, results
are given given only for those represented in the left panel of Fig. 3.7, as the others can
be obtained by two-fold rotations of 120 ◦ around the local easy axis. We find

Bexc(0) = 2J
kB

10µB

(
ê1 − ê3

)
(4.17a)

Bexc(0) = 2J
kB

10µB

(
ê2 − ê3

)
(4.17b)

Bexc(0) = 0, (4.17c)

for the respective configurations on the left, central and right columns of Table 3.1.
Interestingly these have similarities with the ones found from the dipolar fields: the
directions of the resulting fields are the same, (− 1√

2
, 0, 1√

2
) and (0,− 1√

2
, 1√

2
) respec-

tively for the first and second case, and an identically null field in the third one. The
remaining six cases for a north monopole in the lower tetrahedron are obtained by
global rotations of these around the < 111 > axis of the central dipole (analogously
there are nine configurations for a south monopole). Hence also for the exchange all
the non null-field configurations are purely transverse to the central easy axis. This
means that there is no longitudinal component which would inhibit the tunnelling we
found stimulated by the transverse dipolar couplings. In this case, however, the orien-
tation of the resulting field is opposite to the corresponding dipolar cases; this happens
because the resulting fields are pointing in the same direction as the dipolar ones but
with strength proportional to J < 0 (with Jnn = J/3).

Limitations of this model for exchange. What’s next? By considering this
model for the exchange interactions it seems that the dipolar fields and the exchange
ones tune together the resulting transverse field which induces the tunnelling of the
central ion. For example if we were to consider the case of Ho2Ti2O7 this would have
any of the transverse fields with strength −0.75 T which would give a net resulting
magnitude of −0.42 T once combined with the 0.33 T of the correspondent dipolar
cases. Then for HTO it seems that, at least up to a nearest neighbour level, exchange
changes the orientation of the overall nearest neighbour fields but it does not change
their order of magnitude. The tunnelling rates from Chapter 2 then are expected to
be similar to those arising from the dipolar fields analysis in Chapter 3. In the case
of Dy2Ti2O7 the higher magnitude of the exchange constant gives resulting transverse
fields of strength−1.80 T, which are now even higher in magnitude than the dipolar ones
(combined together they would give ≈ −1.47 T). This makes more explicit a result that
was already found for HTO: the strength of the dipolar coupling constant |Dnn| > |Jnn|
does not imply that the dipolar fields dominate over the exchange interactions.

This result, however, is not totally surprising since this model for the exchange fields
has a series of implicit approximations in it. For example the spins are still consid-
ered only as classical dipoles with Ising anisotropy. Furthermore, the directions of the
resulting exchange fields are the same to the dipolar ones mainly because of the geomet-
rical degrees of freedom which derive from the classical description of the anisotropies.
The terms transverse to the local Ising axis, are not even considered as higher order
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corrections. In particular for the magnetic pyrochlores, where there is not a unique
crystalline axis defining the Ising anisotropy for the whole system, considering off-Ising
kinds of interaction is crucial. In these systems, in fact, the superexchange between
the magnetic ions is mediated via the oxygen ions sitting at the centres of the tetra-
hedra hosting the spins at their vertices. Hence, it is necessary to give a formulation
of the exchange between the magnetic sites which takes into account the role of the
oxygens in acting as a mediator of this interaction channel. The ideal framework is to
consider the behaviour of the magnetic electrons of any two RE-sites which participate
in the exchange mechanism and lead to an effective magnetic interaction between the
RE-sites.

In the following sections we derive an effective exchange Hamiltonian for the magnetic
ions the oxides RE2Ti2O7, by means of a fourth-order strong-coupling perturbation
theory adopted successfully by Onoda et al for some magnetic pyrochlores which are
known for exhibiting strong quantum features [59, 30, 62]. This method derives the
exchange interaction between neighbouring RE3+ ions using a model for virtual hopping
of electrons via different quantum states. Such states are the 4f orbitals of the two RE
ions considered, and the 2p orbitals of the O1 oxygen “between” them. In shorthand
we refer to this 4-step virtual process as RE→O1→RE’→O1→RE, where RE and RE’
are at different vertices of a tetrahedron and O1 is the oxygen ion sitting at the centre
of it.

4.2 Global and local coordinate frames

To describe the hopping of electrons in different sites, it is convenient to use two general
sets of coordinate frames: the global X,Y,Z for the O1 sites, and the local xi,yi, zi for
the RE-sites (as in Fig. 4.2). This distinction is necessary because of the anisotropic
arrangement of the magnetic ions in this type of pyrochlore oxides. In fact, in Chapter 2
we gave a description of the quantum states |MJ〉 of a RE3+ ion with respect to a
quantisation axis z0 that is parallel to the local easy axis (this was shown in Fig. 2.8 in
the context of the application of a magnetic field on the x0,y0z0). Such axis together
with the other system of local coordinates will be defined in section 4.2.2.

In contrast to this the oxygen ions do not exhibit magnetism since all the shells are
totally filled with electrons. Hence for the O1 sites it is convenient, as reference frame,
the global one which belongs to the space group Fd3̄m accounting for all symmetries in
RE2Ti2O7 [35].

The above considerations imply that the wave function of a given electron refers to
the set of coordinates chosen for the site of the ion considered.

4.2.1 The global picture

The O1 ions, sitting in the centres of the tetrahedra of the pyrochlore lattice, belong
to a diamond lattice. This is given by two fcc interpenetrating sublattices and it is
convenient to group the O1 oxygens into two subclasses, depending on the fcc lattice
they belong to. We call “primary” the O1 sites in positions

R = n1R1 + n2R2 + n3R3, (4.18)
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Figure 4.2: Two examples of local coordinate frames, x0,y0, z0 (red) and x1,y1, z1

(blue), for the different RE ions (green spheres), as opposed to the global coordinate frame
X,Y,Z (grey). The former Cartesian coordinates are ideally suited to describe the local
D3d point group symmetry of the RE-ions due to the local CF environments, while the
latter one is preferable for global properties, like the Fd3̄m space group symmetries, of
the whole lattice. Here the global coordinate system X,Y,Z is shown on an oxygen site,
since the O1 sites (yellow spheres) sitting in the centres of the RE coordination tetrahedra,
mediate the exchange of electrons between the magnetic RE3+ ions with different local
coordinates xi,yi, zi. The local reference coordinate system used in Chapter 2 is x0,y0, z0

as shown in Fig. 2.8.

with n1, n2, n3 integer numbers and

R1 =
a

2
(0, 1, 1), R2 =

a

2
(1, 0, 1), R3 =

a

2
(1, 1, 0), (4.19)

the basis for the primary fcc lattice (a ≈ 10.1Å is the unit-cell edge in Spin Ice). The
“secondary” O1 sites are in positions R + 2ai, with i = 0, 1, 2, 3 and

a0 =
a

8
(−1,−1,−1), a1 =

a

8
(−1, 1, 1),

a2 =
a

8
(1,−1, 1), a3 =

a

8
(1, 1,−1). (4.20)

Note that for each primary O1 site there are 4 secondary O1 “nearest neighbours” and
vice versa. On the other hand, for all the O1 sites the electronic 2p orbitals have local
axes that are parallel to the global ones. Hence, in simple words, the quantum states
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of any electron at an O1 site are given with respect to the canonical basis:

X = (1, 0, 0), Y = (0, 1, 0), Z = (0, 0, 1), (4.21)

where Z is conventionally chosen as the quantisation axis.

4.2.2 The local picture

The RE magnetic ions sit at the vertices of the corner-sharing tetrahedra: r = R + ai.
These locate the midpoints between neighbouring O1 sites positioned in the centres of
the tetrahedra. The local coordinate frame basis vectors at the RE-sites are

x0 =
1√
6

(1, 1,−2), y0 =
1√
2

(−1, 1, 0), z0 =
1√
3

(1, 1, 1), (4.22a)

x1 =
1√
6

(1,−1, 2), y1 = − 1√
2

(1, 1, 0), z1 =
1√
3

(1,−1,−1), (4.22b)

x2 =
1√
6

(−1, 1, 2), y2 =
1√
2

(1, 1, 0), z2 =
1√
3

(−1, 1,−1), (4.22c)

x3 = − 1√
6

(1, 1, 2), y3 = − 1√
2

(−1, 1, 0), z3 =
1√
3

(−1,−1, 1), (4.22d)

with i = 0, 1, 2, 3, depending on the RE ion of interest. The local basis xi,yi, zi
corresponds to each RE-site r = R + ai. One of the reasons for the choice made in
Eqs. (4.22a-4.22d) is that it satisfies the relation

3∑

i=0

(xi,yi, zi) = (0,0,0) . (4.23)

This ensures that all the local zi directions point inward for the tetrahedron centred at
the primary O1 site R (outward for the secondary O1 sites). Furthermore these sets of
local coordinates are convenient 8 because they preserve some of the symmetries of the
space group Fd3̄m, for example the invariance under 180◦ rotations of the whole system
about the three axes parallel to X,Y,Z and passing through the O1 sites.

4.2.3 Rotations in R3: the Euler angle matrix

The local coordinate frames are related to the global ones via rotations by the following
paired angles:

ϕ0 =
π

4
, ϑ0 = arccos

1√
3
, (4.24a)

ϕ1 = 3ϕ0, ϑ1 = −π + ϑ0, (4.24b)

ϕ2 = −ϕ0, ϑ2 = −π + ϑ0, (4.24c)

ϕ3 = −3ϕ0, ϑ3 = ϑ0, (4.24d)

8 In particular for the exchange Hamiltonian in Eq.(17) of Ref. [30].
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for the RE-sites at r = R + ai, with respectively i = 0, 1, 2, 3.

The angles ϕi, ϑi are choices of the so called Euler angles of rotation. To understand
their meaning we briefly review how rotations in R3 are described by means of matrices.
It is known that any rotation of a vector v ∈ R3 can be described as

v′ = Rz(ϕ)Ry(ϑ)Rz(γ) v , (4.25)

where (ϕ, ϑ, γ) is a set of Euler angles, and Ru(δ) is the generic matrix for a rotation
of angle δ around an axis u [63]. A given choice of angles (ϕ, ϑ, γ) and axes (x, y, z)
provides a unique parametrisation of the so called Euler rotation matrix

R(ϕ, ϑ, γ) = Rz(ϕ)Ry(ϑ)Rz(γ) , (4.26)

which account for the v′ → v transformation. Although this is clearly a product of
rotations only around y and z, for completeness we report here the three single-angle
rotation matrices:

Rx(δ) =




1 0 0
0 cos δ − sin δ
0 sin δ cos δ


 , (4.27a)

Ry(δ) =




cos δ 0 sin δ
0 1 0

− sin δ 0 cos δ


 , (4.27b)

Rz(δ) =




cos δ − sin δ 0
sin δ cos δ 0

0 0 1


 . (4.27c)

We can now give the meaning of the angles (ϕi, ϑi) listed in Eqs. (4.24a-4.24d) in
terms of the Euler parametrisations 9 (ϕi, ϑi, 0) which account for the global → local
transformations:

xi = R(ϕi, ϑi) X, (4.28a)

yi = R(ϕi, ϑi) Y, (4.28b)

zi = R(ϕi, ϑi) Z, (4.28c)

with R(ϕi, ϑi) = Rz(ϕi)Ry(ϑi) giving

R(ϕi, ϑi) =




cosϕi cosϑi − sinϕi cosϕi sinϑi
sinϕi cosϑi cosϕi sinϕi sinϑi
− sinϑi 0 cosϑi


 ≡ (xT

i ,y
T
i , z

T
i ), (4.29)

where vT represents the transpose of a vector v. One of the properties relevant for our

9 It is convenient to choose γi = 0, ∀i = 0, 1, 2, 3.
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calculations is that the Euler rotation matrices are unitary:

R−1(ϕ, ϑ) = RT(ϕ, ϑ) . (4.30)

4.2.4 Rotations in the Hilbert space: the Wigner matrix

The quantum-mechanical description of a physical system requires a Hilbert space
usually attached to a reference frame [63]. For example the choice of the quantisation
axis Z for the O1 sites gives a “point of view” to depict the quantum states of the
electrons occupying these sites.

When a reference frame of a quantum state |ψ〉 undergoes a rotation of angle δ around
an axis u, the new state is given by

|ψ(δ)
u 〉 = R̂u(δ) |ψ〉 = exp(−iδĴu) |ψ〉 (4.31)

where Ĵu is the projection of the angular momentum operator Ĵ on the rotation axis u.
An arbitrary rotation in the Hilbert space, corresponding to an Euler parametrization
(ϕ, ϑ, γ) in R3, is described by the rotation operator

R̂(ϕ, ϑ, γ) = R̂z(ϕ)R̂y(ϑ)R̂z(γ)

= exp(−iϕĴz) exp(−iϑĴy) exp(−iγĴz) .
(4.32)

with quantisation axis z. Rotations of angular momentum eigenstates are obtained by
means of the so called Wigner D-matrix :

R̂(ϕ, ϑ, γ) |j, m̃〉 =

+j∑

m=−j
|j,m〉Djm,m̃(ϕ, ϑ, γ)

=

+j∑

m=−j
|j,m〉 〈j,m| R̂(ϕ, ϑ, γ) |j, m̃〉 ,

(4.33)

where {|j,m〉} is the basis of the Hilbert space E(j) defined by the quantum number
j of the operator Ĵ2, and |j, m̃〉 represents an eigenstate of Ĵz with quantum number
m̃ = −j, . . . ,+j [63].

As already mentioned, in the case of interest to us only two Euler parameters (ϕi, ϑi)
are needed for each global ↔ local rotation. Then the Wigner matrices

Rm′,m(ϕi, ϑi) ≡ Djm′,m(ϕi, ϑi, 0)

= 〈j,m′| R̂(ϕi, ϑi) |j,m〉
= e−iϕim

′ 〈j,m′| e−iϑiĴy |j,m〉
(4.34)

correspond to the rotations R(ϕi, ϑi) given in Eqs. (4.28-4.29). From now on we refer
to the Wigner rotation matrix as Rm′,m(ϕi, ϑi) to use the same notation adopted by
Onoda in Ref. [30]. The rotation matrices in Eq. (4.29) and Eq. (4.34) are fundamental
tools to derive the hybridisation and effective-exchange Hamiltonians.

In the following section such Hamiltonians are derived by means of virtual hopping of



4.3 f-p hybridisation and second quantisation 80

electrons among lattice sites with different local coordinate frames.

4.3 f-p hybridisation and second quantisation

In magnetic pyrochlore oxides there is an O1 oxygen at the centre of the tetrahedron
which hosts four RE ions in its vertices [6, 30]. Because of this arrangement the
4f electrons of the RE ion can hop to the 2p levels at the O1 site. This implies
that these oxygen sites allow a super-exchange mechanism between electrons hosted
in neighbouring RE-sites. Here we derive an effective exchange Hamiltonian directly
from the f -p hybridisation between the RE3+ and the O2− ions. This expands the
calculation from the two-electron case of Pr3+ in Ref. [30] to a more general case for
RE ions with larger number of electrons in the f shell. To account for all the quantum-
mechanical features, the electrons are expressed in the second-quantised formalism of
the many-body theory.

4.3.1 Many-body fermionic operators

In the previous chapters we have seen how the magnetic ground-state of the Ho3+ ion is
expressed as a linear superposition of angular momentum eigenstates |MJ〉. This type
of representation is ideal for describing quantum mechanisms, such as the tunnelling of
a large spin, where the electrons in the magnetic orbitals behave in a “cooperative” way
and it is more convenient to ignore part of their “individual” properties. On the other
hand the many-body formalism is a very powerful tool when dealing with microscopic
mechanisms such as the exchange between single electrons in different quantum states.
Hence it is necessary to introduce a few fundamental notions of many-body theory for
fermions [57].

Fermions are quantum particles with a half integer spin. They are known for having a
strong constraint on their physical properties: one quantum state can only be occupied
by one fermion at a time (Pauli principle). In general the quantum state of n electrons
can be expressed as

|ψ〉 =
∑

q1,q2...qn

Cq1,q2...qn â
†
q1
â†q2

. . . â†qn |0〉 (4.35)

where |0〉 represents the vacuum state and each fermionic â†qi operator creates an elec-
tron in a quantum state qi (a set of quantum numbers) 10. The coefficients Cq1,q2...qn

account for the different contribution of each electronic configuration in the linear ex-
pansion. For example, since the 2p shell of the O2− ion is totally filled, we can represent
this electronic state as

|∆〉 = p̂†−1,− 1
2

p̂†−1, 1
2

p̂†
0,− 1

2

p̂†
0, 1

2

p̂†
1,− 1

2

p̂†
1, 1

2

|0〉 (4.36)

where each p̂†ml,ms represents an electron with magnetic quantum numbers ml and ms

for the orbital and spin angular momenta respectively. In Eq. (4.36) the coefficient
Cml1,ms1... = 1 because there is only one possible configuration for a full shell.

10Note all fermionic operators used here are time-independent.
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To allow a complete modelling of these quantum states it is necessary to introduce
an annihilation operator âqi that is defined by âqi |0〉 = 0. Then the so called number

operator n̂qi = â†qi âqi accounts for the number of particles occupying a given quantum
state (for a given state qi only eigenvalues nqi = 0, 1 are allowed because of the Pauli
principle). A detailed discussion on the properties of the fermionic operators goes
beyond the interest of this work and can be found in Ref. [57]. Here we only summarise
few of their general ones and then switch to what is relevant for electrons in RE ions.
The anticommutation relations for fermionic operators are the fundamental ingredients:

{âqr , â
†
qs} = δqr,qs ,

{âqr , âqs} = {â†qr , â†qs} = 0 ;
(4.37)

the anticommutator is defined by the following relation

{A ,B} ≡ AB +BA . (4.38)

From the anticommutation rules in Eq. (4.37) it is straightforward to derive the follow-
ing rules which account for the correct statistics for fermions [57]:

â2
qr = â† 2

qs = 0 =⇒ â†qs â
†
qs |0〉 = 0; (4.39a)

âqr â
†
qr = 1− â†qr âqr =⇒

{
(â†qr âqr)

2 = â†qr âqr ,

â†qr âqr(1− â†qr âqr) = 0.
(4.39b)

The former prevents two particles form occupying the same state, the latter shows that
the number operator n̂qr = â†qr âqr has only the eigenvalues zero and one. Hence these
two properties make explicit that from the anti-commutation relations in Eq. (4.37) the
Pauli principle is satisfied. Furthermore it is straightforward to prove that the com-
mutator [n̂qr , n̂qs ] = 0, even though the individual creation and destruction operators
anticommute [57].

4.3.2 Fermionic-operator representation for the magnetic quantum
states of RE3+ ions

In analogy with the expression for a generic quantum state |ψ〉 given in Eq. (4.35), the
quantum states for a RE ion are given by 11

|MJ〉 =
∑

q1,q2...qn

CMJ
q1,q2...qn f̂

†
q1
f̂ †q2

. . . f̂ †qn |0〉 . (4.40)

Here |0〉 represents the vacuum state for the magnetic ion, i.e. no electrons in the 4f

shell (empty shell). The operator f̂ †q acting on the vacuum creates an f -electron in
the quantum state q = ml,ms. The possible values can only be ml = −3,−2, . . . , 3
for the orbital quantum number and ms = −1/2, 1/2 for the spin quantum number of
each electron. On the other hand, the possible states MJ = −J,−J + 1, . . . ,+J for the
projection of the total angular momentum MJ =

∑
n(ml +ms)n, depend in general on

11Note that in general permutations of fermionic operators generate different quantum states, ac-
cording to the anti-commutation relations given in Eq. (4.37).
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the number n of electrons (Hund’s rules) populating the ground state multiplet of the
RE ion. The coefficients CMJ

q1,q2...qn are combinations of the Clebsh-Gordan and Wigner
coefficients which regulate the compatibility between the different representation for
the quantum states of the electrons (this will be discuss more in the subsection below).

A trivial example of decomposition, giving a unique ten-electron many-body configu-
ration, is the polarised |MJ = J〉 state of Ho3+

|MJ = 8〉 = f̂ †−3, 1
2

f̂ †−2, 1
2

f̂ †−1, 1
2

f̂ †
0, 1

2

f̂ †
1,− 1

2

f̂ †
1, 1

2

f̂ †
2,− 1

2

f̂ †
2, 1

2

f̂ †
3,− 1

2

f̂ †
3, 1

2

|0〉 . (4.41)

Pr3+ provides a counter example, where the |MJ = J〉 polarised state is given by a
mixture of two-electrons many-body states [30]:

|MJ = 4〉 =

[√
2

165
f̂ †

3, 1
2

f̂ †
0, 1

2

+
1√
165

f̂ †
2, 1

2

f̂ †
1, 1

2

− 3√
110

(
f̂ †

3, 1
2

f̂ †
1,− 1

2

+ f̂ †
3,− 1

2

f̂ †
1, 1

2

)
+

3√
11
f̂ †

3,− 1
2

f̂ †
2,− 1

2

]
|0〉 ,

(4.42)

with the C4
q1,q2

coefficients depending on the quantum numbers qi = mli ,msi for the
two electrons i = 1, 2 in the f -shell of the trivalent praseodymium ion.

These examples help to illustrate the results obtained when expressing the |MJ〉 states
in terms of fermionic operators acting on the vacuum. The complete list of the |MJ〉
states for Pr3+ in terms of superposition of two-body operators is given in Appendix
B of Ref. [30]. For systems with more than two electrons, this becomes extremely
cumbersome and the whole list cannot fit into few pages and would have very little
use for the reader (for example |MJ = 0〉 in Ho3+ is a superposition of more than 40
different fermionic configurations!). Part of the original work carried out in this project
consisted in writing a routine capable, by means of a computer algebra, of deriving the
complete list of expansions in Eq. (4.40) for Ho3+ and Dy3+ 12.

4.3.2.1 Clebsch-Gordan coefficients and Wigner-Eckart theorem: a few
tips for a routine to tackle them

The many-electron |MJ〉 states, as mentioned in Chapter 1, are an ideal set of states for
systems where the Russell-Saunders is a good coupling scheme for the angular momenta.
Obtaining a general expression for Eq. (4.40) is practically impossible, as the way in
which the electrons combine depend on the Hund’s rules and so on the specific system.
As a part of the work carried out during the calculations discussed in the present
chapter it revealed necessary to have a method which to derive the set of states in
Eq. (4.40). For these it was not derived a general analytical expression, but a routine
for a computer algebra capable of calculating all the states of a given RE3+ ion where
the angular momenta J, L, S are conserved. As the procedure is extremely cumbersome,
mainly because of the coding effort to implement the commutation relations between
the operators, here we mention only in general how it has been tackled.

12Such routine can actually be applied to a large variety of magnetic systems.
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The decomposition of the total angular momentum states as

|J,MJ〉 =
∑

ML,MS

CMJ
ML,MS

|L,ML;S,MS〉 , (4.43a)

with

CMJ
ML,MS

= 〈L,ML;S,MS |J,MJ〉 (4.43b)

Clebsch-Gordan coefficients, can be found in many textbooks [43, 64, 27, 28]. Not as
immediate is the derivation for the decomposition

|L,ML;S,MS〉 =
∑

ml,ms

CML,MS
ml,ms

|l,ml; s,ms〉1 ⊗ · · · ⊗ |l,ml; s,ms〉n (4.44a)

mainly because the CML,MS
ml,ms are not simply Clebsch-Gordan coefficients but rather

products of them which derives from the multiple combination of the possible electronic
states.

The evaluation of the coefficients is extremely simplified by iterations performed with
a computer algebra. More specifically we implemented a method which, summarising,
exploits the Wigner-Eckart theorem. Such theorem, in general, allows the calculation
for the matrix elements of a rank k (spherical) tensor operator T̂k between any two
angular momentum states as

〈j,m|T kq |j′,m′〉 = 〈j||T k||j′〉 Cj,mj′,m′;k,q, (4.45)

where Cj,mj′,m′;k,q = 〈j′m′; kq|jm〉 are the Clebsch-Gordan coefficients [65] and the matrix

element 〈j||T k||j′〉 is independent on m,m′. It is important to note that here |j〉
and |j′〉 are in general different total angular momenta, which is also the case for
the problem of calculating 〈l,ml; s,ms|L,ML;S,MS〉 in Eq. (4.44a). Practically, the
WignerEckart theorem makes the action of a spherical tensor operator of rank k on an
angular momentum eigenstate equivalent to the action of “adding” a single state with
angular momentum k.

This allowed us to compute the quantum states of a RE3+ ion starting for example
by Eq. (4.41) and applying iteratively the fermionic operators to “populate” the other
|MJ〉 states . The non-zero Clebsch-Gordan coefficients, and a careful implementation
of the anticommutation relations in Eq. (4.39) made the rest of the game in obtaining
the correct decomposition of states.

4.3.3 The f-p hybridisation Hamiltonian in the many-body formalism

In the pyrochlores RE2TM2O7 the bond distance RE-O1 (≈ 2.2 Å) is one of the shortest
known for RE oxides [6]. This gives to the RE-site a strong axial symmetry leading to
the local Ising anisotropy in spin ices, e.g. the ground state crystal-field doublet of Ho3+

ions in Ho2Ti2O7 discussed in Chap.2. Furthermore, although the 4f electrons in RE
ions are known for their localisation, the vicinity between the O1 and RE ions makes
their hybridisation so strong that it is necessary to consider the tunnelling of electrons
(or holes) between the two different ionic sites. However, since the 2p orbitals of the O1
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site are all occupied with electrons there is no possibility to host any further electron
coming from the RE 4f shell. Still, because the hybridisation mixes the orbitals of
the two different sites, it is necessary to introduce an exchange interaction between
the electrons at the O1 and RE-sites (it is as if the hybridisation “opens a channel”
for correlations between electrons at sites that otherwise would be isolated with each
other).

The Hamiltonian for the exchange between a 4f electron in a RE-site and a 2p electron
in a neighbouring O1 site is prportional to

(
ĥτR+ai

)
m,µ
σ,η

=f̂ †R+ai,m,σ
(R†R+ai

)m,µ
σ,η

p̂R+(1+τ)ai,µ,η

+ p̂†R+(1+τ)ai,µ,η
(RR+ai

)µ,m
η,σ

f̂R+ai,m,σ
.

(4.46)

This is the building-block for the f -p hybridisation in RE oxides in terms of the many-
body formalism. The first term creates an electron with ml = m,ms = σ/2 at the RE-
site r = R+ai and annihilates one with m′l = µ,m′s = η/2 at the O1 site R+(1+ τ)ai;
the second term, hermitian conjugate (h.c.) of the former, creates an electron with
m′l = µ,m′s = η/2 at the O1 site R + (1 + τ)ai and annihilates one with ml = m,ms =
σ/2 at the RE-site r = R + ai. The quantities σ, η = ± are introduced as short-
hand notation for the two possible states of the electron spin; analogously τ = −1,+1
identifies respectively the primary (R) and secondary (R + 2ai) O1 sites 13. Hence
Eq. (4.46) gives the single-electron exchange between a RE ion and one of its two
neighbouring O1 ions. The Wigner matrix elements (RR+ai

)µ,m
η,σ

= 〈µ, η| R̂R+ai
|m,σ〉

account for the local↔global rotations between the two different onsite representations
of the electronic states (as discussed in Sec.4.2). For example the matrix (R†R+ai

)m,µ
σ,η

transforms the representation from the global frame for p̂R+(1+τ)ai,µ,η
to the local one

for f̂ †R+ai,m,σ
.

The Hamiltonian in Eq. (4.46) is a very general f -p exchange operator. In principle
can act in any superposition of states of the RE-O1 system

{
|RE〉R+ai

⊗ |O1〉R+(1+τ)ai

}
, (4.47)

as long as the choice τ,R,ai for the lattice sites is consistent. More exactly the f -p
exchange Hamiltonian leads to the hybridisation only of orbitals hosting the electrons in
their ground state and obeying the group symmetry Fd3̄m. For the oxygens, Eq. (4.36)
has already shown the unique many-electron state |∆〉 for the ground state of the O2−

ion with the 2p shell totally filled. For RE3+ ions, the crystal-field ground state in
general depends on the specific compound. Nonetheless this is expressed in any case
as a superposition of the |MJ〉 states known in terms of the fermionic operators acting
on the RE-vacuum (e.g. see Eqs. (4.40-4.42)). Hence it is straightforward to compute
the action of the exchange Hamiltonian in Eq. (4.46) on the states |MJ〉 ⊗ |∆〉, taking

13This is the same notation used in Ref. [30].
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into account the anti-commutation relations from Eq. (4.37) for the f̂ and p̂ operators

{f̂qr , f̂
†
qs} = δqr,qs {p̂qr , p̂

†
qs} = δqr,qs (4.48a)

{f̂qr , f̂qs} = 0 {p̂qr , p̂qs} = 0 (4.48b)

{f̂ †qr , f̂ †qs} = 0 {p̂†qr , p̂†qs} = 0 (4.48c)

with particular attention to the “mixed” ones giving

{f̂qr , p̂
†
qs} = {f̂qr , p̂qs} = {f̂ †qr , p̂†qs} = 0 , (4.49)

since the two operators act on different lattice sites.

In the full hybridisation Hamiltonian, made from all the possible contributions of
the terms in Eq. (4.46), some of the m-µ exchange channels are suppressed; the only
non-zero amplitudes Vm,µ are those compatible with the local symmetries 14. The f -p
electron transfer along the local z axis of the RE ion allows only ml = −1, 0, 1 as values
for the orbitals of the electrons 15. These correspond to the available types of f -p
bonding for the orbital hybridisation:

• pfπ bonding (ml = −1) between fy(5z2−R2) in RE and py in O1;

• pfσ bonding (ml = 0) between fz(5z2−3R2) in RE and pz in O1;

• pfπ bonding (ml = 1) between fx(5z2−R2) in RE and the px in O1;

their amplitudes Vm,µ = Vml are given by two Slater-Koster parameters Vpfσ = V0

and Vpfπ = V±1 [66, 67]. The orbitals here are all expressed with respect to the local
coordinates frames given in Eqs.(4.22) for the RE ions.

Then the full RE-O1 hybridisation Hamiltonian for the whole system is obtained by
summing the single-exchange Hamiltonian in Eq. (4.46) over all lattice sites and all
electron quantum numbers allowed by the symmetries:

Ĥt =
∑

R∈fcc

∑

τ=±

∑

m,µ=0,±1

Vm
∑

σ,η=±

(
ĥτR+ai

)
m,µ
σ,η

. (4.50)

The Hamiltonian given in Eq.(16) of Ref. [30] for the Pr3+-O1 hybridisation in py-
rochlore systems Pr2TM2O7 (where TM= Zr, Sn, Hf, and Ir) is equivalent to Eq. (4.50)
together with Eq. (4.46), here discussed for a more general RE3+-O1 hybridisation valid
for all magnetic pyrochlores RE2TM2O7. Since in these systems each O1 sits at the
centre of a tetrahedral arrangement of RE3+ ions, then the hybridisation of the oxy-
gen 2p orbitals involves all the four magnetic ions equally and introduces correlations
between their electrons. Such mechanism leads to the superexchange between neigh-
bouring magnetic ions mediated via the intermediate O1 ions sitting nearby. In the
following a derivation of the effective super-exchange Hamiltonian in the many-body
formalism is presented starting from the hybridisation discussed here.

14 Vm,µ is the amplitude for the hybridisation between the m orbital of the RE f shell and the µ
orbital of the O1 p shell.

15Note this does not imply any other selection rule for terms in the same Hamiltonian; neither m = µ
nor m 6= µ.
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4.4 From f-p hybridisation to RE-RE superexchange

In the context of exchange interactions in magnetic pyrochlore oxides, this section
discusses how a theoretical model for superexchange can be derived directly from the
power expansion of the f -p hybridisation between the RE and the O1 ions. In short,
the effective exchange between neighbouring magnetic sites in a RE2TM2O7 system is
due to the overlap of the (O1) oxygen p-orbitals with the surrounding f -orbitals of the
RE ions. The physical and mathematical approach is the same as the one discussed
in section 4.1, even if, rather than using the wave functions in Eq. (4.5), the theory
is developed making use of the fermionic operators in Eqs. (4.48-4.49). The second-
quantised formalism is preferred, not only for being more straightforward than deriving
the global wave function for a system with more than two electrons, but also for being
more suitable to tackle physical mechanisms, such as exchange, where undistinguishable
particles are allowed to explore complex quantum states 16.

The following subsections present a derivation of the Hamiltonian for the exchange of
electrons between neighbouring RE-sites. Starting from Ref. [30], where the Hamilto-
nian for the effective exchange between the RE-sites of a magnetic pyrochlore is given
as the result of a strong coupling perturbation expansion in Vpfσ and Vpfπ (see pre-
vious section), we consider a RE-O1-RE unit complex (see pictorial representation in
Fig. 4.3) to study the contribution of the possible virtual paths given by different se-
quences of electron-hops between an O1 oxygen and two of the RE-sites nearby (Fig. 4.5
and Fig. 4.6 show respectively the second and fourth-order processes for a RE-O1-RE
unit). Only virtual paths with even powers give observable contributions; the odd ones
produce new states which would correspond to rearrangements of electrons across the
lattice that are not compatible with the stoichiometry of the compound.

4.4.1 Setting up the perturbation expansion

The energy scales of the perturbation expansions are parametrised in terms of four
quantities characterising the virtual paths made by the electrons. These are U , the
Coulomb energy for the repulsion of any two electrons on the same RE-site, ∆, the
change in energy for the RE-O1-RE system if an electron is removed from the O1 site,
and Vpfσ, Vpfπ, the energy terms for the hybridisation of the orbitals.

The hybridisation between the 4f orbitals of a RE ion and the 2p orbitals of an O1
ion couples the fn ground state with the fn±1 virtual states; for the RE-site these
correspond to the virtual acquisition (fn+1) and ejection (fn−1) of one electron (see
Fig. 4.4). The local Coulomb repulsion between electrons increases with their number,
hence the access to a virtual state fn±1 depends on the energy cost of the local RE-O1-
RE system with respect to the total (of the same unit) ground-state energy. If U is the
average energy for the Coulomb interaction between any two electrons in the 4f -shell
of a fixed RE3+ ion, then if the shell hosts n electrons we have

E(n) =
n(n− 1)

2
U . (4.51)

16 These can be derived from the admixtures of single-body wave functions. For example the hy-
bridisation in Eq. (4.46) is an operator which produces hybridised quantum states when applied to the
kets in Eq. (4.47) of the RE-O1 composite system.
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3Ô
4
3

⇥
+ ⇤J⌅r6⇧

�
A6

0Ô
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tion.
At the classical level, a purely transverse field on a spin

makes the two states Si = ±1 degenerate. Quantum-
mechanically, the transverse field induces a finite splitting
�E01 between approximate bonding and anti-bonding
combinations of these states which in turn leads to a
finite spi-flip timescale

⌅ ⇥ �/�E01 (2)

for spontaneous quantum mechanical tunnelling be-
tweent the Si = +1 and �1 states. This calls for a study
of the quantum dynamics of an individual rare-earth spin
in the presence of a purely-transverse magnetic field in
these materials as a way to estimate the parameter ⌅ .
That is the subject of the present work.

II. CRYSTAL FIELD HAMILTONIAN

Our starting point is the crystal field Hamiltonian of a
single Ho3+ or Dy3+ ion in a trigonal environment with
D3d point group symmetry:

ĤCF =�J⇤r2⌅
⇤

A2
0Ô

2
0

⌅
+

⇥J⇤r4⌅
⇤

A4
0Ô

4
0 + A4

3Ô
4
3

⌅
+

⇤J⇤r6⌅
⇤

A6
0Ô

6
0 + A6

3Ô
6
3 + A6

6Ô
6
6

⌅
;

(3)

This describes accurately the e�ect of the crystalline elec-
tric fields on the orbitals of the magnetic electrons of the
RE3+ ion due to its 6 nearest surrounding oxygens, as
shown in Fig.(1).

Here

Ôk
q = Ôk

q

�
Ĵz, Ĵ±

⇥
(4)

are the Stevens operators [11], where Ĵ± = Ĵx ± iĴy

and Ĵ =
�
Ĵx, Ĵy, Ĵz

⇥
is the total angular momentum

operator of the ion. Eq.(A4) in the appendix gives
their explicit form for the case of interest (D3d sym-
metry). Evidently ĤCF acts on |J, M⌅, the eigenstates
of Ĵ2, Ĵz, with M = �J,�J + 1, ..., J � 1, J . The
matrix elements ⇤JM ⇥|ĤCF |JM⌅ are given in Ref.[12].
The CF parameters appearing in Eq.(3) are material-
specific, and account for the crystal field energy spec-
trum and respective wavefunctions. For Ho3+, the CF
paremeters were determined experimentally by the au-
thors of Ref. [13] by fitting the spectrum of ĤCF to neu-
tron scattering experiments. For Dy3+, Ref.[14] gives
an extrapolation from those determined experimentally
for other ions. In the appendix we describe how these

b) side view a) top view 

!"

RE-ion Bottom oxygens Top oxygens 

z y 

x 

B 

B 

Figure 1: Schematic view of the central RE-ion surrounded by
the 6 Oxygens which give a trigonal point-group symmetryto
the CF environment.

experimentally-determined parameters relate to those
appearing in Eq. (3).

Since the total angular momentum quantum number
is J = 8 (J = 15/2) for Ho3+ (Dy3+) the above Hamil-
tonian is a matrix of dimension 17 (16) and hence it is
straight-forward to diagonalise it numerically. In both
cases we find, as expected, that the ground state is a
doublet which can be described as corresponding to states
where the magnetic moment is pointing largely in oppo-
site directions along the 111 axis. For Dy3+ we find that
due to Kramers degeneracy all excited states are also
doublets. Ho3+, in contrast, is not a Kramers ion and
indeed we find both singlet and doublet excited states.
The wave functions and energies are displayed in Fig. 2.

III. GROUND-STATE ENERGY SPLITTING

The degeneracy between the ground states pointing in
the positive and negative directions along the 111 axis is
broken by application of a magnetic field, B:

Ĥ = Ĥ
CF

� gµBĴ · B. (5)

In this equation g = 5/4 (g = 4/3) is the Landé factor
for Ho3+ (Dy3+). The field B is partly due to the dipolar
fields of all the other magnetic moments in the sample. In
addition, there may be an externally applied component.
We are particularly interested in the case when the field
is purely transverse to the local 111 axis. Then

Ĵ · B =
1

2
|B|
�
e�i�Ĵ+ + ei�Ĵ�

⇥
(6)

where ⇧ is the angle that the field points in within the
plane perpendicular to that axis (⇧ = 0 corresponds to
a field, on the xy plane, aligned with one of the CF oxy-
gens). It is spins subject to such purely transverse field
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Figure 2: Stationary GS wave functions of the crystal field
Hamiltonian (3) for a Ho3+ ion on the left and a Dy3+ ion
on the right. In each plot there are two states because the
GS energy is doubly degenerate. The values for |MJ | < J ,
where J = 8 for Ho3+ and J = 15/2 for Dy3+, are rescaled
by a factor of 5. This helps to visualize also the values for
|MJ | �= J (the states are actually almost polarized because the
values for |MJ | = J are much higher than the others). These
quantities were obatined using the CF parameters given in
Ref.[13] for Ho2Ti2O7 and in Ref.[14] for Dy2Ti2O7.

that may flip sontaneously via quantum-mechanical tun-
nelling.

Diagonalisation of the Hamiltonian in Eq. (5) in the
presence of such purely-transverse field gives, as ex-
pected, a finite splitting between the two members of
the ground state doublet, �E01. We find that this split-
ting is the smallest gap in the energy spectrum, thereby
setting the rate of spontaneous spin flips via Eq. (2). The
dependence of �E01 on |B| is shown in Fig. 3. For very
large fields we find the anisotropic environment becomes
negligible and the splitting is given by the Larmor fre-
quency,

�E01 = �⇧Larmor = gJµB |B| (7)

As is clear from the plot, due to the strong cyrstal elec-
tric field in HTO and DTO, this regime is experimentally
unattainable, but we display it for clarity and complete-
ness. At lower fields, the crystal field comes into play and
the response of the system becomes anisotropic - though
we find that this anisotropy is much stronger for Ho3+

than for Dy3+ and, in particular, for ⇤ = 30o it leads to
some resonances (due to level crossing between E0 and
E1, see blue dotted-dashed line in Fig.(3)). Finally, for
lower still fields, of the order of 1T or below, the ion en-
ters the quantum tunnelling regime where �E01 is again

(approximately for DTO) independent of ⇤ and is given

Figure 3: Splitting of the ground state doublet of a rare
earth ion in spin ice under the influence of a magnetic field
that is purely transverse to the local 111 direction. The
red curves correspond to the non-Kramers ion Ho3+ while
the blue curves correspond to the Kramers ion Dy3+. For
each case the main panel shows curves for di�erent angles
of the transverse field: � = 0 (solid curve), � = 10o,
(short-dashed), � = 20o (dotted) and � = 30o (dotted-
dashed). The black dashed lines show the limiting behav-
iors given by Eqs. (7,8). The insets show the �-dependence
for B = 0.03, 0.55, 10, 11.311, 12, 200, 228.334, 300, 106 (bot-
tom to top, Ho3+) and B = 1, 10, 100, 103, 106 (bottom to
top, Dy3+). Outisde the range shown, the baviour as a func-
tion of � repeats periodically. Note the resonances for Ho3+

at � = 30o and B = 11.311T, 228.334T and the change of
sign of the oscillations for Dy3+ for higher fields.

by a power-law:

�E01 = �
(2)
HTO |B|2 (Ho3+

) (8)

�E01 = �
(3)
DTO |B|3 (Dy3+

) (9)

The above low-field behaviours can be understood, using
degenerate perturbation theory, by considering the Zee-
man interaction in Eq.(6) as a small perturbation with
respect to CF Hamiltonian:

Ĥ = Ĥ
CF

� ⇥V̂ (10)

Here ĤCF is exaclty solved and we label by |⌅(0)
n ⇤ the CF-

eigenstate of with energy E
(0)
n (with n = 0, ..., 2J). The

perturbation V̂ ⇥ ECF
Ĵ·B
�|B| is tuned by ⇥ = gJµB |B|/ECF

(ECF is an arbitrary reference energy scale, e.g. related
to the CF bandwidth) and we find that the splitting has
the form
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where J = 8 for Ho3+ and J = 15/2 for Dy3+, are rescaled
by a factor of 5. This helps to visualize also the values for
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values for |MJ | = J are much higher than the others). These
quantities were obatined using the CF parameters given in
Ref.[13] for Ho2Ti2O7 and in Ref.[14] for Dy2Ti2O7.
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Figure 4.3: Pictorial representation of the superexchange of electrons between two neigh-
bouring RE ions in a pyrochlore oxide. The (fully) green tubes represent the edges of the
tetrahedron hosting the RE ions (green spheres); only two of them are shown sitting in
r and r’ coordinates, vertices of a tetrahedron of the pyrochlore lattice. The red arrows
account for the orientation of the magnetic moments localised on the RE-sites (pointing
inward the tetrahedron in in this case, i.e. with positive polarisation along their respective
quantisation axes in Eq. (4.22)). The light-blue curly arrows mimic the four consecutive
virtual hops of one electron across a RE-O1-RE unit.

This is the local Coulomb (repulsive) energy associated to a configuration of the mag-
netic electrons in a RE-site r. The total energy for the ground state fnr p6

O1fnr′ of a
RE-O1-RE unit is given by

E(n) + 6∆ + E′(n) = n(n− 1)U + 6∆ , (4.52)

where both RE-sites, r and r′, have the same number n of electrons and ∆ is an
estimation for the energy of the six non-magnetic electrons on the O1 site with respect
to the E(n) energy level of the RE. Analogously, for a virtual state the total energy is
obtained by counting the number of electrons on the different sites of the RE-O1-RE
system; for example fn+1

r p5
O1fnr′ is a virtual state with energy

E(n+ 1) + 5∆ + E′(n) = n2U + 5∆ , (4.53)

that is δE = nU − ∆ above the ground state in Eq. (4.52). The difference in energy
between a given state and the ground state gives the weight regulating the contribution
of the different virtual states resulting from the perturbative power expansion.

These methods can be used to study the virtual processes of the n electrons between
the RE3+ ions and the O1 oxygens in any RE2TM2O7 system. They also include the
case of the Praseodymium zirconate and stannate in Ref. [30] where there are only
n = 2 electrons in the 4-f shell of the Pr3+ ion. To make the calculation simpler it is
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Figure 4.4: Generalisation of Fig.2 in Ref. [30] for a magnetic pyrochlore system of RE3+

ions with n electrons in the f shells. It represents the local energy level scheme for f
and p electrons of a RE-O1-RE unit. The local quantisation axes zr and zr′ are shown
to indicate the spins corresponding to the stable fn electronic configurations. The green
horizontal lines, behind the red arrows indicating the spins, illustrate the energy levels due
to the n electrons in the RE3+ ions (here there are ten lines as example for the n = 10
electrons in the 4f shell of Ho3+). The dotted lines above and below represent the energies
of the virtual states when an electron is respectively added (n + 1) or removed(n − 1) in
the RE-site.

convenient to rewrite the Hamiltonian in Eq. (4.46) as

ĥ = f̂ †m,σ (R†)m,µ
σ,η

p̂µ,η + p̂†µ,η (R)µ,m
η,σ

f̂m,σ , (4.54)

where the position indices have been dropped since every RE-O1-RE unit always in-
volves only one O1 site for each couple of n.n. RE-ions. The product of p terms

ˆ̃
h(p) =

∑

µ1,µ2,...µp=0,±1
η1,η2,...ηp=±

〈∆|
(
Vmĥ

)
1

(
Vmĥ

)
2
. . .
(
Vmĥ

)
p
|∆〉 (4.55)

constitutes the main building-block for any order of expansion of the hybridisation
Hamiltonian. In Eq. (4.55), the sum over the quantum numbers {µi, ηi} of the electrons
in the oxygen state |∆〉 in Eq. (4.36) leaves only a operators acting on the RE-sites.
These are made explicit only after such product is expanded in all of its terms, because
the labels r and r′ for the n.n. RE-sites of the same RE-O1-RE unit have to be given to
the f̂ operators only when it is time to rearrange them according to the commutation
relations. The commutation relations on the lattice sites, Eqs. (4.48-4.49), imply that
in general each labelling leads to a different combination of operators.

4.4.1.1 The standard procedure to derive the observables of a given order

i) Make the product of an even number of terms Vmĥ as in Eq. (4.55);
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ii) after expanding the product, sum over the quantum numbers allowed for the elec-
trons in the O1 orbitals (this leaves only the f̂ operators acting on the RE-sites);

iii) label the f̂ operators, with indices r and r′, according to the virtual paths (Fig. 4.5
and Fig. 4.6 are useful respectively for the second and fourth-order powers of the
expansion);

iv) assign the weight for each path according to the virtual energies spanned by the
electrons;

v) rearrange the operators and remove the spurious terms (those, for example, with
order lower than four in the 4-th order expansion for superexchange).

Before discussing the two different cases of the second and fourth-order terms for the
RE2TM2O7 compounds it is recommended to read first Appendix B.1; here a brief
introduction of exchange and effective magnetic interaction is given in a more general
context than 4.1.1. Following mainly Ref. [58], this is done using many-body fermionic
operators to represent only the electrons of the magnetic sites without considering
the underlying structure of the ligands of a real compounds. This kind of approach
discusses and justifies the use of a strong coupling perturbation theory for the magnetic
pyrochlore oxides from the more general perspective of systems with strongly correlated
electrons. Being a less complex model, namely the one-band Hubbard model, where
the local electrons on the non-magnetic ions are not considered, it also simplifies the
understanding of the diagrams for the virtual processes, with characteristic paths and
energies, considered in the following subsections 4.4.2-4.4.3. For the reader familiar with
the topics discussed in Appendix B.1, the suggestion is to read directly the following
two subsections after a look at Fig. B.1 which could help as a simple comparison to
Fig. 4.5 and Fig. 4.6.

4.4.2 The second-order: a correction to the CF states

The second-order of perturbation in Vpfσ, Vpfπ produces non-vanishing effects for the
RE ions. Although these are trivial and lead only to a renormalisation of the CF
parameters without any explicit contribution to the effective magnetic interactions,
they also represent a simpler example of the perturbative effects, compared to the
exchange ones presented in the next subsection (4.4.3).

Starting form the ground state configuration fnr p6
O1fnr′ of a RE-O1-RE unit, a double

iteration of the hybridisation Hamiltonian (p = 2 in Eq. (4.55)) takes the system back
to the same ground state only when applied both times on the same RE-site (either r
or r′). This is because, in contrast to the one-band Hubbard model, briefly discussed
in Appendix B.1, the kinetic part of the Hamiltonian here acts on two different kinds
of sub-lattice; one, magnetic, for the RE ions, the other, non-magnetic, for the O1 ions.
Consequently each application of the hybridisation Hamiltonian consist in the hopping
of one electron between the oxygen and only one of the RE-sites of the RE-O1-RE unit.
On the other hand the kinetic term in the Hubbard Hamiltonian acts directly on two
magnetic sites, so that electrons hop from one (magnetic) site to the other already at the
first order; from this a second order perturbation introduces exchange interactions[58].
The first non-trivial effects from the perturbation in Vpfσ, Vpfπ appears at the fourth
order discussed in the next subsection (4.4.3).

The diagram in Fig. 4.5 shows the total electronic state of a RE-O1-RE system evolv-



4.4 From f-p hybridisation to RE-RE superexchange 90

fn
r p6

O1f
n
r0fn

r p6
O1f

n
r0

fn+1
r p5

O1f
n
r0

fn
r p5

O1f
n+1
r0

Figure 4.5: Schematic representation of the virtual electron-hops between the f -orbitals
of the RE ions and the p-orbitals of the O1 ion. From left to right, the virtual processes
consist in the hop of one electron from the oxygen to only one of the two RE ions of the
RE-O1-RE unit; then another hop back from the same RE to the same O1. Here the blue
arrows indicate the electron-hops between the RE-site r and O1; the red ones indicate the
electron-hops between the same O1 and the other RE-site r′. Each path, upper blue and
lower red, leads to the renormalisation of the local CF parameters, for the magnetic ions
in r and r′ respectively .

ing under the twofold application of the hybridisation Hamiltonian. Starting from the
ground state, fnr p6

O1fnr′ , the system accesses only one of the two virtual states allowed,
fn+1
r p5

O1fnr′ or fnr p5
O1fn+1

r′ , and goes back to an equivalent ground state. Note that the
spin-degrees of freedom are not considered in Fig. 4.5. The virtual hopping of elec-
trons in this schematic representation does not involve any quantum number explicitly.
These, however, need to be taken into account in the following analytical calculation.

The second-order building-block

According to the procedure summarised in the previous subsection, we first write down
the building-block terms obtained from Eq. (4.55) for the second order of perturbation

ˆ̃
h(2) =

∑

µ1,µ2=0,±1
η1,η2=±

〈∆|
(
Vmĥ

)
1

(
Vmĥ

)
2
|∆〉

= Vm1Vm2

∑

µ1,µ2=0,±1
η1,η2=±

〈∆|
(
((((

((((
(((

f̂ †m1,σ1 (R†)m1,µ1
σ1,η1

p̂µ1,η1 + p̂†µ1,η1 (R )µ1,m1
η1,σ1

f̂m1,σ1

)

×
(
f̂ †m2,σ2 (R†)m2,µ2

σ2,η2
p̂µ2,η2 +

((((
((((

(((
p̂†µ2,η2 (R )µ2,m2

η2,σ2
f̂m2,σ2

)
|∆〉
(4.56)

where the outer terms have already been cancelled because of the action of the p̂
operators on the 2-p filled shell of the oxygen (〈∆| p̂µ1,η1 = 0 and p̂†µ2,η2 |∆〉 = 0 from
Eq. (4.36)). Whence, Eq. (4.56) is simplified to

ˆ̃
h(2) = Vm1Vm2

∑

µ1,µ2=0,±1
η1,η2=±

〈∆|
(
p̂†µ1,η1 (R )µ1,m1

η1,σ1
f̂m1,σ1 × f̂ †m2,σ2 (R†)m2,µ2

σ2,η2
p̂µ2,η2

)
|∆〉

(4.57)
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which, making use of the commutation relations for different lattice sites in Eq. (4.49),
can be reordered as

ˆ̃
h(2) = Vm1Vm2 f̂m1,σ1 f̂

†
m2,σ2

∑

µ1,µ2=0,±1
η1,η2=±

〈∆| p̂†µ1,η1 p̂µ2,η2 |∆〉 (R†)m2,µ2
σ2,η2

(R )µ1,m1
η1,σ1

,
(4.58)

where the f̂ operators do not depend on the indices of summation.

Now the p̂ operators act directly on the oxygen state |∆〉 in Eq. (4.36), hence, from
the equivalence

∑

µ1,µ2=0,±1
η1,η2=±

〈∆| p̂†µ1,η1 p̂µ2,η2 |∆〉 (R†)m2,µ2
σ2,η2

(R )µ1,m1
η1,σ1

=
∑

µ1,µ2=0,±1
η1,η2=±

〈∆| n̂†µ1,η1 |∆〉 δµ1,µ2δη1,η2(R†)m2,µ2
σ2,η2

(R )µ1,m1
η1,σ1

=
∑

µ1,=0,±1
η1,=±

〈∆| n̂†µ1,η1 |∆〉 (R†)m2,µ1
σ2,η1

(R )µ1,m1
η1,σ1

= (R†R )m2,m1
σ2,σ1

,

(4.59)

Eq. (4.58) can be simplified to the following form:

ˆ̃
h(2) = Vm1Vm2 f̂m1,σ1 f̂

†
m2,σ2 (R†R )m2,m1

σ2,σ1
. (4.60)

The second-order effective Hamiltonian

Now if the two operators act on different sites, e.g. r and r′, then f̂r,m1,σ1 f̂
†
r′,m2,σ2

=

−f̂ †r′,m2,σ2
f̂r,m1,σ1 , which means having an operator that annihilates an electron on site

r and creates one on the other site r′. This implies a real charge transfer which would
take the RE-O1-RE unit out of its local ground state configuration. Hence this choice
of site-labelling cannot be allowed to this order of perturbation; it would correspond to
alternating the colours of the arrows (blue/red and red/blue) in Fig. 4.5.

In contrast, if both operators in Eq. (4.58) act only on one of the two sites the system
returns to its initial ground state; this corresponds to the virtual processes shown in
Fig. 4.5. The upper path, with blue arrows, corresponds to acting only on the RE-
site r both times; the lower one, with red arrows, corresponds to acting only on r′,
the other one of the same RE-O1-RE unit. The two paths are equivalent because of
the symmetries of the system (they also have the same energy above the ground state
level; see Eq. (4.53)). In both cases the original ground state is recovered. Whence the
effective Hamiltonian from the second order effect of the hybridisation is

ĥ2nd
eff =

2

nU −∆
Vm1Vm2

(
1− f̂ †m2,σ2 f̂m1,σ1

)
(R†R )m2,m1

σ2,σ1
. (4.61)

where the anti-commutation relations are now different for operators acting on the same
site. This is given for a RE3+ ion with n electrons in the 4f shell; the dependence on
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the RE considered is explicit in the energy weight given by the inverse of nU −∆,being
the energy gap between the virtual states, Eq. (4.53), and the ground state, Eq. (4.52).
The factor 2 in the numerator account for the equivalence of the two paths.

Being localised only in one of the two RE-sites of each unit at a time, the effects
of the second order correspond to a renormalisation of the CF parameters obtained
from the point charge model where no contribution of the ligands, i.e. hybridisation
of orbitals, is estimated. The Hamiltonian in Eq. (4.61) has to be considered in one
RE-site at a time, hence separately in r and r′ for the same RE-O1-RE unit. In the
case of study such renormalisation would be redundant since the CF parameters have
been extrapolated by means of a fitting to neutron scattering (see Chap.2).

If compared to the 2nd order of perturbation in the strong-coupling limit of the one-
band Hubbard model, Eq. (4.61) gives an odd result. In the latter case (briefly discussed
in Appendix B.1) the second order already produces effective magnetic interactions
due to exchange between the magnetic sites, while the former one only introduces
local renormalisation of the single ion physics. For clarification it is useful to compare
Fig. 4.5 and Fig. B.1 where it is evident that the sequence of arrows defining the
two virtual paths have different colours: blue-blue (top) and red-red (bottom) for the
RE pyrochlores (readjusting the CF parameters), while blue-red (top) and red-blue
(bottom) for the Hubbard model (leading to exchange). The repetition of colours in
the former reflects the action localised only on one of the two magnetic sites of the RE-
O1-RE unit, i.e. the reason for having only a correction to the local CF parametrisation.
In contrast, the latter case has blue and red arrows in each path indicating that the
action of the perturbative operators is on both sites in any case. Hence to have effective
exchange coupling between different RE-sites it is necessary to have a Hamiltonian
which i) annihilates an electron on one magnetic site and recreates it on the other one
(now there are virtually two electrons on one site and no electrons in the other, this
costs an energy U to the system); ii) annihilates one of the two electrons occupying the
same virtual state and recreates it on the empty site. This is the only one way to have
exchange between electrons and also maintain the same ground state configuration, or
equivalent, allowed by the hybridisation Hamiltonian.

In the following subsection 4.4.3, using a similar approach, it is shown 17 how the fourth
order power in Eq. (4.55) opens up a wider range of virtual paths for the electron-hops.
This leads to an effective magnetic interaction between the total angular momenta of
two neighbouring RE ions.

4.4.3 The fourth-order: leading terms for superexchange

The fourth order in Vpfσ, Vpfπ is the first one giving non trivial effects for the magnetic
interaction between neighbouring RE-sites of a pyrochlore oxide RE2TM2O7. This
subsection is a summary of the calculation to derive a superexchange Hamiltonian
starting from the hybridisation Hamiltonian in Eqs. (4.54-4.55). Such derivation is
presented explicitly for the first time in this thesis as in Ref. [30] no analytical details
about this derivation are given 18. The work of Onoda et al in Ref. [30] is focused on

17More details on the calculation are given in Appendix B.2.
18 Onoda et al. give directly the Hamiltonian in Eq.(17) of Ref. [30], for the exchange of electrons be-

tween the RE-sites of a RE-O1-RE unit, as an immediate consequence of the hybridisation Hamiltonian
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magnetic pyrochlores that are good candidates as quantum spin ices; there the quantum
mechanics of the single ions physics is not strong compared to the quantum features
arising from the spin-spin coupling between the RE ions. This kind of systems have
magnetic ions which do not possess the Ising like anisotropy of the spin ices This is
because of the coupling between the local CF environment and the small size of the
dipole moment of the magnetic ions.
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Figure 4.6: Generalisation of Fig.3(b) in Ref. [30] for a RE3+ ions with n electrons in the
f -shell. It gives a schematic representation of the virtual paths of the electrons exchanged
between two RE3+ ions, in r and r′, via an intermediate O1 site.Each configuration frpO1fr′

describes the composite electron system of the three sites together: for example fn
r p6

O1fn
r′ is

the ground-state configuration, with n electrons on each of the RE-sites and 6 on the oxygen
one (this is the same configuration both at the beginning and at the end since the system
has to return to its original state after exploring the intermediate virtual states). The total
number of electrons is conserved, but the intermediate configurations can have different
electrons on the different sites. There are 6 possible paths which are shown separately in
Fig. 4.7 and Fig. 4.8. Notice that any of the paths has the same exchange mechanisms:
two r ↔ O1 (blue arrows) and two r′ ↔ O1 (red arrow).

On the other hand, since spin ices have been considered exclusively as classical systems,
it is essential to understand, and ideally quantify, the quantum physics occurring at a
single ion level. Once again this is extremely relevant for studying the low temperature
dynamics (e.g. monopole hopping) which otherwise would be totally frozen in a purely
classical system. Because of this it has been necessary to reconsider the approach
proposed by Onoda in Ref. [30] for a RE2TM2O7 system with Pr3+ ions (with only two
electrons on the 4-f shell), and generalise it so that it could grasp the physics relevant
also for “classical” systems such as Ho2Ti2O7 and Dy2Ti2O7. Since the mathematical
procedure to derive the Hamiltonian for the effective exchange from the fourth order
in Vpfσ, Vpfπ is rather cumbersome, most of the details are left in Appendix B.2. The
following is a summary of these calculations whose main steps are described by means
of the diagrams in Figs. 4.6-4.8, in analogy with the method used for the simpler second
order case in subsection 4.4.2.

The diagram in Fig. 4.6 shows the total electronic configuration of a RE-O1-RE system
exploring the intermediate states allowed by the fourth order virtual processes found by
means of the hybridisation Hamiltonian (taking p = 4 in Eq. (4.55)). Analogously to
the second order case, the virtual paths start with an electron hopping from the oxygen

in Eq. (4.50) (Eq.(16) in Ref. [30]) without providing any mathematical discussion about it.
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ion of the ground state configuration fnr p6
O1fnr′ to one of the two RE-sites (first arrows,

blue and red, from the left in Fig. 4.6); being at the fourth order, the system can now
explore more virtual states than the two allowed at the second order (Fig. 4.5). The
constraint is again to recover an equivalent ground state allowed by the local Hund’s
rules at the end of any virtual process. In contrast to the second order case, each fourth
order path has three intermediate virtual states, rather than just one, before the RE-
O1-RE unit recovers the initial configuration. The possible six paths in Figs. 4.6 are
shown separately in Fig. 4.7 and Fig. 4.8 to help visualising the different contribution
associated to each one. To each intermediate step an energy cost is associated; this
depends on the reshuffling of the 2n+ 6 electrons among the three sites of the RE-O1-
RE system where the virtual exchange takes place. Because of these energies, each path
is characterised by a weight which depends on the energetic cost to access the three
intermediate virtual states starting from the ground state. In short, the sequence of
intermediate configurations for the various paths defines the energy cost of the virtual
processes. The arrangement of the paths, shown separately in Fig. 4.7 and Fig. 4.8,
highlights the equivalence between (a), (b), (c) and (a′), (b′), (c′) respectively. Since
the distinction of the two groupings of diagrams arises from the RE-site involved in the
first hop of each path (r, blue arrow, for the former diagrams while r′, red arrow, for the
latter ones) the respective virtual processes must be equivalent for symmetry reasons
deriving from the equivalence of the two RE-sites of the same RE-O1-RE unit19.

The fourth-order building-block

In analogy with the procedure used for the second order case, to derive the contribu-
tion of the fourth order terms, the first step consists in expanding the product of the
Hamiltonian in Eq. (4.55) for p = 4

ˆ̃
h(4) =

∑

µ1,µ2,µ3,µ4=0,±1
η1,η2,η3,η4=±

〈∆|
(
Vmĥ

)
1

(
Vmĥ

)
2

(
Vmĥ

)
3

(
Vmĥ

)
4
|∆〉 ,

(4.62)

which, taking into account the action of the p̂ operators on the states |∆〉 (see Eqs. (B.10-
B.12) in Appendix B), leads to the following expression

ˆ̃
h(4) = Vm1Vm2Vm3Vm4

×
[
f̂m1,σ1 f̂

†
m2,σ2 f̂m3,σ3 f̂

†
m4,σ4 (R†R)m2,m1

σ2,σ1
(R†R)m4,m3

σ4,σ3

+ f̂m1,σ1 f̂m2,σ2 f̂
†
m3,σ3 f̂

†
m4,σ4

(
(R†R)m3,m2

σ3,σ2
(R†R)m4,m1

σ4,σ1

− (R†R)m3,m1
σ3,σ1

(R†R)m4,m2
σ4,σ2

)]

(4.63)

where only the f̂ operators and the rotation matrices for the angular momentum quan-
tum numbers of the RE ions are left. At this stage the ordering of the f̂ operators
reflects the order of the product in Eq. (4.62); the operators will be rearranged af-

19 This is shown algebraically in section B.2 of Appendix B.
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terwards depending on the labelling of the position indices within a given RE-O1-RE
system. The commutation relations in Eq. (4.48) will characterise the arrangement of
the operators and will determine the action of the rotation matrices associated to the
4th order terms.

In the second order case it has been found that only two virtual paths are allowed by
the labelling of the RE-sites of a given RE-O1-RE system (r-r and r′-r′ respectively
for the blue-blue and the red-red paths in Fig. 4.5). In the fourth order, six different
sequences are allowed for the virtual electron-hops recovering the initial frpO1fr′ ground
state. Now the labelling will give an effective magnetic interaction between two RE-sites
because each path in Fig. 4.6 corresponds to a Hamiltonian, derived from Eq. (4.63),
where two f̂ operators act on the sites r and two on the sites r′ of a given RE-O1-RE
unit. Before proceeding with the labelling of the operators it is convenient make the
notation for the indices shorter by using i for the quantum numbers mi, σi of an electron
on the RE-site r. Then Eq. (4.63) can be written as

ˆ̃
h(4) = V1V2V3V4

[
f̂1 f̂

†
2 f̂3 f̂

†
4 (R†R)2,1 (R†R)4,3

+ f̂1 f̂2 f̂
†
3 f̂
†
4

(
(R†R)3,2 (R†R)4,1 − (R†R)3,1 (R†R)4,2

)
,

] (4.64)

where the labels for the RE-sites have not been introduced yet. Adding the labelling
to distinguish the action of the f operators on the RE-sites, is necessary to determine
the contribution of the different paths (see Figs. 4.7-4.8 for the diagrams decomposing
the possible paths of Fig. 4.6). Now the operator f̂r,mi,σi will be represented as f̂i while

f̂r′,mi,σi , acting on the other site r′ of the RE-O1-RE unit, will be f̂i′ .

The fourth-order effective Hamiltonian

From Eq. (4.64) it is possible to extrapolate the contribution for the virtual paths
in Fig. 4.6 which are given separately in Fig. 4.7 and Fig. 4.8. Each virtual path is
characterised by the labelling of the operators in the product of Eq. (4.62) 20 and by
the total weight due to the energies of the intermediate states. In analogy with the 2nd
order case in Eq. (4.61), these weights for the various paths are found considering the
energy gap between the intermediate virtual energies (here there are more than just
two)

n2U + 5∆ for fn+1
r p5

O1fnr′ and fnr p5
O1fn+1

r′

(n2 − n+ 1)U + 6∆ for fn+1
r p6

O1fn−1
r′ and fn−1

r p6
O1fn+1

r′

(n2 + n)U + 4∆ for fn+1
r p4

O1fn+1
r′

(4.65)

and the ground state energy

(n2 − n)U + 6∆ for fnr p6
O1fnr′ (4.66)

20 The ordering of the operators in Eq. (4.64) is kept fixed with respect to Eq. (4.62).
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(c)
Figure 4.7: Decomposition of the virtual paths in Fig. 4.6 starting with a blue arrow
(acting on the site r). The three diagrams help to visualise separately the different con-
tributions to the exchange mechanism found in the fourth order of perturbation of the
hybridisation Hamiltonian. The contribution of each path is also determined by the weight
found from the energies associated to the hops of the electron across the virtual interme-
diate states between the two equivalent ground state configurations. The energies of the
virtual states are estimated, as explained in subsection 4.4.1, by counting the number of
electrons on each site of the RE-O1-RE unit. The weight associated to the virtual path in
(a) is different from the two in (b) and (c) that are equivalent with each other.
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Figure 4.8: Decomposition of the virtual paths in Fig. 4.6 starting with a red arrow (acting
on the site r′). The three diagrams help to visualise separately the different contributions
to the exchange mechanism left from Fig. 4.7. The weight associated to the virtual path
in (a′) is different from the two in (b′) and (c′) that are equivalent with each other. For
symmetry reason these are respectively equivalent to (a), (b) and (c) in Fig. 4.7 (this is
verified analytically in Appendix B.2).
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of the RE-O1-RE system. From these, it is straightforward to derive the following
weights characterising the six virtual paths in Fig. 4.7 and Fig. 4.8:

w(a) = w(a’) =
1

U(nU −∆)2

w(b) = w(b’) =
1

2(nU −∆)3

w(c) = w(c’) =
1

2(nU −∆)3
.

(4.67)

These are valid for any RE-O1-RE system whose RE3+ ions at the ground state have
n electrons in the 4f shell; U is the energy cost for the Coulomb repulsion between two
electrons on the same RE-site. Now it is possible to gather up the analytical results
for the virtual fourth order processes allowed by Eq. (4.62).

The fourth order processes for the blue-red-blue-red paths (a) and (b) in Fig. 4.7
correspond to the following Hamiltonian

ĥ4th
(a),(b) =

V1V2′V3′V4

(nU −∆)2

[
f̂1 f̂

†
2′ f̂3′ f̂

†
4

U
(R†R)2′,1 (R†R)4,3′

+
f̂1 f̂2′ f̂

†
3′ f̂
†
4

2(nU −∆)

(
δ3′,2′ δ4,1 − (R†R)3′,1 (R†R)4,2′

)] (4.68)

where also the dependence on the energies associated to each of the two paths has been
included. Analogously, the path (c) in Fig. 4.7 corresponds to

ĥ4th
(c) =

V1V2′V3′V4

(nU −∆)2

f̂1 f̂3′ f̂
†
2′ f̂
†
4

2(nU −∆)

(
δ2′,3′ δ4,1 − (R†R)2′,1 (R†R)4,3′

)
. (4.69)

In these expressions it has been used the unitarity of the Rotation matrices when acting
on the same lattice site, for example (R†R)4,1 = δ4,1 for r and (R†R)3′,2′ = δ3′,2′ for
r′. More algebraic details about the procedure to derive these Hamiltonians can be
found in subsection B.2.1 of Appendix B. These terms can be grouped together with
the ones for the “primed” paths in Fig. 4.8 (see subsection B.2.1.1); then, by using the
commutation relations in Eq. (4.48) and keeping only the fourth order terms 21, these
lead to the following Hamiltonian accounting for the exchange of electrons between two
neighbouring RE-sites r and r′

(
ĥexc

)
4,1,2′,3′

= −2
V1V2′V3′V4

(nU −∆)2
f̂ †4 f̂1 f̂

†
2′ f̂3′

×
[
− 1

nU −∆
δ2′,3′ δ4,1 +

(
1

nU −∆
+

1

U

)
(R†R)2′,1 (R†R)4,3′

]
.

(4.70)

21 Eq. (B.33) of Appendix B summarises the lower order terms left from the commutation relations
of the fourth order expansion. These contribute to the renormalisation of the CF parameters of the
point charge model, together with Eq. (4.61) from the 2nd order expansion.
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At this stage it is convenient to adopt the notation used in Onoda’s work [30], where
the relabelling

2′ → 1′ 4→ 1

3′ → 2′ 1→ 2 ,
(4.71)

gives 22

(
ĥexc

)
1,2,1′,2′

= −2
V1V1′V2V2′

(nU −∆)2
f̂ †1 f̂2 f̂

†
1′ f̂2′

×
[
− 1

nU −∆
δ1,2 δ1′,2′ +

(
1

nU −∆
+

1

U

)
(R†R)1,2′ (R†R)1′,2

]
.

(4.72)

After summing over the allowed quantum numbers and all the nearest-neighbours lattice
sites this gives

Ĥff =
∑

1,2,1′,2′

(
ĥexc

)
1,2,1′,2′ (4.73)

where the sum over the boldface integers reads

∑

1,2,1′,2′
≡

n.n.∑

〈r,r′〉

∑

m1,m2,m′1,m
′
2=0,±1

σ1,σ2,σ′1,σ
′
2=±

.
(4.74)

Eq. (4.73) and Eq. (4.72) give the Hamiltonian for the effective exchange of electrons
between the magnetic sites of the pyrochlore lattice of a RE2TM2O7. Apart for the
minus sign, it is equivalent to the Hamiltonian of Eq.(17) in the work of Onoda et
al. in Ref. [30]. The discrepancy in the sign might be due to the “simplified” method
used here to derive the fourth order expansion. Unfortunately in Ref. [30] no analytical
details are given about the derivation of the effective exchange Hamiltonian hence it is
not possible to conduct any direct comparison.

Here, for consistency with the literature, the Hamiltonian is given in the same notation

22 The notation used in Ref. [30] does not reflect the initial ordering of the hybridisation operators
in Eq. (4.62), it refers to the ordering of the fourth order operators in the exchange Hamiltonian in
Eq. (4.72) and Eq. (4.75).
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of Eq.(17) in Ref. [30]:

Ĥff =
2

(nU −∆)2

n.n.∑

〈r,r′〉

∑

m1,m2,m′1,m
′
2=0,±1

σ1,σ2,σ′1,σ
′
2=±

Vm1 Vm′1 Vm2 Vm′2

× f̂ †r,m1,σ1 f̂r,m2,σ2 f̂
†
r′,m′1,σ

′
1
f̂r′,m′2,σ

′
2

×
[
− 1

nU −∆
δm1,m2
σ1,σ2

δm′1,m′2
σ′1,σ

′
2

+

(
1

nU −∆
+

1

U

)
(R†rRr′)m1,m′2

σ1,σ′2

(R†r′Rr)m′1,m2

σ′1,σ2

]
.

(4.75)

Eq. (4.75) is the most general Hamiltonian for the fourth-order superexchange of
electrons in any magnetic pyrochlore RE2TM2O7. To summarise, r and r′ are the
coordinates of the neighbouring RE-sites, n is the number electrons in the f -shell of
the RE3+ ions of the system considered, and U , ∆ and Vm = Vpfπ, Vpfσ are the energy
scales regulating the virtual mechanisms of electron hopping described in Fig. 4.4 and
Fig.4.6.

In the next section this Hamiltonian is given in another representation in the con-
text of spin ice materials, to make more explicit the magnetic features implicit in it.
Such representation is different from the ones proposed in Ref. [30] and constitute a
completely original part of the work presented in this thesis.

4.5 Quantum exchange interaction between RE3+ ions in
a pyrochlore lattice

The simplest case where the exchange of electrons translates into effective magnetic in-
teraction between the sites hosting them has been shown in section 4.1.1. In particular,
in Eq. (4.8), the exchange coupling constant was derived from the symmetries of the to-
tal wave functions expressed in terms of the single electron states. The present section,
analogously, discusses how to obtain an effective magnetic coupling between the RE3+

sites of a pyrochlore lattice using the results obtained in the two previous sections in
the context of f -p hybridisation and superexchange of electrons in a RE-O1-RE system.

The fully quantum-mechanical Hamiltonian in Eq. (4.75) can be converted in the
Russell-Saunders coupling scheme by projecting it onto the |MJ〉 ⊗ |M ′J〉 states ex-
pressed in terms of the fermionic operators 23. This describes completely the effective
magnetic coupling between the RE3+ ions of any pyrochlore RE2TM2O7 due to the
virtual exchange of electrons discussed in the previous section. In this context the
quantum mechanical observables are represented in terms of matrices with dimensions
(2J +1)2× (2J +1)2, where J is the quantum number for the total angular momentum
of the RE3+ ion.

Despite the fact that some of the magnetic pyrochlore oxides are systems with strong

23 A general expression for the expansion of |MJ〉 in terms of the f̂†r,m,σ operators is given in Eq. (4.40).
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quantum fluctuations [6, 68], such quantum-mechanical description is usually simpli-
fied by a number of approximations. These, once again, originate from the (local)
constraints which the crystal-field environment imposes on the magnetic degrees of
freedom of the RE3+ ions. In fact, as most of the properties of magnetic pyrochlores
are understood in terms RE-ions behaving like pseudo-spins [6], a typical choice is to
project the Hamiltonian in Eq. (4.75) only onto the subspace of the ground state dou-
blet and work with a set of operators expressed as tensor products of the Pauli matrices,
i.e. of dimensions 4× 4 [30, 69, 68, 70, 71].

Because of the peculiar effects that the monopoles induce on the otherwise totally
frozen state of the spin ice materials, the method presented in the following section is
an “educated” compromise between a quantum mechanical description and the classical
Ising typically used in this system. Namely, the quantum-mechanical exchange interac-
tion between any two RE3+ ions in spin ice is given by projecting only one of them onto
the ground state doublet of the crystal-field and leaving the other as “fully quantum”.
This approximation is proposed to estimate the (quantum) effects that the exchange
interactions induce on a given RE-ion in the (classical) approximation of projecting
its neighbouring spins on the frozen configurations allowed by the CF ground states
24. It serves, in general, the purpose of investigating, and eventually quantifying, the
strength of the non-Ising exchange between the spin-ice magnetic dipoles, and, more
specifically for this work, it manifests as crucial for the field-induced magnetodynamics
presented in the last section of Chapter 2. In Chapter 5, in the context of the hop-
ping of monopoles, the dynamical effects due to the characteristic dipolar fields near
a monopole, derived in Chapter 3, are compared to the ones induced by the exchange
interactions presented below.

4.5.1 Exchange interaction between a RE3+ ion and a spin-ice “spin”

To describe the exchange Hamiltonian for a free quantum mechanical RE3+ ion coupled
to another one “frozen” in a given state |ψ〉 we restore the formalism of pointer operators
(often called projectors). It is preferred as it allows, at least in very general terms, the
description of a Hamiltonian otherwise too cumbersome.

Starting from Eq. (4.75), by means of a computer algebra we calculate the complex
expansions in Eq. (4.40) for the |MJ〉 states in terms of the fermionic operators. This

enables the calculation of the matrix elements 〈ψ| 〈M̃J | Ĥff |MJ〉 |ψ〉, which allows us,
in turn, to obtain the general expression for the exchange Hamiltonian of a RE3+ ion

24 Note this is approximation is classical because each spin is projected in only one of the two states
of the ground state doublet. This is the state pinned by the longitudinal dipolar field induced in a
typical spin-ice state. This is not the case of quantum spin ices, where the RE3+ ions possess quantum
fluctuations which mix the ground states and it is necessary to project in the whole subspace of the
doublet.
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coupled to another RE3+ frozen in a spin-ice CF ground state |ψ〉 as

Ĥff (r, r′) = Eexc

{∑

MJ

(XMJ ,MJ
+ ΛMJ

) |MJ〉 〈MJ |

+
∑

MJ

[
XMJ ,MJ+1 |MJ〉 〈MJ + 1|

+ XMJ ,MJ+2 |MJ〉 〈MJ + 2|

+ XMJ ,MJ+3 |MJ〉 〈MJ + 3|+ h.c.
]}

.

(4.76)

The coefficients for the operators are the constant

Eexc =
2V 4

pfσ

(nU −∆)2

(
1

nU −∆
+

1

U

)
(4.77)

and the polynomials

ΛMJ
= a

4∑

p=0

A(p)
MJ
xp (4.78a)

X
MJ ,M̃J

(r, r′) =

4∑

p=0

(Cr,r′)(p)

MJ ,M̃J
xp , (4.78b)

with x =
Vpfπ
Vpfσ

. (4.78c)

The coefficients A(p)
MJ

and (Cr,r′)(p)

MJ ,M̃J
for a given p-th order are different. The former

are only non-trivial combinations of the Clebsch-Gordan coefficients in Eq. (4.40), the
latter are products of these same coefficients with complex analytical functions 25 of
the angles (ϕi, ϑi, ϕi′ , ϑi′) in Eq. (4.24); they relate the different coordinate systems in
Eq. (4.22) with each other. The only one constant which depends on the energy scales
U and ∆ and is not factored out of the curly brackets is the dimensionless

a = − U

(n+ 1)U −∆
(4.79)

which is found only in Eq. (4.78a), and so only on the diagonal part of Ĥff in Eq. (4.76).

The complexity of this general expression is substantially reduced by fixing the position
of the two RE3+ sites on the pyrochlore lattice. This, in fact, implies that all the
trigonometric functions for the relative angles between the two different local coordinate
systems, one for the quantum RE-ion in r, the other for the classical one frozen in r′,
simplify to a list of complex numbers. Hence, the generic interaction in Eq. (4.76)
depends only, as expected, on the parameters which are functions of the energy scales

25 These functions are very complex and cannot be reduced to a simple expression that could fit in
a few pages!
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in Eq. (4.75) in Eq. (4.78c). These are Eexc in Eq. (4.77), a in Eq. (4.79) and x =
Vpfπ/Vpfσ. A strategy to fix their values is given in subsection 4.5.3.

4.5.2 Quantum exchange of a RE3+ ion in a two-tetrahedra cluster

In the context of this quasi-quantum approximation to describe the effective exchange
fields induced on a central ion from its neighbouring (frozen) spins, it is straightforward
to derive the Hamiltonian for a RE3+ interacting with all the six neighbouring spins
around it. This is given by

Ĥexc =

6∑

j=1

Ĥff (r0, rj) (4.80)

where r0 denotes the position of the central RE-site and rj the positions of the neigh-
bouring frozen ions around it.

In Eq. (4.80) a given configuration of the six frozen spins corresponds to a specific
Hamiltonian for the central RE3+ ion. In this general model, where only the exchange
interaction is considered, the energies and eigenstates of such matrix account for the
possible magnetic states of the central ion which arise from an effective exchange-fields
induced by the surrounding spins (see examples of configurations in Fig. 4.9). The
general expression of the resulting Hamiltonian in Eq. (4.80) can be summarised in
terms of Eq. (4.76) with different coefficients ΛMJ

and X
MJ ,M̃J

which depend on the
arrangement of the six spins.

Ψ0 Ψ1

Figure 4.9: Antiferromagnetic coupling in a two tetrahedra cluster of the pyrochlore
lattice (the dipolar interactions are neglected). The ground state is found when the spins
in the tetrahedra assume the configuration all in/all out . This is shown in Ψ0 (left
panel) where all the spins in the lower tetrahedron point outward, while those in the upper
tetrahedron point inward. This is a broken-symmetry state whose degenerate counterpart
is found by inverting the direction of all spins. Ψ1 (right panel) shows a configuration,
excited with respect to Ψ0, where only the central spin is flipped. If Jnn is the coupling
constant regulating the interaction of any two spins in the cluster, then the difference in
energy between Ψ0 and Ψ1 is given by 12Jnn (E1 − E0 = 6Jnn − (−6Jnn)).
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Certain type of configurations lead to Hamiltonians which are of particular interest
for the work presented in this thesis. In Chapter 3, in the context of the dipolar
fields resulting on the central RE-site of a two-tetrahedra cluster, it was found that of
the nine possible configurations hosting a monopole in the lower tetrahedron, six were
giving a resulting fields (of the same magnitude) purely transverse to the local easy
axis and three were giving an identically null field. Three archetypical cases of such
were shown in Fig. 3.7. The corresponding Hamiltonians for the exchange interaction
resulting on the central RE-site of these same cluster show properties which also reflect
the symmetries of the different six-spin arrangements. For example, the configurations
A and B in Fig. 3.7, which were giving dipolar transverse fields, lead to Hamiltonians,

Ĥ(A)
exc and Ĥ(B)

exc respectively, which are both symmetric in the diagonal elements and are
one the conjugate of the other. The configuration C in Fig. 3.7 with a null field, on the

other hand, gives a Hamiltonian Ĥ(C)
exc for exchange with identically null off-diagonal

elements and the diagonal ones identical to those of Ĥ(A)
exc and Ĥ(B)

exc , i.e. also symmetric
with respect to the local quantisation (easy) axis z.

These properties are analytical and can be tested easily by fixing a coordinate system
for the central ion, for example x0,y0, z0 from Eq. (4.22a), and, consequently, using a
convenient set of xi,yi, zi for the surrounding spins (for the spins j = 1, 2, 3, 4, 5, 6 in
Fig. 4.9 the ideal choice is xi+3,yi+3, zi+3 = xi,yi, zi with i = 1, 2, 3 in Eq. (4.22)). The
importance of the configurations A, B, C will be shown more explicitly in Chapter 5
in the context of the hopping of a monopole through a spin-ice cluster. At this stage it

is worth anticipating that, from the properties of the Hamiltonians Ĥ(A)
exc , Ĥ(B)

exc , Ĥ(C)
exc

discussed just above, exchange interactions promise to play a role as interesting and
important as the dipolar ones. This statement derives from noticing that the statistics
of configurations found in the dipolar case in Chapter 3 coincide with those found in
the present one for the effective exchange.

Before implementing the exchange Hamiltonian in Eq. (4.80) in any realistic calcula-
tion it is necessary to suggest an estimation for its parameters.

4.5.3 Parametrisation for the quantum exchange of a RE3+ in spin-ice

To establish a choice of the parameters in Eq. (4.80) for the implementation of the ex-
change Hamiltonians together with the crystal-field and the dipolar one, it is convenient
to consider a cluster of two tetrahedra with the spins arranged as in Ψ0 on the lefthand
side of Fig. 4.9. This configuration represents the (broken-symmetry) ground state
for a system of spins with only antiferromangetic interaction. This is not a realistic
configuration for the ground state of spin ice, where, in contrast, the dominant near-
est neighbour ferromagnetic coupling gives a frustrated (2in-2out) degenerate ground
state. Nonetheless, the character of the pure exchange coupling is notoriously antifer-
romagnetic with Jnn = −0.52, −1.24 Kelvin for, respectively, Ho2Ti2O7 and Dy2Ti2O7

[5]. In other words, the configuration Ψ0 in Fig. 4.9 represents the ground state of a
“gedanken” system with classical spins having local Ising anisotropies, like the spin-ices,
but antiferromagnetic coupling between the nearest neighbours.

The classical approximation is imposed on the surrounding spins by projection on the
frozen (ground) states allowed by their local crystal fields. The strategy to obtain a
realistic parametrisation for the exchange Hamiltonian of a spin-ice material also needs
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the auxiliary contribution of the local crystal-field Hamiltonian for the central ion. This,
in turn, is the most realistic method for the parametrisation of any kind of interaction
magnetic ions in solids, as the crystal-field plays typically the most important role in
setting the structure of the magnetic states straight after the central ion approximation
in Eq. (1.3) (the relevance of the crystal-field in spin ice has ben discussed thoroughly
in Chapter 2).

Diagonalisation of the full crystal-field Hamiltonian for spin ice, for example Eq. (2.27)
with the parameters in Table 2.3, together with the exchange in Eq. (4.80),

ĤCF + Ĥexc, (4.81)

gives a spectrum, for the allowed states for the RE3+ ion, which depends only on the
parameters Eexc in Eq. (4.77), a in Eq. (4.79) and x = Vpfπ/Vpfσ in Eq. (4.78c). If a
choice of parameters guarantees that the ground state for the central ion satisfies the
antiferromagnetic alignment shown in Ψ0 of Fig. 4.9 this is already a reasonably good
set.

However, as the interest in fixing the parameters extends beyond the simple antiferro-
magnetic interaction, it is necessary to make an accurate choice which can be reliable
also for other spin ice configurations, with particular attention to meet the needs of
those featuring the presence of a monopole nearby.

According to Ref. [30], the value x ≈ −0.3 in Eq. (4.78c) is the most appropriate one
for magnetic pyrochlores. Hence the only two parameters left are Eexc, which is defined
positive, and a, which is negative and typically such that −1 ≤ a ≤ 0 for a system of
n electrons in the f -shell.
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Figure 4.10: Behaviour of the gap ∆E01 with respect to Eexc for three different curves
parametric in a in both systems, HTO (left panel) and DTO (right panel). a = 0 is shown
in a solid line, while a = −0.5,−1 are respectively the dotted and dotted-dashed lines. The
behaviour is very similar for the three different values of a.

At this stage the good couples of parameters {Eexc, a} are again, primarily, those
leading to the polarised ground state as in Ψ0 of Fig. 4.9. The more a tends to zero
the more stable the ground state is. Secondarily, after this has been assessed, it is
convenient to see the behaviour of the first gap ∆E01 in the spectrum of the full
Hamiltonian in Eq. (4.81) at different values of {Eexc, a}. ∆E01 is the energy-gap, in
the spectrum of the Hamiltonian in Eq. (4.81), between the excited configuration Ψ1



4.5 Quantum exchange interaction between RE3+ in pyrochlores 106

(right panel in Fig. 4.9) where the central spin has been flipped, and the state Ψ0

(left panel in Fig. 4.9) being the ground state favoured because of antiferromagnetic
alignment with the surrounding spins.

The behaviour of ∆E01 vs Eexc is illustrated in Fig. 4.10 for both HTO (left) and DTO
(right). The three parametric curves for a = −1,−0.5, 0 are almost totally overlapped,
showing the very weak dependence on this range of values.

Hence, for simplicity we take a = 0 and tune only Eexc to account for the correct
values of the gap. The equivalence

∆E01 = 12Jnn (4.82)

sets the value of ∆E01 at which each system picks the correct Eexc. From the values
|Jnn| ≈ 0.52K, 1.24K, in Ref. [5], for the nearest neighbour Ising exchange we obtain
Eexc ≈ 1.4meV, 2.3meV respectively for HTO and DTO. These are extrapolated from
the curves in Fig. 4.10 and expressed in meV in analogy with the parameters for the
crystal-field in Table 2.3.

In the following Chapter the quantum-quench regulating the dynamics of a RE3+ ions
next to a monopole is presented. This is done in the most general formalism which, as
we now understand, needs to include also exchange together with dipolar interactions.
The parameters used for the exchange Hamiltonian are the ones derived just above in
this section.



“When correlations are robust enough, familiar classical objective reality
emerges from the quantum substrate. Moreover, even a minute inter-
action with the environment, practically inevitable for any macroscopic
object, will establish such a correlation: the environment will, in effect,
measure the state of the object, and this suffices to destroy quantum
coherence. The resulting decoherence plays, therefore, a vital role in
facilitating the transition from quantum to classical.”

W.H. Zurek [31]

5
A quantum-quench picture of monopole
hopping

The present chapter has a twofold purpose in the structure of the whole thesis. Firstly, it
gathers the results obtained separately in the previous chapters in a “unified theory” for
spontaneous quantum-dynamics of a RE3+ in the presence of a monopole (section 5.1).
Secondly, in a wider view concerning the propagation of a monopole through a cluster,
it shows how such a model paves the way for a description of the key elements to be
considered in any meaningful characterisation of the monopole dynamics (section 5.2).

The hopping of a monopole from a tetrahedron of the diamond lattice to a neigh-
bouring one requires the flipping of the spin sitting at the vertex joining them. From
the two-tetrahedra analysis conducted in Chapter 3 a statistical character in the pos-
sible fields resulting on a RE3+ site of a monopole has emerged: although in all cases
the longitudinal component of the field is removed by the arrival of the monopole, a
purely transverse field, which is necessary for quantum dynamics, has probability of
2/3 to occur. Before deducing any conclusion about the kinematic constraints which
arise for the propagation of the monopoles, it is crucial to uncover the contribution
of the exchange Hamiltonian derived in Chapter 4 once it is implemented in the same
two-tetrahedra cluster hosting a monopole. Moreover, as the quantum-tunnelling of the
RE3+ in Chapter 2 appeared to be dependent not only on the strength of the transverse
field but also on the directions with respect to the local symmetries of the crystal-field,
it is necessary to assess, primarily, the probability of tunnelling under the combined
effect of exchange with dipolar fields and, secondarily, the orders of magnitude for the
characteristic timescales.

To this aim, the next section focuses on a model of quantum-quench which we propose,
in the most general formulation, as a tool to study the response of a (quantum) RE3+

ion under a sudden change of the local effective fields acting on it.

107
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5.1 Quantum-quench and spontaneous magnetodynamics

The model of quantum-quench given in this section exploits the mutual interactions
which nearest neighbour spins on a pyrochlore lattice induce on each other. The focus,
in particular, is in investigating the magnetodynamics characterising a RE3+ ion in
the presence of a monopole excitation nearby. The aim is to account for the spin-flip,
which underlies the monopole-hopping, by means of a realistic model of spontaneous
quantum-spin tunnelling.

5.1.1 A recap on the quantum dynamics of a RE3+ ion in spin-ice

To describe the quantum-quench mechanism we restore the formalism used in sec-
tion 2.5, where the quantum dynamics of a spin-ice RE3+ ion were induced by means
of a magnetic field transverse to the local 〈111〉 axis. These, from the unitary evolution
in Eq. (2.38), were uniquely determined by the initial condition |ψ(0)〉 for the state
of the RE3+ ion and the Hamiltonian Ĥ accounting for its interaction with the local
fields. In the simplified picture therein, the single RE3+ ion was studied solely in terms
of the effects induced by a magnetic field B acting as a perturbation on the CF states,
i.e. Ĥ = ĤCF + ĤB in Eq. (2.29). The interactions with the other magnetic ions in
the lattice were not considered.

The time-evolution, obtained by initialising the magnetic ion in a state |ψ(0)〉 polarised
along the local quantisation axis z0 (parallel to 〈111〉) and letting it evolve under a static
transverse field for different magnitudes and directions on the x0,y0 plane in Fig. 2.8,
brought to light the pivotal role of the D3d crystal-field symmetry in the tunnelling
mechanism of a RE3+ ion in spin ice. Not only does the CF spectrum characterise
the timescales for the tunnelling rates τ ∼ ~/∆E01 in Eq. (1.2) with different power
laws ∆E01 ∝ |B|p for HTO (p = 2) and DTO (p = 3), it also “monopolises” the time-
dependence of the probability density |ψ(t)|2. More precisely, the quantum dynamics,
showed for |ψ(0)〉 = |−J〉 in Figs. 2.12-2.14, emerged with a strong dependence on
the angle of the field on the plane x0,y0 in Fig. 2.8; the periodicity found reflects the
anti-prismatic D3d symmetry of the O2 oxygens (these are stacked in triangles which
lie, above and below the central ion, parallel to such transverse plane as shown in
Figs. 2.3b, 2.5, 2.8).

In general, the dependence of the quantum dynamics on the angle φ of the transverse
field manifests differently for HTO and DTO. In all cases the probability density is
always distributed between the two states with opposite polarisations, i.e. the two
opposite Ising configurations for the RE3+ ground state imposed by the CF symmetry.
Within the perturbative regime |B| ≤ 10T for the splitting in Fig. 2.9, the tunnelling
mechanism can be summarised in the following behaviours:

i) a full tunnelling of the probability density always occurs for φ = 30 ◦ + n 60 ◦ with
n integer (this corresponds to a magnetic transverse field pointing exactly between
two neighbouring O2 oxygens above and below the central RE3+ ion in Fig. 2.8);

ii) the tunnelling tends to be suppressed for φ = 0 ◦ + n 60 ◦ with n integer (this
corresponds to a magnetic transverse field pointing aligned with a RE-O2 direction
in Fig. 2.8); the dependence of HTO and DTO can be very diverse depending on
the strength |B| of the field;
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iii) intermediate angles show, consistently, intermediate regimes of tunnelling.

These results called for the analysis of the effective magnetic fields resulting on a RE3+

ion from the configurations of the spins surrounding it. In Chapter 3 and Chapter 4,
in fact, it has been shown that effective fields purely transverse to the local easy axis
occur on a RE3+ in the presence of a monopole nearby. In the following the spin-
dynamics are discussed in the quantum-quench mechanism using the initial states and
the Hamiltonians from the effective fields obtained therein.

5.1.2 Setting up the Hamiltonians for the quantum-quench

In Chapter 2 the magnetic fields used in the Hamiltonian in Eq. (2.29) were tuned
ad-hoc to study the interplay between the Zeeman and CF contributions. Analogously,
the (polarised) initial conditions |ψ(0)〉 = |±J〉 were also imposed, even if based on the
educated analogy with the Ising anisotropy due to the crystal-field. The results were
profoundly meaningful and already contained a complete description of the quantum
dynamics of a spin-ice RE3+ ion induced in the occurrence of fields transverse to the
local Ising axis.

The quantum-quench model goes one step beyond, using the Hamiltonian and the
initial condition corresponding to the spin configurations characterising the spin-ice
low temperature regimes. The only approximation consists in the “quasi-quantum”
description for the interaction between the central RE3+ ion, treated as a quantum-
mechanical object, and the surrounding ones, projected into frozen configurations of
classical Ising spins.

The Hamiltonian for a RE3+ ion immersed in a given spin ice configuration C reads

Ĥ(C) = ĤCF + Ĥ(C)
Dip + Ĥ(C)

Exc , (5.1)

in the absence of external fields applied to the material. ĤCF is conveniently tackled
in terms of the Stevens’ operators as in Eq. (2.27) with the CF parameters from Table
2.3b; it does not depend on the configuration of the surrounding spins. On the other

hand Ĥ(C)
Dip and Ĥ(C)

Exc are totally defined from the configuration C of the other (frozen)
spins in the lattice.

A semi-classical Zeeman interaction regulates the effect of the dipolar fields resulting
on the central ion:

Ĥ(C)
Dip = −gJµB Ĵ ·B(C)

Dip , (5.2)

with the Bohr magneton µB and Landé factors gJ = 5/4 and gJ = 4/3, respectively,

for Ho3+ and Dy3+. This is uniquely determined from the dipolar field B
(C)
Dip resulting

on the central RE-site r0, by means of Eq. (3.9), from the configuration C of the other
classical spins (dipoles) in the pyrochlore lattice.

To account for the contribution of the exchange interaction, due only to the six
nearest neighbours spins of the RE-site, we restore the quasi-quantum Hamiltonian
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in Eq. (4.80),

Ĥ(C)
Exc =

6∑

j=1

Ĥff (r0, rj) (5.3)

where rj are the positions of the six neighbours spins around the central RE3+ in r0.
This is uniquely defined by C, the Ising configurations for the j = 1, . . . , 6 spins. As
a remark, this constitutes the original output of the thorough analysis done in the
previous chapter where also the parameters characterising it have been fixed to allow
its implementation in the quantum-quench mechanism presented below.

5.1.3 The “core” of the quantum-quench mechanism for RE3+ ions

The Hamiltonian Ĥ(C) in Eq. (5.1) can give different ground states for the RE3+ ion
depending on the configuration C of the other spins in the lattice. Because of the
strength of the crystal-field anisotropy, however, the magnetic ion will tend to collapse
in either of the Ising states corresponding to the ground state doublet of ĤCF . Which
one of the two, depend on the interplay between dipolar and exchange interactions. To
recover the spin-ice ground state from the collapse of the wave function of the central ion
is expected to favour ferromagnetic (frustrated) alignment with the surrounding spins.
As we shall see, this is the case because of the strong longitudinal component, along the
local 〈111〉 axis, found for the dipolar fields in Chapter 3 (see for example histogram
in Fig. 3.13). For a lattice-state excited above the frustrated spin-ice ground state, i.e.
in the presence of the monopoles, the scenario becomes more rich, in particular for the
pyrochlore sites next to a monopole where the longitudinal fields are quenched.

The focus of the quantum-quench mechanism is to study the magnetodynamics of
a RE3+ ion in spin ice whenever a given configuration C for the surrounding spins
undergoes a sudden change C → C̃. As a monopole hops by flipping adjacent spins, for
example, its propagation consists in the change of one local-Ising state for each C → C̃
step.

Exploiting the quantum-quench mechanism for dynamics

The quantum-quench that we use to describe the quantum dynamics of a RE3+ ion in
spin ice materials consists, in its most general formulation, in the following main steps:

i) the RE3+ ion sits at time t < 0 in the ground state |ψ(C)〉 of Ĥ(C) for a given
spin-ice state C;

ii) the sudden change C → C̃ at t = 0 quenches the Hamiltonian to Ĥ(C̃);

iii) the state |ψ(t)〉 of the RE3+ ion evolves as in Eq. (2.38)

|ψ(t)〉 = e−i Ĥt/~ |ψ(0)〉 , (5.4)

with |ψ(0)〉 ≡ |ψ(C)〉 as initial condition and the Hamiltonian Ĥ ≡ Ĥ(C̃) governing
the unitary evolution;

iv) at a time t & τ , with τ ∼ ~/∆Emin and ∆Emin the smallest gap of the spectrum

of Ĥ(C̃), decoherence occurs and the quantum state of the RE3+ collapses in a
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classical state allowed by the CF symmetry (typically a local Ising state).

This sequence of time-steps is shown pictorially in Fig. 5.3 in the context of the prop-
agation of a monopole across a pyrochlore cluster.

An ensemble of assumptions is implicit in this model of quantum-quench. Together
with the “single-ion approximations” 1, now a mechanism of decoherence needs to be
assumed to account for the emergence of the classical Ising state of the RE3+ ion
which otherwise would tunnel coherently between the two CF states for an indefinite
amount of time. Nonetheless, this ensemble of approximation is what actually lies,
already, at the very fundamental aspects under the current “standard model” for spin-
ice and its magnetic monopoles introduced in Chapter 1. These assumptions here are
simply revisited, or at most “rearranged”, for the description of the monopole dynamics.
Not surprisingly, the latter undermine the imaginary border which, according to our
“(scientific) common sense”, distinguishes a classical system from a quantum one.

Furthermore, the intriguing expectation that the presence of a monopole does induce
quantum dynamics of a RE3+ ion, according to Chapter 2, because of the character-
istic effective-fields found in Chapter 3 and Chapter 4 encourages to engage with the
quantum-quench model to investigate how the diverse mechanisms discussed in this
thesis combine together in the picture of the monopole hopping.

5.1.4 Quantum-quench from the arrival of a monopole

To discuss the quantum-quench in the presence of a monopole we refer to Fig. 5.1 as
an archetype to show the configurations of the six spins surrounding the central RE3+

ion before (Config. Ā, top panel) and after (Config. A, bottom panel) the arrival of a
monopole. Their role in the monopole hopping is shown more explicitly in Fig. 5.3a for
the former and Fig. 5.3b for the latter. The names of the spin configurations and the
labelling of the spin themselves is chosen in analogy with Fig. 3.5a.

In Chapter 3, in fact, it has been shown that Config. A, in spin ice, features a north-
monopole in the lower tetrahedron and induces a dipolar field on the central RE-site
which is purely transverse to the local 〈111〉 direction. In Fig. 5.1, the bottom panel
corresponds to Config. A in Fig. 3.5a and Fig. 3.7a. The only (graphical) difference is
that in Fig. 5.1 the central spin is not shown; this is done to emphasise how important
it is to consider also the effects of exchange interactions before determining the ground
state of the central RE3+ ion.

Below, in section 5.1.5, according to the general procedure given in section 5.1.3,
the behaviour of RE3+ ion in the central site of a two-tetrahedra cluster is analysed
under the quantum-quench caused by the sudden change Ā→ A due to the arrival of a
monopole. Before analysing the dynamics it is essential to study the two configurations,
before (t < 0) and after (t = 0) the quenching occurs.

The two configurations Ā and A differ only for the flip of the spin S0
4 ; below they are

analysed separately. The convention adopted for the directions of the spins j = 1, . . . , 6
is the same used throughout Chapter 3; it considers the 〈111〉 axis of the central site

1 By “single ion” approximations we mean to summarise all the hypothesis made in focusing on a
given RE3+ ion to derive the Hamiltonian Ĥ(C) in Eq. (5.1). These basically cover the whole work done
so far in this thesis, starting from the semi-classical CF point-charge model in Chapter 2, all the way
down to the quasi-quantum effective-exchange in Chapter 4.
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Configuration Ā - (t < 0) Configuration Ā (Top view)

Configuration A - (t = 0) Configuration A (Top view)

Figure 5.1: Example of spin-configurations, in a two-tetrahedra pyrochlore cluster, before
(Ā, top panels) and after (A, bottom panels) the arrival of a monopole. The right panels
show the top views of the respective left ones. The labelling of the RE-sites is the same
of Figs. 3.4-3.6. In this scheme the central spin is not shown as its ground state, in
general, depends on the type of interactions with the surrounding neighbours. In both
cases exchange effective-fields (magenta) are opposite to the dipolar ones (green). Ā and
A differ only by the flip of the spin S0

4 by which, if the central spin points down, the
monopole arrives. This is shown more explicitly in the presence of a monopole in Fig. 5.3.
Fig. 5.3a corresponds to the top panel Ā (t < 0), while Fig. 5.3b corresponds to the bottom
one A (t = 0).



5.1 Quantum-quench and spontaneous magnetodynamics 113

in Fig. 5.1 as global Ising axis of the cluster: S0
j = 1 if the spin points upward and

S0
j = −1 if it points downward.

Configuration Ā (t < 0) In the top panel the spins S0
3 = S0

6 = −1 characterise
the ground state of the central ion (the contribution of the others cancels out). From
this parallel alignment the ground state of the central RE3+ ion will be projected in
one of the two CF states with opposite polarisation. If only the exchange interactions
were present, the spin would collapse upward (S0

0 = 1) to favour antiferromagnetic
alignment with S0

3 , S
0
6 . However, since in the real spin-ice ground state the dipolar

(ferromagnetic) interactions overcome the exchange ones, the ground state of the full
Ĥ(Ā) in Eq. (5.1) is expected to give a central spin pointing downward.

This is confirmed in Table 5.1 where the magnetic moment m = gJ 〈Ĵ〉 in units of µB
is calculated as expectation value of the angular momentum operator Ĵ = (Ĵx, Ĵy, Ĵz)

over the ground state |ψ(Ā)〉 of Ĥ(Ā). m is conveniently expressed in spherical values
(|m|, θ, φ) for the local coordinate system x0,y0, z0, in Eq. (4.22a), of the central RE3+

ion. This is the same coordinate system in Eq. (2.30) used for the quantum dynamics
of a RE3+ ion; in Fig. 2.8 from a top view (z0 outward of the plane). In complete
analogy with Chapter 2 the angle φ is on the plane x0,y0, transverse to the 〈111〉
direction in Fig. 5.1, while θ is the polar angle with respect to z0. The magnitudes
(|m| = 9.8µB) and the polar angles (θ = 180 ◦) found for the purely dipolar and dipolar
with exchange model justify the classical approximation of magnetic dipole |m| ≈ 10µB
pointing down. The angle θ = 0 ◦ obtained in the (hypothetic) case of pure exchange
also confirms the consistency of the model (exchange result in the opposite direction
forcing the spin to point upward). In the context of the quantum-quench these will
constitute the initial conditions, since Config. Ā represents the state of the cluster
before the arrival of the monopole. This confirms also the correct assumption of the
polarised initial condition used in section 2.5.

Configuration A (t = 0) The bottom panel (A) in Fig. 5.1 differs from the top
one (Ā) only because of S0

4 pointing upward: now S0
1 = S0

4 = 1. This means that
the parallel alignment of S0

1 , S
0
4 cancels, for the central ion, any contribution along the

〈111〉 direction that was due to S0
3 , S

0
6 . The longitudinal component of the interactions

is quenched! Only the transverse components of the interactions due to S0
1 , S

0
4 , S

0
3 , S

0
6

are left and the resulting ground state is, in general, a superposition of the two opposite
Ising configurations.

This “classical” picture for the resulting effect of the surrounding spins on the central
site, is confirmed in Table 5.1. The direction of the magnetic moment resulting from the
ground state |ψ(A)〉 of Ĥ(A) is always purely transverse to the 〈111〉 direction (θ = 90 ◦).
The magnitude is incredibly small compared to the case Ā. For the case of dipolar
interaction, the angle φ = 150 ◦ shows that the ground state of the magnetic ion points
perfectly aligned with the field resulting from the surrounding ions2. For the exchange
case the magnetic moment points, again, exactly in the opposite direction of the dipolar
field (φ = −30 ◦). This last result was not necessarily expected as we couldn’t make

2 The unit vector
{
−1/
√

2, 0, 1/
√

2
}

of the transverse field in Fig. 3.7a is expressed in Cartesian
components for the X,Y,Z coordinate system. It is straightforward to show that this corresponds to
(θ, φ) = (90 ◦, 150 ◦) for x0,y0, z0 in Figs. 2.8 (see also top view at the bottom of Fig. 5.1).
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Config. Ā Config. A

Only Dipolar (9.80, 180, 120) (0.0061, 90, 150)

Only Exchange (9.80, 0.02, 0) (0.0066, 90,−30)

Dipolar + Exchange (9.79, 180, 88.57) (0.0006, 90,−30)

(a) HTO

Config. Ā Config. A

Only Dipolar (9.84, 179.9, 120) (0.0083, 90, 150)

Only Exchange (9.84, 0.14, 0) (0.0425, 90,−30)

Dipolar + Exchange (9.85, 180, 22.67) (0.0342, 90,−30)

(b) DTO

Table 5.1: Values of m = gJ 〈Ĵ〉 from the ground states of Ĥ(Ā) (left) and Ĥ(A) (right)
for the central Ho3+ ion in HTO at the top (a) and Dy3+ ion in DTO at the bottom (b).
The spherical values (|m|, θ, φ) are given with respect to the local system of coordinate
used for the central RE-site x0,y0, z0. The magnitude |m| is in units of µB ; the angles are
expressed in degrees. θ is the polar angle with respect to z0 parallel 〈111〉 axis in Fig. 5.1,
and φ the azimuthal angle with respect to x0 in Fig. 2.8.

any straightforward prediction on the interplay between the combination of the quasi-
quantum exchange and the semi-classical dipolar effect on the central RE3+ ion. At
the same time this is not entirely new as also the “classical” exchange analysis done
in section 4.1.3 was giving an effective-exchange field pointing opposite to the dipolar
one. The opposite directions of the effective fields on the central site are pictorially
represented in Fig. 5.1 by means of two opposite pointers of different colours (the
lengths of the pointers is only to mimic the relative strengths): green for the dipolar
fields, magenta for the effective-exchange ones.

The result that exchange overcomes the dipolar interaction in A is not entirely a
new result; it was found already in the classical approximation in section 4.1.3. The
way it happens now, nonetheless, is quite different. It is not possible to conduct an
analogous comparison as the analytical form of the exchange Hamiltonian in Eq. (4.76)
cannot straightforwardly be converted into a classical analogue magnetic field. From the
expectation values of the ground states shown in Table 5.1 the resulting field has both
for HTO and DTO a net component parallel to exchange (i.e. exchange dominates).
Interestingly the values dipolar and exchange separately are of the same orders of
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magnitude for HTO, while of for DTO they differ by one order of magnitude. This,
according to such analysis, on the expectation values seems to justify the resulting two
orders of magnitude of difference between HTO and DTO when compared to the case
with both type of interactions.

A very important result of this analysis is that the direction of the ground state of the
central ion in A confirms a resulting effective-field purely perpendicular and at angles
φ = 150 ◦, 30 ◦ for which the full tunnelling is guaranteed from the results in section 2.5.
In the following section this is discussed more explicitly in the context of the quantum
dynamics of the central ion in Fig. 5.1 which are induced by the quantum-quench
Ā→ A.

All the results found here using the configuration A in Fig. 3.7 of Chapter 3 may
also be verified for the case B of the same figure. The case C therein does not play
any explicit role in the quantum dynamics of a RE3+ ion under the two-tetrahedra
analysis as it leads to null transverse fields 3. The lower order dipolar contributions
from further neighbours are likely to characterise the dynamics in this case (this might
be a direction for further studies).

5.1.5 Quantum spin tunnelling of a RE3+ ion next to a monopole

The time-evolution for the RE3+ ion undergoing the quantum-quench Ā → A in
Fig. 5.1, is illustrated in the diagrams of Fig. 5.2 for HTO (left) and DTO (right).
For consistency with the analysis of the previous section, the panels show the quantum
dynamics of the central RE3+ for three different choices of n.n. coupling. From top to
bottom these are: only dipolar, only exchange and dipolar together with exchange (the
latter being the most realistic one for spin-ices).

The plots of the probability density confirm the occurrence of a full tunnelling for
all cases, which is consistent with the effective fields found pointing at angles (θ, φ) =
(90 ◦, 30 ◦ + n60 ◦) with n integer (see section 2.5). The curves for the average 〈Ĵz(t)〉
accordingly oscillate from the initial condition to the opposite side, highlighting the full
tunnelling of the probability density at t = τ . For intermediate times the probability is
distributed between the two far ends of the MJ axis; the distribution of the probability
can be inspected from the intensity of yellow in the density plots and from the value of
their average in 〈Ĵz(t)〉. Since in this case the initial condition are proper of the system,
i.e. |ψ(0)〉 = |ψ(Ā)〉, the “jitter” in 〈Ĵz(t)〉 that was observed in the polarised initial
conditions in section 2.5 is now suppressed (the curves are smooth without oscillations).
In general a manifestation of the jitter has to be implicit in any kind of measurement, as
the observable used in general would not commute with the crystal-field Hamiltonian.
It is likely though that the oscillations would be absorbed in the noise signal because
of their elevated frequency. A stronger manifestation of the oscillations in 〈Ĵz(t)〉 is
expected in analogous systems, for example Tb2Ti2O7, where the polarisation of the
ground state of the Tb3+ ion is less pronounced and the splitting with the first excited
states of the CF leads to a stronger admixture between the quantum states.

The flipping-timescales are in general different depending on the system and on the in-

3 The dipolar fields are identically null as shown in section 3.2.1. The effective exchange fields are
null as the exchange Hamiltonian, as pointed out in section 4.5.2, has no transverse components being
a purely diagonal interaction in the |MJ〉 basis.



5.1 Quantum-quench and spontaneous magnetodynamics 116

teraction between the spins. These are listed in Table 5.2; the highest and lowest values
are found for, respectively, only dipolar and only exchange in DTO. The contribution
of exchange characterises strongly the output of the tunnelling rates when it is consid-
ered together with the dipolar fields. In both HTO and DTO it seems that exchange
imposes a characteristic timescale of few microseconds. This shows that the analysis
of the different strength in the (static) magnetic moment of ground states found in
the previous section does not necessarily imply very different timescales. In fact, as it
was thoroughly discussed in Chapter 2, the timescales are more directly related to the
splitting ∆E01 due to the (effective) transverse fields between the quasi-bonding and
quasi-antibonding configuration levels (τ ∼ ~/∆E01).

HTO DTO

τ (Dip) 6.97µs 19.31µs

τ (Exc) 0.13µs 0.25µs

τ (Dip+Exc) 1.36µs 0.56µs

Table 5.2: The quantum-quench spin-tunnelling rates for HTO (left) and DTO (right).
The values correspond to the time after which the probability density in Fig. 5.2 first
tunnels from one polarised part of the MJ axis to the opposite one.

The values of τ found in the purely dipolar model highlight the relevance of the
different power laws in ∆E01 in Fig. 2.9 for the magnitude |B| = 0.33 Tesla of the dipolar
field induced by the monopole. On this note it is worth opening a little digression
about the realistic values of the dipolar field in the presence of a monopole. The
Monte Carlo histograms obtained by C. Castelnovo and G. Sala, where a large spin-
ice cluster is considered, are peaked in purely transverse fields of |B| = 0.55 T, 0.03 T
(these reflect a simple shift in the results of the cluster in Fig. 3.11). Unfortunately, at
present, the simulations do not provide informations about the resulting directions of
the dipolar field on the transverse plane, hence there the occurrence of full tunnelling
is not guaranteed. Nonetheless, the timescales are expected to increase accordingly
to Fig. 2.9. This would consist in a very little change for |B| = 0.55T but, more
importantly, it would imply the emergence of a new range of timescales in the order
of the millisecond for |B| = 0.03 T. Since the cluster calculations in Chapter 3 show
how localised the effect of a monopole is for the fields of a RE3+, here only the two-
tetrahedra cluster are considered. Moreover, timescales of the order of the microseconds
are less likely as quantum oscillation timescales (decoherence is expected to occur).

In the tunnelling which consider only exchange it is essential to bear in mind that the
effective fields act in a direction that is opposite to the dipolar ones. This is shown
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very neatly in the middle panels for the time evolution in Fig. 5.1 where the quantum
mechanical tunnelling for the same system is completely reversed because of the initial
condition and evolution Hamiltonian based on a system (with no dipolar interactions)
which favours antiferromagnetic alignment.

This is relevant also for the case in which both interactions are considered (bottom
panels in Fig. 5.1). It shows that the effect of the exchange in the whole picture
is not only to induce an opposing polarisation but also to combine with the dipolar
interactions in a constructive mechanism for tunnelling. The result may be of particular
interest in speculating the sophisticated nature of the exchange interaction in a complex
system such as spin-ice. It seems that the (antiferromagnetic) tensorial nature of the
exchange interaction reveals itself as an underlying correlation of the spin-ice manifold
which is suppressed in the frozen state by the longitudinal dipolar fields, but then fully
restored in the presence of monopoles as they quench the longitudinal components of
the dipolar fields.

The leading role of the exchange mechanism in the tunnelling of magnetic ions with
large effective spin is common, for example, in molecular-magnets. In a tentative
comparison between these systems it is interesting to note that molecular magnets are
characterised by tunnelling rates typically of the orders of microseconds [32]. Moreover,
the recent work in Ref. [34], carried out on single Ho3+ ions on a highly conductive
substrate shows that the interplay between the symmetries of the crystal-field and
an applied magnetic field holds the key in determining the decoherence timescales.
Notably, the CF symmetry D3n for their system has exactly the same terms in the
Hamiltonian of the spin-ice RE3+ ions [34]. The main result they achieve is the ability
to extend the timescales for decoherence well beyond the typical microseconds by tuning
externally applied magnetic fields. From a speculative viewpoint, this is of interest for
the tunnelling of RE3+ ions in spin ice where an extension of the timescales is found
because of the role played by the dipolar fields. This is encouraged by the analytical
perturbative approach in Appendix A, where it is shown in detail how the occurrence
of the power-laws for ∆E01 is a unique consequence of the matrix elements of the field
perturbation over the CF ground-states which reflect the symmetry of the system. The
presence of exchange is expected to give non null matrix elements because of the multi-
off-diagonal components which appear in Eq. (4.76). Further detailed studies need
to be conducted on the role of exchange in coupling with the local symmetry of the
crystal-field environment. It is important to underline that at this stage, the effect on
the exchange interaction does look as a reduction in the stretching of the timescales
that are found only in the presence of (classical) magnetic fields.

The results shown in this section establish the occurrence of the full-tunnelling in the
quantum-quench Ā→ A. Exactly analogous is the case B̄ → B (B can be visualised
in Fig. 3.7). The case C̄ → C in not considered as the resulting effective fields are
null, as commented closing the previous section. This can represent the ideal system to
study the lower order effects due to the further dipolar interactions; in this case long
timescales of the order of microseconds are expected and no suppression from exchange
can be considered as this is only a nearest neighbour interactions for the RE3+ in
spin-ice.

The implications of the quantum-quench and the statistics found for the full-tunnelling
of a RE3+ ion in spin ice are discussed in the following section in the context of the
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Figure 5.2: Time-evolution from the quantum-quench mechanism for HTO (left) and
DTO (right). In analogy with Figs. 2.12-2.14, the density plots show the probability

density |ψ(t)|2 = |〈MJ |ψ(t)〉|2, and, overlaid, the curves for 〈Ĵz(t)〉 with |ψ(t)〉 state of
the RE3+ ion at time t. The top, central and bottom panels represent the time-evolution
for the quantum-quench of a RE3+ ion in the centre of a two-tetrahedra cluster with,
respectively, only dipolar, only exchange and dipolar together with exchange interactions.
In all cases we find full tunnelling as a consequence of the local symmetries: the effective
fields due to a monopole are always at angles φ = 30 ◦ + n 60 ◦ with n integer. The small
oscillations in 〈Ĵz(t)〉 (jitter) are suppressed as the initial conditions are now the ground-
states of the Hamiltonian for the central RE3+ ion in a cluster with surrounding spins as
shown in the top panel Fig. 5.1 (in Chapter 2 ad-hoc polarised states |MJ〉 = ± |J〉 were
imposed). In the case with only exchange interactions (central panels) the whole process
is reversed (in MJ , hence in the local z0) as the effective fields point exactly in opposite
directions compared to the dipolar ones.
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propagation of a monopole across a cluster.

5.2 Monopole hopping and the problem of decoherence

From the model of quantum-quench given in the previous section it is possible to draw
an enriched picture for the propagation of a monopole.

Magnetic susceptibility experiments suggest that monopoles propagate according to
Brownian motion with a temperature-independent diffusion constant [20]. In this con-
text the athermal character of the diffusion constant is invoked as evidence of quantum
tunnelling of the spin involved in the monopole hop. Beside, out of equilibrium experi-
ments consisting of thermal quenches [22] and field quenches [23] reveal the dependence
of the relaxation rates on the kinematic constraints the ice-rules on the pyrochlore lat-
tice impose on the hopping of the monopoles. On this issue, a particular relevance
is given to spin-configurations, such as the one in Fig. 3.4, which consist in non con-
tractible monopole-antimonopole (bound) pairs. The impact of such bound pairs is
detected also by other experimental means [21, 19] and so far seem to be the main
mechanism for the occurrence of distinct relaxation rates typical in spin-ice materials.

The quantum-quench, exploiting the statistical two-tetrahedra analysis, allows a re-
finement in the possible paths which the monopole can undertake whenever it hops
through a lattice of tetrahedra frozen in the 2in-2out state. Moreover, the insights
from the tunnelling provide a lower bound of the decoherence timescales which need to
be considered for the occurrence itself of the monopole-hopping.

5.2.1 A “quantum-quench” view on the propagation of a monopole

A pictorial representation for the motion of a monopole in spin-ice is given in Fig. 5.3.
The four panels account for the different “time-lapses” describing the hopping of the
monopole from the tetrahedron it occupies in Fig. 5.3a to the one where it ends up in
Fig. 5.3d.

In the context of the quantum-quench model, the focus is again on a two-tetrahedra
cluster whose central spin undergoes the same quench Ā → A previously analysed.
The possibility to focus on the central site of a larger cluster only in terms of the
“quantum-quench two-tetrahedra view” is justified from the histograms of the dipolar
fields in Figs. 3.11-3.13 which predict the sudden removal of the longitudinal dipolar
field (for the central site) occurring “exactly” at the time-lapse (t = 0) when the
monopole arrives (Fig. 5.3c).

In such a pictorial representation the hopping time-scale is considered of the order of
the tunnelling-rate τ assumed to be an estimation of the decoherence timescale which
transposes a tunnelling into an effective flip. In loose words, we take the simplified
view that the full flip occurs around the first half period in Fig. 5.2. At present, this is
a reasonable approximation as the one presented here is only an a posteriori analysis
on the motion of a monopole in a frozen arrangement of the spins in the pyrochlore
lattice. In practise it would be necessary to set a more sophisticated description of the
RE3+ ion time-evolution to consider also the coupling with an environmental bath.

The tunnelling-rates coupled to the statistic dependence of the hopping on the spin-
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(a) t < 0 (b) t = 0

(c) t & τ (d) t� τ

Figure 5.3: Pictorial representation for the propagation of a monopole in spin ice. This
example shows four consecutive “snapshots” (a,b,c,d) of a north-monopole hopping across
the diamond lattice by means of three consecutive spin flips on adjacent pyrochlore sites.
The cluster consists of eight tetrahedra, as in Figs. 3.11-3.13. Only the seven central spins
are shown to emphasise the two-tetrahedra clusters in Figs. 5.1, highlighting the effects on
the central site due to the configurations of the nearest neighbours. In (a), at a time t < 0,
the monopole sits in a tetrahedron away from the central RE-site which is pinned down by a
longitudinal dipolar field (Fig. 5.1a). In (b), at t = 0, the arrival of the monopole quenches
the longitudinal field. The central ion can tunnel coherently as in Fig. 5.2 because of the
purely transverse effective-fields (Fig. 5.1c). The occurrence of decoherence at t & τ consists
in the hopping of the monopole in the (c) configuration. Depending on the configuration of
the nearest and next nearest neighbours spins the monopole can proceed on its propagation
across the lattice (d). The yellow “tube” traces the trajectory of the monopole which leaves
a chain of flipped spins behind it (often called a Dirac string).
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(a)

(b)

Figure 5.4: Comparison between a “1-way” and a “2-way” spin configuration for the
monopole hopping; the cluster shows more in detail the spin-structure of the spins in the
vicinity of the monopole in Fig. 5.3c. In both cases the monopole, from its current position
shown, can either go backward (through S0

0), or flip through S0
3 (S0

1 cannot flip because it
would not make the monopole hop but rather produce a higher energy excitation). In the
bottom panel though, going through S0

2 is also allowed (note two green tubes departing
from the monopole towards two different directions). In contrast, in the top panel the
occurrence of flipping for S0

2 is suppressed (in a n.n. analysis) as the spins surrounding it
create a null on-site effective field (note S0

0 , S
0
1 , S

0
3 have opposing counterparts beyond S0

2 ,
hence only one green-channel).
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configurations offer a more “quasi-deterministic” view in the propagation of a monopole.
A theoretical model for a realistic coupling of the system with the experimental probes
represents the next step inx assessing the predictive power of the present theory. On
this note, it is important to emphasise that the current predictions already give a good
estimation of the low temperature dynamics as they are based on a hopping athermal
timescale which is set as an external parameter [25, 26]. The present model, aim to be
a refinement of these and promises to cover range of temperatures where the current
theories collapse. There is no current use of temperature in the theory present in
this thesis. However, the two different levels of description, with one eye on the local
physics of the RE3+ ion and the other on the effective fluctuations induced by the
surrounding neighbouring dipoles, are likely to be apt in differentiating the effect of
the temperatures on two separate scales and, at the same time, in combining together
in the unified modelling allowed by the quantum-quench.

Although the theoretical model presented in this thesis is based on an accurate de-
scription of the microscopic implications of the monopoles in a spin-ice material, its
ability to make predictions is conditioned to its statistical character and cannot be con-
sidered deterministic in a rigorous sense. The present statement may seem redundant,
not only because of the uncertainty which characterise the statistics of any microscopic
system even more because spin-ice is intrinsically is defined by its geometrical frus-
tration (i.e. intrinsically disordered). Nonetheless, as recent studies investigate the
occurrence of a true spin-ice ground state [72, 73, 74], it may be tempting to think that
in the quantum-quench picture of monopole motion the “history of the monopole” can
be deduced uniquely by the compelling constraints induced by the ice-ruled states. As
shown in Fig. 5.4 the trajectory of a monopole can be defined only once it has been
traced. In this figure the time-frame of Fig. 5.3c is shown in two different possibilities:
the top one, coinciding with the consequent occurrence of Fig. 5.3d, shows that the
spin configurations of the further spins are such that the monopole can go only down
one way; the bottom one is an instance in which the two totally equivalent (from an
ice-rule perspective) neighbouring spin-configurations give two possible channels for the
hopping of a monopole. In other words, this analysis shows that the statistical ratio
2/3 does not imply that the monopole will only encounter two out three (including
the backward one) propagation channels in each tetrahedron, but, more in general, it
describes statistically the possibility for the occurrence of the hopping.

The quantum-quench model, despite its localised approximation which neglects the
contribution of the long-ranged dipolar fields, offers a neat picture accounting for a
meaningful characterisation of the propagation of monopoles. More in general, thanks
to its underlying (quantum) degrees of freedom, it promises also to be ideal for testing
non-equilibrium dynamics where the whole system undergoes sudden quenches imposed
by external probes [24].

Below is presented an estimation of the effective mass of the monopole obtained di-
rectly from the tunnelling rates in Table 5.2 to emphasise the localised character which
can be defined for the monopoles thanks to a microscopic quantum decryption of the
RE3+ ions.
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Mass of a monopole

The propagation of the monopoles is subject to (asymmetrical) local constraints which
inhibit the full mapping of its motion with the one of a tight binding model. Nonetheless
it is intriguing to exploit the timescales derived in section 5.1.5 and see the estimation
of the effective mass of the monopoles that is predicted.

This can be realised by setting

t ∼ ~/τ (5.5)

for the hopping energy term of a tight-binding monopole-model, where τ is the timescale
for the hopping to occur. Using

Ek ∼ 2t cos(ka) ≈ ~2k2

2m∗
(5.6)

we can extrapolate

m∗ =
~2

2ta2
∼ ~τ

2a2
. (5.7)

In spin-ice a would be the distance between the centres of two adjacent tetrahedra. As
the nearest neighbours for the RE3+ ions is rnn ≈ 3.54Å, it is reasonable, for simplicity,
to approximate a ∼ 10−10 m. Analogously the timescale of the hopping is averaged as
τ ∼ 1µs, interpolating the most realistic tunnelling rates for HTO and DTO in Table
5.2, which leads to

m∗ ∼ 10−20 Kg . (5.8)

From this it is straightforward to obtain the monopole’s de Broglie wavelength:

λ∗ =
h√

2m∗kBT
∼ 10−12 m at T = 1 K (5.9)

which is λ � a, meaning that the monopoles are heavily localised. This is consistent
with the standard view that monopoles are classical particles, and shows that involving
local quantum dynamics of the RE3+ does not undermine the classical view of the
monopoles. The underlying quantum dynamics is in turn exploited as a mechanism
from which classicality emerges from the quantum substrate. On this note, in the
following section, a little digression about decoherence is presented.

5.2.2 A note on decoherence

The current view on the propagation of the monopoles, which we assess here by means
of a quantum-quench, consists in the occurrence of consecutive spin flips. So far there
has been no fulfilling interpretation of how this might occur.

The model presented here is the first realistic description for the occurrence of the
tunnelling. However, the tunnelling per se does not lead to a full flip of the spin.
The quantum mechanical time-evolution, because of its unitarity, predicts coherent
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oscillations for an indefinite time. To account for the actual spin-flip in the previous
section we assumed a time of decoherence coinciding with the tunnelling rate (this is
defined as the amount of oscillation from one extreme of the polarisation axis to the
opposite one).

In order to obtain a more realistic description of the time-evolution, it is necessary
to introduce a mechanism of decoherence. There are several theories which describe
quantum mechanical evolutions of systems coupled to a bath of phonons present in
the substrate. However, among the others there is a line of research dedicated to the
mechanism of decoherence that has been exploited in the context of quantum theory
of information [?, 75]. Such theories promise to be relevant for spin-ice as they do
not treat the environment as a simple bath which causes decoherence by destroying
quantum fluctuations. In contrast, they consider the evolution of the system with
the environment in a “constructive way”, namely the environment is considered as an
entity of selection of the preferred states which make the classical observables emerge
from the quantum ones through a process of stabilisation that is called Einselection
(Environment Induced Superselection).

Developing a theory of this kind is beyond the scope of this work. Nonetheless it
is important to emphasise the crucial role that decoherence plays in stabilising the
occurrence itself of a classical object such as the monopole. From the experimental
signatures which show the monopoles are objects heavily localised, it is tempting to
speculate whether this stabilisation is the consequence of a process of “self-selection”
which the underlying degrees of freedom of the system do in establishing the monopoles
as the entities responsible for the thermodynamics observed. This represents a challenge
for the current understanding of spin-ice materials and promises to shed an original type
of light on these systems since this kind of approach has not been adopted so far.



“There is a new world beyond Landau’s theories. The new world is rich
and exciting.”

X.G. Wen [2]

6
Conclusions and outlook

The emergence of magnetic monopole excitations in spin-ice materials represents a pe-
culiar instance of outgrowth of classical quasiparticles from a quantum substrate. The
combined effect of the topological properties of the pyrochlore lattice and the ferromag-
netic frustration between the classical magnetic dipoles [5] is, per se, the realisation of
a new state of matter, i.e. the vacuum which the monopoles populate [22]. None of
the chemical constituents of the compounds Ho2Ti2O7 and Dy2Ti2O7, however, can be
considered as an individual classical entity prior to the crystallisation [7, 6], hence it is
essential to bear in mind the complex structure where such an effective-vacuum is de-
fined. In these systems, in fact, the occurrence of a classical behaviour of the magnetic
RE3+ ions is ultimately a consequence of the strong quantum correlations between the
electrons in their unfilled shells [44, 27]. The magnetic moments in classical spin-ice
materials are not the result of nano-sized agglomerates as in artificial spin-ice [76, 77],
but rather the individual RE3+ ions with well defined quantum mechanical properties
[27]. Besides, the bonding distance between any RE3+ ion and the O2− oxygen (O1)
in the centre of a tetrahedron is one of the shortest measured in magnetic compounds
[6] and, indeed, an antiferromagnetic component of (quantum) superexchange coupling
between neighbouring RE3+ ions is measured in experiments [5]. These factors are only
a fraction of the complex organisation defining the quantum substrate from which the
classical frustration, and so the monopoles, in spin-ice materials emerge. As such, an in-
vestigation of the microscopic structure of these materials is a challenge and promises to
enrich the landscape of the spin-ice physics and, more generally, of the border between
classical reality and quantum-mechanical observables [31].

From an experimental point of view, beside the success of the classical spin-ice picture
of frustration and monopoles [9, 15, 16, 21], different experimental techniques expect
quantum mechanical interpretations to give a richer description of the characteristic
slow dynamics which occur at different temperature regimes [78, 17, 21, 19] (some
of these are still under debate). The occurrence of a quantum spin-tunnelling, in
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particular, is highlighted by the temperature-independent dynamics observed with ac-
susceptibility and muon spin rotation techniques [78, 79, 19, 20, 80], and it needs to
be taken into account to assess the flipping of the spins across the high energy CF
barrier separating the two Ising-like configurations. These are some of the elements
suggesting that a microscopical model of the underlying magnetic interactions at a
quantum mechanical level can shed light into some of the current shaded regions left
from the purely classical viewpoints.

The work presented in this thesis consists in a microscopic study of the quantum
mechanical properties of the magnetic RE3+ ions in spin-ice materials. The main trend
has been a characterisation of the new classical and quantum degrees of freedom which
occur in the RE3+ ions at the vertices of a tetrahedron hosting a monopole, with
the aim of establishing a unified view for the microscopic mechanisms regulating the
monopole-hopping. Following the hierarchical structure that sets the energy scales for
the physics of a spin-ice material this was achieved by :

i) analysing the quantum mechanics of a single RE3+ ion (Chapter 2),

ii) determining the strength of the (classical) dipolar fields acting on it (Chapter 3),

iii) developing an original model for the (quantum) exchange interactions between
neighbouring RE3+ ions (Chapter 4).

The results obtained by pursuing these three tasks led to the formulation of the model
of quantum-quench given in Chapter 5 to provide a realistic description for the hopping
of the monopoles.

In this thesis there is no explicit study of the coupling with experimental probes; the
approach is deliberately directed on the investigation of the structural, topological and
statistical properties that can be assessed simply by “looking more deeply” into the
system from the original perspectives opened by the discovery of the monopoles.

The original view that we gain from these studies may be summarised in the quantum-
dynamical character which emerges for the RE3+ ions in the presence of a monopole,
in spite of what one may expect from a classical quasiparticle. The quantum-quench
model in Chapter 5, which summarises most of the work in a monopole-hopping view,
seems to intercept the manifestation of a monopole between the two instants defin-
ing the occurrence of a localised quantum fluctuation (RE3+ quantum-spin tunnelling)
and vice versa defines the quantum fluctuation as the necessary means which enable
the monopole to manifest an itinerant character. It is important to emphasise that
the quantum mechanical effects found remain localised in the vicinity of a monopole,
mainly as a consequence of the strong dipolar interactions which act as “pointer op-
erators”, in a view familiar to the quantum-information theoretical language [?, 81],
and make any other quantum fluctuation collapse in the classical background. It is
intriguing to speculate, in a Quantum-Darwinistic view [75], whether spin-ice could
represent an instance where classical physics emerge as a sort of “self organisation” of
the underlying quantum degrees of freedom which, in contrast, are hidden in the back-
ground environment by the standard classical view. Such degrees of freedom might
be, for example, the pointer states imposed by the local symmetry of the crystal field
environment. These latter arguments, however, are given here only in a speculative
fashion.

On the other hand experiments can definitely test the ability of the quantum-quench
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model and the other results presented in this thesis. Beyond the ones already mentioned
that are directly related to the spontaneous dynamics of tunnelling [79, 82, 20], also
non-equilibrium experiments [23, 24] are good candidates to establish the versatility
of the these theoretical tools. Other experiments based on chemical variations in the
nature of the materials, for example in the context of oxygen vacancies modifying the
crystal-field structure [83], have already shown how microscopical modifications my
affect the behaviour of the monopoles. Last but not least, the recent investigations
about violation of the zero-entropy spin-ice ground state [72, 74] pose questions which
envisage the importance of a quantum-mechanical view, as it has been already shown
in other theoretical studies [73]. In this context also the analysis on the possible mutual
interference of the dipolar fields implicit in Eq. (3.9) may lead to insights to the open
questions.

To conclude, the key developments representing an original output of the present
work are listed separately in the next page, following the same order as they appear
throughout the thesis to help the reader in localising the “hot spots” across the whole
manuscript.
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Key original results

Chapter 2

• study of the splitting ∆E01 of the crystal-field (CF) ground-state doublet for a
spin-ice RE3+ ion under a magnetic field purely transverse to the local 〈111〉
direction (section 2.4.1; Figs. 2.9-2.10)

• explanation of the different power laws behaviour of ∆E01 (∝ |B|2 for HTO,
∝ |B|3 for DTO) by means of an analytical third-order degenerate perturbation
theory (Appendix A; Eqs. (A.23,A.31,A.41,A.43))

• study of the quantum tunnelling of a spin-ice RE3+ ion with emphasis on the
interplay between applied fields and the local crystal-field symmetries (section 2.5;
Figs. 2.12-2.14)

Chapter 3

• method to evaluate the dipolar fields on a given RE-site in terms of pairwise
equidistant spins (section 3.1; Eq. (3.9) is the generic analytical formula for a
cluster of 2n+ 1 dipoles)

• discovery of the ratio 2/3 in the statistic of configurations with a monopole in
a two-tetrahedra cluster which can lead to an actual spin-flip (section 3.2.1; in
particular Fig. 3.7)

• quenching of the longitudinal dipolar field from the arrival of a monopole (sec-
tion 3.2.2.2, in particular Figs. 3.11-3.13)

Chapter 4

• computer-algebra routine capable of evaluating the many-body exchange inter-
actions for RE3+ ions in a pyrochlore Oxide (the method briefly described in
section 4.3.2.1 is of general use as it calculates, for a generic magnetic ion, the ex-
act decomposition of the angular momentum eigenstates in terms of many-body
fermionic operators)

• generalisation of the superexchange Hamiltonian from Ref. [30] for any RE3+

ion in a magnetic pyrochlore oxide, by means of a strong-coupling fourth-order
perturbation theory (section 4.4 from Eq. (4.50) to Eq. (4.75); more details in
Appendinx B.2)

• original quasi-quantum (analytical) expression for the exchange interaction of
a quantum RE3+ in a cluster of six frozen neighbouring RE3+ (section 4.5;
Eq. (4.76))

Chapter 5

• quantum-quench model; this is useful for a general description of the response of
a RE3+ ion under a sudden perturbation and, more specifically, for the estimation
of spontaneous spin-tunnelling probability and characteristic timescales of a RE3+

in the presence of a monopole (section 5.1.5; Table 5.2 , Fig. 5.2)



A
Perturbation theory for a RE-ion in a
D3d symmetry under a magnetic
transverse field

A.1 Degenerate Perturbation Theory

In this appendix we give more details about the perturbative results given in Sec.2.4.1,
mainly in Eqs. (2.33a-2.35). In particular the focus is on the case of a perturbation
applied to a system with a doubly degenerate ground state (GS), because this is what
characterises both systems discussed in this thesis and most magnetic pyrochlore com-
pounds. Before dealing with the details of such cases it is necessary to introduce
perturbation theories in quantum mechanics in the most general context.

A.1.1 Preliminaries on perturbation theories for quantum systems

We start by considering a generic quantum system that can be described by the fol-
lowing Hamiltonian

Ĥ = Ĥ0 + λV̂ (A.1)

where λV is a small perturbation with respect to H0 (unperturbed Hamiltonian) whose
Schrödinger equation

Ĥ0 |ψ(0)
n 〉 = E(0)

n |ψ(0)
n 〉 (A.2)

can be solved exactly (〈ψ(0)
n |ψ(0)

m 〉 = δnm). The perturbative parameter λ tunes the
applied perturbation and allows to describe eigenstates and eigenenergies of the full
Hamiltonian as power expansions (up to a certain (j) order) of the unperturbed ones.
In particular λ is a real number such that limλ→0H = H0. This is the condition for
adiabatic continuity , and it guarantees that, when we decrease the perturbation down
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to zero, the eigenfunctions and eigenvalues of Ĥ match (continuously) the respective
ones of Ĥ0 (for more details about perturbation theory in general see Ref. [64]).

For the systems studied in this thesis, it is relevant to consider the case where the
n-th energy level is the ground state doublet (GS) of a quantum system solved by
Eq.(A.2) (in the present work Ĥ0 ≡ ĤCF , in Eq.(2.27) of the main text). This means

that two states |ψ(0)
0 〉 , |ψ

(0)
1 〉 in Eq.(A.2) have the same energy (for example the ground

state doublet E
(0)
GS of the crystal-field Hamiltonian for HTO and DTO). We study how

this doublet can be resolved by means of a perturbing potential V̂ (a magnetic field
in the case of interest; see Eqs. (2.34,2.31)). In loose words, here is presented how a
perturbation splits a doublet into two different energy levelsE±. Emphasis is given to
the role of the symmetries of the unperturbed Hamiltonian in characterising the order
of perturbation j which actually lifts definitively the degeneracy. The main reason
for emphasising this is the relevance of the perturbations in driving systems out of
equilibrium, inducing dynamics which cannot be described only in terms of the exactly
solved Hamiltonian Ĥ0.

The effect of the perturbation on the two levels originating from the doublet splitting
is described by the following expansion in power of the perturbative parameter λ:

E+ = E
(0)
GS + λE

(1)
+ + λ2E

(2)
+ + λ3E

(3)
+ + . . .

E− = E
(0)
GS + λE

(1)
− + λ2E

(2)
− + λ3E

(3)
− + . . .

(A.3)

Here E
(j)
± represents the j-th order energy corrections involved to approximate the

exact energies E± (note the unperturbed level is doubly degenerate; i.e. the zero-th

order term is E
(0)
GS is both). This shows that although Ĥ0 has a degeneracy in E

(0)
GS ,

still this won’t be the case when we consider the Ĥ. More precisely this means that
each energy will correspond to only one of the two states

|χ+〉 = |χ(0)
+ 〉+ λ |χ(1)

+ 〉+ λ2 |χ(2)
+ 〉+ λ3 |χ(3)

+ 〉+ . . .

|χ−〉 = |χ(0)
− 〉+ λ |χ(1)

− 〉+ λ2 |χ(2)
− 〉+ λ3 |χ(3)

− 〉+ . . .
(A.4)

This is the Schrödinger equation for the exact two states |χ±〉, here expressed as a
power series of λ. If we substitute Eqs. (A.3-A.4) into

Ĥ |χ±〉 = E± |χ±〉 , (A.5)

and we group the terms with the same power of λ, we find the following equations for
the different orders in perturbation (here we show from 0-th to 3-rd order)

(Ĥ0 − E(0)
GS) |χ(0)

± 〉 = 0, (A.6)

(Ĥ0 − E(0)
GS) |χ(1)

± 〉 = −(V̂ − E(1)
± ) |χ(0)

± 〉 , (A.7)

(Ĥ0 − E(0)
GS) |χ(2)

± 〉 = −(V̂ − E(1)
± ) |χ(1)

± 〉+ E
(2)
± |χ

(0)
± 〉 , (A.8)

(Ĥ0 − E(0)
GS) |χ(3)

± 〉 = −(V̂ − E(1)
± ) |χ(2)

± 〉+ E
(2)
± |χ

(1)
± 〉+ E

(3)
± |χ

(0)
± 〉 . (A.9)
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The corrections E
(j)
± and |χ(j)

± 〉 can be derived from these equations by means of per-
turbative analytical methods. In the following the focus is on the so called Rayleigh-
Schrödinger perturbation theory.

A.1.2 The Rayleigh-Schrödinger method

As already mentioned, the advantage of a perturbation theory consists mainly in ex-
pressing the eigenstates and energies of Ĥ in terms of those found for Ĥ0. Hence,
according to Eq.(A.4), if we find the coefficients c±n , d

±
n , e

±
n , f

±
n in the following equa-

tions 1

|χ(0)
± 〉 =

∑

r=0,1

c±r |ψ(0)
r 〉 , (A.10)

|χ(1)
± 〉 =

∑

n

d±n |ψ(0)
n 〉 , (A.11)

|χ(2)
± 〉 =

∑

n

e±n |ψ(0)
n 〉 , (A.12)

|χ(3)
± 〉 =

∑

n

f±n |ψ(0)
n 〉 , (A.13)

then we can express the two states |χ±〉 in Eq.(A.5) in terms of {|ψ(0)
n 〉}, the set

of eigenvectors of the unperturbed Hamiltonian, Eq.(A.2). Moreover the Rayleigh-
Schrödinger method consists in multiplying the different Eqs. (A.6) by the various

〈ψ(0)
n | so that we can find the energy corrections as a function of these coefficients and

of the matrix elements Vnm = 〈ψ(0)
n | V̂ |ψ(0)

m 〉. Here we briefly show how to proceed with

this method in order to get E
(j)
± for j = 1, 2, 3.

1st order The case of the first order degenerate perturbation theory can be found in
many text books on quantum mechanics. Here, following the method given in Ref. [64],
only little details are given, as an introduction of the original results for higher orders
presented in this thesis.

Summarising, if we multiply the first order Eq.(A.7) by 〈ψ(0)
0 | and 〈ψ(0)

1 |, we find the
following

c±0 V00 + c±1 V01 = E
(1)
± c±0 ,

c±0 V10 + c±1 V11 = E
(1)
± c±1 .

(A.14)

To get this result we used the linear combinations Eqs. (A.10-A.11) in Eq.(A.7).This

1Note that the zero-th order terms |χ(0)
± 〉 are linear combination only of the lowest |ψ(0)

0 〉 , |ψ(0)
1 〉. In

fact when the perturbation is absent, there is no mixing between the vectors in the eigenspace of E
(0)
GS

and those from the excited levels.
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system can be rewritten as a 2-dim eigenvalue problem


V00 V01

V10 V11




c
±
0

c±1


 = E

(1)
±


c
±
0

c±1


 , (A.15)

that gives

E
(1)
+ =

1

2

[
V00 + V11 +

√
(V00 − V11)2 + 4|V01|2

]

E
(1)
− =

1

2

[
V00 + V11 −

√
(V00 − V11)2 + 4|V01|2

]
,

(A.16)

and the corresponding coefficients

c+
0

c+
1

= −
V11 − E(1)

GS+

V01
,

c−0
c−1

= −
V11 − E(1)

GS−

V01
.

(A.17)

The difference E
(1)
+ −E

(1)
− =

√
(V00 − V11)2 + 4|V01|2 is the first order correction for the

splitting, given in Eq.(2.35). Note that if V01 = 0 and V00 = V11 there is no splitting

(both levels have a first order shift E
(1)
± = V00) and the coefficients c±0 , c

±
1 in Eq.(A.10)

remain undetermined.

Analogously if we multiply the same Eq.(A.7) by 〈ψ(0)
k | with k = 2, 3, ... we obtain

d±k =
c±0 Vk0 + c±1 Vk1

E
(0)
GS − E

(0)
k

. (A.18)

Note that this is only a part of the coefficients in Eq.(A.11), the remaining d±0 and d±1
are still undetermined.

2nd order By multiplying 〈ψ(0)
0 | and 〈ψ(0)

1 | by Eq.(A.8) we obtain

〈ψ(0)
0 | (Ĥ0 − E(0)

GS)
∑

n

e±n |ψ(0)
n 〉 =

−〈ψ(0)
0 | (V̂ − E

(1)
± )

∑

n

d±n |ψ(0)
n 〉+ E

(2)
±
∑

r=0,1

c±r 〈ψ(0)
0 |ψ(0)

r 〉 ,

〈ψ(0)
1 | (Ĥ0 − E(0)

GS)
∑

n

e±n |ψ(0)
n 〉 =

−〈ψ(0)
1 | (V̂ − E

(1)
± )

∑

n

d±n |ψ(0)
n 〉+ E

(2)
±
∑

r=0,1

c±r 〈ψ(0)
1 |ψ(0)

r 〉 .

(A.19)



A.1 Degenerate Perturbation Theory 133

Here, since both 〈ψ(0)
0 | and 〈ψ(0)

1 | give energy E
(0)
GS , the terms on the left vanish and,

by using Eq.(A.18), we can rewrite this system as

c±0 E
(2)
± = d±0 (E

(1)
± − V00)− d±1 V01 −

∑

k>1

c±0 |V0k|2 + c±1 V0kVk1

E
(0)
GS − E

(0)
k

,

c±1 E
(2)
± = d±1 (E

(1)
± − V11)− d±0 V10 −

∑

k>1

c±0 V1kVk0 + c±1 |V1k|2

E
(0)
GS − E

(0)
k

.

(A.20)

If a splitting was found already at the first order (i.e. we know E
(1)
± and c±0 , c

±
1 ),

this is an inhomogeneous system of 2 equations for the real variable E
(2)
± and the

complex ones d±0 , d
±
1 . However, this is not the case in the systems of our interest since

V00 = V11 = V10 = V01 = 0 (see the next section), so the second order Eqs.(A.20)
reduces to

c±0 E
(2)
± = c±0

∑

k>1

|V0k|2

∆E
(0)
k

+ c±1
∑

k>1

V0kVk1

∆E
(0)
k

c±1 E
(2)
± = c±0

∑

k>1

V1kVk0

∆E
(0)
k

+ c±1
∑

k>1

|V1k|2

∆E
(0)
k

(A.21)

where ∆E
(0)
k = E

(0)
GS −E

(0)
k . It is convenient to rewrite this system of two equations for

the variables c±0 , c
±
1 in terms of the 2-dim eigenvalue problem




∑

k>1

|V0k|2

∆E
(0)
k

∑

k>1

V0kVk1

∆E
(0)
k

∑

k>1

V1kVk0

∆E
(0)
k

∑

k>1

|V1k|2

∆E
(0)
k







c±0

c±1




= E
(2)
±




c±0

c±1



. (A.22)

Then, using the same algebra for Eq.(A.15), we find

E
(2)
± =

1

2

{∑

k>1

|V0k|2 + |V1k|2

∆E
(0)
k

±

√√√√
(∑

k>1

|V0k|2 − |V1k|2
∆E

(0)
k

)2

+ 4

∣∣∣∣∣
∑

k>1

V0kVk1

∆E
(0)
k

∣∣∣∣∣

2} (A.23)

and

c±0
c±1

= −

∑

k>1

|V1k|2

∆E
(0)
k

− E(2)
GS±

∑

k>1

V0kVk1

∆E
(0)
k

. (A.24)
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The difference E
(2)
+ −E

(2)
− is the coefficient of λ2 on the righthand side of Eq.(2.35). It

is important to underline that if the matrix in Eq.(A.22) is a multiple of the identity,
i.e. if

∑

k>1

V0kVk1

∆E
(0)
k

= 0 and
∑

k>1

|V0k|2

∆E
(0)
k

=
∑

k>1

|V1k|2

∆E
(0)
k

, (A.25)

then there is still no splitting (both levels have a second order shift E
(2)
± =

∑
k>1

|V0k|2

∆E
(0)
k

)

and the coefficients c±0 , c
±
1 are still undetermined (note that in this case also d±0 , d

±
1 are

undetermined). This last possibility is the case of DTO, in which no second order
splitting is found (the degeneracy of the GS is not lifted because the doublet level
shifts with field).

If we now multiply the same Eq.(A.8) by 〈ψ(0)
h | with h = 2, 3, ... we obtain

e±h =
d±hE

(1)
± −

∑
n d
±
n Vhn

∆E
(0)
h

. (A.26)

This, in the cases of our interest (E
(1)
± = Vur = 0 with u and r = 0, 1), reduces to

e±h = −
d±0 Vh0 + d±1 Vh1 +

∑

k>1

d±k Vhk

∆E
(0)
h

, (A.27a)

i.e. e±h = −
d±0 Vh0 + d±1 Vh1 +

∑

k>1

c±0 Vk0+c±1 Vk1
∆E

(0)
k

Vhk

∆E
(0)
h

. (A.27b)

Hence to access the coefficients by e±h with h > 1 it is necessary to know both c±0 , c
±
1

and d±0 , d
±
1 .

3rd order The procedure for the third order is analogous to the second order one,

hence we summarise only the main steps of the calculation. Multiplying 〈ψ(0)
0 | and

〈ψ(0)
1 | to Eq.(A.9) gives

c±0 E
(3)
± =

∑

n

e±n V0n − e±0 E
(1)
± − d±0 E

(2)
± ,

c±1 E
(3)
± =

∑

n

e±n V1n − e±1 E
(1)
± − d±1 E

(2)
± .

(A.28)

that is worth rewriting as follows:

c±0 E
(3)
± = e±0 (V00 − E(1)

± ) + e±1 V01 +
∑

h>1

e±h V0h − d±0 E
(2)
± ,

c±1 E
(3)
± = e±1 (V11 − E(1)

± ) + e±0 V10 +
∑

h>1

e±h V1h − d±1 E
(2)
± .

(A.29)
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Here if a splitting was found already at the first or second order (i.e. we know E
(1)
± , E

(2)
±

and c±0 , c
±
1 ), this is a inhomogeneous system of 2 equations for the real variables E

(3)
±

and the complex ones d±0 , d
±
1 , e

±
0 , e

±
1 . However, since E

(1)
± = Vur = 0 in all the cases

(u ∧ r = 0, 1) discussed here, this becomes

c±0 E
(3)
± = −d±0 E

(2)
± +

∑

h>1

e±h V0h,

c±1 E
(3)
± = −d±1 E

(2)
± +

∑

h>1

e±h V1h.
(A.30)

and by substituting the explicit form of the coefficients e±h in Eq.(A.27b)

c±0 E
(3)
± = −d±0 E

(2)
± −

∑

h>1

d±0 Vh0 + d±1 Vh1 +
∑

k>1

c±0 Vk0+c±1 Vk1
∆E

(0)
k

Vhk

∆E
(0)
h

V0h,

c±1 E
(3)
± = −d±1 E

(2)
± −

∑

h>1

d±0 Vh0 + d±1 Vh1 +
∑

k>1

c±0 Vk0+c±1 Vk1
∆E

(0)
k

Vhk

∆E
(0)
h

V1h.

(A.31)

Here, depending on the results from the second order, we have to distinguish two
different cases:

• If, from the splitting found at the first or second order, the coefficcients c±0 , c
±
1

are resolved as in Eq.(A.24) the only variables left are E
(3)
± and d±0 , d

±
1 . Hence,

together with the normalisation condition
∑

n |d±n |2 = 1 the system of equations
in Eq. (A.31) is closed and can be solved analytically (this is the case of HTO,
see section A.3).

• If there is no splitting up to the second order (as happens for DTO) then also

the coefficients c±0 , c
±
1 are unknown together with E

(3)
± and d±0 , d

±
1 . In this case,

therefore, the number of unknown variables exceeds the number of equations
even if we consider the normalisation conditions. An analytical derivation of the
third order terms can be pursued by considering a symmetry breaking field which
would neatly resolve the states, and then study the behaviour of the quantum
states at the limit going to zero. This is not discussed in the present thesis as
the understanding of the cancellation of the second order contribution is already
sufficient to explain the third order dependence of the energy splitting in DTO
found by exact numerical diagonalisation (this is briefly discussed in section A.3).

A.2 Matrix elements of the perturbtation

In this section we show the calculation of the matrix elements Ṽnm = 〈ψ(0)
n | ˆ̃V |ψ(0)

m 〉.
As in the main text (see Sec.2.4.1), |ψ(0)

m 〉 are the eigenstates of the CF Hamiltonian
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representing of a RE-ion in a D3d symmetry. The dimensionless operator

ˆ̃
V = ˆ̃J+ + ˆ̃J− (A.32)

is the perturbation applied to these states when a magnetic field purely transverse to

the local quantisation axis of the RE-ion is considered ( ˆ̃J± = e∓iφĴ±, with Ĵ± as defined

in Eq. (1.5)). More explicitly the operator
ˆ̃
V in Eq. (A.32) relates to V̂ ≡ ECF Ĵ ·B/|B|,

introduced in Sec.2.4.1, simply by
ˆ̃
V = 2V̂ /ECF. This allows a more direct comparison

with the energies set by the crystal-field environment. Here dimensionless operators
are preferable to highlight the role played by the symmetries involved (the tilde is
used also to distinguish them from the general case discussed in the previous section).
The strength of the field is obviously set in a regime where it can be considered as a
perturbation; the values in Tesla are those where the power-law regimes for the splitting
in Fig. 2.9 is guaranteed.

Here particular attention is given to HTO because the effects of its D3d symmetry
somehow “contain” the correspondent case for DTO. In the following, after charac-
terising the possible quantum states allowed by the symmetry, it is shown how their
“mixing” due to the perturbation depends on the structure of the whole crystal-field
spectrum. This mainly consists in calculating the matrix elements Ṽnm, using an ana-
lytical decomposition of the crystal-field states with respect to the angular momentum
eigenstates. Such decomposition is given in Table A.1 for a certain number of states,
including specific cases, such as the GS doublet and the states found by applying the
perturbative potential to them, and more general ones where the number of free param-
eters is even larger. In Table A.1 each state |ψ〉 at the top of a column of coefficients
CM is given by a superposition |ψ〉 =

∑
M CM |M〉.

The Table A.1 is useful in particular to calculate the matrix elements Ṽn0 and Ṽn1, of

the perturbing potential
ˆ̃
V , which couple the two ground states of the doublet between

each other and to the other excited crystal-field states. The third and fourth column

show respectively
ˆ̃
V |ψ(0

0 〉 and
ˆ̃
V |ψ(0

1 〉 where the coefficients j±M , which depend only on
the angle φ of the field in Eq. (A.32) and on the quantum numbers {J,M}, summarise
the effect of the the perturbing potential on the angular momentum states:

ˆ̃
V |M〉 = j+

M |M + 1〉+ j−M |M − 1〉 with

j±M = e∓iφ
√
J(J + 1)−M(M ± 1).

(A.33)

Furthermore, from the general properties of the ladder operators, we have

j±−M = j±M±1 , (A.34)

which leads to characteristic symmetries, in the Ṽnm elements. A part of these, namely
those for the elements Ṽnm with m = 0, 1, are crucial in the study presented below.



A.2 Matrix elements of the perturbtation 137

HTO |ψ(0)
0 〉 |ψ

(0)
1 〉

ˆ̃
V |ψ(0)

0 〉
ˆ̃
V |ψ(0)

1 〉 |ψ
(0)
s 〉 |ψ(0)

s′ 〉 |ψ
(0)
D 〉 |ψ

(0)
D+1〉

|8〉 g8 0 0 −j+
7 g7 0 0 d8 d−8

|7〉 0 −g7 j−8 g8 0 0 0 d7 d−7

|6〉 0 0 j+
5 g5 −j−7 g7 s6 s′6 0 0

|5〉 g5 0 0 j+
4 g4 0 0 d5 −d−5

|4〉 0 g4 j−5 g5 0 0 0 d4 −d−4

|3〉 0 0 j+
2 g2 j−4 g4 s3 s′3 0 0

|2〉 g2 0 0 −j+
1 g1 0 0 d2 d−2

|1〉 0 −g1 j−2 g2 0 0 0 d1 d−1

|0〉 0 0 j+
−1g1 −j−1 g1 s0 0 0 0

|−1〉 g1 0 0 j+
−2g2 0 0 d−1 −d1

|−2〉 0 g2 j−−1g1 0 0 0 d−2 −d2

|−3〉 0 0 j+
−4g4 j−−2g2 s3 −s′3 0 0

|−4〉 g4 0 0 −j+
−5g5 0 0 d−4 d4

|−5〉 0 −g5 j−−4g4 0 0 0 d−5 d5

|−6〉 0 0 j+
−7g7 −j−−5g5 −s6 s′6 0 0

|−7〉 g7 0 0 j+
−8g8 0 0 d−7 −d7

|−8〉 0 g8 j−−7g7 0 0 0 d−8 −d8

Table A.1: This table gives, in the case of HTO, the coefficients for the decomposition of
the states at the top with respect to the angular momentum eigenstates |M〉 on the far left.
A generic state |ψ〉 at the top of a column of coefficients CM is given by a superposition
|ψ〉 =

∑
M CM |M〉. This kind of visualisation simplifies the calculation of the matrix

elements Ṽnm = 〈ψ(0)
n | ˆ̃V |ψ(0)

m 〉. A trivial example is to verify 〈ψ(0)
1 |ψ

(0)
0 〉 = 0 by simply

looking at the first two states on the left (these are the ground-state doublet in Eq. (A.35)).
Reading from the left, the states shown here are: the two eigenstates for the ground state

energy, the first order terms obtained by applying
ˆ̃
V to them; then follow the generic

decompositions for, firstly |ψ(0)
s 〉 , |ψ(0)

s′ 〉, the two types of singlets in the CF spectrum, and

secondarily |ψ(0)
D 〉 , |ψ

(0)
D+1〉 the two generic states for all the doublets (note indeed that also

the GS doublet is a particular case of these ones).
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A.2.1 Perturbative coupling between the ground state doublet and
all crystal-field states

All the CF states for HTO can be found by numerical diagonalisation of the Hamiltonian
in Eq. (2.27) using the parameters in Table 2.3. The energy spectrum of ĤCF is made
of 5 singlets and 6 doublets.

The ground state doublet The ground state energy is doubly degenerate for the
eigenstates

|ψ(0)
0 〉 = 0.982 |+8〉+ 0.156 |+5〉+ 0.065 |+2〉+ 0.071 |−1〉+ 0.049 |−4〉+ 0.006 |−7〉

|ψ(0)
1 〉 = 0.982 |−8〉 − 0.156 |−5〉+ 0.065 |−2〉 − 0.071 |+1〉+ 0.049 |+4〉 − 0.006 |+7〉

(A.35)

which account for the strong Ising anisotropy characterising the magnetic ions in spin-
ice materials. These same states are given respectively in the first and second column
(from the left) of Table A.1 where the coefficients are given in terms of algebraic pa-
rameters which highlight the similarities and symmetries between the two states. For

these two states it is immediate to verify 〈ψ(0)
1 |ψ

(0)
0 〉 = 0 by noticing that ther is no

“overlap” between their decompositions 2.

Again because of no overlap for the decompositions it is straightforward to verify
Ṽ00 = 0, using respectively the first and third column, and Ṽ00 = 0, using the sec-
ond and the fourth one. Slighlty more cumbersome is to prove that Ṽ10 and Ṽ01 are
null, since apparently they have non-zero overlap. Nonetheless their scalar product is

straightforward to compute using Table A.1. Here as example we show 〈ψ(0)
1 |

ˆ̃
V |ψ(0)

0 〉:

Ṽ10 = g7g8

(
j−−7 − j−8

)
+ g4g5

(
j−−4 − j−5

)
+ g1g2

(
j−−1 − j−2

)
= 0 (A.36)

This expression is null because all elements within the parenthesis cancel out (see
property in Eq. (A.34)).

This shows that in HTO the first all the matrix elements of the first order perturbation
on the ground state doublet have zero contribution. In the case of DTO an analogous
and more trivial case is found: all the first orders terms cancel because there is no
direct overlap between their decompositions.

The singlets Another interesting feature of the CF eigenstates for HTO is the struc-

ture of the singlets |ψ(0)
s 〉 and |ψ(0)

s′ 〉. These are shown respectively in the fifth and sixth
column (from the left) of Table A.1. To avoid confusion, it is important to under-
line that these states have different energies and non trivial relationships between the
coefficients of their decompositions (in general si 6= s′j for all {i, j}, also for i = j) 3.

2 The absence of overlap is a strong constraint on their scalar product 〈ψ(0)
1 |ψ(0)

0 〉 = 0. Since it does
not depend on the values of the coefficients it is a more general property for these two states, i.e. it
reflects the peculiar symmetry of the crystal-field Hamiltonian.

3This is because they belong to two different irreducible representations, A1g and A2g.
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Despite the majority of their elements have null coefficients in the expansion with
respect to the angular momentum states, the perturbative coupling of the singlets with
the ground state doublet is non vanishing in both cases. Here we show their matrix

elements for the state ψ
(0)
0 :

〈ψ(0)
s |

ˆ̃
V |ψ(0)

0 〉 = s3

(
g2j

+
2 + g4j

+
−4

)
+ s6

(
g5j

+
5 − g7j

+
−7

)
+ s0g1j

+
−1 6= 0 ,

〈ψ(0)
s′ |

ˆ̃
V |ψ(0)

0 〉 = s′3

(
g2j

+
2 − g4j

+
−4

)
+ s′6

(
g5j

+
5 + g7j

+
−7

)
6= 0 .

(A.37)

Analogously it can be proven that also 〈ψ(0)
S |

ˆ̃
V |ψ(0)

1 〉 6= 0 for both S = s, s′.

The doublets To conclude the study of the matrix elements Ṽn0 and Ṽn1, only the
coupling of the ground state doublet with the higher excited doublets is left. Each

doublet is made of two state vectors |ψ(0)
D 〉 and |ψ(0)

D+1〉. These have non trivial rela-
tionships between the coefficients for their angular momentum decompositions shown
in the seventh and eighth column of Table A.1.

The scalar products 〈ψ(0)
D |

ˆ̃
V |ψ(m)

0 〉 and 〈ψ(0)
D+1|

ˆ̃
V |ψ(m)

0 〉 are non null for both states

of the ground state doublet (m = 0, 1). Here only the results for |ψ(0)
0 〉 are shown

explicitly. The non vanishing elements

〈ψ(0)
D |

ˆ̃
V |ψ(0)

0 〉 = j−−7g7d−8 + j−8 g8d7 + j−−4g4d−5 + j−5 g5d4 + j−−1g1d−2 + j−2 g1d1

〈ψ(0)
D+1|

ˆ̃
V |ψ(0)

0 〉 = −j−−7g7d8 + j−8 g8d−7 + j−−4g4d5 + j−5 g5d−4 − j−−1g1d2 + j−2 g1d−1

(A.38)

can be written as

〈ψ(0)
D |

ˆ̃
V |ψ(0)

0 〉 =
∑

M=2,5,8

j−M

(
g(M − 1)d(−M) + g(M)d(M − 1)

)
6= 0

〈ψ(0)
D+1|

ˆ̃
V |ψ(0)

0 〉 =
∑

M=2,5,8

(−1)Mj−M

(
g(M − 1)d(M)− g(M)d(−M + 1)

)
6= 0.

(A.39)

thanks to the property j±(M) = j±(−M ∓ 1) in Eq. (A.34). Analogously it can be

shown that also 〈ψ(0)
D |

ˆ̃
V |ψ(0)

1 〉 and 〈ψ(0)
D+1|

ˆ̃
V |ψ(0)

1 〉 are both non vanishing.

By studying their properties with respect of the conjugation of the matrix elements
(mainly coming from the terms e±iφ inj±M since all CF coefficients are real) we notice
the following relationships between the perturbation elements coupling the two states
of the ground state doublet to the two states of the excited doublets:

〈ψ(0)
D |

ˆ̃
V |ψ(0)

1 〉 = 〈ψ(0)
0 |

ˆ̃
V |ψ(0)

D+1〉

〈ψ(0)
D+1|

ˆ̃
V |ψ(0)

1 〉 = −〈ψ(0)
0 |

ˆ̃
V |ψ(0)

D 〉 .
(A.40)

These relationships show a very peculiar structure in the coupling of the ground state
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doublet with the excited doublets of the crystal-field spectrum. They can be found also
in the case of DTO, whose spectrum consists only of doublets. The implications of the
relationships for singlets, Eq. (A.37), and for the doublets, Eq. (A.40) are discussed in
the following section for both HTO and DTO.

A.3 Why there is a different splitting for HTO and DTO

The spectrum of a magnetic ion often shows degenerate energy levels when subject to
electrostatic fields; any degeneracy is completely removed only by applying a magnetic
field. If the strength of fields is such that the magnetic one can be considered as
a little perturbation, then the methods discussed in section A.1 can be used to study
analytically how the removal of the degeneracy, and also the broadening of the splitting
itself, depend on the different orders of the perturbative expansion.

As discussed in section 2.1 in the main text, both HTO and DTO have the magnetic
ions immersed in a crystal environment characterised by very strong effective electric
fields. This allows a perturbative study of the effect of the magnetic fields as long as
these are within the order of 1 Tesla. The main interest is obviously in the removal
of the degeneracy of the ground state doublets; here the focus has been mainly on
perturbative fields which are purely transverse to the local easy axis to the magnetic
ions since they induce quantum dynamics which cannot be found in classical systems.
The remarkable result found in this study is that, not only neither HTO nor DTO
depend linearly on the field (i.e. there is no splitting at the first order of perturbation)
but they show a different power-law dependence with respect to the transverse magnetic
field. This is clearly show in Fig. 2.9 where the different slopes in found in the low fields
regime in the log-log dependence corresponds to a quadratic and a cubic dependence
of the splitting with respect to the perturbation.

In section A.1 a degenerate perturbation theory has been used to derive the depen-
dence of the energy levels for a generic ground state doublet on an applied perturbation.
In Eq. (A.23) the dependence of the two energy levels, fading out from the degenerate
one, is shown up to the third order. The splitting ∆E01 = E1 − E0 is

∆E01 = λ2

√√√√√√



∑

k>1

∣∣∣Ṽ0k

∣∣∣
2
−
∣∣∣Ṽ1k

∣∣∣
2

∆E
(0)
0k




2

+ 4

∣∣∣∣∣
∑

k>1

Ṽ0kṼk1

∆E
(0)
0k

∣∣∣∣∣

2

+O
(
λ3
)
. (A.41)

This is the same as Eq. (2.35) given in the main text where, of the first order terms,
the only non vanishing ones where Ṽ00, Ṽ10, Ṽ01, Ṽ11. Since in A.2 it was shown that
these are identically null because of the symmetries characterising HTO and DTO,
this justifies the absence of any linear dependence on the transverse fields for both
compounds.

Hence the quadratic dependence of the splitting for HTO account completely for the
slope found from the numerical simulations (see the dashed back line interpolating
perfectly the red one in the low field regime in Fig. 2.9). For DTO, however, also the
second order terms vanish in subtracting the two energy levels. This is due to the
property shown in Eq. (A.40).
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In these systems another important property for the dependence of the splitting on
the field is also found for the second order terms, because of the relationships for
the doublets in Eq. (A.40). The first consequence of these is that for all doublets
|V0D|2 = |V1D+1|2 and also |V1D|2 = |V0D+1|2. This implies that the first term under
the square root in Eq. (A.40) cancels out immediately if the spectrum is only made of
doublets. Furthermore terms such as the summation for the second term (under the
modulus)

∑

k>1

Ṽ0kṼk1

∆E
(0)
k

, (A.42)

is such that where k runs over the doublets it vanishes

∑

D

Ṽ0DṼD1 + Ṽ0D+1ṼD+11

∆E
(0)
D

=
∑

D

Ṽ0DṼD1 − ṼD1Ṽ0D

∆E
(0)
D

= 0. (A.43)

This shows why for systems like DTO it is necessary to consider the third order
terms to finally remove the degeneracy (see blue curve in Fig. 2.9). Hence we find
that the difference in the power-law dependence found for the two systems is due to
the type of spectrum already present at the crystal-field level. The main reason is
that if the summation in Eq.(A.42) is over the whole excited spectrum (including both
doublets and singlets), then this will be equal to the sum of the contributions only
from the singlets, like Eq.(A.37), since the terms from the doublets cancel out due
to the relationships in Eq.(A.40). This is the case for HTO, where in fact we find a
parabolic low field dependence, while for DTO this does not happen since no singlets
are present (Kramers system) and all of the contributions from doublets cancel out
(parabolic dependence suppressed).

These results show a quantum mechanical perturbation of the low field physics for
HTO and DTO account for a behaviour which would be otherwise missed by a classical
approach. Moreover it sheds light on the actual reason behind the numerical results
showing different field-dependence for the two different systems. It is important to
underline that, in fact, the perturbative analysis proved not only why the quadratic
dependence of the splitting versus the field vanishes in DTO, but also that this happens
because both eigenstates of the ground state respond in the same identical way to the
perturbation (hence their difference cancels). On the other hand the first order terms
are identically null in both systems (HTO and DTO) since the only matrix elements
which would survive after subtracting the two energy levels are identically zero (hence
at the first order the effect of the perturbation is null on the levels themselves; the zero
splitting in this case is a trivial consequence).



B
Strong-coupling perturbation theories
for effective exchange interactions

This Appendix complements Chapter 4 on the exchange interactions in magnetic py-
rochlore oxides. In general the reader should read this Appendix when suggested in
the main text, since the sections are not directly linked with each other. Each section
is written in order to be self contained and independent from the others.

In section B.1 the exchange interactions are discussed in a well established model,
the one-band Hubbard model, with electrons strongly localised on their ionic sites of
a solid-state lattice. It summarises the approach, presented in Ref. [58], to derive an
effective spin-spin interaction by means of fermionic operators defining a Hamiltonian
with only two kinds of term for the electrons: one accounting for their kinetic energy,
the other for the energy associated with their interaction.

Section B.2 gives details for the strong-coupling perturbation theory to derive a su-
perexchange interaction in magnetic pyrochlore oxides that is used in the work of On-
oda et al [30]. Such derivation constitute an original contribution of this thesis since
in Ref. [30] very few details are given in how to obtain it.

B.1 The superexchange from the strong coupling limit of
the Hubbard model

As briefly mentioned in subsection 4.1.2 the character of the superexchange magnetism
is determined by the interplay of two main effects: the orbital overlap between distinct
ions and the Coulomb repulsion (Hund’s rules) between electrons on the same site.

In 1934 Kramers introduced the superexchange as a process due to the admixture of
the wave functions of the cations and anions constituting a unit complex (like the M-O-
M unit in Fig. 4.1). By means of perturbation theory the effective exchange interaction

142
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between the magnetic ions was derived as a result of the excited states above the
ground-state energy [54]. Later, in 1959, Anderson proposed a characterisation of the
energy scales for the electrons participating to the superexchange; this is given by the so
called kinetic term for their hopping, and a Coulombic term for their mutual repulsion
[84, 85]. In this context the exchange constant, for the Heisenberg model in Eq. (4.10),
is given by

Ji,j = −
t2i,j
U

(B.1)

where ti,j is the matrix element for the electron-hopping between the two sites i, j and
U is the average Coulomb repulsion for the electrons on the same unit complex.

In Anderson’s formulation of superexchange, the electron hopping is in general a virtual
process [54]. From this theory it was understood that the overlap of orbitals and the
exchange itself do not necessarily imply a real charge transfer between the different
parts of a unit complex.

An illustrative example is discussed by E. Fradkin in Ref. [58] starting from the one
band Hubbard model

Ĥ = −t
∑

〈r,r′〉
σ=±

(
â†σ(r)âσ(r′) + h.c.

)
+ U

∑

r

n̂+(r)n̂−(r) . (B.2)

Here the fermionic operator â†σ(r) (âσ(r) creates (destroys) an electron with spin σ/2

on site r; n̂σ(r) ≡ â†σ(r)âσ(r). The algebra for these operators is defined by the anti-
commutation relations in Eq. (4.37). The two terms in the Hamiltonian represent the
main contributions for a strongly-correlated electron system: the kinetic term, with t
tuning the hopping of electrons between neighbouring sites, and the Coulombic term,
with U tuning the onsite repulsion for two electrons on the same site. In the limit U � t
the mutual interaction is small enough to consider the electrons as a weakly-coupled
gas of charges1. The opposite limit is more relevant to the physics of spin ice materials.
For U � t the electrons are strongly localised on the ionic sites; their motion across
the lattice is reduced at the minimum necessary to allow covalent bonding. In Ref. [58]
these two limits are discussed in depth. Here the focus is only on the strong-coupling
limit being more relevant for the perturbation theory adopted by Onoda in Ref. [30].

If the local interaction between electrons is very strong (U � t) the system finds its
minimum when the electrons are sparse in the lattice, so that the onsite repulsion is
minimised. The diagrams (a) and (c) in Fig. B.1 sketch two equivalent spin configura-
tions for the half-filling case in a system with a lattice hosting only a maximum of two
(antiparallel) spins per site. Such configurations are only two of the possible eigenstates
|α〉 of the degenerate ground state of the Hamiltonian

Ĥ1 = U
∑

r

n̂+(r)n̂−(r) . (B.3)

The configurations in the centre (b) of Fig. B.1 represent the (intermediate) virtual
states leading to the exchange in position of two spins next to each other. These are

1This is usually called a Fermi liquid.
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(a) (b) (c)
Figure B.1: Adapted from Fig.2.1 in Ref. [58]. (a) and (c) are two configurations of spins
corresponding to orthogonal ground states of H1. They differ only by exchange of two
neighbouring spins (encircled by a dotted rectangle). The configurations in (b) correspond
to the two virtual states intermediate between the two degenerate (a) and (c) states. The
colours of the arrows refer to the action of the kinetic operator H0 on the different sites:
blue when acting on the righthand site, red for the lefthand one.

virtual because they cost an energy U above the ground-state energy which is too large
for the system to be allowed as real states.

By means of Brillouin-Wigner perturbation theory [58], an effective spin-spin interac-
tion can be derived by considering the Hamiltonian

Ĥ0 = −t
∑

〈r,r′〉
σ=±

(
â†σ(r)âσ(r′) + h.c.

)
(B.4)

as very small correction to Ĥ1.

The details of the perturbation theory can be found in Ref. [58], here we give directly
the spin-spin interaction obtained in the half-filling limit

Ĥ ′0 =
2t2

|U |
∑

〈r,r′〉

Ŝ (r) · Ŝ
(
r′
)
. (B.5)

Eq. (B.5) shows that at half filling the one band Hubbard model leads to the one-half

Quantum Heisenberg antiferromagnet in Eq. (4.11) with exchange coupling J = −2t2

|U | .
The factor two in the coupling constant originates from the two virtual paths leading to
the exchange of the two spins. This corresponds to the two (b) virtual states in Fig. B.1
“connecting” the two configurations (a) and (c) being eigenstates of the degenerate
ground state energy of Ĥ1. The blue and red arrows in Fig. B.1 distinguish the action
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of the Hamiltonian on the righthand and lefthand site respectively. To have an effective
exchange interaction it is necessary to act once on each of the two sites per path; other
cases would take the system out of its allowed ground state configurations.

The half-filling limit of the one band Hubbard model represents an archetype for the
emergence of magnetic interactions in a quantum system with strongly correlated elec-
trons. It proves that strong localisation of electrons translates into magnetic coupling
between their hosting sites. In real compounds this is due to the hybridisation between
the orbitals of the different ions hosting the electrons. Although the Hubbard model
does not require any detail about the underlying structure hosting the electrons, the
hybridisation of the orbitals is the starting point for a more accurate approach where
the magnetic interactions can manifest in more complex systems than the half filled
limit of simple lattice like the one discussed here.

The magnetic pyrochlore oxides are an example of complex systems where the hybridi-
sation between the magnetic orbitals of the RE ions and the orbitals of the O1 ions
has been proposed in the form a kinetic Hamiltonian which introduces delocalisation
for the electrons, which leads to the manifestation of an effective magnetic interaction.
The interest in giving this short presentation is mainly to allow a comparison of the di-
agrams for the virtual paths of a fourth order expansion in a magnetic pyrochlore with
a model, such as the one-band Hubbard model at half filling which is more commonly
used in condensed matter systems.

In the following section the full derivation of an effective exchange Hamiltonian in the
many-body formalism is derived from the 4th order virtual processes allowed from the
hybridisation of the 4-f orbitals of the RE ions with the 2-p orbitals of the oxygen O1
ions.

B.2 Expanding the 4th order powers of the hybridisation
Hamiltonian

This section provides all the analytical steps to derive the exchange Hamiltonian in
Eq. (4.75) as a strong coupling perturbation expansion of Eq. (4.50) (respectively
Eq.(17) and Eq.(16) in the work of Onoda et al. [30]).

As the derivation is based mainly on the term

ĥτi = f̂ †R+ai,m,σ
(R†R+ai

)m,µ
σ,η

p̂R+(1+τ)ai,µ,η

+ p̂†R+(1+τ)ai,µ,η
(RR+ai

)µ,m
η,σ

f̂R+ai,m,σ
,

(B.6)

of the hybridisation Hamiltonian in Eq. (4.50), it is convenient to rewrite such term in
the more compact form

ĥm,µ
σ,η

= f̂ †m,σ (R†)m,µ
σ,η

p̂µ,η + p̂†µ,η (R)µ,m
η,σ

f̂m,σ . (B.7)



B.2 Expanding the 4th order powers of the hybridisation Hamiltonian 146

B.2.0.1 The 4th order building-block from the sum over the oxygen states

From Eq. (B.7) we proceed with the fourth-order expansion for one type of O1 sublattice

ˆ̃
h(4) =

∑

µ1,µ2,µ3,µ4=0,±1

∑

η1,η2,η3,η4=±

〈∆|Vm1

(
ĥm1,µ1
σ1,η1

)
Vm2

(
ĥm2,µ2
σ2,η2

)
Vm3

(
ĥm3,µ3
σ3,η3

)
Vm4

(
ĥm4,µ4
σ4,η4

)
|∆〉 (B.8a)

= Vm1Vm2Vm3Vm4

∑

µ1,µ2,µ3,µ4=0,±1
η1,η2,η3,η4=±

〈∆|
(
((((

((((
(((

f̂ †m1,σ1 (R†)m1,µ1
σ1,η1

p̂µ1,η1 + p̂†µ1,η1 (R )µ1,m1
η1,σ1

f̂m1,σ1

)

(
f̂ †m2,σ2 (R†)m2,µ2

σ2,η2
p̂µ2,η2 + p̂†µ2,η2 (R )µ2,m2

η2,σ2
f̂m2,σ2

)

(
f̂ †m3,σ3 (R†)m3,µ3

σ3,η3
p̂µ3,η3 + p̂†µ3,η3 (R )µ3,m3

η3,σ3
f̂m3,σ3

)

(
f̂ †m4,σ4 (R†)m4,µ4

σ4,η4
p̂µ4,η4 +

((((
((((

(((
p̂†µ4,η4 (R )µ4,m4

η4,σ4
f̂m4,σ4

)
|∆〉 , (B.8b)

where the more external terms cancel because the state |∆〉 is the full p-shell of the O1
oxygen. Then, the product of the terms in parenthesis leads to

ˆ̃
h(4) = Vm1Vm2Vm3Vm4

∑

µ1,µ2,µ3,µ4=0,±1
η1,η2,η3,η4=±

〈∆| p̂†µ1,η1 f̂m1,σ1(R )µ1,m1
η1,σ1(

f̂ †m2,σ2 f̂m3,σ3 p̂µ2,η2 p̂
†
µ3,η3 (R†)m2,µ2

σ2,η2
(R )µ3,m3

η3,σ3

+ f̂m2,σ2 f̂
†
m3,σ3 p̂

†
µ2,η2 p̂µ3,η3(R )µ2,m2

η2,σ2
(R†)m3,µ3

σ3,η3

)

f̂ †m4,σ4 p̂µ4,η4(R†)m4,µ4
σ4,η4

|∆〉 , (B.9a)
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which is convenient to rewrite as

ˆ̃
h(4) =Vm1Vm2Vm3Vm4

∑

µ1,µ2,µ3,µ4=0,±1
η1,η2,η3,η4=±

〈∆|
[
f̂m1,σ1 f̂

†
m2,σ2 f̂m3,σ3 f̂

†
m4,σ4

p̂†µ1,η1 p̂µ2,η2 p̂
†
µ3,η3 p̂µ4,η4

(R )µ1,m1
η1,σ1

(R†)m2,µ2
σ2,η2

(R )µ3,m3
η3,σ3

(R†)m4,µ4
σ4,η4

+ f̂m1,σ1 f̂m2,σ2 f̂
†
m3,σ3 f̂

†
m4,σ4

p̂†µ1,η1 p̂
†
µ2,η2 p̂µ3,η3 p̂µ4,η4

(R )µ1,m1
η1,σ1

(R )µ2,m2
η2,σ2

(R†)m3,µ3
σ3,η3

(R†)m4,µ4
σ4,η4

]
|∆〉 .

Here we consider the two terms separately to focus the action of the p operators on the
oxygen |∆〉 ground state. The first term of the sum gives

∑

µ1,µ2,µ3,µ4=0,±1
η1,η2,η3,η4=±

[
〈∆| p̂†µ1,η1 p̂µ2,η2 p̂†µ3,η3 p̂µ4,η4 |∆〉

× (R )µ1,m1
η1,σ1

(R†)m2,µ2
σ2,η2

(R )µ3,m3
η3,σ3

(R†)m4,µ4
σ4,η4

]

=
∑

µ1,µ2,µ3,µ4=0,±1
η1,η2,η3,η4=±

[
〈∆| n̂µ1,η1 n̂µ3,η3 |∆〉 δµ1,µ2δη1,η2 δµ3,µ4δη3,η4

× (R )µ1,m1
η1,σ1

(R†)m2,µ2
σ2,η2

(R )µ3,m3
η3,σ3

(R†)m4,µ4
σ4,η4

]

=
∑

µ1,µ3=0,±1
η1,η3=±

[
nµ1,η1 nµ3,η3 (R†)m2,µ1

σ2,η1
(R )µ1,m1

η1,σ1
(R†)m4,µ3

σ4,η3
(R )µ3,m3

η3,σ3

]

= (R†R)m2,m1
σ2,σ1

(R†R)m4,m3
σ4,σ3

(B.10)

This was obtained taking into account that

p̂†µi,ηi p̂µj ,ηj |∆〉 = n̂µi,ηi δµi,µjδηi,ηj |∆〉 ,
nµi,ηi |∆〉 = |∆〉 ,

(B.11)

since |∆〉 has already each of the 6 p states occupied by one electron .
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Similarly the second term of the sum gives

∑

µ1,µ2,µ3,µ4=0,±1
η1,η2,η3,η4=±

[
〈∆|p̂†µ1,η1 p̂†µ2,η2 p̂µ3,η3 p̂µ4,η4 |∆〉

× (R )µ1,m1
η1,σ1

(R )µ2,m2
η2,σ2

(R†)m3,µ3
σ3,η3

(R†)m4,µ4
σ4,η4

]

=
∑

µ1,µ2,µ3,µ4=0,±1
η1,η2,η3,η4=±

[
〈∆|p̂†µ1,η1

(
δµ2,µ3δη2,η3 − p̂µ3,η3 p̂

†
µ2,η2

)
p̂µ4,η4 |∆〉

× (R )µ1,m1
η1,σ1

(R )µ2,m2
η2,σ2

(R†)m3,µ3
σ3,η3

(R†)m4,µ4
σ4,η4

]

=
∑

µ1,µ2,µ3,µ4=0,±1
η1,η2,η3,η4=±

[
〈∆|

(
δµ2,µ3δη2,η3 δµ1,µ4δη1,η4 n̂µ1,η1

− δµ1,µ3δη1,η3 δµ2,µ4δη2,η4 n̂µ1,η1 n̂µ2,η2
)
|∆〉

× (R )µ1,m1
η1,σ1

(R )µ2,m2
η2,σ2

(R†)m3,µ3
σ3,η3

(R†)m4,µ4
σ4,η4

]

=
∑

µ1=0,±1
η1=±

〈∆| n̂µ1,η1 |∆〉 × (R†R)m3,m2
σ3,σ2

(R†)m4,µ1
σ4,η1

(R )µ1,m1
η1,σ1

−
∑

µ1,µ2=0,±1
η1,η2=±

(
〈∆|n̂µ1,η1 n̂µ2,η2 |∆〉

×(R†)m4,µ2
σ4,η2

(R )µ2,m2
η2,σ2

(R†)m3,µ1
σ3,η1

(R )µ1,m1
η1,σ1

)

= (R†R)m3,m2
σ3,σ2

(R†R)m4,m1
σ4,σ1

− (R†R)m3,m1
σ3,σ1

(R†R)m4,m2
σ4,σ2

(B.12)

Then, summarising what has been found so far, Eq. (B.8) is reduced to the general
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form

ˆ̃
h(4) = Vm1Vm2Vm3Vm4

×
[
f̂m1,σ1 f̂

†
m2,σ2 f̂m3,σ3 f̂

†
m4,σ4 (R†R)m2,m1

σ2,σ1
(R†R)m4,m3

σ4,σ3

+ f̂m1,σ1 f̂m2,σ2 f̂
†
m3,σ3 f̂

†
m4,σ4

(
(R†R)m3,m2

σ3,σ2
(R†R)m4,m1

σ4,σ1

− (R†R)m3,m1
σ3,σ1

(R†R)m4,m2
σ4,σ2

)]

(B.13)

that is the general expression of the superexchange mechanism for any of the paths
shown in Fig. 4.6.

B.2.1 Gathering up the virtual paths

To compute the resulting amplitude of the superexchange it is necessary to label the
operators and related indices depending on the virtual path considered. In the fourth
order, six different sequences are allowed for the virtual electron-hops recovering the
initial frpO1fr′ ground state. Now the labelling will give an effective magnetic interaction
between two RE-sites because each path in Fig. 4.6 corresponds to a Hamiltonian,
derived from Eq. (4.63), where two f̂ operators act on the sites r and two on the sites
r′ of a given RE-O1-RE unit.

Before proceeding with the labelling of the operators it is convenient to make the
notation for the indices shorter by using i for the quantum numbers mi, σi of an electron
on the RE-site r, so that Eq. (B.13) is expressed in the more compact form as

ˆ̃
h(4) = V1V2V3V4

[
f̂1 f̂

†
2 f̂3 f̂

†
4 (R†R)2,1 (R†R)4,3

+ f̂1 f̂2 f̂
†
3 f̂
†
4

(
(R†R)3,2 (R†R)4,1 − (R†R)3,1 (R†R)4,2 .

)] (B.14)

Using the diagrams in Figs. B.2-B.4 to assign the labels and the relative energy weights
this will lead to the effective exchange Hamiltonian.

It is convenient to start from (a) and (b),

ĥ4th
(a),(b) =

V1V2′V3′V4

(nU −∆)2

[
f̂1 f̂

†
2′ f̂3′ f̂

†
4

U
(R†R)2′,1 (R†R)4,3′

+
f̂1 f̂2′ f̂

†
3′ f̂
†
4

2(nU −∆)

(
δ3′,2′ δ4,1 − (R†R)3′,1 (R†R)4,2′ ,

)] (B.15)

respectively in the first and second term. We can rewrite the term (b) so that it looks
more similar to (a) (in the rotation matrices) relabelling of the indices 3′ → 2′,2′ → 3′
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(only in the (b) term)

ĥ4th
(a),(b) =

V1V2′V3′V4

(nU −∆)2

[
f̂1 f̂

†
2′ f̂3′ f̂

†
4

U
(R†R)2′,1 (R†R)4,3′

+
f̂1 f̂3′ f̂

†
2′ f̂
†
4

2(nU −∆)

(
δ2′,3′ δ4,1 − (R†R)2′,1 (R†R)4,3′

)] (B.16)

Then the term (c) is

ĥ4th
(c) =

V1V2′V3V4′

(nU −∆)2

[

((((
(((

((((
(((

((
f̂1 f̂

†
2′ f̂3 f̂

†
4′

U
(R†R)2′,1 (R†R)4′,3

+
f̂1 f̂2′ f̂

†
3 f̂
†
4′

2(nU −∆)

(
(R†R)3,2′ (R†R)4′,1 − δ3,1 δ4′,2′

)]

=
V1V2′V3V4′

(nU −∆)2

f̂1 f̂2′ f̂
†
4′ f̂
†
3

2(nU −∆)

(
δ3,1 δ4′,2′ − (R†R)3,2′ (R†R)4′,1

)
,

(B.17)

where the first term cancels because the operators f̂1 f̂
†
2′ f̂3 f̂

†
4′ would create two elec-

trons on r′ and annihilate two in r taking the system out of the ground state configu-
ration frpO1fr′ of the RE-O1-RE system.
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Figure B.2: The equivalent paths (a) and (a′); see section B.2.1.1.



B.2 Expanding the 4th order powers of the hybridisation Hamiltonian 151

fn
r p6

O1f
n
r0fn

r p6
O1f

n
r0

fn+1
r p5

O1f
n
r0

fn
r p5

O1f
n+1
r0

fn+1
r p5

O1f
n
r0

fn
r p5

O1f
n+1
r0

fn+1
r p6

O1f
n�1
r0

fn�1
r p6

O1f
n+1
r0

fn+1
r p4

O1f
n+1
r0

fn
r p6

O1f
n
r0fn

r p6
O1f

n
r0

fn+1
r p5

O1f
n
r0

fn
r p5

O1f
n+1
r0

fn+1
r p5

O1f
n
r0

fn
r p5

O1f
n+1
r0

fn+1
r p6

O1f
n�1
r0

fn�1
r p6

O1f
n+1
r0

fn+1
r p4

O1f
n+1
r0

(b)

(b')

Figure B.3: The equivalent paths (b) and (b′); see section B.2.1.1.

Relabelling the indices 4′ → 3′,3→ 4 gives

ĥ4th
(c) =

V1V2′V3′V4

(nU −∆)2

f̂1 f̂2′ f̂
†
3′ f̂
†
4

2(nU −∆)

(
δ3′,2′ δ4,1 − (R†R)3′,1 (R†R)4,2′

)
(B.18)

and 3′ → 2′,2′ → 3′

ĥ4th
(c) =

V1V2′V3′V4

(nU −∆)2

f̂1 f̂3′ f̂
†
2′ f̂
†
4

2(nU −∆)

(
δ2′,3′ δ4,1 − (R†R)2′,1 (R†R)4,3′

)
(B.19)

Now we can put (a), (b) and (c) together

ĥ4th
(a),(b),(c) =

V1V2′V3′V4

(nU −∆)2

[
f̂1 f̂

†
2′ f̂3′ f̂

†
4

U
(R†R)2′,1 (R†R)4,3′

+
f̂1 f̂3′ f̂

†
2′ f̂
†
4

nU −∆

(
δ2′,3′ δ4,1 − (R†R)2′,1 (R†R)4,3′

)] (B.20)

B.2.1.1 The equivalence between (a′), (b′), (c′) and (a), (b), (c)

In the following the same calculations are given for the other 3 paths (a′), (b′) and
(c′) which we show are equivalent to (a), (b) and (c) respectively.
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Figure B.4: Two equivalent paths (c) and (c′); see section B.2.1.1.

Here follows (a′) and (b′)

ĥ4th
(a’),(b’) =

V1′V2V3V4′

(nU −∆)2

[
f̂1′ f̂

†
2 f̂3 f̂

†
4′

U
(R†R)2,1′ (R†R)4′,3

+
f̂1′ f̂2 f̂

†
3 f̂
†
4′

2(nU −∆)

(
δ3,2 δ4′,1′ − (R†R)3,1′ (R†R)4′,2

)] (B.21)

respectively the first and second term in the sum. We can rewrite the term (b′) so
that it looks more similar to (a′) (in the rotation matrices) relabelling of the indices
3→ 2,2→ 3 (only in the (b′) term)

ĥ4th
(a’),(b’) =

V1′V2V3V4′

(nU −∆)2

[
f̂1′ f̂

†
2 f̂3 f̂

†
4′

U
(R†R)2,1′ (R†R)4′,3

+
f̂1′ f̂3 f̂

†
2 f̂
†
4′

2(nU −∆)

(
δ2,3 δ4′,1′ − (R†R)2,1′ (R†R)4′,3

)] (B.22)
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Then the term (c′) is

ĥ4th
(c’) =

V1′V2V3′V4

(nU −∆)2

[

��
�
��
�

f̂1′ f̂
†
2 f̂3′ f̂

†
4

U
(R†R)2,1′ (R†R)4,3′

+
f̂1′ f̂2 f̂

†
3′ f̂
†
4

2(nU −∆)

(
(R†R)3′,2 (R†R)4,1′ − δ3′,1′ δ4,2

)]

=
V1′V2V3′V4

(nU −∆)2

f̂1′ f̂2 f̂
†
4 f̂
†
3′

2(nU −∆)

(
δ3′,1′ δ4,2 − (R†R)3′,2 (R†R)4,1′

)

(B.23)

relabelling of the indices 3′ → 4′,4→ 3

ĥ4th
(c’) =

V1′V2V3′V4

(nU −∆)2

f̂1′ f̂2 f̂
†
3 f̂
†
4′

2(nU −∆)

(
δ3,2 δ4′,1′ − (R†R)3,1′ (R†R)4′,2

)
(B.24)

and 3→ 2,2→ 3

ĥ4th
(c’) =

V1′V2V3′V4

(nU −∆)2

f̂1′ f̂3 f̂
†
2 f̂
†
4′

2(nU −∆)

(
δ2,3 δ4′,1′ − (R†R)2,1′ (R†R)4′,3

)
(B.25)

Now we can put (c′), (b′) and (a′) together (note the 2 in the denominator has been
simplified because of the sum (c′) + (b′))

ĥ4th
(a’),(b’),(c’) =

V1′V2V3V4′

(nU −∆)2

[
f̂1′ f̂

†
2 f̂3 f̂

†
4′

U
(R†R)2,1′ (R†R)4′,3

+
f̂1′ f̂3 f̂

†
2 f̂
†
4′

nU −∆

(
δ2,3 δ4′,1′ − (R†R)2,1′ (R†R)4′,3

)]

(B.26)

At this stage, to compare these with the term of the “non-primed” paths, it is conve-
nient to adopt the following relabelling

1′ → 3′ 2→ 4

4′ → 2′ 3→ 1
(B.27)

that is

ĥ4th
(a’),(b’),(c’) =

V3′V4V1V2′

(nU −∆)2

[
f̂3′ f̂

†
4 f̂1 f̂

†
2′

U
(R†R)4,3′ (R†R)2′,1

+
f̂3′ f̂1 f̂

†
4 f̂
†
2′

nU −∆

(
δ4,1 δ2′,3′ − (R†R)4,3′ (R†R)2′,1

)]

(B.28)
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Here we recopy (a), (b) and (c) for direct comparison

ĥ4th
(a),(b),(c) =

V1V2′V3′V4

(nU −∆)2

[
f̂1 f̂

†
2′ f̂3′ f̂

†
4

U
(R†R)2′,1 (R†R)4,3′

+
f̂1 f̂3′ f̂

†
2′ f̂
†
4

nU −∆

(
δ2′,3′ δ4,1 − (R†R)2′,1 (R†R)4,3′ .

)]

(B.29)

To look exactly the same we need to swap the rotation matrices and use double
commutations for the operators which act on different sites (so that the overall sign

is preserved). These are f̂3′ f̂
†
4 f̂1 f̂

†
2′ = f̂1 f̂

†
2′ f̂3′ f̂

†
4 and f̂3′ f̂1 f̂

†
4 f̂
†
2′ = f̂1 f̂3′ f̂

†
2′ f̂
†
4 , so

that the final result of all the paths together is basically twice the one given for a, b
and c

ĥ4th
full = 2

V1V2′V3′V4

(nU −∆)2

[
f̂1 f̂

†
2′ f̂3′ f̂

†
4

U
(R†R)2′,1 (R†R)4,3′

+
f̂1 f̂3′ f̂

†
2′ f̂
†
4

nU −∆

(
δ2′,3′ δ4,1 − (R†R)2′,1 (R†R)4,3′

)] (B.30)

At this stage we only need to work on the arrangement of the operators as they appear
in Onoda’s work [30]. Hence first we focus on the string of operators for the path (a).

f̂1 f̂
†
2′ f̂3′ f̂

†
4 = f̂1 f̂

†
4 f̂
†
2′ f̂3′ = (δ1,4 − f̂ †4 f̂1 )f̂ †2′ f̂3′

= δ1,4 f̂
†
2′ f̂3′ − f̂ †4 f̂1 f̂

†
2′ f̂3′ ,

(B.31)

analogously for the term representing (b) and (c)

f̂1 f̂3′ f̂
†
2′ f̂
†
4 = f̂1 f̂

†
4 f̂3′ f̂

†
2′ = (δ1,4 − f̂ †4 f̂1 )(δ3′,2′ − f̂ †2′ f̂3′ )

= δ1,4 δ3′,2′ − δ1,4 f̂ †2′ f̂3′ − f̂ †4 f̂1 δ3′,2′ + f̂ †4 f̂1 f̂
†
2′ f̂3′

(B.32)

To be complete we group first the (spurious) lower order terms first

ĥ4th
spurious = 2

V1V2′V3′V4

(nU −∆)2

[
δ1,4 f̂

†
2′ f̂3′

U
(R†R)2′,1 (R†R)4,3′

+
δ1,4 δ3′,2′ − δ1,4 f̂ †2′ f̂3′ − f̂

†
4 f̂1 δ3′,2′

nU −∆

(
δ2′,3′ δ4,1 − (R†R)2′,1 (R†R)4,3′

)]

(B.33)

and then in the following we only focus in the terms involving the effective exchange
(the fourth-order ones).
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Here we only replace the fourth-order terms

ĥexc = 2
V1V2′V3′V4

(nU −∆)2

[
−f̂ †4 f̂1 f̂

†
2′ f̂3′

U
(R†R)2′,1 (R†R)4,3′

+
f̂ †4 f̂1 f̂

†
2′ f̂3′

nU −∆

(
δ2′,3′ δ4,1 − (R†R)2′,1 (R†R)4,3′

)]

= 2
V1V2′V3′V4

(nU −∆)2
f̂ †4 f̂1 f̂

†
2′ f̂3′

[
−1

U
(R†R)2′,1 (R†R)4,3′

+
1

nU −∆

(
δ2′,3′ δ4,1 − (R†R)2′,1 (R†R)4,3′

)]

= 2
V1V2′V3′V4

(nU −∆)2
f̂ †4 f̂1 f̂

†
2′ f̂3′

[
1

nU −∆
δ2′,3′ δ4,1

−
(

1

nU −∆
+

1

U

)
(R†R)2′,1 (R†R)4,3′

]

(B.34)

which is the same as the one in Onoda’s apart for an overall minus sign (this can be due
to the different sign convention in switching between local to global, or more precisely in
switching from antiferromagnetic to ferromagnetic Hamiltonians- to investigate). Here
we rewrite it more explicitly in the same form:

ĥ4th
exc = −2

V1V2′V3′V4

(nU −∆)2
f̂ †4 f̂1 f̂

†
2′ f̂3′

×
[
− 1

nU −∆
δ2′,3′ δ4,1

+

(
1

nU −∆
+

1

U

)
(R†R)2′,1 (R†R)4,3′

]
(B.35)

At this stage we can relabel the indices to use the same notation as Onoda’s

2′ → 1′ 4→ 1

3′ → 2′ 1→ 2
(B.36)

that is

ĥ4th
exc = −2

V1V1′V2V2′

(nU −∆)2
f̂ †1 f̂2 f̂

†
1′ f̂2′

×
[
− 1

nU −∆
δ1,2 δ1′,2′

+

(
1

nU −∆
+

1

U

)
(R†R)1,2′ (R†R)1′,2 .

]
(B.37)
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This, apart for the minus sign, for n = 2 electrons in the 4f shell, is equivalent to the
main term in Eq.(17) for the case of Pr3+ in Onoda’s work [30]. Such equivalence in
shown more explicitly through Eqs. (4.71-4.75) in section 4.4.3 in the main text.
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Glossary

D3d Point group symmetry (antiprismatic) of the RE3+ ions. 13, 76

Fd3̄m Space group symmetry of the pyrochlore lattice. 12, 76

M-O-M Metal-Oxygen-Metal unit for the ligands in a metal oxyde. 70

O1 Oxygen ion in the centre of a tetrahedron with RE3+ ions at the vertices. 13, 75

O2 Oxygen ions surrounding a RE3+ ion with antiprismatic arrangement. 13, 15, 32,
108

RE-O1-RE unit for the ligands in magnetic pyrochlore oxydes. 86, 89
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Acronyms

CF crystal-field. 21, 23, 26, 38, 76, 92, 108, 115

DTO Dysprosium titanate. 13, 24, 130, 136, 140

h.c. hermitian conjugate. 84, 102

HTO Holmium titanate. 13, 24, 130, 136, 140

n.n. nearest neighbour. 3, 13, 72, 88, 115, 121

RE rare earth. 3, 6, 12, 21, 136

TM transition metal. 12
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