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Abstract

We study the fields of fractions and the Poisson spectra of polynomial Poisson

algebras.

First we investigate a Poisson birational equivalence problem for polynomial Pois-

son algebras over a field of arbitrary characteristic. Namely, the quadratic Poisson

Gel’fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is

isomorphic to the field of fractions of a Poisson affine space, i.e. a polynomial algebra

such that the Poisson bracket of two generators is equal to their product (up to a

scalar). We answer positively the quadratic Poisson Gel’fand-Kirillov problem for a

large class of Poisson algebras arising as semiclassical limits of quantised coordinate

rings, as well as for their quotients by Poisson prime ideals that are invariant under the

action of a torus. In particular, we show that coordinate rings of determinantal Pois-

son varieties satisfy the quadratic Poisson Gel’fand-Kirillov problem. Our proof relies

on the so-called characteristic-free Poisson deleting derivation homomorphism. Essen-

tially this homomorphism allows us to simplify Poisson brackets of a given polynomial

Poisson algebra by localising at a generator.

Next we develop a method, the characteristic-free Poisson deleting derivations

algorithm, to study the Poisson spectrum of a polynomial Poisson algebra. It is a

Poisson version of the deleting derivations algorithm introduced by Cauchon [8] in

order to study spectra of some noncommutative noetherian algebras. This algorithm

allows us to define a partition of the Poisson spectrum of certain polynomial Poisson

algebras, and to prove the Poisson Dixmier-Moeglin equivalence for those Poisson

algebras when the base field is of characteristic zero. Finally, using both Cauchon’s

and our algorithm, we compare combinatorially spectra and Poisson spectra in the

framework of (algebraic) deformation theory. In particular we compare spectra of

quantum matrices with Poisson spectra of matrix Poisson varieties.
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Introduction

Poisson algebras have been intensively and widely studied since their first appearance,

both on their own and in connection with other areas of mathematics. For instance, we

refer to [29] where Poisson structures are studied from the differential geometry point

of view, [13] where links with number theory are made or [16] for the connection with

noncommutative algebra, but this literature is of course non exhaustive. Our approach

to Poisson algebras is intimately related to the study of their (algebraic) deformations.

In fact our inspiration often comes from noncommutative algebra and we always try to

see both worlds together in the same picture. In this thesis we study polynomial Poisson

algebras, i.e. polynomial algebras in several variables endowed with Poisson structures.

Our investigation focuses on two main aspects. First, we investigate the structure of their

fields of fractions; second, we study their Poisson prime spectra, both on their own and

in connection with the spectra of their deformations. For this purpose, we develop the

so-called characteristic free Poisson deleting derivation homomorphism which helps us to

understand both situations.

Let K be a field. Recall that a Poisson K-algebra is a commutative K-algebra endowed

with a Poisson bracket, i.e. a skew-symmetric K-bilinear map from A×A to A satisfying

the Jacobi identity and the Leibniz rule. Assuming that A is a domain, we can uniquely

extend the Poisson bracket to the field of fractions FracA of A.

Gel’fand-Kirillov problems

The first part of this thesis (Chapters 2, 3 and 4) is concerned with the Poisson structure

of the field of fractions of polynomial Poisson algebras. Examples of polynomial Poisson
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algebras include the so-called Poisson-Weyl algebras. Recall that the Poisson-Weyl alge-

bra of dimension 2r (or the r-th Poisson-Weyl algebra) is the polynomial algebra in 2r

generators X1, . . . , Xr, Y1, . . . , Yr endowed with the Poisson bracket defined on the gen-

erators by {Xi, Xj} = {Yi, Yj} = 0 and {Xi, Yj} = δij for all i, j. Note that this is an

algebraic version of the bracket given by Poisson for smooth functions on R2r. Poisson’s

bracket plays a crucial rôle in the context of Hamiltonian mechanics and is central in the

study of Poisson manifolds. For instance, Darboux’s theorem asserts that in a Poisson

manifold the Poisson bracket takes, locally around each point where the Poisson matrix

is locally constant, the same values (on a set of local coordinates) as the Poisson bracket

described above, (up to the addition of some Casimir coordinates). Back to the algebraic

setting, the field of fractions of the r-th Poisson-Weyl algebra is referred to as the r-th

Poisson-Weyl field. It is a central object in the theory, and often, for a given polyno-

mial Poisson algebra, one tries to decide whether it is Poisson birationally equivalent to a

Poisson-Weyl algebra, that is, we would like to know whether there exists a Poisson alge-

bras isomorphism between the field of fractions of the given polynomial Poisson algebra

and a Poisson-Weyl field of appropriate dimension (possibly over a purely transcendental

extension of the ground field).

This problem was first raised by Vergne in [37], where the author studied the case

of the symmetric algebra S(g) of a finite dimensional Lie algebra g in characteristic 0,

the polynomial algebra S(g) being endowed with the so-called Kirillov-Kostant-Souriau

Poisson structure: for a basis U1, . . . , Un of g, the Poisson bracket on S(g) is given by

{Ui, Uj} = [Ui, Uj ]g for all i, j. When g is nilpotent, Vergne showed that the field of

fractions of S(g) is Poisson isomorphic to the field of fractions of a Poisson-Weyl algebra

over a purely transcendental extension of the ground field. In [35], this result was extended

to the solvable case by Tauvel and Yu. Moreover, still assuming g is solvable, they proved

that this result also holds for any quotient of S(g) by a Poisson prime ideal.

The problem raised by Vergne takes its roots in the celebrated Gel’fand-Kirillov Con-

jecture [14] which is a problem of birational equivalence between enveloping algebras of

Lie algebras and Weyl skewfields. More precisely, the Gel’fand-Kirillov Conjecture says

that: “the skewfield of fractions of the enveloping algebra of any finite-dimensional com-

plex algebraic Lie algebra is isomorphic to a Weyl skewfield”. This conjecture was first

proved for the Lie algebras gln and sln and for nilpotent Lie algebras in 1966 by Gel’fand
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and Kirillov [14]. The solvable case was proved independently by Borho, Joseph and

McConnell in 1973. However, the conjecture is not true in general: a class of counterex-

amples is found in 1996 by Alev, Ooms and Van Den Bergh [2]. More recently, Premet

showed that the conjecture also fails for simple Lie algebras of the types Bn (n ≥ 3), Dn

(n ≥ 4), E6, E7, E8 and F4, see [34]. Note that the algebras involved in the statement of

the Gel’fand-Kirillov Conjecture are considered over algebraically closed fields of charac-

teristic zero. However, the conjecture also makes sense in positive characteristic, see for

instance [5]. In [34], the author refutes the Gel’fand-Kirillov Conjecture for the enveloping

algebra of simple Lie algebras of certain types by actually refuting a modular version of

the conjecture. This certainly shows that we should not restrict our attention only to the

case where the characteristic is 0, but also study the modular case. This motivated us

to study the Poisson structure of fields of fractions of polynomial Poisson algebras over a

field of arbitrary characteristic.

With the appearance of quantum groups in the eighties, new skewfields of reference

were needed, and a quantum version of the Gel’fand-Kirillov Conjecture was suggested by

Alev and Dumas [1], and studied by numerous authors. In this context, the skewfields

of reference are the skewfields of fractions of quantised Weyl algebras, or equivalently,

the skewfields of fractions of quantum affine spaces. The latter having simpler defining

relations, we will take them as skewfields of reference. Let q ∈ Mn(K×) be a multiplica-

tively skew-symmetric matrix, i.e. q−1
ij = qji for all i, j. Then, the quantum affine space

Oq(Kn) is the algebra given by n generators x1, . . . , xn and relations xixj = qijxjxi for all

i, j. Quantum affine spaces are noetherian domains and therefore admit skewfields of frac-

tions which we will refer to as quantum affine skewfields. It is shown in [1] that quantum

affine skewfields are never isomorphic to Weyl skewfields. The quantum Gel’fand-Kirillov

problem asks, given a “quantum algebra”, if its skewfield of fractions is isomorphic to the

skewfield of fractions of a quantum affine space Oq(Ln) where L is a purely transcendental

extension of K. Of course, the class of quantum algebras is not clearly defined but it should

include quantised enveloping algebras and quantised coordinate rings for instance. The

quantum Gel’fand-Kirillov problem has been successfully investigated for several families

of algebras of these types. In particular, the deleting derivations algorithm of Cauchon

[8] gives a positive answer for a large class of iterated Ore extensions and their prime

quotients. We refer to [6, I.2.11 and II.10.4] for further information about this quantum

version of the Gel’fand-Kirillov Conjecture.
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If we return to the Poisson setting, it is easy to find polynomial Poisson algebras whose

fields of fractions are not Poisson isomorphic to Poisson-Weyl algebras. Thus, as in the

quantum case, we need to introduce other Poisson fields of reference as follows. A Poisson

affine field is the field of fractions of a Poisson affine space, i.e. the field of fractions

of a polynomial algebra in n indeterminates X1, . . . , Xn, with Poisson bracket given by

{Xi, Xj} = λijXiXj for some skew-symmetric matrix (λij) ∈Mn(K). It was proved in [18]

that Poisson-Weyl fields and Poisson affine fields are not isomorphic, so that Poisson affine

fields were used in [18] as fields of reference for a Poisson version of the quantum Gel’fand-

Kirillov problem. Namely, the quadratic Poisson Gel’fand-Kirillov problem asks whether

a given polynomial Poisson algebra is Poisson birationally equivalent to a Poisson affine

space. In [18], it was shown that the fields of fractions of a large class of Poisson algebras

are Poisson isomorphic to Poisson affine fields (over purely transcendental extensions of

the base field). The method used to prove these Poisson isomorphisms is based on a

Poisson version of the deleting derivation homomorphism introduced by Cauchon in [8].

We note that, while Cauchon’s deleting derivation homomorphism cannot be defined when

the quantum parameter involved is a root of unity, Haynal [23] generalised Cauchon’s

construction to the root of unity case by using the notion of higher derivation.

The main aim of Chapters 2 and 3 is to establish the quadratic Poisson Gel’fand-

Kirillov problem for a large class of polynomial Poisson algebras (and their quotients)

over a field of arbitrary characteristic. In characteristic zero, the main tool used in [18]

for the same purpose is the so-called Poisson deleting derivation homomorphism. This

homomorphism is a Poisson algebra isomorphism between localisations of two Poisson-

Ore extensions:

F : A[Y ±1;α]P
∼=−→ A[X±1;α, δ]P

A 3 a 7−→
∑
i≥0

(−1

s

)i δi(a)

i!
X−i,

Y 7−→ X.

under the assumptions that the derivation δ is locally nilpotent and αδ = δ(α + s) for

some s ∈ K×.

Obviously, the above formula defining the Poisson deleting derivation homomorphism

does not make sense in positive characteristic due to the division by i!. To overcome this
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problem and define a characteristic-free Poisson deleting derivation homomorphism, we

observe that the sequence of linear maps
(
δi

i!

)
is a so-called iterative higher derivation

which extends the derivation δ (that is, whose first terms are id and δ). In Chapter 2,

we construct a characteristic-free Poisson deleting derivation homomorphism in the case

where the derivation δ extends to a so-called iterative higher Poisson derivation, i.e. an

iterative higher derivation compatible with the Poisson structure.

In Chapter 3, we use the characteristic-free Poisson deleting derivation homomorphism

repeatedly to prove that the quadratic Poisson Gel’fand-Kirillov problem holds for a large

class of iterated Poisson-Ore extensions. We actually prove a stronger result by also

considering Poisson prime quotients. More precisely, we show that if P is a Poisson prime

ideal of a polynomial Poisson algebra A to which our construction applies, then there exists

a Poisson prime ideal Q in a Poisson affine space B such that Frac (A/P ) ∼= Frac (B/Q)

as Poisson algebras (this proves the quadratic Poisson Gel’fand-Kirillov problem for A

since Q = 0 when P = 0). Additionally, if a torus H is acting rationally by Poisson

automorphisms on A and if P is invariant under this action, we show, modulo some

technical assumptions, that the ideal Q of the Poisson affine space B is also invariant

under the induced torus action on B. Under certain mild assumptions on the ground field,

we prove that B has only finitely many H-invariant Poisson prime ideals and that they

are all generated by some of its generators. As a consequence, when P is H-invariant,

the quotient B/Q is a Poisson affine space, so that the quotient A/P also satisfies the

quadratic Poisson Gel’fand-Kirillov problem.

Contrary to the characteristic zero case, there is one hypothesis in our result that is

difficult to check: the existence of iterative higher Poisson derivations extending given

derivations. In characteristic zero, the only iterative higher Poisson derivation extending

a derivation δ is actually the canonical higher derivation ( δ
i

i! ). In prime characteristic,

the existence of an iterative higher Poisson derivation extending a given derivation is a

harder problem. In Chapter 4 we tackle this problem using the so-called semiclassical limit

process. More precisely, we show that the existence of a quantum version of the canonical

higher derivation in a “quantum algebra” R ensures (under mild hypotheses) the existence

of a higher Poisson derivation in the semiclassical limit of R (see Theorem 4.1.3). At the

noncommutative level, the characteristic of the ground field does not influence the existence

of a quantum version of the canonical higher derivation. The existence only depends on the
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genericity of the deformation parameter. However, in our case, the deformation parameter

is always transcendental (to allow for the semiclassical limit process), thus ensuring the

existence of quantum canonical higher derivations. As a consequence, we obtain many

examples of Poisson algebras to which our result applies in Section 4.2. For instance,

we obtain that the coordinate rings of Poisson matrix varieties and their H-invariant

Poisson prime quotients, such as the coordinate rings of determinantal varieties, satisfy

the quadratic Poisson Gel’fand-Kirillov problem (over a field of characteristic different of

2).

Poisson spectrum

In the second part of this thesis (Chapters 5, 6 and 7) we turn our attention to the study of

Poisson spectra of polynomial Poisson algebras. Different aspects of this topic have been

investigated previously. For instance, the Poisson Dixmier-Moeglin equivalence is studied

in [3], [15], [18] and [32], links between Poisson spectra and their quantum analogues are

investigated in [22], [24] and [32] and Poisson spectra of Jacobian Poisson structures and

generalisations in higher dimensions are studied in [26] and [25].

Inspired by [8], we develop a method to study the algebras of a class P of iterated

Poisson-Ore extensions over a field of arbitrary characteristic. More precisely for A ∈

P, the (characteristic-free) Poisson deleting derivations algorithm consists of performing

several explicit changes of variables inside the field of fractions FracA of A. At each step

of the algorithm we obtain a sequence of n algebraically independent elements of FracA,

where the integer n corresponds to the number of indeterminates in A. The subalgebra of

FracA generated by these elements is a Poisson algebra with a “simpler” Poisson bracket

than the one obtained at the previous step. Moreover the Poisson algebras corresponding

to two consecutive steps, say Cj+1 and Cj , satisfy:

Cj+1S
−1
j = CjS

−1
j

for a given multiplicatively closed set Sj . After the last step, we get algebraically inde-

pendent elements T1, . . . , Tn of FracA such that the algebra A generated by the Tis is a

Poisson affine space. In particular, the algorithm shows that FracA = FracA as Pois-
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son algebras. Therefore we retrieve the results of Poisson birational equivalence obtained

in Chapter 3, that is the Poisson algebras of the class P satisfy the quadratic Poisson

Gel’fand-Kirillov problem. Moreover, the algorithm returns explicit generators of FracA

such that FracA is a Poisson affine field in these generators.

For a Poisson algebra A we denote by P.Spec (A) its Poisson spectrum, i.e. the set of

prime ideals of A which are also Poisson ideals. The set P.Spec (A) is equipped with the

induced Zariski topology from Spec (A) the spectrum of A. When A ∈ P, our algorithm

allows us to define an embedding ϕ from P.Spec (A) to P.Spec (A) called the canonical

embedding. This embedding will be our main tool for studying Poisson spectra. One of its

important properties is that for P ∈ P.Spec (A) we have a Poisson algebra isomorphism

Frac
(A
P

)
∼= Frac

( A

ϕ(P )

)
.

Note that this isomorphism reduces the quadratic Poisson Gel’fand-Kirillov problem for

the Poisson prime quotients of A to the quadratic Poisson Gel’fand-Kirillov problem for

the Poisson prime quotients of a Poisson affine space. The canonical embedding leads to

a partition of P.Spec (A) indexed by a subset W ′P of W := P([[1, n]]), the powerset of

[[1, n]] := {1, . . . , n}. More precisely, for w ∈W , we set:

P.Specw(A) :=
{
P ∈ P.Spec (A) | P ∩ {T1, . . . , Tn} = {Ti | i ∈ w}

}
,

where we recall that the Tis are the generators of the Poisson affine space A. These sets

form a partition of P.Spec (A) which induces a partition on P.Spec (A) as follows:

P.Spec (A) =
⊔

w∈W ′p

ϕ−1
(
P.Specw(A)

)
, where:

W ′P := {w ∈W | ϕ−1
(
P.Specw(A)

)
6= ∅}.

This partition of P.Spec (A) is called the canonical partition, and the elements of W ′P

will be called the Cauchon diagrams associated to A, or Cauchon diagrams for short.

For w ∈ W ′P , the set ϕ−1
(
P.Specw(A)

)
is called the stratum associated to w. We study

the topological and algebraic properties of those strata in Section 5.4. In particular for

w ∈ W ′P the image of the stratum associated to w is a closed subset of P.Specw(A) and

ϕ induces an homeomorphism from this stratum to its image. We show in Section 5.5
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that this inclusion is actually an equality when we suppose that a torus acts rationally

on A by Poisson automorphisms. As shown in [15] such a torus action leads to another

partition of P.Spec (A) (under the assumption that charK = 0). This partition, called the

H-stratification, provides a great deal of information on P.Spec (A), see for instance [15,

Theorem 4.2]. In Section 5.5 we show that when both partitions can be considered they

actually coincide.

A direct application of the results of Chapter 5 is given in Chapter 6. A subset of

importance of P.Spec (A) is the set consisting of Poisson primitive ideals. Recall that

a (left) primitive ideal in a ring R is the annihilator of a simple (left) R-module. It is

usually not so easy to distinguish primitive ideals within prime ideals using their definition.

Therefore other characterisations of primitive ideals have been investigated. For primitive

ideals of enveloping algebras Dixmier and Moeglin suggested two characterisations, an

algebraic one and a topological one. More precisely, let R be a ring and I a prime ideal

in R. We say that I is locally closed if {I} is a locally closed point of Spec (R) and that I

is rational if Z(FracR/I) is an algebraic extension of the ground field. Dixmier [10] and

Moeglin [30] showed that, for enveloping algebras, a prime ideal is primitive if and only

if it is locally closed if and only if it is rational. More generally we say that the Dixmier-

Moeglin equivalence holds for a given algebra (or a class of algebras) when the sets of

primitive, locally closed and rational ideals coincide. Similarly, we say that the Poisson

Dixmier-Moeglin equivalence holds for a Poisson algebra if the sets of Poisson primitive,

Poisson locally closed and Poisson rational ideals coincide (see Section 6.1 for a precise

definition of these notions). In Chapter 6 we prove that the Poisson Dixmier-Moeglin

equivalence holds for all the algebras of the class P when charK = 0. The Poisson deleting

derivations algorithm allows us to reduce the proof to the case of Poisson affine spaces,

which is solved by [15, Example 4.6] for instance. Moreover, the canonical partition gives

us another characterisation for primitive ideals, namely, that they are the maximal ideals

whithin their strata. To conclude Chapter 6 we prove a transfer result for Poisson-Ore

extensions. More precisely we show that if the Poisson-Ore extension A[X;α]P satisfies the

Poisson Dixmier-Moeglin equivalence, then so does the Poisson-Ore extension A[X;α, δ]P

(under some assumptions on the map δ). For this purpose, we need to generalise some

results of Chapter 5 essentially by constructing and studying a canonical embedding for

the Poisson-Ore extension A[X;α, δ]P (which does not necessarily belong to P).
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In Chapter 7 we compare the Poisson spectrum of a Poisson algebra with the spectrum

of (one of its) deformation. More precisely we define a class R of iterated Ore extensions

over K[t±1] such that for an element Rt of R the quotient algebra Rq := Rt/(t− q)Rt (for

a non root of unity q ∈ K×) is a deformation of the Poisson algebra A := Rt/(t − 1)Rt.

Moreover, the class R is defined in such a way that Cauchon’s deleting derivations algo-

rithm can be applied to Rq and our Poisson deleting derivations algorithm can be applied

to A. Cauchon’s algorithm leads to a partition of Spec (Rq) indexed by the elements of a

subset W ′ of W = P([[1, n]]) for some integer n ≥ 1. As explained previously the Poisson

spectrum P.Spec (A) is also partitioned into strata indexed by the elements of a subset W ′P

of W . The main goal of Chapter 7 is to compare the sets of Cauchon diagrams W ′ and

W ′P . More precisely we ask in Question 7.1.1 if these sets are equal (when charK = 0). We

answer positively Question 7.1.1 for three examples in small dimensions in Section 7.2 and

in Appendix B. Finally, we investigate the case of quantum/Poisson matrices in Section

7.3. For this purpose, we construct a bijection between the set of Cauchon diagrams W ′P

and a set of combinatorial objects: rectangular grids whose boxes are coloured in black or

white with a condition on the black boxes (see Definition 7.3.1). Cauchon showed in [9]

that the set of Cauchon diagrams W ′ is also in bijection with the same set of combinatorial

objects. This answers positively Question 7.1.1 for these algebras. Unfortunately these

positive results do not help to understand the general situation since they mostly rely on

explicit computation of the sets of Cauchon diagrams.

Parts of the material of Chapters 2, 3 and 4 can be found in [28]. Some of the material

in Chapters 5, 6 and 7 comes from [27]. Both [28] and [27] are joint work with my PhD

supervisor Stéphane Launois.
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Chapter 1

Polynomial Poisson algebras and

their deformations

In this chapter we introduce the main objects studied in this thesis: Poisson algebras.

Our study of Poisson algebras being closely related to the study of their (algebraic) defor-

mations, we also recall the process of semiclassical limit which links the noncommutative

algebra world with the Poisson world. We denote by K an arbitrary field.

1.1 Poisson algebra

Unless otherwise stated, by an algebra we mean an associative K-algebra.

1.1.1 Definitions and first properties

Definition 1.1.1. A Poisson K-algebra A is a commutative K-algebra endowed with a

Poisson bracket, i.e. a skew-symmetric K-bilinear map from A×A to A satisfying:

• the Jacobi identity: {{a, b}, c}+ {{b, c}, a}+ {{c, a}, b} = 0 for all a, b, c ∈ A,

• the Leibniz rule: {ab, c} = a{b, c}+ {a, c}b for all a, b, c ∈ A.

In particular, the Jacobi identity tells us that a Poisson algebra is also a Lie algebra.

The Leibniz rule can be seen as a compatibility condition between the associative algebra
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and Lie algebra structures, and can be rephrased by saying that for all a ∈ A the map

{a,−} is an (associative) K-derivation of A. Such derivations are called Hamiltonian

derivations and they forms a Lie subalgebra of Der(A), the Lie algebra of derivations on

A.

Remark 1.1.2. (1) Let A be a Poisson algebra generated by elements X1, . . . , Xn. Then

the Poisson bracket is uniquely determined by the values {Xi, Xj} for 1 ≤ j < i ≤ n.

Moreover if we have:

{{Xi, Xj}, Xk}+ {{Xj , Xk}, Xi}+ {{Xk, Xi}, Xj} = 0 (1.1)

for all 1 ≤ i, j, k ≤ n, then the Jacobi identity holds in A. Therefore to define a

Poisson bracket on A it is enough to give the values {Xi, Xj} for 1 ≤ j < i ≤ n and

then to check equation (1.1) for all 1 ≤ i, j, k ≤ n.

(2) Suppose that A = K[X1, . . . , Xn]. For F ∈ A and all 1 ≤ i ≤ n we denote by ∂F
∂Xi

the formal derivative of F with respect to the indeterminate Xi. For all F,G ∈ A

we have:

{F,G} =

n∑
i,j=1

∂F

∂Xi

∂G

∂Xj
{Xi, Xj} =

∑
1≤j<i≤n

( ∂F
∂Xi

∂G

∂Xj
− ∂F

∂Xj

∂G

∂Xi

)
{Xi, Xj}. (1.2)

A proof of the first equality can be found in [29, Proposition 1.6]. The second

equality arises by skew-symmetry.

Example 1.1.3. (1) Let A be a commutative algebra. Then A becomes a Poisson algebra

by setting {a, b} = 0 for all a, b ∈ A. The algebra A endowed with this Poisson

bracket is referred to as an abelian Poisson algebra.

(2) Let A = K[X1, . . . , Xn, Y1, . . . , Yn]. We denote by δij the Kronecker delta symbol.

We define a Poisson bracket on A by setting:

{Xi, Xj} = {Yi, Yj} = 0 and {Xi, Yj} = δij for all i, j,

or equivalently by setting:

{F,G} =
∑

1≤i≤n

( ∂F
∂Xi

∂G

∂Yi
− ∂F

∂Yi

∂G

∂Xi

)
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for all F,G ∈ A. This Poisson algebra is called the n-th Poisson-Weyl algebra and

is denoted by APn (K).

(3) Let A = K[X1, . . . , Xn] and let λ = (λij) ∈ Mn(K) be a skew-symmetric matrix.

Then we define a Poisson bracket on A by setting:

{Xi, Xj} = λijXiXj ,

for all 1 ≤ i, j ≤ n. This Poisson algebra is called a Poisson affine n-space (associated

to the matrix λ) and is denoted by Kλ[X1, . . . , Xn]. We will refer to such a Poisson

structure as a quadratic Poisson structure. When n = 2 we talk about Poisson affine

planes.

(4) Let g be a finite dimensional Lie algebra with basis {x1, . . . , xn}. Then the symmetric

algebra S(g) = K[x1, . . . , xn] is a Poisson algebra for the Poisson bracket given by:

{xi, xj} = [xi, xj ]g

for all 1 ≤ i, j ≤ n. This Poisson structure on S(g) is often called the Kirillov-

Kostant-Souriau Poisson structure.

(5) Let A := O
(
M2(K)

)
= K

 X11 X12

X21 X22

. We define a Poisson structure on A by

setting:

{X11, X12} = X11X12, {X11, X22} = 2X12X21, {X12, X22} = X12X22,

{X11, X21} = X11X21, {X12, X21} = 0, {X21, X22} = X21X22.
(1.3)

This Poisson algebra is called the algebra of 2 × 2 Poisson matrix variety. More

generally one can endow the coordinate ring of the m × p matrix variety with a

Poisson bracket defined using the Poisson structure (1.3) on O
(
M2(K)

)
(see Section

4.2.1).

Definition 1.1.4. Let A and B be two Poisson algebras with Poisson brackets respec-

tively denoted by {−,−}A and {−,−}B. A Poisson algebra homomorphism is an algebra

homomorphism f : A → B such that f({a, b}A) = {f(a), f(b)}B for all a, b ∈ A. A

Poisson algebra isomorphism is a bijective Poisson algebra homomorphism.
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In the rest of this thesis we will always omit subscripts indexing Poisson brackets

when more than one is involved. Which Poisson bracket is intended will always be clear

in context.

Definition 1.1.5. Let A be a Poisson algebra.

(1) A Poisson subalgebra of A is a subalgebra B of A such that {a, b} ∈ B for all a, b ∈ B.

(2) A Poisson ideal of A is an ideal I of A such that {a, x} ∈ I for all a ∈ A and x ∈ I.

(3) A is Poisson simple if its only Poisson ideals are {0} and A.

(4) The Poisson centre of A is the Poisson subalgebra: ZP (A) := {z ∈ A | {z,−} ≡ 0}.

Remark 1.1.6. Let A be a Poisson algebra. The Poisson centre ZP (A) is a Lie ideal of

A but not always an associative ideal of A. We always have K ⊆ ZP (A), and in positive

characteristic (say charK = p > 0) we have ap ∈ ZP (A) for all a ∈ A since for all a, b ∈ A

we have:

{ap, b} = pap−1{a, b} = 0.

Remark 1.1.7. Let A be a Poisson algebra.

(1) If I is a Poisson ideal of A then there is a well-defined Poisson bracket on the quotient

algebra A/I defined by {a, b} = {a, b} for all a, b ∈ A, where a denote the image in

A/I of a ∈ A.

(2) Let S be a multiplicatively closed subset of A. Then the Poisson bracket of A extends

uniquely to the localisation AS−1 by setting:

{as−1, bt−1} = {a, b}s−1t−1 − {a, t}bs−1t−2 − {s, b}as−2t−1 + {s, t}abs−2t−2

for all a, b ∈ A and all s, t ∈ S. In particular if A is a domain its Poisson structure

uniquely extends to its field of fractions.

Example 1.1.8. Since the Laurent polynomial algebra K[X±1
1 , . . . , X±1

n ] and the field of

rational functionsK(X1, . . . , Xn) are both localisations of the polynomial algebra in n inde-

terminates K[X1, . . . , Xn], a quadratic Poisson structure on K[X1, . . . , Xn] given by a ma-

trix λ ∈Mn(K) uniquely extends to K[X±1
1 , . . . , X±1

n ] and K(X1, . . . , Xn). These localisa-

tions endowed with those uniquely extended Poisson structures are respectively called the

Poisson torus and the Poisson affine field, and respectively denoted by Kλ[X±1
1 , . . . , X±1

n ]
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and Kλ(X1, . . . , Xn). One can easily check that in these localisations we have:

{X−1
i , Xj} = −λijX−1

i Xj and {X−1
i , X−1

j } = λijX
−1
i X−1

j

for all i, j.

1.1.2 Poisson structure on the polynomial algebra in three variables

The choice of a polynomial F ∈ K[X,Y ] always allows us to define a Poisson structure on

K[X,Y ] by setting {X,Y } = F . On a polynomial algebra in three variables the Jacobi

identity imposes some restrictions. Let A := K[X1, X2, X3], and U, V,W ∈ A. It is a

straightforward verification to see that we define a Poisson bracket on A by setting:

{X1, X2} = W, {X2, X3} = U and {X3, X1} = V,

if and only if:

curl(U, V,W ) · (U, V,W ) = 0, (1.4)

where:

curl(U, V,W ) :=

(
∂W

∂X2
− ∂V

∂X3
,
∂U

∂X3
− ∂W

∂X1
,
∂V

∂X1
− ∂U

∂X2

)
.

An important class of examples is as follows. Fix a polynomial F ∈ A and set:

{X1, X2} =
∂F

∂X3
, {X2, X3} =

∂F

∂X1
and {X3, X1} =

∂F

∂X2
.

Since ∂
∂Xj

∂F
∂Xi

= ∂
∂Xi

∂F
∂Xj

for all 1 ≤ i, j ≤ 3, equation (1.4) is satisfied in that case. Such

a Poisson structure is called a Jacobian Poisson structure with potential F . It is easy to

see that F ∈ ZP (A), so that K[F ] ⊆ ZP (A) (with equality when F is indecomposable, see

[13, Lemma 1]).

By example, taking F = λX1X2X3 for λ ∈ K we obtain the Poisson affine space

Kλ[X1, X2, X3] with λ12 = −λ13 = λ23 = λ.

We also refer to [25] where the authors study the Poisson prime ideals of Poisson

algebras endowed with Jacobian Poisson structures.
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1.1.3 Poisson spectrum

The spectrum of a (non-necessarily commutative) algebra A, denoted by Spec (A), is the

set of prime ideals of A. Recall that an ideal P of A is prime if whenever IJ ⊆ P for

some ideals I, J of A, then either I ⊆ P or J ⊆ P . Recall that when A is commutative P

is prime if and only if the quotient A/P algebra is a domain. It is easy to check that by

setting:

V (I) := {P ∈ Spec (A) | P ⊇ I}

for all ideals I of A we define the closed sets of a topology on Spec (A). This topology is

referred to as the Zariski topology, and when speaking of the prime spectrum of a ring we

will always think of it endowed with this topology.

If A is a Poisson algebra, then the Poisson spectrum of A, denoted by P.Spec (A), is

the subset of Spec (A) consisting of Poisson ideals. Equivalently P.Spec (A) is the set of

ideals which are both prime ideals and Poisson ideals.

Remark 1.1.9. Usually the Poisson spectrum of a Poisson algebra is defined in more gen-

erality. A Poisson-prime ideal P is a Poisson ideal such that if whenever IJ ⊆ P for some

Poisson ideals I, J of A, then either I ⊆ P or J ⊆ P . It is clear that a Poisson and prime

ideal is a Poisson-prime ideal. If A is noetherian and the characteristic of the base field

is zero then the converse is true thanks to [11, Lemma 3.3.2]. When working in positive

characteristic latter on, we will restrict our attention on the study of Poisson and prime

ideals.

The Poisson spectrum P.Spec (A) can be endowed with the induced topology from

Spec (A). The closed sets are the sets:

VP (I) := {P ∈ P.Spec (A) | P ⊇ I}

for all ideals I of A. We remark that we can replace I by the smallest Poisson ideal

containing I without changing these sets, so the closed sets consist of the VP (I) for all

Poisson ideals I.

Remark 1.1.10. Later on we will be dealing with homeomorphisms between Poisson spec-

tra. We remark that, in particular, such an homeomorphism and its inverse preserve

inclusions. More precisely for two Poisson algebras A and B and an homeomorphism ϕ
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from P.Spec (A) and P.Spec (B) we have:

P ⊆ Q =⇒ ϕ(P ) ⊆ ϕ(Q), and

I ⊆ J =⇒ ϕ−1(I) ⊆ ϕ−1(J),

for all P,Q ∈ P.Spec (A) and all I, J ∈ P.Spec (B). See [16, Assertion (a) of Lemma 9.4].

1.1.4 Ore extensions and Poisson-Ore extensions

In this section we present two classes of algebras, the so-called iterated Ore extensions

or skew polynomial rings from noncommutative ring theory, and their Poisson analogues:

iterated Poisson-Ore extensions.

1.1.4.1 Ore extensions

Good references for Ore extensions are [17] and [6]. Let R be a (not necessarily commu-

tative) algebra and σ be an automorphism of R. A σ-derivation of R is a linear map ∆

from R to R such that for all r, s ∈ R we have:

∆(rs) = σ(r)∆(s) + ∆(r)s.

In particular one can easily check that ∆(1) = 0 and that an id-derivation is just a deriva-

tion in the associative sense. Following [6, Section I.1.11], the notation T := R[x;σ,∆]

means that:

(1) T is a free left R-module with basis {xi | i ≥ 0},

(2) T contains R as a subring and x ∈ T ,

(3) xr = σ(r)x+ ∆(r) for all r ∈ R,

(4) σ is an automorphism of R and ∆ is a σ-derivation of R.

T is then called an Ore extension or a skew polynomial ring over R. Existence of

such objects can be proved, see [17, Chapter 1]. We have the following classical notations

R[x; ∆] := R[x; id,∆] when σ = id, and R[x;σ] := R[x;σ, 0] when ∆ = 0. To avoid confu-

sion when using the notation R[x; f ] we will always state whether f is an automorphism
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or a derivation of R. There is a noncommutative version of the Hilbert Basis Theorem for

Ore extensions (see [6, Theorem I.1.13] for instance).

Theorem 1.1.11. Let T := R[x;σ,∆] be an Ore extension and suppose that R is a

noetherian domain. Then T is a noetherian domain.

In particular, if R is a noetherian domain, then T satisfies the (left and right) Ore

conditions and admits a skewfield of fractions which we denote by Frac T .

Iterated Ore extensions can be constructed inductively. Starting from an Ore extension

T1 = R[x1;σ1,∆1], an automorphism σ2 of T1 and a σ2-derivation ∆2 of T1, we construct

the Ore extension T2 = T1[x2;σ2,∆2]. We can repeat this process. Therefore we say that

an algebra T is an iterated Ore extension over a ring R if it is of the form:

T := Tn = R[x1;σ1,∆1] · · · [xn;σn,∆n],

where σi ∈ Aut (Ti−1) and ∆i is σi-derivation of Ti−1 for all 1 ≤ i ≤ n (with the convention

that T0 := R).

Example 1.1.12. (1) Recall that the n-th Weyl algebra An(K) is the algebra given by 2n

generators x1, . . . , xn and y1, . . . , yn and relations:

[xi, xj ] = [yi, yj ] = 0 and [xi, yj ] = δij

for all 1 ≤ i, j ≤ n, where [x, y] := xy− yx. An(K) is an iterated Ore extension over

K[y1, . . . , yn]:

An(K) = K[y1, . . . , yn][x1; ∂y1 ][x2; ∂y2 ] · · · [xn; ∂yn ]

where ∂yi is the usual partial derivative with respect to yi.

(2) Let q = (qij) ∈Mn(K×) be a multiplicatively skew-symmetric matrix, i.e. such that

qji = q−1
ij for all i, j. The quantum affine space Oq(Kn) is the algebra given by n

generators x1, . . . , xn and relations:

xixj = qijxjxi
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for all 1 ≤ i, j ≤ n. Oq(Kn) can be expressed as an iterated Ore extension as follows:

Oq(Kn) = K[x1][x2;σ2] · · · [xn;σn]

where σi is the automorphism ofK[x1][x2;σ2] · · · [xi−1;σi−1] defined by σi(xj) = qijxj

for all 1 ≤ j < i ≤ n.

(3) Let q ∈ K×. The algebra of 2× 2 quantum matrices R := Oq
(
M2(K)

)
is the algebra

given by generators x11, x12, x21, x22 and relations:

x11x12 = qx12x11, x11x22 − x22x11 = (q − q−1)x12x21, x12x22 = qx22x12,

x11x21 = qx21x11, x12x21 = x21x12, x21x22 = qx22x21.
(1.5)

R can be expressed as an iterated Ore extension over K[x11] as follows:

R = K[x11][x12;σ12][x21;σ21][x22;σ22,∆22], where:

• σ12 is the automorphism of K[x11] such that σ12(x11) = q−1x11,

• σ21 is the automorphism of K[x11][x12;σ12] such that σ21(x11) = q−1x11 and

σ21(x12) = x12,

• σ22 is the automorphism of K[x11][x12;σ12][x21;σ21] such that σ22(x11) = x11,

σ22(x12) = q−1x12 and σ22(x21) = q−1x21,

• ∆22 is the σ22-derivation of the K[x11][x12;σ12][x21;σ21] such that:

∆22(x11) = (q−1 − q)x12x21 and ∆22(x12) = ∆22(x21) = 0.

1.1.4.2 Poisson-Ore extensions

The set of derivations of an associative algebra A is denoted by Der(A). This is a Lie

algebra for the commutator bracket.

Definition 1.1.13. Let A be a Poisson algebra.

(1) A Poisson derivation is a derivation α ∈ Der(A) such that:

α({a, b}) = {α(a), b}+ {a, α(b)} for all a, b ∈ A.

The set of Poisson derivation of A is denoted by DerP (A).
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(2) Let α ∈ DerP (A). A Poisson α-derivation is a derivation δ ∈ Der(A) such that:

δ({a, b}) = {δ(a), b}+ {a, δ(b)}+ α(a)δ(b)− δ(a)α(b) for all a, b ∈ A.

We remark that a Poisson 0-derivation is just a Poisson derivation. The definition of

a Poisson-Ore extension is based on the following result of Oh [33, Theorem 1.1].

Theorem 1.1.14. Let α and δ be K-linear maps of a Poisson K-algebra A. Then the

polynomial algebra B := A[X] is a Poisson algebra with Poisson bracket extending the

Poisson bracket of A and satisfying:

{X, a} = α(a)X + δ(a) for all a ∈ A,

if and only if α ∈ DerP (A) and δ is a Poisson α-derivation of A.

Definition 1.1.15. Let A be a Poisson algebra, α ∈ DerP (A) and δ be a Poisson α-

derivation of A. Set B := A[X]. The algebra B endowed with the Poisson bracket from

Theorem 1.1.14 is denoted by B := A[X;α, δ]P and called a Poisson-Ore extension. As

usual we set A[X;α]P := A[X;α, 0]P when δ = 0.

Poisson-Ore extensions satisfy the following universal property.

Proposition 1.1.16. Let B := A[X;α, δ]P be a Poisson-Ore extension over a Poisson K-

algebra A and C be a Poisson K-algebra. If ψ : A→ C is a Poisson algebra homomorphism

and if there exists Y ∈ C such that:

{Y, ψ(a)} = ψ(α(a))Y + ψ(δ(a))

for all a ∈ A, then there exists a unique Poisson algebra homomorphism ϕ : B → C

sending X to Y such that ψ = ϕ ◦ i where i is the inclusion of A in B.

Proof. There is a well-defined K-algebra homomorphism ϕ : B → C given by:

ϕ
(∑

i

aiX
i
)

:=
∑
i

ψ(ai)Y
i,

where ai ∈ A for all i. Note that ϕ(X) = Y and ϕ(a) = ψ(a) for all a ∈ A. It is clear

that this is the only possibility for ϕ, so it only remains to show that ϕ is a Poisson
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algebra homomorphism. For all a, b ∈ A we have ϕ({a, b}) = ψ({a, b}) = {ψ(a), ψ(b)} =

{ϕ(a), ϕ(b)}, and:

ϕ({X, a}) = ϕ(α(a)X + δ(a)) = ψ(α(a))Y + ψ(δ(a)) = {Y, ψ(a)} = {ϕ(X), ϕ(a)}.

The construction of Poisson-Ore extensions can easily be iterated. We say that R is

an iterated Poisson-Ore extension over A if:

R = A[X1;α1, δ1]P [X2;α2, δ2]P · · · [Xn;αn, δn]P

where A is a Poisson algebra, αi is a Poisson derivation of the Poisson subalgebra Ri−1 :=

A[X1;α1, δ1]P · · · [Xi−1;αi−1, δi−1]P of R, and δi is an αi-Poisson derivation of Ri−1 for all

1 ≤ i ≤ n (with the convention that R0 = A).

Example 1.1.17. (1) The Poisson-Weyl algebra APn (K) is an iterated Poisson-Ore exten-

sion over the abelian Poisson algebra K[Y1, . . . , Yn]:

APn (K) = K[Y1, . . . , Yn][X1; 0, ∂Y1 ]P · · · [Xn; 0, ∂Yn ]P ,

where ∂Yi denotes the usual partial derivative with respect to Yi for all 1 ≤ i ≤ n.

The following computations show that the maps ∂Yi are Poisson 0-derivations. For

all 1 ≤ k, l ≤ n and all 1 ≤ p, q < i we have:

∂Yi
(
{Yk, Yl}

)
= 0 = {∂Yi(Yk), Yl}+ {Yk, ∂Yi(Yl)},

∂Yi
(
{Xp, Xq}

)
= 0 = {∂Yi(Xp), Xq}+ {Xp, ∂Yi(Xq)},

∂Yi
(
{Xp, Yk}

)
= ∂Yi(δkl) = 0 = {∂Yi(Xp), Yk}+ {Xp, ∂Yi(Yk)}.

(2) A Poisson affine n-space Kλ[X1, . . . , Xn] is an iterated Poisson-Ore extension over

K:

K[X1][X2;α2]P · · · [Xn;αn]P ,

where αi is the Poisson derivation of the Poisson affine space Kλi−1
[X1, . . . , Xi−1]

such that αi(Xj) = λijXj for all 1 ≤ j < i ≤ n and where λi−1 is the (i−1)× (i−1)

submatrix of λ obtained by deleting rows and columns indexed by k ≥ i. The
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following computations show that the maps αi are Poisson derivations. For all

1 ≤ k, l < i ≤ n we have:

αi({Xk, Xl}) = αi(λklXkXl) = λklαi(Xk)Xl + λklXkαi(Xl) = λkl(λik + λil)XkXl,

and:

{αi(Xk), Xl}+ {Xk, αi(Xl)} = (λik + λil){Xk, Xl} = λkl(λik + λil)XkXl.

(3) The 2 × 2 Poisson matrix variety A := O
(
M2(K)

)
can be expressed as an iterated

Ore extension over K[X11] as follows:

A = K[X11][X12;α12]P [X21;α21]P [X22;α22, δ22]P , where

• α12 is the Poisson derivation of K[X11] such that α12(X11) = −X11,

• α21 is the Poisson derivation of K[X11][X12;α12]P such that α21(X11) = −X11

and α21(X12) = 0,

• α22 is the Poisson derivation of B := K[X11][X12;α12]P [X21;α21]P such that

α22(X11) = 0, α22(X12) = −X12 and α(X21) = −X21,

• δ22 is the Poisson α22-derivation of B such that δ22(X12) = δ22(X21) = 0 and

δ22(X11) = −2X12X21.

Remark 1.1.18. It is not necessarily obvious whether a given polynomial Poisson algebra A

can be expressed as a (iterated) Poisson-Ore extension. In all the examples we saw it was

possible to use the “canonical generators” of a polynomial Poisson algebra to express it as

an iterated Poisson-Ore extension. This is not always the case as the following example

demonstrates. Let A = C[X,Y ] with {X,Y } = X2 + Y 2. The Poisson algebra A cannot

be expressed as a Poisson-Ore extension in the generators X and Y since we would need

to have:

{X,C[Y ]} ⊆ C[Y ]X + C[Y ] or {Y,C[X]} ⊆ C[X]Y + C[X].

But with the generators X ′ := X + iY and Y ′ := X − iY of A it is easy to check that:

{X ′, Y ′} = −2iX ′Y ′.
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Thus A can be expressed as a Poisson-Ore extension in the generators X ′ and Y ′. More

precisely A is a Poisson affine space and we have:

A = C[X ′][Y ′;α]P ,

where α is the Poisson derivation of C[X ′] such that α(X ′) = 2iX ′. Note that we only

used a linear transformation here.

1.2 Semiclassical limit

Roughly speaking the semiclassical limit process is a way to obtain a Poisson algebra from

a given noncommutative algebra. This process is explained in [12, Section 1.1.3] or [16,

Section 2.1]. We recall here the commutative fibre version as described in [12, Section

1.1.3] since this is the version we will use later on.

Let B be a principal ideal domain containing K, and fix h ∈ B such that the ideal

hB is maximal in B. Suppose that R is a not necessarily commutative torsion-free B-

algebra such that the quotient A := R/hR is commutative (note that h is central in R by

definition of R). Then the algebra A becomes a Poisson K-algebra as follows. Since A is

commutative, for all r, s ∈ R the commutator [r, s] := rs− sr belongs to the ideal hR and

there exists a unique element γ(r, s) ∈ R such that [r, s] = hγ(r, s). We set [r,s]
h := γ(r, s).

Finally, it is easy to see that for all r, s ∈ R the (well-defined) formula:

{r + hR, s+ hR} :=
[r, s]

h
+ hR

defines a Poisson bracket on A.

Definition 1.2.1. The Poisson algebra defined above is called the semiclassical limit at

h of the noncommutative algebra R, and the algebra R is called a quantisation of the

Poisson algebra A. For any q ∈ K such that the central element h− q is not invertible in

R the algebra Aq := R/(h − q)R is called a deformation of the Poisson algebra A. The

diagram of Figure 1.1 illustrates this situation.

Note that there exists a so-called filtered/graded version of the semiclassical process

which is suitable in particular for enveloping algebras of Lie algebras, see [16, Section
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R

A Aq

h = 0 h = q

deformation

Figure 1.1

2.4]. The two constructions are linked in [16, Section 2.5]. We now give examples of the

semiclassical limit process explained previously. More examples can be found in [12], [16]

or [18].

Example 1.2.2. (1) Let R := A1(K[t]) be the algebra over K[t] given by generators x, y

and relation xy − yx = t. We have A := R/tR ∼= K[X,Y ] where X := x + tR and

Y := y + tR. Therefore A is a Poisson algebra with Poisson bracket given by:

{X,Y } =
[x, y]

t
+ tR = 1,

i.e. A is the first Poisson-Weyl algebra AP1 (K). We remark that the algebra

A1 := R/(t − 1)R is isomorphic to the first Weyl algebra A1(K), so that A1(K)

is a deformation of AP1 (K). This justifies the name Poisson-Weyl algebra given to

AP1 (K).

(2) Let R = Ot
(
M2(K[t±1])

)
be the K[t±1]-algebra of 2 × 2 quantum matrices, where

the relations are identical to the relations in (1.5), but where q is replaced with t.

We have A = R/(t − 1)R ∼= K[X11, X12, X21, X22] where Xij := xij + (t − 1)R for

all 1 ≤ i, j ≤ 2. The Poisson structure we obtain on A is exactly the one given in

(1.3). For example we compute:

{X11, X22} =
x11x22 − x22x11

t− 1
+ (t− 1)R

=
(t− t−1)x12x21

t− 1
+ (t− 1)R

=
t−1(t− 1)(t+ 1)x12x21

t− 1
+ (t− 1)R

= t−1(t+ 1)x12x21 + (t− 1)R

= 2X12X21.

(3) Let g be a finite dimensional Lie K-algebra with basis {x1, . . . , xn}. Then the algebra
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Ut(g) is the K-algebra given by generators x1, . . . , xn and t with relations:

xixj − xjxi = t[xi, xj ]g and xit = txi,

for all 1 ≤ i, j ≤ n. The algebra U0 := Ut(g)/tUt(g) is isomorphic to the commutative

polynomial algebra S(g) ∼= K[X1, . . . , Xn], where Xi = xi + tUt(g), and we obtain a

Poisson bracket on U0 given by:

{Xi, Xj} = [xi, xj ]g + tUt(g)

for all 1 ≤ i, j ≤ n. We retrieve the Kirillov-Kostant-Souriau Poisson structure

from (4) of Examples 1.1.3. We remark that the algebra U1 := Ut(g)/(t− 1)Ut(g) is

isomorphic to the enveloping algebra U(g) of g, so U(g) is a deformation of S(g).

(4) Let R := O
(tλij )

(
(K[t±1])n

)
be a quantum affine space, where (λij) ∈ Mn(Z) is a

skew-symmetric matrix. R is the algebra given by generators x1, . . . , xn and relations

xixj = tλijxjxi. We remark that R is a domain and that t − 1 is central in R.

Moreover the quotient algebra R := R/(t− 1)R is commutative and it is easy to see

that R = K[X1, . . . , Xn], where Xi := xi + (t− 1)R for all 1 ≤ i ≤ n. Then, for all

1 ≤ i, j ≤ n, we have:

{Xi, Xj} =
tλijxjxi − xjxi

t− 1
+ (t− 1)R

=
tλij − 1

t− 1
xjxi + (t− 1)R

= λijXiXj .

Thus R is the Poisson affine space K(λij)[X1, . . . , Xn]. For q ∈ K×, we have:

R/(t− q)R ∼= O(qλij )

(
Kn
)
,

thus the quantum affine spaceO
(qλij )

(
Kn
)

is a deformation of the Poisson affine space

K(λij)[X1, . . . , Xn]. We remark that we only dealt with the so-called uniparameter

case, i.e. when all the deformation parameters are all powers of a same element

q ∈ K×. To take into account the multiparameter case, some adaptations have to

be made such as in [22], [16, Section 2.3] or [18, Section 2.2].
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More examples will be given in Chapters 4 and 7.

1.3 Spectra of quantum tori and Poisson tori

Quantum (resp. Poisson) tori are helpful when studying quantum (resp. Poisson) affine

spaces. In this section we recall classical results about quantum and Poisson tori. Let

(λij) ∈ Mn(Z) be a skew-symmetric matrix and set qij := qλij for all i, j where q ∈

K \ {0, 1}. Note that (qij) is a multiplicatively skew-symmetric matrix. The quantum

torus associated to the matrix (qij) is the K-algebra denoted by T given by genera-

tors x±1
1 , . . . , x±1

n and relations xixj = qijxjxi for all 1 ≤ i, j ≤ n. We denote by

T = K(λij)[X
±1
1 , . . . , X±1

n ] the Poisson torus associated to the matrix (λij) as defined

in Example 1.1.8.

The algebra T is a deformation of T in the sense of Section 1.2. Indeed by setting R for

the algebra generated over K[t±1] by generators x±1
1 , . . . , x±1

n and relations xixj = tλijxjxi

for all 1 ≤ i, j ≤ n, we easily see that T ∼= R/(t−q)R and that T ∼= R/(t−1)R as Poisson

algebras.

For all α := (α1, . . . , αn) ∈ Zn we set xα := xα1
1 · · ·xαnn ∈ T . Thus, as a vector space,

T has a K-basis of the form {xα | α ∈ Zn}. The map σ from Zn × Zn to K× defined by:

σ(α, β) =

n∏
i,j=1

qαiλijβj

for all α, β ∈ Zn, allows us to express the commutation relations in T as follows:

xαxβ = σ(α, β)xβxα

for all α, β ∈ Zn. The following result is due to Goodearl and Letzter [20].

Lemma 1.3.1. We have:

(1) Every ideal of T is generated by its intersection with Z(T ).

(2) Set Σ := {α ∈ Zn | σ(α,−) ≡ 0}. Then:

Z(T ) = K[xα | α ∈ Σ].
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Proof. Assertion (1) is exactly assertion (1) of [20, Proposition 1.4] and assertion (2) is

[20, Lemma 1.2].

On the Poisson side we have similar results. The assignment Xα := Xα1
1 · · ·Xαn

n ∈ T

for α := (α1, . . . , αn) ∈ Zn allows us to identify the Laurent polynomial algebra T with

the group algebra KZn. The induced Poisson structure on KZn is given by:

{Xα, Xβ} = b(α, β)Xα+β, (1.6)

for all α, β ∈ Zn, where b is the skew-symmetric bilinear form from Zn × Zn to K defined

by:

b(α, β) =
n∑

i,j=1

αiλijβj ,

for all α, β ∈ Zn. The following result is due to Vancliff [36]. The author of [36] was

working over C but the result is still true over more general base fields.

Lemma 1.3.2. We have:

(1) Every Poisson ideal of T is generated by its intersection with ZP (T ).

(2) Set S := {α ∈ Zn | b(α,−) ≡ 0}. Then:

ZP (T ) = K[Xα | α ∈ S].

We give a proof of this result since it only appears in the literature over the field C.

Proof. We start by proving assertion (2). It is clear from equation (1.6) that:

K[Xα | α ∈ S] ⊆ ZP (T ).

Reciprocally, let f ∈ ZP (T ) and write f =
∑

α∈Zn aαX
α, where the scalars aα are almost

all zero. Then for all β ∈ Zn we have:

0 = {Xβ, f} =
∑
α∈Zn

aαb(β, α)Xα+β,

and since the monomials Xα+β are linearly independent we have b(β, α) = 0 as long as
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aα 6= 0. Therefore:

f =
∑
α∈S

aαX
α ∈ K[Xα | α ∈ S].

Thus we obtain ZP (T ) = K[Xα | α ∈ S] and assertion (2) is shown.

We now prove assertion (1). First notice that from assertion (2) we easily deduce that

T is a free ZP (T )-module with basis {Xγ | γ ∈ Γ} for a transversal Γ of S in Zn.

Let P be a Poisson ideal of T . For f ∈ P we can write f =
∑N

i=1 fiX
γi , with fi ∈ ZP (T )

and γi ∈ Γ for all 1 ≤ i ≤ N and N minimal. We will show by induction on N that if∑N
i=1 fiX

γi ∈ P , with fi ∈ ZP (T ) \ {0} and γi ∈ Γ for all 1 ≤ i ≤ N , then fi ∈ P for all

1 ≤ i ≤ N .

For N = 1 the result is trivial since Xγ1 is invertible. We now suppose that the result

is true for N − 1 and we will show that it is still true for N . Let f =
∑N

i=1 fiX
γi ∈ P ,

with fi ∈ ZP (T ) \ {0} and γi ∈ Γ for all 1 ≤ i ≤ N . Since P is a Poisson ideal, for all

α ∈ Zn we have:

{Xα, f}X−α =

N∑
i=1

fib(α, γi)X
γi ∈ P.

Thus for all α ∈ Zn we have {Xα, f}X−α − b(α, γN )f ∈ P , i.e.:

N−1∑
i=1

fi(b(α, γi)− b(α, γN ))Xγi ∈ P.

Since Γ is a transversal, we have γ1 − γN /∈ S. Thus there exists α ∈ Zn such that

b(α, γ1)− b(α, γN ) 6= 0. But then by the induction hypothesis we obtain that f1(b(α, γi)−

b(α, γN )) ∈ P , i.e. f1 ∈ P . Therefore we have:

f − f1X
γ1 =

N∑
i=2

fiX
γi ∈ P,

with fi ∈ ZP (T ) \ {0} and γi ∈ Γ for all 2 ≤ i ≤ N . Thus by induction hypothesis we

obtain fi ∈ P for all 2 ≤ i ≤ N . This conclude the induction.

We just have shown that P ⊆ T (ZP (T ) ∩ P ). The reverse inclusion is trivial, and we

conclude that P is generated by its intersection with ZP (T ).

In particular these lemmas show that if Z(T ) (resp. ZP (T )) is trivial, then T (resp.
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T ) is simple (resp. Poisson simple).
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Chapter 2

The characteristic-free Poisson

deleting derivation homomorphism

The aim of this chapter is to extend the Poisson deleting derivation homomorphism defined

in characteristic 0 in [18] to the prime characteristic case. We first introduce the notion of

higher Poisson derivation in Section 2.1. We use these higher Poisson derivations to over-

come the characteristic problem, and thus define the characteristic-free Poisson deleting

derivation homomorphism in Section 2.2. Section 2.3 is concerned with the compatibil-

ity of the characteristic-free Poisson deleting derivation homomorphism and the action of

a torus acting rationally by Poisson automorphisms on the Poisson-Ore extension under

consideration. This will be used later to prove the quadratic Poisson Gel’fand-Kirillov

problem for torus-invariant prime factors of certain iterated Poisson-Ore extensions.

2.1 Higher Poisson derivation

The main tool to build Poisson birational isomorphisms between (certain) iterated Poisson-

Ore extensions and Poisson affine spaces is the existence of higher derivations which are

compatible with Poisson brackets. We define those higher derivations and give some of

their properties. Higher derivations, also called Hasse-Schmidt derivations, have been

previously studied in particular for their links with field extensions, see [38] or [39].

29



2.1.1 Definition and first properties

Definition 2.1.1. Let A be a Poisson K-algebra, α ∈ DerP (A) and η ∈ K.

(1) A higher derivation on A is a sequence of K-linear maps (Di) := (Di)
∞
i=0 such that:

D0 = idA and Dn(ab) =
n∑
i=0

Di(a)Dn−i(b) for all a, b ∈ A and all n ≥ 0. (A1)

In particular D1 is a derivation of A. Therefore we say that δ ∈ Der(A) extends to a

higher derivation if there exists a higher derivation (Di) on A such that D1 = δ. A

higher derivation is iterative if DiDj =
(
i+j
i

)
Di+j for all i, j ≥ 0, and locally nilpotent

if for all a ∈ A there exists na ≥ 0 such that Di(a) = 0 for all i ≥ na.

(2) A higher derivation (Di) is a higher α-skew Poisson derivation if for all a, b ∈ A and

all n ≥ 0:

Dn({a, b}) =
n∑
i=0

[
{Di(a), Dn−i(b)}+ i

(
α(Dn−i(a))Di(b)−Di(a)α(Dn−i(b))

)]
. (A2)

(3) A higher α-skew Poisson derivation is a higher (η, α)-skew Poisson derivation if for

all i ≥ 0:

Diα = αDi + iηDi. (A3)

(4) We say that the derivation δ of a Poisson-Ore extension A[X;α, δ]P extends to a

higher (η, α)-skew Poisson derivation if there exists a higher (η, α)-skew Poisson

derivation (Di) on A such that D1 = δ.

Note that if A is finitely generated, say by a1, . . . , ak, a higher derivation (Di) is

uniquely determined by the Di(aj) for all 1 ≤ j ≤ k and all i ≥ 0 thanks to Axiom (A1).

Remark 2.1.2. Let A be a K-algebra and δ ∈ Der(A) which extends into an iterative higher

derivation (Di). By induction we obtain δn = Dn
1 = n!Dn for all n ≥ 0. Therefore we

have the following:

(1) In characteristic 0, the only iterative higher derivation (Di) on A such that D1 = δ

is given by:

Dn =
δn

n!

for all n ≥ 0. This iterative higher derivation is called the canonical higher derivation

associated to δ. Note that (Di) is locally nilpotent if δ is locally nilpotent.
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(2) In characteristic p > 0 we have Dp
1 = 0 and obtain no information on Dp that way.

One can show that the higher derivation (Di) is uniquely determined by the Dpk for

k ≥ 0. More precisely for n =
∑m

k=0 nkp
k the p-adic decomposition of n we have:

Dn =
Dn0

1 Dn1
p · · ·D

nm
pm

n0!n1! · · ·nm!
.

See [38, Section III], the result for fields being trivially adapted for K-algebras. In

particular, we have Di = δi

i! for all for i < p.

Example 2.1.3. Suppose K is of characteristic zero. Let R = A[X;α, δ]P be a Poisson-Ore

extension where A is a Poisson K-algebra. If there exists η ∈ K× such that δα = αδ + ηδ

then it follows from [18, Lemma 3.6] (with s = −η) that:

δn({a, b}) =
∑

l+m=n

(
n

l

)(
{δl(a), δm(b)}+mδl(a)αδm(b)− lδl(a)δmα(b)

)
for all a, b ∈ A and all n ≥ 0. From this it is easily shown that the canonical higher

derivation
(
δn

n!

)
is an iterative higher (η, α)-skew Poisson derivation. The examples given

in [18] provide a large family of α-derivations δ satisfying δα = αδ + ηδ for some scalar

η ∈ K×, which extend to higher (η, α)-skew Poisson derivations.

Example 2.1.4. Let A := K[X] and δ := ∂X ∈ Der(A). By setting:

Di(X) :=


X i = 0,

1 i = 1,

0 i > 1,

we define an iterative higher derivation on A extending δ. For all i, k ≥ 0 we can compute:

Di(X
k) =


(
k
i

)
Xk−i k ≥ i,

0 k < i.
(2.1)

Note that in characteristic zero the sequence (Di) and ( δ
i

i! ) coincide. From (2.1) we see

that (Di) is locally nilpotent. We now form the Poisson-Ore extension B := A[Y ;α, δ]P ,

where α := X∂X ∈ DerP (A) (note that A is Poisson abelian). The higher derivation (Di)

satisfies Axioms (A2) and (A3) of Definition 2.1.1 for η = 1 and α previously defined.

Therefore δ extends to an iterative, locally niplotent higher (1, α)-skew Poisson derivation

on A.
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We conclude this section by two technical lemmas.

Lemma 2.1.5. Let A be a Poisson K-algebra, let B ⊆ A be a Poisson subalgebra generated,

as an algebra, by a finite set {b1, . . . , bk}. Let (Di) be a higher derivation on A. If

Di(bj) ∈ B for all i ≥ 0 and all 1 ≤ j ≤ k, then Dn(B) ⊆ B and Dn({B,B}) ⊆ B for all

n ≥ 0.

Proof. We proceed by induction on the length of the monomials in the generators. For

monomials of length one we have Dn(bj) ∈ B for all n, j ≥ 0 by hypothesis. Let T be a

monomial of a given length and b a generator. Suppose that Dn(T ) ∈ B for all n ≥ 0.

Then

Dn(Tb) =

n∑
i=0

Di(T )Dn−i(b) ∈ B

by the induction hypothesis. This conclude the induction. Since {B,B} ⊆ B we have

Dn({B,B}) ⊆ B.

Lemma 2.1.6. Let A be a Poisson K-algebra generated, as an algebra, by a finite set

{a1, . . . , ak}, and let (Di) be a higher derivation on A. If (Di) is locally nilpotent on aj

for all 1 ≤ j ≤ k, then (Di) is locally nilpotent on A.

Proof. As in Lemma 2.1.5 we do an induction on the length of the monomials. If the

length of a monomial is 1, the hypothesis gives the result. Suppose by induction that (Di)

is locally nilpotent on a monomial T . Then there exists p ≥ 0 such that Di(T ) = 0 for all

i ≥ p. Fix a generator aj of A. By hypothesis there exists q ≥ 0 such that Di(aj) = 0 for

all i ≥ q. Thus we have:

Dn(Taj) =

n∑
i=0

Di(T )Dn−i(aj) = 0

for all n ≥ p+ q, i.e. (Di) is locally nilpotent on Taj .

2.1.2 Higher derivation and localisation

The following proposition gives a criterion for a sequence of K-linear maps to be a higher

(η, α)-skew Poisson derivation. This will be used later to extend a higher (η, α)-skew

Poisson derivation to certain localisations. For β ∈ DerP (A), the Poisson bracket of A
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uniquely extends to a Poisson bracket on the formal power series algebra A[[X]] by setting

{X, a} = β(a)X. This Poisson algebra is denoted by A[[X;β]]P . The Poisson bracket of

two elements of A[[X;β]]P is given by:

{
∑
i≥0

aiX
i,
∑
j≥0

bjX
j} =

∑
n≥0

( ∑
i+j=n

(
{ai, bj}+ iaiβ(bj)− jβ(ai)bj

))
Xn,

where all the ais and the bjs are in A. We remark that we have just extended by continuity

the Poisson bracket of A[X;β]P to its completion A[[X]]. Note that the Poisson derivation

β of A extends to a Poisson derivation of A[[X;β]]P by setting β(X) = ηX for any η ∈ K

since:

β({X, a}) =
(
β2(a) + ηβ(a)

)
X = {β(X), a}+ {X,β(a)}.

Proposition 2.1.7. Let (Di)
∞
i=0 be a sequence of K-linear maps on a Poisson K-algebra

A with D0 = idA, α ∈ DerP (A) and η ∈ K.

(a) (Di) is a higher α-skew Poisson derivation on A if and only if the K-linear map

Ψ : A → A[[X;−α]]P given by a 7→
∑∞

i=0Di(a)Xi is a Poisson algebra homomor-

phism.

(b) Extend α to a Poisson derivation on A[[X;−α]]P by setting α(X) = ηX. Assume

that (Di) is a higher α-skew Poisson derivation. Then (Di) is a higher (η, α)-skew

Poisson derivation if and only if the diagram of Figure 2.1 is commutative.

A[[X;−α]]P A[[X;−α]]P

A A

α

Ψ

α

Ψ

Figure 2.1

Proof. (a) It is obvious that Ψ is a K-algebra homomorphism if and only if (Di) satisfies

Axiom (A1). Let a, b ∈ A. We need to check that the equality Ψ({a, b}) = {Ψ(a),Ψ(b)}
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is equivalent to Axiom (A2):

{Ψ(a),Ψ(b)} =
∑
i,j

{Di(a)Xi, Dj(b)X
j}

=
∑
i,j

{Di(a), Dj(b)}Xi+j − iDi(a)αDj(b)X
i+j + jαDi(a)Dj(b)X

i+j

=
∑
i,j

(
{Di(a), Dj(b)}+ jαDi(a)Dj(b)− iDi(a)αDj(b)

)
Xi+j

=
∑
n≥0

∑
i+j=n

(
{Di(a), Dj(b)}+ iαDj(a)Di(b)− iDi(a)αDj(b)

)
Xn.

Since Ψ({a, b}) =
∑

n≥0Dn({a, b})Xn and {Xn | n ≥ 0} is a basis of A[[X]], the equiva-

lence is shown.

(b) We show that Ψα = αΨ is equivalent to Axiom (A3). Let a ∈ A. Then we have:

αΨ(a) =
∑
i≥0

α
(
Di(a)Xi

)
=
∑
i≥0

αDi(a)Xi +Di(a)α(Xi)

=
∑
i≥0

(
αDi(a) + iηDi(a)

)
Xi,

On the other hand, we have:

Ψα(a) =
∑
i≥0

(
Diα(a)

)
Xi.

Hence Ψα = αΨ if and only if (Di) satisfies Axiom (A3).

Proposition 2.1.8. Let α ∈ DerP (A), η ∈ K and (Di) a higher (η, α)-skew Poisson

derivation on a Poisson K-algebra A. Let S be a multiplicative set of regular elements of

A. Then (Di) uniquely extends to a higher (η, α)-skew Poisson derivation on AS−1.

Proof. A derivation β of A extends uniquely to AS−1 by:

β(as−1) = β(a)s−1 − as−2β(s) for a ∈ A and s ∈ S. (2.2)

So we can uniquely extend α and D1 to AS−1. Moreover if β ∈ DerP (A) then after

extension β ∈ DerP (AS−1). Now suppose that (Di) extends to a higher (η, α)-skew
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Poisson derivation on AS−1. For a ∈ A and s ∈ S, we apply Dn to the equation a1−1 =

(as−1)(s1−1) to get:

Dn(a)1−1 = Dn

(
(as−1)(s1−1)

)
=

n∑
i=0

Di(as
−1)Dn−i(s1

−1)

= Dn(as−1)s1−1 +

n−1∑
i=0

Di(as
−1)Dn−i(s1

−1).

This implies:

Dn(as−1) =
(
Dn(a)−

n−1∑
i=0

Di(as
−1)Dn−i(s)

)
s−1,

thus proving uniqueness.

Let Ψ : A→ A[[X;−α]]P be the K-linear map defined in Proposition 2.1.7 and let:

Φ : A[[X;−α]]P → AS−1[[X;−α]]P

be the canonical embedding. Consider the map Γ := Φ ◦ Ψ from A to AS−1[[X;−α]]P

and note that Γ is a K-algebra Poisson algebra homomorphism by Proposition 2.1.7, since

(Di) is a higher α-skew Poisson derivation on A. For all s ∈ S, the constant term of

Γ(s) is a unit in AS−1 and so Γ(s) is a unit in AS−1[[X;−α]]P . Hence Γ extends to a

K-algebra homomorphism Γ′ : AS−1 → AS−1[[X;−α]]P such that Γ′(as−1) = Γ(a)Γ(s)−1.

A straightforward computation shows that Γ′ is a Poisson algebra homomorphism.

We consider the diagram of Figure 2.2, where α has been extended to a Poisson deriva-

AS−1[[X;−α]]P AS−1[[X;−α]]P

AS−1 AS−1

α

Γ′

α

Γ′

Figure 2.2

tion of AS−1[[X;−α]]P via (2.2) and α(X) = ηX. Since Γ(a) =
∑

i≥0(Di(a)1−1)Xi, and
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(Di) is a higher (η, α)-skew Poisson derivation on A for all a ∈ A we have:

αΓ(a) =
∑
i≥0

α
(
(Di(a)1−1)Xi

)
=
∑
i≥0

α(Di(a)1−1)Xi + (Di(a)1−1)α(Xi)

=
∑
i≥0

(αDi(a)1−1 + iηDi(a)1−1)Xi

=
∑
i≥0

(Diα(a)1−1)Xi = Γα(a).

Since Γ is a K-algebra homomorphism and α a K-derivation we have:

αΓ′(as−1) = α(Γ(a)Γ(s)−1)

= αΓ(a)Γ(s)−1 − Γ(a)Γ(s)−2αΓ(s)

= Γα(a)Γ(s)−1 − Γ(a)Γ(α(s))Γ(s)−2

= Γα(a)Γ(s)−1 − Γ(aα(s))Γ(s2)−1

= Γ′(α(a)s−1 − aα(s)s−2)

= Γ′α(as−1).

Thus the diagram of Figure 2.2 is commutative, as desired.

Define a sequence (Di) on AS−1 such that Di(as
−1) is the coefficient of Xi in Γ′(as−1)

for all as−1 ∈ AS−1. Then, by Proposition 2.1.7, we conclude that this sequence is a

higher (η, α)-skew Poisson derivation on AS−1 extending (Di) on A, as requested.

2.2 Deleting derivation homomorphism

Let A[X;α, δ]P be a Poisson-Ore extension, where A is a Poisson K-algebra and set S :=

{Xn | n ≥ 0}. The set S is a multiplicative set (of regular elements) and we denote

by A[X±1;α, δ]P the localisation S−1
(
A[X;α, δ]P

)
. Poisson brackets extend uniquely by

localisation, so A[X±1;α, δ]P is also a Poisson algebra, called Poisson-Ore Laurent algebra.

Suppose that the derivation δ extends to an iterative locally nilpotent higher (η, α)-skew
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Poisson derivation (Di) with η ∈ K×. We define a map θ : A→ A[X±1;α, δ]P by setting:

θ(a) =
∑
i≥0

1

ηi
Di(a)X−i for all a ∈ A.

Note that this sum is finite since (Di) is locally nilpotent.

Proposition 2.2.1. The K-linear map θ : A→ A[X±1;α, δ]P is a Poisson algebra homo-

morphism and satisfies the following identity:

{X, θ(a)} = θ
(
α(a)

)
X for all a ∈ A.

Proof. θ is an algebra homomorphism because (Di) satisfies Axiom (A1). Let us show

that θ respects the Poisson bracket using Axiom (A2) and the iterativity of (Di).

{θ(a), θ(b)} =
∑
i,j≥0

{ 1

ηi
Di(a)X−i,

1

ηj
Dj(b)X

−j}

=
∑
i,j≥0

1

ηi+j

(
{Di(a), Dj(b)}X−i−j

+Dj(b){Di(a), X−j}X−i +Di(a){X−i, Dj(b)}X−j
)

=
∑
i,j≥0

1

ηi+j

(
{Di(a), Dj(b)}X−i−j + jDj(b)

(
αDi(a)X +D1Di(a)

)
X−i−j−1

− iDi(a)
(
αDj(b)X +D1Dj(b)

)
X−i−j−1

)
=
∑
i,j≥0

1

ηi+j

(
{Di(a), Dj(b)}+ jαDi(a)Dj(b)− iDi(a)αDj(b)

)
X−i−j

+
∑
i,j≥0

1

ηi+j

(
jDj(b)D1Di(a)− iDi(a)D1Dj(b)

)
X−i−j−1

=
∑
i,j≥0

1

ηi+j

(
{Di(a), Dj(b)}+ iαDj(a)Di(b)− iDi(a)αDj(b)

)
X−i−j

+
∑
i,j≥0

1

ηi+j

(
j(i+ 1)Dj(b)Di+1(a)− i(j + 1)Di(a)Dj+1(b)

)
X−i−j−1

=
∑
t≥0

1

ηt

∑
i+j=t

(
{Di(a), Dj(b)}+ i

(
αDj(a)Di(b)−Di(a)αDj(b)

))
X−t

+
∑
j,l≥1

jl

ηj+l−1
Dj(b)Dl(a)X−j−l −

∑
i,k≥1

ik

ηi+k−1
Di(a)Dk(b)X

−i−k

=
∑
t≥0

1

ηt
Dt({a, b})X−t

= θ({a, b}).
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Finally we use Axiom (A3) and the iterativity of (Di) to show that {X, θ(a)} =

θ
(
α(a)

)
X. Indeed, we have:

{X, θ(a)} =
∑
i≥0

1

ηi
{X,Di(a)}X−i

=
∑
i≥0

1

ηi
(
α
(
Di(a)

)
X +D1Di(a)

)
X−i

=
∑
i≥0

1

ηi
α
(
Di(a)

)
X−i+1 +

∑
i≥0

1

ηi
(i+ 1)Di+1(a)X−i

=
∑
i≥0

1

ηi
α
(
Di(a)

)
X−i+1 +

∑
i≥1

η

ηi
iDi(a)X−i+1

=
∑
i≥0

1

ηi
(
α
(
Di(a)

)
+ iηDi(a)

)
X−i+1

=
∑
i≥0

1

ηi
Di

(
α(a)

)
X−i+1

= θ
(
α(a)

)
X.

We are now ready to state the main result of this section.

Theorem 2.2.2. Let A[X;α, δ]P be a Poisson-Ore extension, where A is a Poisson K-

algebra. Suppose that δ extends to an iterative, locally nilpotent higher (η, α)-skew Poisson

derivation (Di) on A with η ∈ K×. Then the algebra homomorphism θ : A → A[X±1]

defined by:

θ(a) =
∑
i≥0

1

ηi
Di(a)X−i

uniquely extends to a Poisson K-algebra isomorphism:

θ : A[Y ±1;α]P
∼=−→ A[X±1;α, δ]P

by setting θ(Y ) = X.

Proof. Clearly θ extends uniquely to a K-algebra homomorphism from A[Y ±1] to A[X±1]

by setting θ(Y ) = X. In view of Proposition 2.2.1 we know that θ({a, b}) = {θ(a), θ(b)}
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for all a, b ∈ A. Moreover, for all a ∈ A we have:

θ({Y, a}) = θ(α(a)Y ) = θ
(
α(a)

)
θ(Y ) = θ

(
α(a)

)
X = {X, θ(a)} = {θ(Y ), θ(a)}.

Thus θ is a Poisson algebra homomorphism from A[Y ±1;α]P to A[X±1;α, δ]P .

To conclude we show that θ is bijective. First, let f ∈ A[Y ±1] be a nonzero Laurent

polynomial. We can write f =
∑m

i=l aiY
i, where l,m are two integers with l ≤ m, and

ai ∈ A for all i ∈ {l, . . . ,m} with am 6= 0. Observing that:

θ(aiY
i) =

∑
k≥0

1

ηk
Dk(ai)X

i−k = aiX
i +
∑
k≥1

1

ηk
Dk(ai)X

i−k

for all i, we can write θ(f) = amX
m +

∑m−1
i=j biX

i, for some j < m and where bi ∈ A for

all j ≤ i < m. Thus θ(f) 6= 0, and F is injective.

For the surjectivity, we already have θ(Y ±1) = X±1, so we just need to check that

A ⊂ Im(θ). Let a ∈ A. Since (Di) is locally nilpotent, there exists l ≥ 0 such that

Dl(a) = 0. If l ≤ 1, we have θ(a) = a and so a ∈ Im(θ). Assume l > 1 and write

θ(a) = a+
∑l−1

i=1
1
ηi
Di(a)X−i. Since Dl−iDi(a) =

(
l
i

)
Dl(a) = 0 for i = 1, . . . , l−1, we have

Di(a) ∈ Im(θ) for all i = 1, . . . , l − 1 (we proceed by induction on l). Thus θ(a)− a is in

the image of θ and so does a. Thus θ is surjective.

We set B := A[X;α, δ]P and S := {Xi | i ≥ 0} so that we have BS−1 = A[X±1;α, δ]P .

We deduce immediately the following result.

Corollary 2.2.3. BS−1 contains a Poisson subalgebra B′ isomorphic to A[Y ;α]P , and

we have B′S−1 = BS−1. In particular we have:

Frac
(
A[X;α, δ]P

)
= Frac

(
B′
) ∼= Frac

(
A[Y ;α]P

)
.

Proof. Take B′ := θ(A[Y ;α]P ).

When charK = 0, Remark 2.1.2 and Example 2.1.3 show that Theorem 2.2.2 is [18,

Theorem 3.7].

Example 2.2.4. Recall from Example 2.1.4 the Poisson-Ore extension B := K[X][Y ;α, δ]P ,

where α := X∂X and δ = ∂X so that we have {Y,X} = XY +1. Recall that the derivation
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δ extends to an iterative, locally nilpotent higher (1, α)-skew Poisson derivation on K[X]

given by:

Di(X) :=


X i = 0

1 i = 1

0 i > 1.

Therefore we can apply Theorem 2.2.2 to B, and we have a Poisson algebra isomorphism:

K[X][Z±1;α]P ∼= K[X][Y ±1, α, δ]P

sending Z to Y . And so, by Corollary 2.2.3, there is inside K[X][Y ±1, α, δ]P a Poisson

subalgebra isomorphic to the Poisson affine plane K[X][Z;α]P = Kλ[X,Z], where λ ∈

M2(K) is the skew-symmetric matrix such that λ12 = −1. This is the algebra θ
(
K[X,Z]

)
=

K[X ′, Y ], where X ′ := θ(X) = X + Y −1. In this case it is easy to verify that:

{Y,X ′} = {Y,X} = XY + 1 = Y (X + Y −1) = Y X ′.

We conclude by saying that FracB ∼= K(U, V ) with {U, V } = −UV .

2.3 Case where a torus acts rationally: H-equivariance of

the deleting derivation homomorphism

Let A be a finitely generated Poisson K-algebra. By an (algebraic) torus we mean a

group of the form (K×)r for some r > 0. Suppose that a torus H is acting by Poisson K-

algebra automorphisms on a Poisson-Ore extension B := A[X;α, δ]P such that H(A) = A.

This means that there is a group homomorphism φ from H to the group of Poisson

automorphisms of B (an automorphism σ of B is a Poisson automorphism is we have

σ({a, b}) = {σ(a), σ(b)} for all a, b ∈ B). For h ∈ H we set h(a) := φ(h)(a) for all a ∈ B.

We suppose that the indeterminate X is an H-eigenvector, that is for all h ∈ H there

exists µ ∈ K such that h(X) = µX (note that µ 6= 0 since h is an automorphism). Finally

we assume that H commutes with the derivation α.

We show that under these assumptions the torus H is also acting by Poisson automor-
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phism on the Poisson-Ore extension A[Y ;α]P . Let h ∈ H and set h(X) = µX for a scalar

µ ∈ K×. Then H is also acting by automorphisms on A[Y ;α]P via:

h
( n∑
i=0

aiY
i
)

=

n∑
i=0

h(ai)µ
iY i

for all h ∈ H. Note that h(Y ) = µY . Moreover this action respects the Poisson bracket

of A[Y ;α]P since:

h({Y, a}) = h(α(a)Y ) = h(α(a))h(Y ) = µα(h(a))Y = µ{Y, h(a)} = {h(Y ), h(a)}.

These H-actions extend uniquely by localisation to A[X±1;α, δ]P and A[Y ±1;α]P since

X and Y are H-eigenvectors. With a desire of clarity, we sometimes distinguish between

the actions of h ∈ H on A[X±1;α, δ]P and A[Y ±1;α]P by using subscripts: hX and hY .

The following lemma gives conditions under which these actions commute with the deleting

derivation homomorphism θ defined at the beginning of Section 2.2.

Lemma 2.3.1. Suppose that δ extends to a higher (η, α)-skew Poisson derivation (Di) on

A with η ∈ K×. We denote by {a1, . . . , al} a set of generators of A. If for all n ≥ 0 and

all 1 ≤ i ≤ l we have:

h
(
Dn(ai)

)
= µnDn

(
h(ai)

)
then hXθ = θhY , that is the diagram of Figure 2.3 is commutative.

A[X±1;α, δ]P A[X±1;α, δ]P

A[Y ±1;α]P A[Y ±1;α]P

hX

θ

hY

θ

Figure 2.3

Proof. For all 1 ≤ i ≤ l we have:

hX
(
θ(ai)

)
=
∑
k≥0

1

ηk
hX
(
Dk(ai)

)
hX(X−k)

=
∑
k≥0

1

ηk
µkDk

(
hY (ai)

)
µ−kX−k
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= θ
(
hY (ai)

)
,

since hX(a) = h(a) = hY (a) ∈ A for all a ∈ A. We conclude by noting that:

hX
(
θ(Y )

)
= hX(X) = µX = µθ(Y ) = θ(µY ) = θ

(
hY (Y )

)
.

Example 2.3.2. Recall the Poisson-Ore extension B := A[Y ;α, δ]P , where A := K[X],

α := X∂X and δ := ∂X extends to an iterative, locally nilpotent higher (1, α)-skew Poisson

derivation (Di) on A given by:

Di(X) :=


X i = 0

1 i = 1

0 i > 1.

The torus H = K× acts rationally by Poisson algebra automorphisms on B via h(X) = hX

and h(Y ) = h−1Y for all h ∈ H. It is clear that H also acts rationally by Poisson algebra

automorphisms on A[Y ;α]P via the same rule. Fix h ∈ H. The corresponding eigenvalue

for Y is µ := h−1. Therefore the assumptions of Lemma 2.3.1 are satisfies since for all

i ≥ 0 we have:

h
(
Di(X)

)
= µiDi

(
h(X)

)
.

One can check that indeed h and θ commute.

h
(
θ(X)

)
= h(X + Y −1) = hX +

(
h−1Y

)−1
= hX + hY −1 = θ

(
h(X)

)
.

In the next chapter we will see how the material developed in this chapter can be

used to understand the structure of the field of fractions of certain iterated Poisson-Ore

extensions.
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Chapter 3

A quadratic Poisson

Gel’fand-Kirillov problem

A Poisson algebra (which is a domain) satisfies the quadratic Poisson Gel’fand-Kirillov

problem if its field of fractions is isomorphic to the field of fractions of a Poisson affine

space, see Section 3.1 for more details. In this chapter we give a positive answer to

the quadratic Poisson Gel’fand-Kirillov problem for Poisson algebras satisfying suitable

conditions (see Section 3.3) and some of their quotients (see Section 3.4). This is achieved

through repeated use of the characteristic-free Poisson deleting derivation homomorphism

constructed in the previous chapter. In Section 3.2 we give some preliminary results which

show that, after deleting the last derivation in an iterated Poisson-Ore extension, moving

the last variable in first position does not affect the existence and properties of the needed

higher Poisson derivations corresponding to the other variables. This is crucial as it allows

for inductive use of the characteristic-free Poisson deleting derivation homomorphism in

order to prove the main result of Section 3.2, namely Theorem 3.3.1. This theorem shows

that, under suitable assumptions, there is a Poisson algebra isomorphism between the field

of fractions of an iterated Poisson-Ore extension and a Poisson affine space, i.e. the iterated

Poisson-Ore extension under consideration satisfies the quadratic Poisson Gel’fand-Kirillov

problem.

Concerning Poisson prime factors of an iterated Poisson-Ore extension A, Theorem

3.3.1 tells us that they satisfy the quadratic Poisson Gel’fand-Kirillov problem if the cor-

responding Poisson prime factors of the Poisson affine space B do (assertion (2) of Theorem
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3.3.1). In characteristic zero, a Poisson prime factor of a Poisson affine space is always

Poisson birationally equivalent to a Poisson affine space over a purely transcendental ex-

tension of the base field, see [18, Theorem 3.3]. However in prime characteristic this is not

clear anymore, and we restrict ourselves to the Poisson prime ideals which are also invari-

ant under the action of a torus H. In Section 3.4.2 we show that, under mild hypotheses,

there are actually only finitely many H-invariant Poisson prime ideals in a Poisson affine

space. Moreover, we explicitly describe all these ideals. As a consequence, the correspond-

ing quotient algebras of B satisfy the quadratic Poisson Gel’fand-Kirillov problem, and so

we conclude from Theorem 3.3.1 that all H-invariant Poisson prime quotients of A satisfy

the quadratic Poisson Gel’fand-Kirillov problem.

3.1 The Quadratic Poisson Gel’fand-Kirillov problem

The quadratic Poisson Gel’fand-Kirillov problem is a problem of birational equivalence for

polynomial Poisson algebras. It is a Poisson analogue of the quantum Gel’fand-Kirillov

Conjecture.

We say that a Poisson K-algebra A which is a domain satisfies the quadratic Poisson

Gel’fand-Kirillov problem if there exists a Poisson K-algebra isomorphism:

FracA ∼= Kλ(X1, . . . , Xn),

for an integer n ≥ 1 and a skew-symmetric matrix λ ∈Mn(K).

Recall that Kλ(X1, . . . , Xn) denotes the field of fractions of the Poisson affine n-space

Kλ[X1, . . . , Xn] (see (3) in Examples 1.1.3).

Remark 3.1.1. It is possible to relax the requirement in the problem set up above (as

in [18]) by allowing the Poisson K-algebra isomorphism to hold between FracA and a

Poisson affine field Lµ(X1, . . . , Xt) for some field extension K ⊆ L (an integer t ≥ 1, and a

skew-symmetric matrix µ ∈Mt(K)). This version is used in [18] to include Poisson prime

quotients of Poisson affine spaces (essentially to take into account that some indeterminates

can become Poisson central in the quotient). It is also worthwhile noting that in this

version the matrix µ must take its coefficients in K and not in L.
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3.2 Preliminaries

In order to extend the results of the previous chapter to iterated Poisson-Ore extensions, we

need to know the behaviour of a higher Poisson derivation when reordering the variables.

This is the objective of the next two lemmas.

Lemma 3.2.1. Let A be a Poisson K-algebra and R = A[X;α, δ]P [Y ±1;β]P be an iterated

Poisson-Ore extension, where β(A) ⊆ A and β(X) = λX for λ ∈ K.

(1) Then R = A[Y ±1;β′]P [X;α′, δ′]P , where β′ = β|A, α′|A = α, δ′|A = δ, α′(Y ) = −λY

and δ′(Y ) = 0.

(2) If δα = αδ + ηδ in A, then δ′α′ = α′δ′ + ηδ′ in A[Y ±1;β]P .

(3) Suppose further that δ extends to a higher (η, α)-skew Poisson derivation (Di) on A

and that βDi = Diβ + iλDi for all i ≥ 0. Then δ′ extends to a higher (η, α′)-skew

Poisson derivation (D′i) on A[Y ±1;β]P such that the restriction of D′i to A coincides

with Di for all i ≥ 0, and D′i(Y ) = 0 for all i > 0.

(4) Keeping the assumptions of (3) above, we have:

(a) If (Di) is iterative, then (D′i) is iterative.

(b) If (Di) is locally nilpotent, then (D′i) is locally nilpotent.

Proof. (1) Since β(A) ⊆ A and {X,Y } = −λXY we can switch the variables X and Y in

the expression of R as a Poisson-Ore extension over A. The new maps we get are those

described in (1).

(2) We only check the equality on a monomial aY i ∈ A[Y ±1] since the derivations involved

are K-linear.

δ′α′(aY i) = δ′(α′(a)Y i + aα′(Y i))

= δ′(α′(a)Y i) + δ′(−iλaY i)

= δ′(α′(a)Y i)− iλ(δ′(a)Y i + δ′(Y i)a)

= (δα(a)− iλδ(a))Y i

=
(
αδ(a) + ηδ(a)− iλδ(a)

)
Y i

= (α′δ′ + ηδ′)(aY i).
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(3) Define a sequence of K-linear maps D′i : A[Y ±1;β′]P → A[Y ±1;β′]P for all i ≥ 0 by

D′i

( m∑
j=−m

ajY
j
)

=
m∑

j=−m
Di(aj)Y

j .

We check that (D′i) is a higher (η, α′)-skew Poisson derivation on A[Y ±1;β′]P satisfying

all conditions of (3). First, it is clear that D′i(a) = Di(a) for all a ∈ A. Moreover

D′i(Y ) = Di(1)Y = 0 for i > 0 and D′0 = id on A[Y ±1;β′]P . The following computation

shows that δ′ extends to (D′i):

D′1

( m∑
j=−m

ajY
j
)

=
m∑

j=−m
D1(aj)Y

j =
m∑

j=−m
δ(aj)Y

j = δ′
( m∑
j=−m

ajY
j
)
.

It just remains to establish Axioms (A1), (A2) and (A3) of Definition 2.1.1 on mono-

mials of A[Y ±1] (since the Poisson bracket is K-bilinear and the D′i and the Di are K-linear

maps).

First, for all a, b ∈ A and all i, j ∈ Z:

D′n
(
(aY i)(bY j)

)
= Dn(ab)Y i+j

=

n∑
k=0

Dk(a)Dn−k(b)Y
i+j

=

n∑
k=0

D′k(aY
i)D′n−k(bY

j).

Hence Axiom (A1) is proved. Next

D′n({aY i, bY j}) = D′n
[(
{a, b}+ iβ′(b)a− jβ′(a)b

)
Y i+j

]
=
[
Dn({a, b}) + iDn(β(b)a)− jDn(β(a)b)

]
Y i+j

=
n∑
k=0

[
{Dk(a), Dn−k(b)}+ k

(
αDn−k(a)Dk(b)−Dk(a)αDn−k(b)

)]
Y i+j

+ i
n∑
k=0

Dn−k(a)Dkβ(b)Y i+j

− j
n∑
k=0

Dn−k(b)Dkβ(a)Y i+j ,
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whereas

n∑
k=0

{D′k(aY i), D′n−k(bY
j)}+ k

(
α′D′n−k(aY

i)D′k(bY
j)−D′k(aY i)α′D′n−k(bY

j)
)

=
n∑
k=0

(
{Dk(a), Dn−k(b)}+ iDk(a)β′Dn−k(b)− jβ′Dk(a)Dn−k(b)

)
Y i+j

+
n∑
k=0

kDk(b)
(
αDn−k(a)Y i +Dn−k(a)α′(Y i)

)
Y j

−
n∑
k=0

kDk(a)
(
αDn−k(b)Y

j +Dn−k(b)α
′(Y j)

)
Y i

=
n∑
k=0

(
{Dk(a), Dn−k(b)}+ iDk(a)βDn−k(b)− jβDk(a)Dn−k(b)

)
Y i+j

+

n∑
k=0

kDk(b)
(
αDn−k(a)− iλDn−k(a)

)
Y i+j

−
n∑
k=0

kDk(a)
(
αDn−k(b)− jλDn−k(b)

)
Y i+j

=

n∑
k=0

(
{Dk(a), Dn−k(b)}+ k

(
αDn−k(a)Dk(b)−Dk(a)αDn−k(b)

))
Y i+j

+ i

n∑
k=0

Dk(a)βDn−k(b)Y
i+j − iλ

n∑
k=0

kDn−k(a)Dk(b)Y
i+j

− j
n∑
k=0

Dn−k(b)
(
βDk(a)− kλDk(a)

)
Y i+j

=

n∑
k=0

(
{Dk(a), Dn−k(b)}+ k

(
αDn−k(a)Dk(b)−Dk(a)αDn−k(b)

))
Y i+j

+ i

n∑
k=0

Dn−k(a)
(
βDk(b)− kλDk(b)

)
Y i+j

− j
n∑
k=0

Dn−k(b)
(
βDk(a)− kλDk(a)

)
Y i+j .

(In the last step of this computation we used a change of variable k′ = n−k in the second

sum). Since βDk − λkDk = Dkβ for all k ≥ 0, Axiom (A2) is established. And finally, we

get Axiom (A3) by computing:

(α′D′i + iηD′i)(aY
l) = α′

(
Di(a)Y l

)
+ iηDi(a)Y l

=
(
αDi(a)− λlDi(a) + iηDi(a)

)
Y l

=
(
Diα(a)− λlDi(a)

)
Y l
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= Di(α(a)− λla)Y l

= D′i
(
(α(a)− λla)Y l

)
= D′i

(
α′(aY l)

)
,

for all i ≥ 0 and l ∈ Z.

(4a) If (Di) is iterative on A, then

D′iD
′
j(aY

l) = D′i(Dj(a)Y l) = DiDj(a)Y l =

(
i+ j

j

)
Di+j(a)Y l =

(
i+ j

j

)
D′i+j(aY

l)

for all a ∈ A, l ∈ Z and i, j ≥ 0. Hence (D′i) is iterative on A[Y ±1;β′]P .

(4b) Suppose that (Di) is locally nilpotent on A. Using Lemma 2.1.6 we only need to check

that (D′i) is locally nilpotent on a set of generators of A[Y ±1]. We take A ∪ {Y ±1}. For

all a ∈ A and i ≥ 0 we have D′i(a) = Di(a), so that (D′i)
n(a) = 0 for n >> 0. Moreover

D′i(Y ) = 0 (which implies D′i(Y
−1) = 0) for all i > 0. The result is shown.

Lemma 3.2.1 can be generalised as follows.

Lemma 3.2.2. Let A be a Poisson K-algebra and set:

R := A[X1;α1, δ1]P · · · [Xn;αn, δn]P [Y ±1;β]P ,

where β(A) ⊆ A and β(Xi) = λiXi with λi ∈ K for all 1 ≤ i ≤ n. We also set R0 := A

and Rj := A[X1;α1, δ1]P · · · [Xj ;αj , δj ]P for j = 1, . . . , n.

(1) Then R = A[Y ±1;β′]P [X1;α′1, δ
′
1]P · · · [Xn;α′n, δ

′
n]P , where β′ = β|A, α′i|Rj = αi,

δ′i|Rj = δi, α
′
i(Y ) = −λiY and δ′i(Y ) = 0 for all i = 1, . . . , n and j = 0, . . . , i− 1.

(2) Set R′j := A[Y ±1;β′]P [X1;α′1, δ
′
1]P · · · [Xj ;α

′
j , δ
′
j ]P and R′0 = A[Y ±1;β′]P . For all i,

if δiαi = αiδi + ηiδi on Ri−1, then δ′iα
′
i = α′iδ

′
i + ηiδ

′
i on R′i−1.

(3) Suppose that each δi extends to a higher (ηi, αi)-skew Poisson derivation (Di,k)
∞
k=0,

and that βDi,k = Di,kβ+ kλiDi,k on Ri−1 for all i and k. Then each δ′i extends to a

higher (ηi, α
′
i)-skew Poisson derivation (D′i,k)

∞
k=0 on R′i−1, where D′i,k coincides with

Di,k on Rj, for j < i, and D′i,k(Y ) = 0 for k > 0.

(4) Keeping the assumptions of (3) above, we have:
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(a) If (Di,k)
∞
k=0 is iterative, then (D′i,k)

∞
k=0 is iterative.

(b) If (Di,k)
∞
k=0 is locally nilpotent, then (D′i,k)

∞
k=0 is locally nilpotent.

Proof. We prove all the results together using induction on n, based on Lemma 3.2.1.

When n = 1 the result is exactly Lemma 3.2.1. Suppose that the assertions (1), (2), (3)

and (4) are true for the rank n − 1. We apply Lemma 3.2.1 to the iterated Poisson-Ore

extension R = Rn−1[Xn;αn, δn]P [Y ±1;β]P . By assertion (1) of Lemma 3.2.1 we obtain

that:

R = Rn−1[Y ±1;β∗]P [Xn;α∗n, δ
∗
n]P ,

where β∗ = β|Rn−1 , α∗n|Rn−1 = αn, δ∗n|Rn−1 = δn, α∗n(Y ) = −λnY and δ∗n(Y ) = 0. Moreover

by assertion (2) of Lemma 3.2.1 we have δ∗nα
∗
n = α∗nδ

∗
n+ηnδ

∗
n on Rn−1[Y ±1;β∗]P . Assertion

(3) of Lemma 3.2.1 shows that the derivation δ∗n extends to a higher (ηn, α
∗
n)-skew Poisson

derivation (D∗n,k)
∞
k=0 on Rn−1[Y ±1;β∗]P , where D∗n,k coincides with Dn,k on Rn−1, and

D∗n,k(Y ) = 0 for all k > 0. Finally (D∗n,k) is iterative (resp. locally nilpotent) if (Dn,k)

is iterative (resp. locally nilpotent) by assertion (4) of Lemma 3.2.1. The lemma then

follows from the induction hypothesis.

3.3 A positive answer to Quadratic Poisson Gel’fand-Kirillov

problem

The theorem below gives conditions under which (a quotient of) a suitable iterated Poisson-

Ore extension is Poisson birationally equivalent to (a quotient of) a Poisson affine space.

Recall that a Poisson prime ideal P of a Poisson algebra A is a prime ideal which is also a

Poisson ideal, i.e. such that {a, u} ∈ P for all a ∈ A and u ∈ P . Suppose that K is infinite.

Let B be a Poisson K-algebra supporting a torus H-action by Poisson automorphisms. An

ideal I of B is said H-invariant if H(I) = I. The torus action is said rational if the action

is semisimple (B is the direct sum of its eigenspaces) and the corresponding characters are

all rational, see [6, Theorem II.2.7] and Section 3.4.1.

Theorem 3.3.1. Let A = K[X1][X2;α2, δ2]P · · · [Xn;αn, δn]P be an iterated Poisson-Ore

extension such that each derivation δi extends to an iterative, locally nilpotent higher
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(ηi, αi)-skew Poisson derivation (Di,k)
∞
k=0 with ηi ∈ K× on:

Ai−1 = K[X1][X2;α2, δ2]P · · · [Xi−1;αi−1, δi−1]P .

Suppose furthermore that for all 1 ≤ j < i ≤ n there exists λij ∈ K such that αi(Xj) =

λijXj, and αiDj,k = Dj,kαi + kλijDj,k for all k ≥ 0. Let λ = (λij) be the skew-symmetric

matrix in Mn(K) whose coefficients below the diagonal are the above scalars. Then:

(1) There exists a Poisson algebra isomorphism between FracA and Kλ(Y1, . . . , Yn).

(2) For any Poisson prime ideal P in A, there exists a Poisson prime ideal Q in the

Poisson affine space B = Kλ[Y1, . . . , Yn] such that the fields FracA/P and FracB/Q

are isomorphic as Poisson algebras.

(3) Assume that the torus H = (K×)r is acting rationally by Poisson automorphisms

on A such that each Xi is an H-eigenvector, and B is endowed with the induced H-

action (for all h ∈ H and all 1 ≤ i ≤ n there exists µi ∈ K× such that h(Xi) = µiXi;

then the action of h on the generator Yi of B is given by h(Yi) = µiYi). Moreover we

suppose that h
(
Di,k(Xj)

)
= µkiDi,k

(
h(Xj)

)
for all 1 ≤ j < i ≤ n and k ≥ 0. Then,

for any H-invariant Poisson prime ideal P in A, there exists an H-invariant Poisson

prime ideal Q in B = Kλ[Y1, . . . , Yn] such that the fields FracA/P and FracB/Q

are isomorphic as Poisson algebras.

Proof. We prove these results all together by three inductions: first on n, second on the

number d of indices i for which δi 6= 0 and finally on the maximum index t for which δt 6= 0

(this last induction being downward). If d = 0 then set t := n+ 1.

If n = 1 or t = n + 1 the result is shown. Indeed if n = 1, Frac (K[X]) = K(X) and

if t = n+ 1, then d = 0 and A = K[X1][X2;α2]P · · · [Xn;αn]P = Kλ[X1, . . . , Xn] ∼= B. So

we can assume that n ≥ 2 and t ≤ n.

Let P be a Poisson prime ideal in A. Assertion (1) is satisfied when P = Q = 0 in (2).

Assertions (2) and (3) are shown simultaneously. The proof splits in three cases: first if

Xn ∈ P , next if Xn /∈ P and t = n, and finally if Xn /∈ P and t < n; each case will be

solved by a different induction. Note that, for all 1 ≤ i ≤ n, the H-actions on A and B

induce, by restriction, H-actions on the subalgebras Ai and Bi := Kλi [X1, . . . , Xi], where

λi is the upper left i × i submatrix of λ. When P is an H-invariant ideal of A we also
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consider the induced action of H on A/P . These actions are all rational actions by Poisson

automorphisms, such that the generators of the algebras considered are H-eigenvectors.

First case: Xn ∈ P . Consider the Poisson algebra homomorphism Φ : An−1 → A/P

defined by Φ(Xi) = Xi for all i < n. Since Φ is surjective, there exists a Poisson prime

ideal P ′ = ker(Φ) in An−1 such that A/P ∼= An−1/P
′. Moreover it is clear that P ′ is H-

invariant if P is H-invariant since the diagram of Figure 3.1 is commutative for all h ∈ H.

By the first induction (on n), there exists an (H-invariant if P is H-invariant) Poisson

An−1 A/P

An−1 A/P

Φ

h

Φ

h

Figure 3.1

prime ideal Q′ in the algebra Bn−1 such that FracAn−1/P
′ ∼= FracBn−1/Q

′. Observe that

Q = Q′ +BYn is an (H-invariant if P is H-invariant) Poisson prime ideal in B such that

Bn−1/Q
′ ∼= B/Q. Thus FracA/P ∼= FracB/Q.

Second case: Xn /∈ P and t = n. So δn 6= 0. Set A′ = An−1[Y ;αn]P . Since δn

extends to an iterative, locally nilpotent higher (ηn, αn)-skew Poisson derivation (Dn,k)
∞
k=0

on An−1, it follows from Proposition 2.2.2 that An−1[X±1
n ;αn, δn]P ∼= An−1[Y ±1;αn]P and

so A[X−1
n ] ∼= A′[Y −1]. Thus there exists a Poisson prime ideal P ′ = P [X−1

n ] ∩ A′ in A′

such that FracA/P ∼= FracA′/P ′, where P ′ = 0 if P = 0. As in Section 2.3, the action of

H on An−1 extends to An−1[Y ±1;αn]P by setting h(Y ) = µnY (where µn ∈ K× is defined

by h(Xn) = µnXn). Then, if the ideal P is H-invariant, the ideal P ′ is H-invariant since

the Poisson isomorphism An−1[X±1
n ;αn, δn]P ∼= An−1[Y ±1;αn]P commutes with all h ∈ H

(choose {X1, . . . , Xn−1} for a generating set of An−1 and apply Lemma 2.3.1 with An−1

as coefficient ring). Finally, the number of nonzero maps among δ2, . . . , δn−1 is d − 1, so

the induction step (on d) gives the result for FracA′/P ′ and so for FracA/P .

Third case: Xn /∈ P and t < n. Thus δn = 0. By Lemma 3.2.2 we can write A[X−1
n ]

in the form:

A[X−1
n ] = K[X1][X±1

n ;α′n]P [X2;α′2, δ
′
2]P · · · [Xn−1;α′n−1, δ

′
n−1]P ,
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where α′i(Xj) = λijXj for j < i and j = n, and each δ′i extends to an iterative, locally

nilpotent higher (ηi, α
′
i)-skew Poisson derivation (D′i,k)

∞
k=0 on:

A′i−1 := K[X1][X±1
n ;α′n]P [X2;α′2, δ

′
2]P · · · [Xi−1;α′i−1, δ

′
i−1]P .

It is clear that we have α′iD
′
j,k = D′j,kα

′
i + kλijD

′
j,k and h

(
D′i,k(Xj)

)
= µkiD

′
i,k

(
h(Xj)

)
for

all 1 ≤ j < i ≤ n, all k ≥ 0 and all h ∈ H, since by Lemma 3.2.2 we have:

D′i,k(Xj) =


Di,k(Xj) j < i and k ≥ 0,

Xn j = n and k = 0,

0 j = n and k ≥ 1.

We can now use the induction hypothesis since the derivation δ′t is nonzero (δ′t restricts to

δt) and occurs in position t + 1 in the list 0, 0, δ′2, . . . , δ
′
n−1. And thus the induction on t

gives our conclusion.

By Example 2.1.3, when charK = 0, the hypotheses of [18, Theorem 3.9] imply those

of our Theorem 3.3.1 (except Assertion (3)). Hence Assertions (1) and (2) of our Theorem

3.3.1 generalise [18, Theorem 3.9] to any characteristic.

3.4 Quadratic Poisson Gel’fand-Kirillov problem for quo-

tients by H-invariant Poisson prime ideals

Assertions (2) and (3) of Theorem 3.3.1 tell us thatH-invariant Poisson prime factors of the

iterated Poisson-Ore extensions under consideration are Poisson birationally isomorphic

to H-invariant Poisson prime factors of Poisson affine spaces. In this section, we go one

step further and prove that these factor algebras satisfy the quadratic Poisson Gel’fand-

Kirillov problem under some mild assumptions on the torus action (Hypothesis 3.4.1) and

the base field K.

More precisely, set [[1, n]] := {1, . . . , n} and W := P([[1, n]]), the set of subsets of [[1, n]].

The key is to show that, under a suitable H-action, the only H-invariant Poisson prime

ideals of a Poisson affine space B = K(λij)[Y1, . . . , Yn] are the ideals Jw := 〈Yi | i ∈ w〉,

where w ∈ W . This is achieved in Section 3.4.2. As a consequence the H-invariant
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Poisson prime factors of B are again Poisson affine spaces over K, and therefore satisfy

the quadratic Poisson Gel’fand-Kirillov problem. We conclude from Theorem 3.3.1 that

H-invariant Poisson prime factors of the iterated Poisson-Ore extensions considered also

satisfy the quadratic Poisson Gel’fand-Kirillov problem.

From now on, we require that the field K is infinite.

3.4.1 Assumptions on the H-action

In this section we recall some classical facts on rational torus action and present the

hypotheses we need in the following section.

Let r > 0. Suppose that the torus H = (K×)r is acting rationally by Poisson auto-

morphisms on the iterated Poisson-Ore extension A = K[X1][X2;α2, δ2]P · · · [Xn;αn, δn]P

such that each Xi is an H-eigenvector, and suppose that there exist scalars λij for all

1 ≤ j < i ≤ n such that αi(Xj) = λijXj . The rational character group X(H) of H is

identified with the group Zr via the bijection:

Zr −→ X(H)

x = (x1, . . . , xr) 7−→
(

(h1, . . . , hr) 7−→ hx11 · · ·h
xr
r

)
.

Since H is a torus, the rationality of the action means that A is the direct sum of

its H-eigenspaces, and the corresponding eigenvalues are rational characters of H (i.e.

they are homomorphisms of algebraic varieties (K×)r → K×), see [6, Theorem II.2.7]. Fix

1 ≤ i ≤ n. For all h ∈ H we have h(Xi) ∈ KXi since Xi is an eigenvector. Thus we obtain

a map f
i

from H to K× such that h(Xi) = f
i
(h)Xi. The map f

i
is called the character

or the H-eigenvalue associated to the eigenvector Xi. Since the H-action is rational the

character f
i

is rational, and f
i
∈ Zr under the correspondence previously described. For

µ = (µ1, . . . , µr) ∈ Zr and ν = (ν1, . . . , νr) ∈ Zr, we set (µ|ν) :=
∑r

i=1 µiνi.

In the following we restrict our attention on Poisson algebras satisfying Hypothesis

3.4.1. In Section 4 we will present many examples of such algebras.

Hypothesis 3.4.1. For all 1 ≤ i ≤ n, there exists γ
i
∈ Zr such that:

• λij = (γ
i
|f
j
) for all 1 ≤ j < i;
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• ρi := (γ
i
|f
i
) ∈ K×.

Form the skew-symmetric matrix λ ∈ Mn(K) whose coefficients below the diagonal

are the λij and, as in Assertion 3 of Theorem 3.3.1, endow B = Kλ[Y1, . . . , Yn] with the

rational H-action by Poisson automorphisms induced by the H-action on A. Note that for

all 1 ≤ i ≤ n, the indeterminate Yi is an H-eigenvector with associated character f
i
∈ Zr.

3.4.2 H-invariant ideals in Poisson affine spaces

For w ∈ W we set w := [[1, n]] \ w. Assume w 6= ∅. Recall that we set Jw := 〈Yi | i ∈ w〉.

We denote by Sw the multiplicative set of B/Jw generated by the Yi + Jw for i ∈ w, and

consider the algebra:

T = (B/Jw)S−1
w .

We set w := {l1, . . . , ls}, where 1 ≤ l1 < · · · < ls ≤ n and s ∈ {1, . . . , n}. For all

i ∈ {1, . . . , s}, set Ui := Yli + Jw and for all 1 ≤ j < i ≤ n, set λ′ij := λlilj . Then T is the

Poisson torus T = K(λ′ij)
[U±1

1 , . . . , U±1
s ], where (λ′ij) is the skew-symmetric matrix whose

coefficients under the diagonal are the scalars λ′ij defined above.

Since the ideal Jw and the multiplicative set Sw are generated by H-eigenvectors, the

torus H is acting rationally by Poisson automorphisms on T and for all 1 ≤ i ≤ s the

indeterminate Ui is an H-eigenvector with associated character ui := f
li

. Moreover for

all i ∈ {1, . . . , s}, we set γ′
i

:= γ
li

and ρ′i := ρli . Thus we have λ′ij = (γ′
i
|uj) for all

1 ≤ j < i ≤ s and ρ′i = (γ′
i
|ui) ∈ K× for all 1 ≤ i ≤ s.

Lemma 3.4.2. Let (m1, . . . ,ms) ∈ Zs \ (0, . . . , 0) and suppose that U := Um1
1 · · ·Umss

is a Poisson central element in T . Then there exists h ∈ H such that h(U) = εU with

ε ∈ K \ {0, 1}.

Proof. We can assume that ms is nonzero. Otherwise replace s by the largest i such that

mi 6= 0 in the following. Start by noting that U ∈ Zp(T ) implies that 0 = {U,Us} =(∑
i<smiλ

′
si

)
UUs, i.e.

∑
i<smiλ

′
si = 0.

Let i < s. Set γ′
s

:= (µ1, . . . , µr) ∈ Zr. Thus we have λ′si =
∑r

j=1 µjνj with the

notation ui := (ν1, . . . , νr) ∈ Zr. Let q ∈ K× and set hs := (qµ1 , . . . , qµr) ∈ H. Still
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identifying X(H) with Zr, we have:

hs(Ui) = ui(hs)Ui = (qµ1)ν1 · · · (qµr)νrUi = qλ
′
siUi

for all i < s, and:

hs(Us) = us(hs)Us = q(γ′
s
|us)Us = qρ

′
sUs.

So hs(U) = q
∑
i<smiλ

′
siqρ

′
smsU = qρ

′
smsU . By the assumptions on the ground field made at

the beginning of Section 3.4, we can choose q such that qρ
′
sms 6= 1 (note that ρ′sms 6= 0),

and the result is shown.

The following proposition characterises the H-invariant Poisson prime ideals of T .

Proposition 3.4.3. If I is an H-invariant Poisson prime ideal of T , then I = 〈0〉.

Proof. Suppose I 6= 〈0〉. By Lemma 1.3.2, there exists a nonzero Poisson central ele-

ment V ∈ I. Write V = λ1U
m1 + · · · + λkU

mk with m1, . . . ,mk ∈ Zs pairwise distinct,

λ1, . . . , λk ∈ K× and k > 0. Suppose that V is chosen in such a way that k is minimal. If

k = 1, then V is invertible and I = T , a contradiction, thus we suppose k > 1.

The monomials Um1 , . . . , Umk are Poisson central, invertible and Umk(Um1)−1 = Um

with m = mk −m1 ∈ Zs \ (0 . . . , 0). Thus by Lemma 3.4.2 there exists h ∈ H such that

h(Umk(Um1)−1) = εUmk(Um1)−1 with ε ∈ K \ {0, 1}. Since U1, . . . , Us are h-eigenvectors,

then so are Um1 , . . . , Umk and we can write h(Umi) = νiU
mi with νi ∈ K× for all 1 ≤ i ≤ k.

Consider now the Poisson central element W = V − ν−1
1 h(V ) ∈ I. We have:

W =

k∑
i=1

λi(1− νiν−1
1 )Umi =

k∑
i=2

λi(1− νiν−1
1 )Umi .

Since εUmk(Um1)−1 = h(Umk(Um1)−1) = νkν
−1
1 Umk(Um1)−1 we have νkν

−1
1 6= 1 and so

W 6= 0. Thus W is a nonzero Poisson central element of I which can be written as a sum

of at most k − 1 monomials. This contradicts the choice of k.

Recall that the Poisson prime spectrum of B, denoted by P.Spec (B), is the subset of

Poisson ideals in Spec (B). For all w ∈W we define a subset of P.Spec (B) by setting:

P.Specw(B) :=
{
I ∈ P.Spec (B) | I ∩ {Y1, . . . , Yn} = {Yi | i ∈ w}

}
.
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These subsets form a partition of P.Spec (B).

Proposition 3.4.4. The only H-invariant Poisson prime ideals of B are the ideals:

Jw = 〈Yi | i ∈ w〉

for all w ∈W .

Proof. Let I be an H-invariant Poisson prime ideal of B. There exists w ∈ W such that

I ∈ P.Specw(B). If w = {1, . . . , n}, then Jw is a maximal ideal and thus I = Jw.

Suppose w 6= {1, . . . , n}. Then Jw ⊂ I and I/Jw is a Poisson prime ideal of B/Jw

which does not intersect the multiplicative set Sw. Thus P = (I/Jw)S−1
w is a Poisson prime

ideal of the Poisson torus T = (B/Jw)S−1
w . Since I is H-invariant and all elements of Sw

are H-eigenvectors, the ideal P is H-invariant. Proposition 3.4.3 implies that P = 〈0〉 and

so I = Jw, as desired.

Combining Proposition 3.4.4 and Theorem 3.3.1 we obtain the main result of this

section.

Theorem 3.4.5. Let A be an iterated Poisson-Ore extension satisfying all the hypotheses

of Theorem 3.3.1. Assume that Hypothesis 3.4.1 is satisfied and that K is infinite. Then,

for any H-invariant Poisson prime ideal P of A, the field of fractions FracA/P is Poisson

isomorphic to a Poisson affine field Kλ′(Z1, . . . , Zm), where m ≤ n and λ′ ∈Mm(K) is a

skew-symmetric matrix.

Proof. By Theorem 3.3.1 we have FracA/P ∼= FracB/Q where B = Kλ[Y1, . . . , Yn] and Q

is an H-invariant Poisson prime ideal of B. By Proposition 3.4.4 there exists w ∈W such

that Q = Jw. Then B/Q = Kλ′ [Yi | i /∈ w], where λ′ is the skew-symmetric submatrix of

λ obtained by deleting rows and columns indexed by i ∈ w. The result follows.

Theorem 3.4.5 is new even in characteristic zero. In the following chapter, we prove

a result that shows that the hypotheses of Theorem 3.4.5 are satisfied for large classes of

polynomial Poisson algebras.
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Chapter 4

Semiclassical limit and examples

In this chapter we give examples of Poisson K-algebras satisfying the hypotheses of Theo-

rem 3.4.5, so that they satisfy the quadratic Poisson Gel’fand-Kirillov problem described

in Section 3.1. Most of our examples actually arise as semiclassical limits of quantum alge-

bras described in [23, Section 5]. In order to prove a transfer result, one needs to address

the existence of higher Poisson derivations on the Poisson algebras considered. Contrary

to the characteristic zero case, higher derivations in prime characteristic seem not to be

well understood. However, we can ensure their existence in arbitrary characteristic by the

semiclassical limit process. This mainly relies on the fact that we can define a quantum

analogue of a higher derivation independently of the characteristic of the base field, as

long as the deformation parameter is transcendental over the base field (this is always the

case in the setting of the semiclassical limit process). Our transfer result (Theorem 4.1.3)

states, in particular, that this quantum analogue of a higher derivation induces a Poisson

higher derivation on the semiclassical limit. More generally Theorem 4.1.3 gives conditions

on a quantum algebra under which its semiclassical limit satisfies the quadratic Poisson

Gel’fand-Kirillov problem. In Section 4.2 we illustrate our results with many examples in-

cluding (coordinate rings of) matrix Poisson varieties or more generally (coordinate rings

of) determinantal Poisson varieties.

We continue to assume that the ground field K is infinite.
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4.1 Existence of higher Poisson derivation

We start this section by recalling the notion of q-integers and q-binomial coefficients, where

q is a nonzero non-root-of-unity element of K[t±1]. Our conventions are as follows. For all

0 ≤ k ≤ i we set:

(i)q = qi−1 + qi−2 + · · ·+ 1,

(i)!q = (i)q(i− 1)q · · · (1)q,(
i

k

)
q

=
(i)!q

(i− k)!q(k)!q
.

By convention (0)!q = 1. In the following, we will use q-integers in the case where q = tη

for η ∈ Z.

The following proposition gives the existence of a higher (η, α)-skew Poisson derivation

on a Poisson-Ore extension which is the semiclassical limit of a suitable Ore extension. Let

A be a K[t±1]-algebra, σ be a K[t±1]-linear automorphism of A and ∆ be a K[t±1]-linear

σ-derivation of A. Recall that the multiplication in the Ore extension R := A[x;σ,∆] is

defined by:

xa = σ(a)x+ ∆(a)

for all a ∈ A.

Proposition 4.1.1. Let A be a torsion free K[t±1]-algebra. Consider the Ore extension

R = A[x;σ,∆] and suppose that R := R/(t− 1)R is a commutative K-algebra. Then:

(1) R is a Poisson-Ore extension of the form A[X;α, δ]P , where A := A/(t − 1)A,

X := x, α ∈ DerP (A) and δ is a Poisson α-derivation of A. More precisely, we

have:

α :=
σ − id

t− 1

∣∣∣
t=1

and δ :=
∆

t− 1

∣∣∣
t=1

,

meaning that for all a ∈ A we have α(a) = σ(a)−a
t−1 |t=1 and δ(a) = ∆(a)

t−1 |t=1.

(2) Suppose furthermore that ∆σ = tησ∆ for some integer η ∈ K× and that:

∆i(A) ⊆ (t− 1)i(i)!tηA

for all i ≥ 0. Then δ extends to an iterative, higher (η, α)-skew Poisson derivation
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(Di) on A, which is locally nilpotent if ∆ is locally nilpotent. More precisely, Di is

defined by:

Di(a) :=
( ∆i(a)

(t− 1)i(i)!tη

)∣∣∣
t=1

for all a ∈ A.

Proof. (1) First note that (t − 1)R = (t − 1)A[x;σ,∆], where (t − 1)A is a (σ,∆)-stable

ideal of A (that is we have σ
(
(t− 1)A

)
= (t− 1)A and ∆

(
(t− 1)A

)
⊆ (t− 1)A). So the

corresponding quotient algebra is of the form:

R = R/(t− 1)R = (A/(t− 1)A) [X] = A[X].

See for instance [6, Definition II.5.4]. We already know that R is a Poisson algebra, so it

just remains to prove that R is a Poisson-Ore extension. Since R is commutative, for all

a ∈ A we have:

0 = xa− ax = (σ(a)− a)x+ ∆(a) = (σ(a)− a)X + ∆(a).

So (σ(a)− a) ∈ (t− 1)A and ∆(a) ∈ (t− 1)A for all a ∈ A. The Poisson bracket between

a ∈ A and X is given by:

{X, a} =
σ(a)− a
t− 1

∣∣∣
t=1

X +
∆(a)

t− 1

∣∣∣
t=1

.

We set

α :=
σ − id

t− 1

∣∣∣
t=1

and δ :=
∆

t− 1

∣∣∣
t=1

.

One can easily check that α and δ are well defined, that α ∈ DerP (A) and that δ is a

Poisson α-derivation on A. Thus:

{X, a} = α(a)X + δ(a)

for all a ∈ A, and the algebra R is a Poisson-Ore extension of the form A[X;α, δ]P .

(2) We claim that one defines an iterative, higher (η, α)-skew Poisson derivation (Di)

on A by:

Di(a) :=
( ∆i(a)

(t− 1)i(i)!tη

)∣∣∣
t=1
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for all i ≥ 0 and all a ∈ A. First, since ∆i(A) ⊆ (t − 1)i(i)!tηA, it is straightforward to

see that the map Di is well-defined for all i ≥ 0. It remains to check that (Di) satisfies all

the relevant axioms of Definition 2.1.1. Axiom (A1) follows from the fact that σ(a) = a

for all a ∈ A. Set di = ∆i

(i)!tη
for all i ≥ 0. Then (A3) follows easily from the identities:

di(σ − id) = tiη(σ − id)di + (tiη − 1)di

for all i ≥ 0. The higher derivation (Di) is iterative since didj =
(
i+j
j

)
tη
di+j . Moreover, it

is clear that (Di) is locally nilpotent if ∆ is.

The verification of (A2) involves more computations, so the details are given here. Let

u, v ∈ A. Then one can easily check that:

dn(uv) =
n∑
i=0

σn−idi(u)dn−i(v),

so that for all a, b ∈ A we have:

dn

( [a, b]

t− 1

)
=

1

(t− 1)

( n−1∑
i=0

σn−idi(a)dn−i(b)−
n−1∑
i=0

σn−idi(b)dn−i(a) + dn(a)b− dn(b)a
)
.

Observe that for i < n:

σn−idi(a)dn−i(b) =

n−i∑
j=1

σn−i−j(σ − id)di(a)dn−i(b) + di(a)dn−i(b).

Thus:

dn

( [a, b]

t− 1

)
=

n∑
i=0

[di(a), dn−i(b)]

(t− 1)

+
1

(t− 1)

n−1∑
i=0

( n−i∑
j=1

σn−i−j(σ − id)di(a)dn−i(b)

−
n−i∑
j=1

σn−i−j(σ − id)di(b)dn−i(a)
)
.

Dividing by (t− 1)n, and then projecting onto R, we get:

Dn({a, b}) =

n∑
i=0

{Di(a), Dn−i(b)}+

n∑
i=1

i
(
αDn−i(a)Di(b)− αDn−i(b)Di(a)

)
.
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This proves (A2).

Example 4.1.2. Let A := K[t±1, x] and let R := A[y;σ,∆] be the Ore extension such that

the automorphism σ is defined by σ(t) = t and σ(x) = tx, and such that the σ-derivation

∆ is defined by ∆(t) = 0 and ∆(x) = t− 1. We obtain the following commutation rule in

R:

yx− txy = t− 1.

We have R := R/(t− 1)R ∼= K[X,Y ], where X := x and Y := y. Therefore we have:

R = K[X][Y ;α, δ]P ,

where α = X∂X and δ = ∂X . Indeed:

α(X) =
(σ(x)− x

t− 1

)∣∣∣
t=1

= X,

and:

δ(X) =
(∆(x)

t− 1

)∣∣∣
t=1

= 1.

Moreover we have:

∆k(x) =


x k = 0

t− 1 k = 1

0 k > 1,

so that ∆k(x) ∈ (t− 1)k(k)!tK[t±1, x] for all k ≥ 0. We deduce that:

∆k(K[t±1, x]) ⊆ (t− 1)k(k)!tK[t±1, x] for all k ≥ 0.

Since moreover ∆σ = tσ∆, the assertion (2) of Proposition 4.1.1 shows that the derivation

δ extends to an iterative, locally nilpotent higher (1, α)-skew Poisson derivation on K[X].

One may check that:

Di(X) :=


X i = 0

1 i = 1

0 i > 1.
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Note that the Poisson algebra obtained and this higher derivation are those presented in

Example 2.1.4.

We can now state the main result of this section.

Theorem 4.1.3. Let R = K[t±1][x1][x2;σ2,∆2] · · · [xn;σn,∆n] be an iterated Ore exten-

sion over K[t±1], and denote by Rj the subalgebra K[t±1][x1][x2;σ2,∆2] · · · [xj ;σj ,∆j ] for

1 ≤ j ≤ n. We make the following assumptions:

(H1) The torus H = (K×)r is acting rationally by K[t±1]-algebra automorphisms on R

such that for all i ∈ {1, . . . , n}:

• the indeterminate xi is an H-eigenvector with associated character f
i
;

and

• there exists γ
i
∈ Zr such that ηi := −(γ

i
|f
i
) ∈ K×;

(H2) For all 2 ≤ i ≤ n, we have ∆iσi = tηiσi∆i;

(H3) For all 2 ≤ i ≤ n and k ≥ 0, we have ∆k
i (Ri−1) ⊆ (t− 1)k(k)!tηiRi−1;

(H4) The automorphisms σi satisfy σi(xj) = tλijxj for 1 ≤ j < i ≤ n, where λij := (γ
i
|f
j
).

Assume that R := R/(t − 1)R is commutative. Then, for any H-invariant Poisson

prime ideal P of R, the field FracR/P is Poisson isomorphic to a Poisson affine field.

Proof. We only need to check that R satisfies all hypotheses of Theorem 3.4.5.

• First, we show that R is an iterated Poisson-Ore extension of the form

R = K[X1][X2;α2, δ2]P · · · [Xn;αn, δn]P ,

where each δi extends to an iterative higher (ηi, αi)-skew Poisson derivation (Di,k)
∞
k=0 on

Ri−1 := K[X1][X2;α2, δ2]P · · · [Xi−1;αi−1, δi−1]P . This result is proved by induction on n

using Proposition 4.1.1. The case n = 1 is trivial.

For 1 ≤ i ≤ n− 1, assume that Ri = K[X1][X2;α2, δ2]P · · · [Xi;αi, δi]P . Then we have:

Rn =
Rn

(t− 1)Rn
=

Rn−1

(t− 1)Rn−1
[Xn;αn, δn]P

= K[X1][X2;α2, δ2]P · · · [Xn;αn, δn]P ,
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since (t− 1)Rn−1 is a (σn,∆n)-stable ideal of Rn−1. Note that

αn(Xj) =
σn(xj)− xj

t− 1

∣∣∣
t=1

=
tλnj − 1

t− 1
xj

∣∣∣
t=1

= λnjXj ,

for all 1 ≤ j ≤ n.

Hypotheses (H2) and (H3) ensure that Assertion 2 of Proposition 4.1.1 applies, so

δn extends to an iterative higher (ηn, αn)-skew Poisson derivation (Dn,k)
∞
k=0 on Rn−1. It

follows from Proposition 4.1.1 (and the induction hypothesis) that for 2 ≤ j ≤ n and

k ≥ 0 we have

Dj,k :=
∆k
j

(t− 1)k(k)!tηj

∣∣∣
t=1

.

• The next step is to show that for 2 ≤ j < i ≤ n and k ≥ 0, we have the relations

αiDj,k = Dj,kαi + kλijDj,k.

First we show by induction (on k) the following identities:

σi∆
k
j = tkλij∆k

jσi, (4.1)

for 2 ≤ j < i ≤ n. If k = 1 and 1 ≤ l < j, then we have

σi(xjxl) = σi
(
σj(xl)xj + ∆j(xl)

)
= tλij+λil+λjlxixj + σi∆j(xl),

and

σi(xj)σi(xl) = tλij+λil
(
σj(xl) + ∆j(xl)

)
= tλij+λil+λjlxixj + tλij∆jσi(xl).

So σi∆j(xl) = tλij∆jσi(xl) for all 1 ≤ l < j < i ≤ n, as desired. Assume the result proved

at rank k. Then we have

σi∆
k+1
j = (σi∆j)∆

k
j = tλij∆jσi∆

k
j = t(k+1)λij∆k+1

j σi,

and (4.1) is proved.

Now it follows from (4.1) that:

(σi − id)∆k
j = tkλij∆k

j (σi − id) + (tkλij − 1)∆k
j .
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Next, dividing both sides of this equation by (t − 1)k+1(k)!tηj , and then projecting on

Rj−1, we obtain:

αiDj,k = Dj,kαi + kλijDj,k.

• Then we show that the torus H is acting rationally by Poisson automorphisms on

R. Since (t− 1)R is H-invariant, we can consider the induced action of H on the quotient

algebra R. This is a rational action by automorphisms. Moreover this action respects the

Poisson bracket of R. Indeed for f, g ∈ R, by setting F = f and G = g, we have:

h({F,G}) = h
(( [f, g]

t− 1

)∣∣∣
t=1

)
=
(
h
( [f, g]

t− 1

))∣∣∣
t=1

=
( [h(f), h(g)]

t− 1

)∣∣∣
t=1

= {h(F ), h(G)}

for all h ∈ H.

• Fix h ∈ H and set h(xj) = µjxj , where µj ∈ K× for all 1 ≤ j ≤ n. We are now going

to show that:

h
(
Di,k(Xj)

)
= µkiDi,k

(
h(Xj)

)
for all 1 ≤ j < i ≤ n and all k ≥ 0.

We start by observing that, for k ≥ 1 and 1 ≤ j < i ≤ n, we have:

xi∆
k−1
i (xj) = σi(∆

k−1
i (xj))xi + ∆k

i (xj).

Thus:

∆k
i (xj) = xi∆

k−1
i (xj)− σi(∆k−1

i (xj))xi

= xi∆
k−1
i (xj)− tηi(1−k)+λij∆k−1

i (xj)xi.

Then it follows from an easy induction (on k) that for all h ∈ H and k ≥ 0 we have:

h(∆k
i (xj)) = µjµ

k
i ∆

k
i (xj). (4.2)

Indeed, when k = 1, we have:

h(∆i(xj)) = h(xixj − tλijxjxi) = µiµj∆i(xj).
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Next, assuming the result proved at rank (k − 1) we get:

h(∆k
i (xj)) = h(xi∆

k−1
i (xj)− tηi(1−k)+λij∆k−1

i (xj)xi)

= µixiµjµ
k−1
i ∆k−1

i (xj)− tηi(1−k)+λijµjµ
k−1
i ∆k−1

i (xj)µixi

= µjµ
k
i ∆

k
i (xj),

as desired. As Dj,k :=
∆k
j

(t−1)k(k)!
t
ηj

∣∣∣
t=1

, we deduce from (4.2) that:

h(Di,k(Xj)) = µkiDi,k

(
h(Xj)

)
for all k ≥ 0 and for all 1 ≤ j < i ≤ n, as required.

• We conclude by noting that Hypothesis 3.4.1 is clearly satisfied with ρi = −ηi =

(γ
i
|f
i
) for all 1 ≤ i ≤ n since Xi is an H-eigenvector with associated character f

i
for all

1 ≤ i ≤ n.

Hence all hypotheses of Theorem 3.4.5 are satisfied and so for any H-invariant Poisson

prime ideal P of R, the field FracR/P is Poisson isomorphic to a Poisson affine field.

When dealing with examples, the following lemma allows us to check Hypothesis (H3)

of Theorem 4.1.3 only on the generators of the algebra under consideration.

Lemma 4.1.4. Let A be a finitely generated K[t±1]-algebra and form the Ore extension

R = A[x;σ,∆] with ∆σ = tησ∆ for an integer η ∈ K×. Let {a1, . . . , an} be a set of

generators of A. If the conditions ∆i(ak) ∈ (t−1)i(i)!tηA are satisfied for all k ∈ {1, . . . , n}

and i ≥ 0, then:

∆i(A) ⊆ (t− 1)i(i)!tηA.

Proof. The result follows from an easy induction using the generalised quantum Leibniz

formula:

∆i(ab) =
i∑

k=0

(
i

k

)
tη
σi−k∆k(a)∆i−k(b)

for a, b ∈ A.

Example 4.1.5. We continue with the notation of Example 4.1.2. It is straightforward to see

that the torus H = K× acts rationally on R = K[t±1, x][y;σ,∆] by K[t±1]-automorphisms
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via:

h(x) = hx and h(y) = h−1y for all h ∈ H.

Thus x is an H-eigenvector with associated character fx := 1 and y is an H-eigenvector

with associated character fy := −1. Moreover, for γ := 1 ∈ Z we have 1 = (γ | fx) and

(γ | fy) ∈ K×. Hence Hypothesis (H1) of Theorem 4.1.3 is satisfied. Hypotheses (H2),

(H3) and (H4) are then easy to check with the computation of Example 4.1.2. Therefore

Theorem 4.1.3 can be applied. For any H-invariant Poisson prime ideal P of the Poisson-

Ore extension:

R = R/(t− 1)R = K[X][Y ;α, δ]P ,

the field Frac (R/P ) is isomorphic to a Poisson affine field.

4.2 Examples

In this section we present several families of Poisson algebras satisfying the hypotheses

of Theorem 4.1.3. Many iterated Ore extensions are described in [23, Section 5], and

it is shown that lots of them actually satisfy the hypotheses of Theorem 4.1.3. As a

consequence, their semiclassical limits and their quotients by H-invariant Poisson prime

ideals satisfy the quadratic Poisson Gel’fand-Kirillov problem. This includes (but is not

limited to) the semiclassical limits of:

• single parameter coordinate rings of odd-dimensional quantum Euclidean spaces;

• single parameter coordinate rings of quantum matrices;

• single parameter coordinate rings of even-dimensional quantum Euclidean spaces;

• single parameter coordinate rings of quantum symplectic spaces.

In this section we provide a detailed study of these examples. In particular, in the case

of the coordinate rings of quantum matrices, we exhibit a family of H-invariant Poisson

prime ideals: the so-called determinantal ideals.
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4.2.1 Semiclassical limit of the coordinate ring of m×p quantum matrices

The single parameter coordinate ring of quantum matrices A := Ot
(
Mm,p(K[t±1])

)
is the

K[t±1]-algebra given by mp generators x11, x12, . . . , xmp and relations:

xijxkl =



t−1xklxij i > k, j = l

t−1xklxij i = k, j > l

xklxij i > k, j < l

xklxij − (t− t−1)xkjxil i > k, j > l.

This algebra can be presented as an iterated Ore extension over K[t±1]:

Ot
(
Mm,p(K[t±1])

)
= K[t±1][x11][x12;σ12,∆12] · · · [xmp;σmp,∆mp],

where the indeterminates are ordered using the lexicographic order, where σij is the K[t±1]-

automorphism of the appropriate subalgebra of Ot
(
Mm,p(K[t±1])

)
defined by:

σij(xkl) =


t−1xkl if i > k and j = l

t−1xkl if i = k and j > l

xkl if i > k and j 6= l,

for all (k, l) <lex (i, j), and where ∆ij is the K[t±1]-linear σij-derivation such that:

∆ij(xkl) =

 −(t− t−1)xkjxil if i > k and j > l

0 otherwise

for all (k, l) <lex (i, j).

Observe that the torus H = (K×)m+p acts rationally on A by automorphisms via:

h(t) = t and h(xij) = hihm+jxij

for all 1 ≤ i ≤ m and 1 ≤ j ≤ p. So xij is an H-eigenvector with associated character:

f
ij

= (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) ∈ Zm+p,

where the 1s occur in i-th and (m + j)-th positions. For 1 ≤ i ≤ m and 1 ≤ j ≤ p, we
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define:

γ
ij

:= (1, . . . , 1, 0,−1, . . . ,−1,−2,−1, . . . ,−1) ∈ Zm+p,

where the 0 occurs in i-th position and the (−2) in (m+j)-th position. We have (γ
ij
|f
ij

) =

−2 for all 1 ≤ i ≤ m and 1 ≤ j ≤ p. To summarise, if char (K) 6= 2, Hypothesis (H1) of

Theorem 4.1.3 is satisfied. For (k, l) <lex (i, j) we have:

(γ
ij
|f
kl

) =


−1 if i > k and j = l

−1 if i = k and j > l

0 if i > k and j 6= l.

Note that for all (k, l) <lex (i, j) we have σij(xkl) = t
(γ
ij
|f
kl

)
xkl. Thus Hypothesis (H4) of

Theorem 4.1.3 is satisfied.

One can easily check that ∆ijσij = t2σij∆ij for all 1 ≤ i ≤ m and 1 ≤ j ≤ p. Thus,

Hypothesis (H2) of Theorem 4.1.3 is satisfied. Let Aij be the subalgebra of A generated

over K[t±1] by x11, x12, . . . , xi,j−1. Note that ∆n
ij(xkl) = 0 for all n ≥ 2 and:

∆ij(xkl) =

 −(t− 1)(t−1 + 1)xkjxil if i > k and j > l

0 otherwise.

So we have ∆n
ij(xkl) ∈ (t − 1)n(n)!t2Aij for all (k, l) <lex (i, j) and all n ≥ 0, and

Hypothesis (H3) of Theorem 4.1.3 is satisfied thanks to Lemma 4.1.4. So, if charK 6= 2,

then we can apply Theorem 4.1.3 to A.

Let A = O
(
Mm,p(K)

)
= A/(t − 1)A = K[X11, . . . , Xmp] be the semiclassical limit of

A, where Xij = xij + (t− 1)A. For (k, l) <lex (i, j), the Poisson bracket on A is given by:

{Xij , Xkl} =



−XijXkl if i > k and j = l

−XijXkl if i = k and j > l

0 if i > k and j < m

−2XkjXil if i > k and j > l.

We deduce from the above discussion the following result.

Theorem 4.2.1. Assume that charK 6= 2. Let P be an H-invariant Poisson prime ideal

of A = O
(
Mm,p(K)

)
. The field of fractions of A/P is Poisson isomorphic to a Poisson
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affine field Kµ(Y1, . . . , Yu), where u ≤ mp and µ ∈Mu(K) is a skew-symmetric matrix.

Note that when charK = 2, our methods do not apply to A. However in this case A

is already a Poisson affine space and the quadratic Poisson Gel’fand-Kirillov problem is

trivial.

4.2.2 Quotients by Determinantal ideals

Assume that charK 6= 2. Determinantal ideals are ideals of A = O
(
Mm,p(K)

)
generated

by minors of a given size. More precisely set n := min(m, p) and let I ⊆ {1, . . . ,m} and

J ⊆ {1, . . . , p} with |I| = |J | ≤ n. We denote by [I|J ] the determinant:

[I|J ] := det
(

(Xij)(i,j)∈I×J

)
.

Such a determinant is called a minor of size |I|. For all k ∈ {0, . . . , n−1}, the determinantal

ideal Pk is the ideal generated by all (k+ 1)× (k+ 1) minors of A. Note that Pk contains

all minors of size bigger than k + 1 by Laplace Expansion.

Fix 0 ≤ k ≤ n− 1. We claim that the Poisson field Frac (A/Pk) is Poisson isomorphic

to a Poisson affine field. For this, we just need to show that Pk is an H-invariant Poisson

prime ideal by Theorem 4.2.1. First, it is well known that Pk is a prime ideal, see for

instance [7, Theorem 6.3]. Moreover, Pk is clearly H-invariant, so to apply Theorem 4.2.1

to A/Pk, it only remains to prove that Pk is a Poisson ideal. It is probably well known,

but we have not been able to find the statement in the literature. The following lemma

(re-)establishes this result.

Lemma 4.2.2. For all 0 ≤ k ≤ n− 1, the ideal Pk is a Poisson ideal of A.

Proof. Note that any minor of A is the coset of a so-called quantum minor of A. See [19,

Introduction] for more details about quantum minors. In [19, Lemma 5.1] the authors give

(in the square case) commutation relations between quantum minors and generators of A

which easily lead (by semiclassical limit) to the following Poisson brackets between minors

and generators of A in the square case. Set N = max(m, p). We consider the Poisson

algebra B := Ot
(
MN (K)

)
. Let r, c ∈ {1, . . . , N} and I, J ⊆ {1, . . . , N} with |I| = |J | ≥ 1.
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For 1 ≤ i < j ≤ N , we define [i, j] := {i, i+1, . . . , j}. The semiclassical limit process gives

us the following Poisson brackets in B/(t− 1)B = O
(
MN (K)

)
.

• If r ∈ I and c ∈ J , then
{
Xrc, [I|J ]

}
= 0.

• If r ∈ I and c /∈ J , then:

{
Xrc, [I|J ]

}
= −[I|J ]Xrc − 2

∑
j∈J,j>c

(−1)−|J∩[c,j]|[I|J ∪ {c} \ {j}]Xrj .

• If r /∈ I and c ∈ J , then:

{
Xrc, [I|J ]

}
= [I|J ]Xrc + 2

∑
i∈I,i<r

(−1)−|I∩[i,r]|[I ∪ {r} \ {i}|J ]Xic.

• If r /∈ I and c /∈ J , then:

{
Xrc, [I|J ]

}
= 2

∑
i∈I,i<r

(−1)−|I∩[i,r]|[I ∪ {r} \ {i}|J ]Xic

− 2
∑

j∈J,j>c
(−1)−|J∩[c,j]|[I|J ∪ {c} \ {j}]Xrj .

Since we have O
(
Mm,p(K)

)
is a Poisson subalgebra of O

(
MN (K)

)
, the above formulae

show in particular that
{
Xrc, [I|J ]

}
∈ Pk for all [I|J ] ∈ Pk all 1 ≤ r ≤ m, all 1 ≤ c ≤ p

and all 0 ≤ k ≤ n− 1, i.e. Pk is a Poisson ideal of O
(
Mm,p(K)

)
for all 0 ≤ k ≤ n− 1.

We are ready to conclude by the following result.

Theorem 4.2.3. Let 0 ≤ k ≤ n − 1. The field of fractions FracA/Pk is Poisson iso-

morphic to a Poisson affine field Kµ(Y1, . . . , Yu), where u ≤ mp and µ ∈ Mu(K) is a

skew-symmetric matrix.

4.2.3 Semiclassical limits of the coordinate rings of quantum odd di-

mensional Euclidean spaces

Assume that charK 6= 2. Let t be an indeterminate. We denote by t1/2 a fixed square root

of t inside an algebraic closure of K(t). The coordinate ring of quantum odd-dimensional
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Euclidean space, is the K[t±1/2]-algebra R given by generators w, y1, . . . , yn, x1, . . . , xn and

relations:

wyi = tyiw for all i,

wxi = t−1xiw for all i,

yiyj = t−1yjyi i > j,

xixj = txjxi i > j,

yixj = t−1xjyi i > j,

xiyj = tyjxi i 6= j,

xiyj = yixi + (t1/2 − t3/2)w2 +
∑
l<i

(1− t2)ylxl for all i.

R can be presented as an iterated Ore extension as follows:

R = K[t±1/2][w][y1;σ1][x1; τ1,∆1] · · · [yn, σn][xn; τn,∆n],

where for all 1 ≤ j < i ≤ n:

τi(yj) = tyj , σi(yj) = t−1yj ,

τi(xj) = txj , σi(xj) = t−1xj ,

τi(yi) = yi, σi(w) = t−1w,

τi(w) = tw,

(4.3)

∆i(yj) = ∆i(xj) = ∆i(w) = 0, and ∆i(yi) = (t1/2 − t3/2)w2 +
∑
l<i

(1− t2)ylxl.

We now check that R satisfies the assumptions of Theorem 4.1.3. The torus H = (K×)n+1

acts rationally by K[t±1/2]-automorphisms on R by setting for all h ∈ H and all 1 ≤ i ≤ n:

h(w) = hn+1w,

h(xi) = hixi,

h(yi) = h2
n+1h

−1
i yi.
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For all 1 ≤ i ≤ n, the indeterminate xi is an eigenvector with associated character:

fi := (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn+1,

where the 1 is in i-th position. Similarly for all 1 ≤ i ≤ n the indeterminate yi is an

eigenvector with associated character:

gi := (0, . . . , 0,−1, 0, . . . , 0, 2) ∈ Zn+1,

where the −1 is in i-th position. Finally w is an eigenvector with associated character:

e := (0, . . . , 0, 1) ∈ Zn+1.

For 1 ≤ i ≤ n set:

γi := (1, . . . , 1, 2, 0, . . . , 0, 1) ∈ Zn+1 and γ := (−1, . . . ,−1) ∈ Zn+1,

where the 2 is in i-th position. For 1 ≤ j < i ≤ n we have:

(γi | e) = (γi | fj) = (γi | gj) = 1, (4.4)

and for all 1 ≤ i ≤ n:

(γ | e) = (γ | fi) = (γ | gi) = −1,

(γi | gi) = 0, (γi | fi) = 2.
(4.5)

Therefore Hypothesis (H1) is satisfied. It is easy to check that ∆iτi = t−2τi∆i for all

1 ≤ i ≤ n, and Hypothesis (H2) is then satisfied. For all 1 ≤ i ≤ n we have:

∆i(yi) = (t− 1)
(
− t1/2(t2 + t+ 1)w2 −

∑
l<i

(1 + t)ylxl
)

and ∆2
i (yi) = 0,

and by Lemma 4.1.4 we obtain Hypothesis (H3). Hypothesis (H4) follows from (4.3), (4.4)

and (4.5). By the semiclassical limit process we obtain the Poisson algebra:

R := R/(t− 1)R = K[W,Y1, . . . , Yn, X1, . . . , Xn],
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with Poisson bracket given by:

{W,Yi} = WYi for all i,

{W,Xi} = −WXi for all i,

{Yi, Yj} = −YiYj i > j,

{Xi, Xj} = XiXj i > j,

{Yi, Xj} = −YiXj i > j,

{Xi, Yj} = XiYj i 6= j,

{Xi, Yj} = −3W 2 − 2
∑
l<i

XlYl for all i.

By Theorem 4.1.3 the Poisson algebra R and all its H-invariant Poisson prime quotients

satisfy the quadratic Poisson Gel’fand-Kirillov problem.

4.2.4 Semiclassical limits of coordinate rings of even-dimensional quan-

tum Euclidean spaces

Assume that charK 6= 2. Let R be the K[t±1]-algebra given by 2n generators xi, yi for

1 ≤ i ≤ n and relations:

yiyj = t−1yjyi i < j,

xixj = txjxi i < j,

xiyj = t−1yjxi i 6= j,

xiyi = yixi +
∑
l<i

(1− t−2)ylxl for all i.

R is an iterated Ore extension as follows:

R = K[t±1][y1][x1; τ1][y2, σ2][x2; τ2,∆2] · · · [yn, σn][xn; τn,∆n],

where for all 1 ≤ j < i ≤ n:

τi(yj) = t−1yj , σi(yj) = tyj ,

τi(xj) = t−1xj , σi(xj) = txj ,

τi(yi) = yi,

(4.6)
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∆i(yj) = ∆i(xj) = 0, and ∆i(yi) =
∑
l<i

(1− t−2)ylxl.

We now check that R satisfies the assumptions of Theorem 4.1.3. The torus H = (K×)n+1

acts rationally on R by K[t±1]-automorphism by setting for all 1 ≤ i ≤ n and all h ∈ H:

h(xi) = hixi, and h(yi) = h1hn+1h
−1
i yi.

For 1 ≤ i ≤ n, the indeterminate xi is an eigenvector with associated character:

fi := (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn+1,

where the 1 is in i-th position. For 1 < i ≤ n, the indeterminate yi is an eigenvector with

associated character:

gi := (1, 0, . . . , 0,−1, 0, . . . , 0, 1) ∈ Zn+1,

where the −1 is in i-th position, and y1 is an eigenvector with associated character:

g1 := (0, . . . , 0, 1) ∈ Zn+1.

For 1 < i ≤ n set:

γi := (−1, . . . ,−1,−2, 0, . . . , 0,−1) ∈ Zn+1,

γ1 := (−2, 0, . . . , 0) ∈ Zn+1,

γ := (1, . . . , 1) ∈ Zn+1,

where the −2 is in i-th position in γi. For all 1 ≤ i ≤ n, the element γi corresponds

to the indeterminate xi, and the element γ corresponds to the indeterminate yi. For

1 ≤ j < i ≤ n we have:

(γi | fj) = −1, (γi | gi) = 0,

(γi | fi) = −2, (γ | fj) = 1,

(γi | gj) = −1, (γ | gj) = 1,

(γ1 | f1) = −2, (γ1 | g1) = 0.

(4.7)
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Therefore (H1) is satisfied since (γi | fi) = −2 and (γ | gi) = 1 for all 1 ≤ i ≤ n. It is easy

to check that ∆iτi = t2τi∆i for all 1 ≤ i ≤ n, and (H2) is then satisfied (note that since

the σi-derivation associated to yi is zero, the condition (H2) for σi is trivially satisfied).

For all 1 ≤ i ≤ n we have:

∆i(yi) = (t− 1)
∑
l<i

t−2(t+ 1)ylxl and ∆2
i (yi) = 0,

and by Lemma 4.1.4 we obtain Hypothesis (H3). Hypothesis (H4) follows from (4.6) and

(4.7) since for all 1 ≤ j < i ≤ n we have:

τi(yj) = t(γi | gj)yj , σi(yj) = t(γ | gj)yj ,

τi(xj) = t(γi | fj)xj , σi(xj) = t(γ | fj)xj ,

τi(yi) = t(γi | gi)yi, τ1(y1) = t(γ1 | g1)y1.

By the semiclassical limit process we obtain the Poisson algebra:

R := R/(t− 1)R = K[Y1, . . . , Yn, X1, . . . , Xn],

with Poisson bracket given by:

{Yi, Yj} = −YjYi i < j,

{Xi, Xj} = XjXi i < j,

{Xi, Yj} = −XiYj i 6= j,

{Xi, Yi} = 2
∑
l<i

XlYl for all i.

By Theorem 4.1.3 the Poisson algebra R and all its H-invariant Poisson prime quotients

satisfy the quadratic Poisson Gel’fand-Kirillov problem.
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4.2.5 Semiclassical limits of coordinate rings of quantum symplectic

spaces

Assume that charK 6= 2. Let R be the K[t±1]-algebra given by 2n generators xi, yi for

1 ≤ i ≤ n and relations:

yiyj = tyjyi i < j,

xixj = t−1xjxi i < j,

xiyj = t−1yjxi i 6= j,

xiyi = t−2yixi +
∑
l<i

(t−2 − 1)ylxl for all i.

R is an iterated Ore extension as follows:

R = K[t±1][y1][x1; τ1][y2, σ2][x2; τ2,∆2] · · · [yn, σn][xn; τn,∆n],

where for all 1 ≤ j < i ≤ n:

τi(yj) = t−1yj , σi(yj) = t−1yj ,

τi(xj) = txj , σi(xj) = txj ,

τi(yi) = t−2yi,

(4.8)

∆i(yj) = ∆i(xj) = 0, and ∆i(yi) =
∑
l<i

(t−2 − 1)ylxl.

We now check that R satisfies the assumptions of Theorem 4.1.3. The torus H = (K×)n+1

acts rationally on R by K[t±1]-automorphisms by setting for all 1 ≤ i ≤ n and all h ∈ H:

h(xi) = hixi, and h(yi) = h1hn+1h
−1
i yi.

For 1 ≤ i ≤ n, the indeterminate xi is an eigenvector with associated character:

fi := (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn+1,

where the 1 is in i-th position. For 1 < i ≤ n, the indeterminate yi is an eigenvector with
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associated character:

gi := (1, 0, . . . , 0,−1, 0, . . . , 0, 1) ∈ Zn+1,

where the −1 is in i-th position, and y1 is an eigenvector with associated character:

g1 := (0, . . . , 0, 1) ∈ Zn+1.

For 1 ≤ i ≤ n set:

γi := (1, . . . , 1, 2, 0, . . . , 0,−1) ∈ Zn+1 and γ := (1, . . . , 1,−1) ∈ Zn+1,

where the 2 is in i-th position. For all 1 ≤ i ≤ n, the element γi corresponds to the

indeterminate xi, and the element γ corresponds to the indeterminate yi. For 1 ≤ j < i ≤ n

we have:

(γi | fj) = 1, (γi | gi) = −2,

(γi | fi) = 2, (γ | fj) = 1,

(γi | gj) = −1, (γ | gj) = −1.

(4.9)

Therefore (H1) is satisfied. It is easy to check that ∆iτi = t−2τi∆i for all 1 ≤ i ≤ n, and

(H2) is then satisfied. For all 1 ≤ i ≤ n we have:

∆i(yi) = (1− t)
∑
l<i

t−2(1 + t)ylxl and ∆2
i (yi) = 0,

and by Lemma 4.1.4 we obtain Hypothesis (H3). Hypothesis (H4) follows from (4.8) and

(4.9). By the semiclassical limit process we obtain the Poisson algebra:

R := R/(t− 1)R = K[Y1, . . . , Yn, X1, . . . , Xn],

with Poisson bracket given by:

{Yi, Yj} = YjYi i < j,

{Xi, Xj} = −XjXi i < j,

{Xi, Yj} = −XiYj i 6= j,

{Xi, Yi} = −2XiYi − 2
∑
l<i

XlYl for all i.
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By Theorem 4.1.3 the Poisson algebra R and all its H-invariant Poisson prime quotients

satisfy the quadratic Poisson Gel’fand-Kirillov problem.

4.2.6 An example in dimension 5

Let R be the K[t±1]-algebra given by generators x1, x2, x3, x4, x5 and relations:

x2x1 = t−1x1x2, x4x2 = x2x4 + (1− t)x3,

x3x1 = x1x3 + (1− t)x2, x5x2 = tx2x5 + t(1− t),

x4x1 = tx1x4 + t(1− t), x4x3 = t−1x3x4,

x5x1 = tx1x5, x5x3 = x3x5 + (1− t)x4,

x3x2 = t−1x2x3 x5x4 = t−1x4x5.

R can be expressed as an iterated Ore extension as follows:

R = K[t±1][x1][x2;σ2,∆2] · · · [x5;σ5,∆5],

where:

σi(xi−1) = t−1xi−1, ∆i(xi−1) = 0,

σi(xi−2) = xi−2, ∆i(xi−2) = (1− t)xi−1,

σi(xi−3) = txi−3, ∆i(xi−3) = t(1− t),

σi(xi−4) = txi−4, ∆i(xi−4) = 0,

(4.10)

with the convention that σi and ∆i are defined on xi−j only when 1 ≤ j < i ≤ 5. We

now check that R satisfies the assumptions of Theorem 4.1.3. The torus H = (K×)2 acts

rationally on R by K[t±1]-automorphisms by setting for all h = (h1, h2) ∈ H:

h(xi) :=


hixi i = 1, 2

h2h
−1
1 x3 i = 3

h−1
i−3xi i = 4, 5.

For 1 ≤ i ≤ 5, we denote by fi the character associated to the eigenvector xi. We have:

f1 := (1, 0), f2 := (0, 1), f3 := (−1, 1), f4 := (−1, 0), and f5 := (0,−1).
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One can check that Hypothesis (H1) is satisfied with the elements of Z2 defined as follows:

γ2 := (−1, 0), γ3 := (0,−1), γ4 := (1, 0), and γ5 := (1, 1).

It is easy to see that ∆iσi = tσi∆i for i = 2, 3, 4, 5, so that Hypothesis (H2) is satisfied.

From (4.10) and Lemma 4.1.4 we obtain Hypothesis (H3). Finally easy computation leads

to Hypothesis (H4). By the semiclassical limit we obtain the Poisson algebra:

R := R/(t− 1)R = K[X1, . . . , X5],

with Poisson bracket given by:

{X1, X2} = X1X2, {X2, X4} = X3,

{X1, X3} = X2, {X2, X5} = 1−X2X5,

{X1, X4} = 1−X1X4, {X3, X4} = X3X4,

{X1, X5} = −X1X5, {X3, X5} = X4,

{X2, X3} = X2X3, {X4, X5} = X4X5,

By Theorem 4.1.3 the Poisson algebra R and all its H-invariant Poisson prime quotients

satisfy the quadratic Poisson Gel’fand-Kirillov problem. In particular:

FracR ∼= Kλ(Y1, . . . , Y5),

where:

λ :=



0 1 0 −1 −1

−1 0 1 0 −1

0 −1 0 1 0

1 0 −1 0 1

1 1 0 −1 0


.
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Chapter 5

Poisson deleting derivations

algorithm and the canonical

embedding

For the rest of this thesis we turn our attention to the study of the Poisson spectra of

certain polynomial Poisson algebras. In this chapter we introduce the Poisson deleting

derivations algorithm which consists of applying several times the Poisson deleting deriva-

tion homomorphism to a (certain) iterated Poisson-Ore extension, keeping track of the

generators at each steps.

In Section 5.1 we introduce the class P of iterated Poisson-Ore extensions we will study.

The Poisson deleting derivations algorithm is then defined in Section 5.2. For a Poisson

algebra A ∈ P the algorithm returns generators for a Poisson affine space A. Recall

that the Poisson spectrum of a Poisson algebra is the set of prime ideals that are also

Poisson ideals. In Section 5.4 we define and study an embedding, the so-called canonical

embedding, from the Poisson spectrum of A to the Poisson spectrum of the Poisson affine

space A. Poisson spectra of Poisson affine spaces are well understood, and this knowledge

together with the canonical embedding will help us to understand the Poisson spectrum

of the Poisson algebra A. In particular we study a partition of the Poisson spectrum of

A indexed by (some) subsets of {1, . . . , n} for some integer n. Moreover, the canonical

embedding behaves nicely with this partition. Indeed, if Sw is a part of the partition
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(w ⊆ {1, . . . , n}), then the canonical embedding induces an homeomorphism from Sw to

its image.

In Section 5.5 we add the hypothesis that a torus H = (K×)r acts rationally by Poisson

automorphisms on the Poisson algebra A ∈ P. Firstly we study the compatibility of the

Poisson deleting derivations algorithm with the torus action. Then we recall that a torus

action leads to another partition of the Poisson spectrum as defined in [15] (when the

characteristic is zero). We show that in fact these two partitions coincide in Section 5.5.3.

5.1 A class of iterated Poisson-Ore extensions

In this section, we introduce the class of Poisson algebras that we will study in the re-

maining chapters of this thesis.

Hypothesis 5.1.1.

(1) A = K[X1][X2;α2, δ2]P · · · [Xn;αn, δn]P is an iterated Poisson-Ore extension over K.

We set Ai := K[X1][X2;α2, δ2]P · · · [Xi;αi, δi]P for all 1 ≤ i ≤ n.

(2) Suppose that for all 1 ≤ j < i ≤ n there exists λij ∈ K such that αi(Xj) = λijXj .

We set λji := −λij for all 1 ≤ j < i ≤ n.

(3) For all 2 ≤ i ≤ n, assume that the derivation δi extends to an iterative, locally

nilpotent higher (ηi, αi)-skew Poisson derivation (Di,k)
∞
k=0 on Ai−1, where ηi ∈ K×.

(4) Assume that αiDj,k = Dj,kαi + kλijDj,k for all 2 ≤ j < i ≤ n and all k ≥ 0.

Notation. We denote by P the class of iterated Poisson-Ore extensions which satisfy Hy-

pothesis 5.1.1.

Remark 5.1.2.

• If A = K[X1][X2;α2, δ2]P · · · [Xn;αn, δn]P ∈ P, then the intermediate Poisson alge-

bras Ai also belong to P.

• When charK = 0, Hypothesis 5.1.1 can be simplified. Suppose that for all 2 ≤ i ≤ n

the derivation δi is locally nilpotent and that we have [δi, αi] = ηiδi with ηi ∈ K×.

Then we claim that hypotheses (3) and (4) of Hypothesis 5.1.1 are satisfied. Indeed

recall that by Example 2.1.3, for all 2 ≤ i ≤ n the derivation δi uniquely extends to
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an iterative, locally nilpotent higher (ηi, αi)-skew Poisson derivation on Ai−1, namely

the sequence of K-linear maps:

(Di,k)k :=
(δki
k!

)
k
.

Hence hypothesis (3) is satisfied. Moreover one can deduce hypothesis (4) as follows.

For all 1 ≤ l < j < i ≤ n we have:

αi
(
{Xj , Xl}

)
= αi

(
αj(Xl)Xj + δj(Xl)

)
= λjl(λil + λij)XlXj + αiδj(Xl), and:

αi
(
{Xj , Xl}

)
= {αi(Xj), Xl}+ {Xj , αi(Xl)}

= (λij + λil)(αj(Xl)Xj + δj(Xl))

= λjl(λil + λij)XlXj + λijδj(Xl) + δj(αi(Xl)).

Thus we obtain αiδj = δjαi + λijδj for all 1 < j < i ≤ n. By induction using the

iterativity of δj we obtain for all k ≥ 0 and all 1 < j < i ≤ n that:

αiδ
k
j = δkj αi + kλijδ

k
j . (5.1)

By dividing by k! both side of (5.1) we obtain hypothesis (4) since Dj,k =
δkj
k! . To

summarise: in charK = 0 hypotheses (3) and (4) reduce to hypothesis (3’):

(3’) Assume that for all 2 ≤ i ≤ n the derivation δi is locally nilpotent and that

[δi, αi] = ηiδi for some ηi ∈ K×.

• In characteristic zero we can characterise Poisson algebras of the class P for n = 2.

Let A = K[X][Y, α, δ]P ∈ P. We have α(X) = λX for some λ ∈ K, and one can

check that δ is locally nilpotent if and only if δ(X) = µ ∈ K. If µ = 0 then A is

the Poisson affine plane A = Kλ[Y,X]. If µ 6= 0 by setting X ′ = µ−1X we obtain

{X ′, Y } = λX ′Y + 1. Moreover the equality [δ, α] = ηδ for some nonzero scalar

η implies that λ = η is nonzero. Therefore either A is a Poisson plane (possibly

the abelian polynomial Poisson algebra in two variables), or A is isomorphic to the

Poisson-Ore extension K[U ][V ;λU∂U , ∂U ]P for some λ ∈ K× by an isomorphism

sending X to µU and Y to V .
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In the next sections we will need to use inductive arguments to define and study the

Poisson deleting derivations algorithm. In the induction step we will need to re-arrange

the order of the indeterminates of an iterated Poisson-Ore extension in P. The following

lemma will ensure that the new Poisson algebra is still in P, so that one can apply

the deleting derivation homomorphism to this new algebra, and thus proceed with the

induction.

The restriction of a linear map f to a subspace V of its domain will be denoted by

f |V .

Lemma 5.1.3. Let A ∈ P with δj+1 = · · · = δn = 0. With the notation of Hypothesis

5.1.1, we have the following.

(1) We can write A = Aj−1[Xj+1;βj+1]P · · · [Xn;βn]P [Xj ;α
′
j , δ
′
j ]P where:

• βi|Aj−1 = αi|Aj−1 for all j < i ≤ n and βi(Xl) = λilXl for all j < l < i,

• α′j |Aj−1 = αj and α′j(Xl) = λjlXl for all j < l ≤ n,

• δ′j |Aj−1 = δj and δ′j(Xl) = 0 for all j < l ≤ n.

(2) δ′j extends to an iterative, locally nilpotent higher (ηj , α
′
j)-skew Poisson derivation

(D′j,k)
∞
k=0 on Aj−1[Xj+1;βj+1]P · · · [Xn;βn]P such that the restriction of D′j,k to Aj−1

coincides with Dj,k for all k ≥ 0, and D′j,k(Xl) = 0 for all k > 0 and all j < l ≤ n.

(3) A = Aj−1[Xj+1;βj+1]P · · · [Xn;βn]P [Xj ;α
′
j , δ
′
j ]P also belongs to P.

Proof. (1) Since {Xl, Xj} = λljXlXj for all j < l ≤ n, the order of the variablesXj , . . . , Xn

can be changed. The resulting Poisson (αi-)derivations are those described above.

(2) This is an easy induction using Lemma 3.2.1.

(3) This follows directly from (1) and (2).

5.2 Poisson deleting derivations algorithm

Let A = K[X1][X2;α2, δ2]P · · · [Xn;αn, δn]P ∈ P. We continue using the notation of

Hypothesis 5.1.1.

We are now ready to describe the Poisson deleting derivations algorithm. For j run-

ning from n + 1 to 2 we define, by a decreasing induction, a sequence (X1,j , . . . , Xn,j) of
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(algebraically independent) elements of FracA and we set Cj := K[X1,j , . . . , Xn,j ]. For

j = n + 1 we set (X1,j , . . . , Xn,j) := (X1, . . . , Xn) so that Cn+1 = A. Fix 2 ≤ j ≤ n.

Suppose that the sequence (U1, . . . , Un) := (X1,j+1, . . . , Xn,j+1) is defined and that the

algebra Cj+1 satisfies the following hypothesis:

Hypothesis 5.2.1.

(1) Cj+1 is isomorphic to an iterated Poisson-Ore extension of the form:

K[X1] · · · [Xj ;αj , δj ]P [Xj+1;βj+1]P · · · [Xn;βn]P

by a Poisson isomorphism sending Ui to Xi for 1 ≤ i ≤ n.

(2) For all l ∈ {j+1, . . . , n}, the map βl is a Poisson derivation such that βl(Xi) = λliXi

for all 1 ≤ i < l and we have βlDi,k = Di,kβl + kλliDi,k for all 1 < i ≤ j and all

k ≥ 0.

Note that (1) of Hypothesis 5.2.1 allows us to express Cj+1 as the iterated Poisson-Ore

extension:

K[U1] · · · [Uj ;αj , δj ]P [Uj+1;βj+1]P · · · [Un;βn]P ,

where by abuse of notation we denote again by αi, βi and δi the maps induced by the

isomorphism of (1) of Hypothesis 5.2.1. In particular, for all 1 < i ≤ j, the derivation δi

extends to an iterative, locally nilpotent higher (ηi, αi)-skew Poisson derivation (Di,k)
∞
k=0

on the Poisson subalgebra K[U1, . . . , Ui−1]. The sequence (V1, . . . , Vn) := (X1,j , . . . , Xn,j)

is then defined as follows:

Vi =


Ui i ≥ j,∑
k≥0

1
ηkj
Dj,k(Ui)U

−k
j i < j.

Proposition 5.2.2. Under the assumptions made since the beginning of Section 5.2, we

have:

(1) The algebra Cj is isomorphic to an iterated Poisson-Ore extension of the form:

K[X1] · · · [Xj−1;αj−1, δj−1]P [Xj ;βj ]P · · · [Xn;βn]P

by a Poisson isomorphism sending Vi to Xi for 1 ≤ i ≤ n.
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(2) For all j ≤ l ≤ n, the map βl is a Poisson derivation such that βl(Xi) = λliXi for

all 1 ≤ i < l and we have βlDi,k = Di,kβl + kλliDi,k for all 1 < i < j and all k ≥ 0.

(3) Set Sj = {Unj | n ≥ 0} = {V n
j | n ≥ 0}. We have CjS

−1
j = Cj+1S

−1
j .

Proof. By Hypothesis 5.2.1 and Lemma 5.1.3 we can write:

Cj+1 = K[U1] · · · [Uj−1;αj−1, δj−1]P [Uj+1;β′j+1]P · · · [Un;β′n]P [Uj ;α
′
j , δ
′
j ]P ,

where β′l for all j < l ≤ n and α′j and δ′j are defined as in assertion (1) of Lemma 5.1.3.

In particular δ′j extends to an iterative, locally nilpotent higher (ηj , α
′
j)-skew Poisson

derivation (D′j,k)
∞
k=0 on the Poisson algebra:

Ĉj+1 := K[U1] · · · [Uj−1;αj−1, δj−1]P [Uj+1;β′j+1]P · · · [Un;β′n]P .

Therefore by applying Theorem 2.2.2 to the Poisson algebra Ĉj+1[Uj ;α
′
j , δ
′
j ]P we get a

Poisson algebra isomorphism:

θ : Ĉj+1[U±1
j ;α′j ]P

∼=−→ Ĉj+1[U±1
j ;α′j , δ

′
j ]P

Ĉj+1 3 a 7−→ θ(a),

Uj 7−→ Uj .

In particular, for all 1 ≤ i ≤ n with i 6= j, we have θ(Ui) = Vi since:

θ(Ui) =
∑
l≥0

1

ηlj
D′j,l(Ui)U

−l
j =


∑
l≥0

1
ηlj
Dj,l(Ui)U

−l
j i < j,

Ui i > j.

Moreover Uj = Vj , thus we have:

θ
(
Ĉj+1[Uj ;α

′
j ]P
)

= K[V1] · · · [Vj−1;αj−1, δj−1]P [Vj+1;β′j+1]P · · · [Vn;β′n]P [Vj ;α
′
j ]P = Cj ,

and by Corollary 2.2.3 we get CjS
−1
j = Cj+1S

−1
j . This proves assertion (3).

Since {Vl, Vj} = λljVjVl for all j < l ≤ n we can bring back Vj in the j-th position:

Cj = K[V1] · · · [Vj−1;αj−1, δj−1]P [Vj ;β
′′
j ]P · · · [Vn;β′′n]P ,
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where for all j ≤ l ≤ n, the map β′′l is a Poisson derivation such that β′′l (Vi) = λliVi for

all 1 ≤ i < l. This proves assertion (1).

Finally, the fact that β′′l Dm,k = Dm,kβ
′′
l + kλlmDm,k for all 1 < m < j ≤ l ≤ n and all

k ≥ 0, follows directly from the equalities:

• βlDm,k = Dm,kβl + kλlmDm,k for all 1 < m ≤ j < l ≤ n and all k ≥ 0,

• βl(Ui) = λliUi for all j < l ≤ n and all 1 ≤ i < l,

• αj(Ui) = λjiUi for all 1 ≤ i < j,

• β′′l (Vi) = λliVi for all j ≤ l ≤ n and all 1 ≤ i < l.

This proves assertion (2).

Corollary 5.2.3. The algebra A := C2 is a Poisson affine space. More precisely, by

setting Ti := Xi,2 for all 1 ≤ i ≤ n we have:

A = Kλ[T1, . . . , Tn],

where λ is the skew-symmetric matrix defined by λ := (λij) ∈Mn(K).

We illustrate in details the Poisson deleting derivations algorithm on an example in

Appendix A.1.

5.3 Fields of fractions of A and A

In this section we show that there exists a localisation of A ∈ P isomorphic to a Poisson

torus. Set Σ for the multiplicative set in A generated by the T1, . . . , Tn. For 2 ≤ j ≤ n we

define sets Σj as follows:

Σ2 := Σ and Σj+1 := Cj+1 ∩ Σj .

Proposition 5.3.1. We have:

(1) Σj is a multiplicative set of Cj containing {Xj−1,j , . . . , Xn,j} for all 2 ≤ j ≤ n+ 1.

(2) For 2 ≤ j ≤ n we have CjΣ
−1
j = Cj+1Σ−1

j+1 as Poisson subalgebras of FracA.
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Proof. If j = 2 assertion (1) is trivial. Let 2 ≤ j ≤ n and assume that assertion (1) is

satisfied for this j. Since Σj contains {Vj−1, . . . , Vn} (recall that Vi = Xi,j for all 1 ≤ i ≤ n)

the multiplicative set Σj+1 contains Ul = Vl for j ≤ l ≤ n. And assertion (1) is proved.

We now prove assertion (2). From assertion (1) we obtain in particular that Sj =

{Unj | n ≥ 0} = {V n
j | n ≥ 0} ⊆ Σj ∩ Σj+1. Thus by Proposition 5.2.2 we have:

Cj+1 ⊆ Cj+1S
−1
j = CjS

−1
j ⊆ CjΣ

−1
j .

Since Σj+1 ⊆ Σj we have Cj+1Σ−1
j+1 ⊆ CjΣ

−1
j . Reciprocally let a ∈ CjΣ

−1
j and write

a = c1σ
−1
1 for some c1 ∈ Cj and σ1 ∈ Σj . Since Σj ⊆ Cj ⊆ CjS

−1
j = Cj+1S

−1
j we

can write σ1 = c2s
−1
2 and c1 = c3s

−1
3 for some c2, c3 ∈ Cj+1 and some s2, s3 ∈ Sj .

So a = c3s2(c2s3)−1 with c3s2 ∈ Cj+1 since Sj ⊆ Cj+1. Moreover c2s3 = σ1s2s3 ∈

Σj ∩ Cj+1 = Σj+1 since Sj ⊆ Σj . We conclude that a = c3s2(c2s3)−1 ∈ Cj+1Σ−1
j+1, i.e.

CjΣ
−1
j ⊆ Cj+1Σ−1

j+1 and assertion (2) is proved.

In particular we have proved the following theorem.

Theorem 5.3.2. There exists a multiplicative set S in A such that:

AS−1 = AΣ−1 = Kλ[T±1
1 , . . . , T±1

n ].

This theorem shows in particular that all the Poisson algebras of the class P satisfy

the quadratic Poisson Gel’fand-Kirillov problem, retrieving assertion (1) of Theorem 3.3.1.

Moreover the algorithm provides explicit generators for FracA such that FracA is a Poisson

affine field in these generators.

5.4 The canonical embedding

Recall that for a Poisson algebra B we denote by P.Spec (B) its Poisson spectrum, i.e.

the set of prime ideals of B which are also Poisson ideals. P.Spec (B) is endowed with the

induced Zariski topology. In this section we focus on the behaviour of the Poisson spec-

trum of an iterated Poisson-Ore extension A ∈ P under the Poisson deleting derivations

algorithm. We show that there is an embedding between P.Spec (A) and P.Spec (A). This
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is done by showing that, at each step of the algorithm there is an embedding between

P.Spec (Cj+1) and P.Spec (Cj).

Throughout this section, we use the notation of Hypothesis 5.1.1 and as previously we

fix 2 ≤ j ≤ n, and set Ui := Xi,j+1 and Vi := Xi,j for all 1 ≤ i ≤ n.

5.4.1 The embedding ϕj : P.Spec (Cj+1)→ P.Spec (Cj)

Recall that Uj = Vj and set:

Γ0
j (Cj) = {P ∈ P.Spec (Cj) | Vj /∈ P}, Γ1

j (Cj) = {P ∈ P.Spec (Cj) | Vj ∈ P},

Γ0
j (Cj+1) = {P ∈ P.Spec (Cj+1) | Uj /∈ P}, Γ1

j (Cj+1) = {P ∈ P.Spec (Cj+1) | Uj ∈ P}.

These sets partition P.Spec (Cj) and P.Spec (Cj+1). Since we have CjS
−1
j = Cj+1S

−1
j ,

contraction and extension of ideals provide bijections between Γ0
j (Cj) and Γ0

j (Cj+1) (it is

easy to show that the contraction or the extension of a Poisson ideal is again a Poisson

ideal). More precisely we have the following result.

Lemma 5.4.1. There is an homeomorphism ϕ0
j : Γ0

j (Cj+1) → Γ0
j (Cj) given by ϕ0

j (P ) :=

PS−1
j ∩ Cj for P ∈ Γ0

j (Cj+1). Its inverse is defined by (ϕ0
j )
−1(Q) := QS−1

j ∩ Cj+1 for

Q ∈ Γ0
j (Cj).

We now want to compare Γ1
j (Cj+1) and Γ1

j (Cj). For, we denote by 〈Uj〉P the smallest

Poisson ideal in Cj+1 containing Uj and for all 1 ≤ i ≤ n, we denote by Ui the image of

Ui in the Poisson algebra Cj+1/〈Uj〉P .

Lemma 5.4.2. The map gj : Cj → Cj+1/〈Uj〉P given by gj(Vi) = Ui for all 1 ≤ i ≤ n is

a surjective Poisson algebra homomorphism.

Proof. The map gj is the composition of the quotient map π : Cj+1 → Cj+1/〈Uj〉P with

the algebra isomorphism Ψ : Cj → Cj+1 defined by Ψ(Vi) = Ui for all 1 ≤ i ≤ n.

Thus clearly gj = π ◦ Ψ is a surjective algebra homomorphism. Note that π is a Poisson

algebra homomorphism whereas Ψ is not, so we cannot conclude directly. We show that

gj({Vk, Vl}) = {gj(Vk), gj(Vl)} for all 1 ≤ l < k ≤ n. First if k ≥ j we have:

gj({Vk, Vl}) = gj(λklVkVl) = λklUkUl = {Uk, Ul} = {gj(Vk), gj(Vj)}.
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(Note that when k = j we have Uk = 0). If k < j we have Ψ(δk(Vl)) = δk(Ul) and:

gj({Vk, Vl}) = gj
(
λklVkVl + δk(Vl)

)
= λklUkUl + gj

(
δk(Vl)

)
= λklUkUl + δk(Ul) = {Uk, Ul} = {gj(Vk), gj(Vl)}.

Set Nj := ker(gj). Then since Cj/Nj
∼= Cj+1/〈Uj〉P there is an homeomorphism:

ϕ1
j : Γ1

j (Cj+1)→ {P ∈ P.Spec (Cj) | Nj ⊆ P}

defined by ϕ1
j (P ) := g−1

j (P/〈Uj〉P ) for P ∈ Γ1
j (Cj+1). Since Vj = Uj ∈ Nj we have

{P ∈ P.Spec (Cj) | Nj ⊆ P} ⊆ Γ1
j (Cj) and:

Lemma 5.4.3. There is an increasing and injective map ϕ1
j : Γ1

j (Cj+1)→ Γ1
j (Cj) defined

by ϕ1
j (P ) = g−1

j (P/〈Uj〉P ) for P ∈ Γ1
j (Cj+1), which induces an homeomorphism on its

image.

We can now define a map ϕj : P.Spec (Cj+1)→ P.Spec (Cj) by setting:

ϕj(P ) =

 ϕ0
j (P ) if P ∈ Γ0

j (Cj+1),

ϕ1
j (P ) if P ∈ Γ1

j (Cj+1).

As a direct consequence of Lemmas 5.4.1 and 5.4.3 we get the following result.

Proposition 5.4.4. The map ϕj : P.Spec (Cj+1) → P.Spec (Cj) is injective. For ε ∈

{0, 1}, the map ϕj induces an homeomorphism from Γεj(Cj+1) to ϕj
(
Γεj(Cj+1)

)
which is a

closed subset of Γεj(Cj).

5.4.2 The canonical partition of P.Spec (A)

Definition 5.4.5. We set ϕ := ϕ2◦· · ·◦ϕn. This is an injective map from P.Spec (Cn+1) =

P.Spec (A) to P.Spec (C2) = P.Spec (A) and we refer to it as the canonical embedding.

Let W := P([[1, n]]) denote the powerset of [[1, n]]. For w ∈W , we set:

P.Specw(A) :=
{
P ∈ P.Spec (A) | P ∩ {T1, . . . , Tn} = {Ti | i ∈ w}

}
,
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where we recall that the Tis are the generators of the Poisson affine space A. Note that

these sets form a partition of P.Spec (A). For all w ∈W we set:

P.Specw(A) := ϕ−1
(
P.Spec w(A)

)
,

and W ′P for the set of w such that P.Specw(A) 6= ∅, i.e.:

W ′P := {w ∈W | P.Spec w(A) 6= ∅}.

Note that W ′P is not empty since we always have ϕ(〈0〉) = 〈0〉 ∈ P.Spec ∅(A). We obtain

a partition of P.Spec (A):

P.Spec (A) =
⊔

w∈W ′P

P.Specw(A) and 1 ≤ |W ′P | ≤ |W | = 2n.

Definition 5.4.6. This partition of P.Spec (A) will be called the canonical partition, the

elements of W ′P will be called the Cauchon diagrams associated to A, or Cauchon diagrams

for short. Finally, for w ∈W ′P the set P.Specw(A) is called the stratum associated to w.

Note that the set W ′P depends on the expression of A as an iterated Poisson-Ore

extension. We compute the sets of Cauchon diagrams for two examples in Appendices A.2

and B. See also Section 7.2.

5.4.3 A membership criterion for Im(ϕ)

The following results help us to understand whether a given Poisson prime ideal of A

belongs to the image of the canonical embedding. This will be useful to understand better

the canonical partition and when dealing with examples. We start this section with a

membership criterion for Im(ϕj). Recall that Nj = ker(gj) was defined in Section 5.4.1.

Lemma 5.4.7. Let Q ∈ P.Spec (Cj). Then:

Q ∈ Im(ϕj) ⇐⇒
(
either Uj = Vj /∈ Q, or Nj ⊆ Q

)
.

Proof. This is clear since the map ϕ0
j is a bijection from Γ0

j (Cj+1) to Γ0
j (Cj) and the map

ϕ1
j is a bijection from Γ1

j (Cj+1) to {Q ∈ P.Spec (Cj) | Nj ⊆ Q}.
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Set f1 := idP.Spec (A). For all 2 ≤ j ≤ n we define a map fj : P.Spec (Cj+1) →

P.Spec (A) by setting fj := fj−1 ◦ ϕj . In particular we have fn = ϕ. Note that the fjs

are injective maps. We deduce from Lemma 5.4.7 the following membership criterion for

Im(ϕ).

Proposition 5.4.8. Let Q ∈ P.Spec (A). The following are equivalent:

• Q ∈ Im(ϕ),

• for all 2 ≤ j ≤ n we have Q ∈ Im(fj−1) and

either Xj,j = Xj,j+1 /∈ f−1
j−1(Q), or Nj ⊆ f−1

j−1(Q).

Remark 5.4.9. To understand Nj it is enough to understand 〈Uj〉P since Nj = Ψ−1(〈Uj〉P ),

where the algebra isomorphism Ψ : Cj → Cj+1 is defined by Ψ(Vi) = Ui for all 1 ≤ i ≤ n

(see proof of Lemma 5.4.2). As {Uj , Ui} = λjiUjUi+δj(Ui) for all i ∈ [[1, j−1]], we deduce

that:

〈Uj , δj(Ui) | i ∈ [[1, j − 1]]〉 ⊆ 〈Uj〉P .

By minimality of 〈Uj〉P , the reverse inclusion will be satisfied if the left hand side is a

Poisson ideal. However this is not always the case as the following example demonstrates.

Let A be the iterated Poisson-Ore extension A := C[X][Y ;β,∆]P [Z;α, δ]P , where β :=

−X∂X , α := X∂X − Y ∂Y , ∆ := ∂X and δ := Y 2∂X , so that:

{Y,X} = −XY + 1,

{Z,X} = XZ + Y 2,

{Z, Y } = −Y Z.

One can check that A ∈ P, but that 〈Z, Y 2〉 is not a Poisson ideal of A. This example

will be studied in more detail in Section 7.2.2.

5.4.4 Topological and algebraic properties of the canonical embedding

In this section we investigate the topological and algebraic properties of the canonical

embedding. We start with some useful results that will be used in this section as well as

later on.
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Lemma 5.4.10. Let P ∈ P.Spec (Cj+1) and Q := ϕj(P ) ∈ P.Spec (Cj). For j ≤ l ≤ n we

have:

Ul ∈ P ⇐⇒ Vl ∈ Q.

Proof. If l = j, then (Ul ∈ P ) ⇐⇒
(
P ∈ Γ1

j (Cj+1)
)

and (Vl ∈ Q) ⇐⇒
(
Q ∈ Γ1

j (Cj)
)
,

and the result is given by Proposition 5.4.4. We distinguish between two cases when l > j.

First, if P ∈ Γ0
j (Cj+1), then we have:

Ul ∈ P ⇒ Ul ∈ PS−1
j ⇒ Vl = Ul ∈ Cj ∩ PS−1

j = Q,

and:

Vl ∈ Q ⇒ Vl ∈ QS−1
j ⇒ Ul = Vl ∈ Cj+1 ∩QS−1

j = P.

Next, if P ∈ Γ1
j (Cj+1), then we have:

Ul ∈ P ⇐⇒ Ul ∈
P

〈Uj〉P
⇐⇒ gj(Vl) ∈

P

〈Uj〉P
⇐⇒ Vl ∈ g−1

j

( P

〈Uj〉P

)
= Q.

We deduce the following easy corollary. For Q ∈ Im(ϕ), we set Pj := f−1
j−1(Q) ∈

P.Spec (Cj) for all 2 ≤ j ≤ n+ 1. Note that in particular we have Q = P2.

Corollary 5.4.11. Let Q ∈ Im(ϕ) and fix 1 ≤ l ≤ n. Then we have:

Tl = Xl,2 ∈ P2 ⇐⇒ Xl,k ∈ Pk,

for all 2 ≤ k ≤ l + 1.

Proof. We proceed by induction on k. For k = 2 the result is trivial. Assume that the result

is shown for some 2 ≤ k ≤ l. By Lemma 5.4.10 we have Xl,k+1 ∈ Pk+1 ⇐⇒ Xl,k ∈ Pk
and the result follows.

This corollary can be improved as follows. Let 1 ≤ j ≤ n and w ∈ W . Set Xw :=

f−1
j (P.Specw(A)) ⊆ P.Spec (Cj+1). When j ≥ 2, we also set Yw := f−1

j−1(P.Specw(A)) ⊆

P.Spec (Cj), so that Xw = ϕ−1
j (Yw) since fj = fj−1 ◦ ϕj . Note that the sets Xw and Yw

can be empty.
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Lemma 5.4.12. Let P ∈ Xw. For j ≤ l ≤ n we have:

l ∈ w ⇐⇒ Ul ∈ P.

Proof. Note that since l ≥ j we have Ul = Xl,k = Tl for all 2 ≤ k ≤ j + 1. If j = 1, we

have Xw = P.Specw(A) and the result comes from the definition of P.Specw(A). Assume

that j ≥ 2 and the result shown for j − 1. Since l ≥ j > j − 1 we obtain by Lemma 5.4.10

that Ul ∈ P ⇐⇒ Vl ∈ ϕj(P ). Moreover ϕj(P ) ∈ Yw, thus the induction hypothesis shows

that:

l ∈ w ⇐⇒ Vl ∈ ϕj(P ) ⇐⇒ Ul ∈ P.

This concludes the induction.

Lemma 5.4.13. The set fj(Xw) is a closed subset of P.Specw(A), and fj induces (by

restriction) an homeomorphism from Xw to fj(Xw).

Proof. The result is trivial if j = 1. Assume that j ≥ 2 and that the result is shown for

j − 1. By Lemma 5.4.12 (applied to l = j for j and j − 1) we have:

• (j /∈ w) ⇒ (Xw ⊆ Γ0
j (Cj+1) and Yw ⊆ Γ0

j (Cj)),

• (j ∈ w) ⇒ (Xw ⊆ Γ1
j (Cj+1) and Yw ⊆ Γ1

j (Cj)).

So in both cases we have Xw ⊆ Γεj(Cj+1) and Yw ⊆ Γεj(Cj) for ε ∈ {0, 1}. Therefore we

have ϕj(Xw) = Yw ∩ Z where Z = ϕj(Γ
ε
j(Cj+1)) with ε ∈ {0, 1}. By Proposition 5.4.4,

Yw ∩ Z is a closed subset of Yw, and ϕj induces an homeomorphism from Xw to Yw ∩ Z.

By the induction hypothesis fj−1 induces an homeomorphism from Yw to fj−1(Yw) which

is a closed subset of P.Specw(A). Thus fj−1(Yw ∩Z) is a closed subset of fj−1(Yw) (as the

image of a closed subset by an homeomorphism), and so is a closed subset of P.Specw(A).

Since fj(Xw) = fj−1 ◦ ϕj(Xw) = fj−1(Yw ∩ Z), the first assertion is proved.

The map fj : Xw → fj(Xw) = fj−1(Yw ∩ Z) is the composition of the two maps

ϕj : Xw → Yw∩Z and fj−1 : Yw∩Z → fj−1(Yw∩Z) which are both homeomorphisms.

When j = n we have fj = ϕ and Xw = P.Specw(A), for all w ∈ W . We deduce the

following result.
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Theorem 5.4.14. Let ϕ : P.Spec (A) → P.Spec (A) be the canonical embedding and w ∈

W ′P . Then ϕ
(
P.Specw(A)

)
is a (non empty) closed subset of P.Spec w(A), and ϕ induces

(by restriction) an homeomorphism from P.Specw(A) to ϕ
(
P.Spec w(A)

)
.

In a lot of examples (when the Poisson algebra considered is supporting a suitable torus

action for instance, see Theorem 5.5.6) the inclusion of the previous theorem is actually

an equality:

ϕ(P.Specw(A)) = P.Specw(A).

However this is not true in general as the following example demonstrates.

Example 5.4.15. Assume that charK = 0. Let B = Kλ[X1, X2, X3] be the Poisson affine

space where:

λ =


0 0 −1

0 0 −1

1 1 0

 .

Observe that α := −X1
∂

∂X1
−X2

∂
∂X2

is a Poisson derivation of B and δ := (X1 +X2) ∂
∂X3

a

Poisson α-derivation of B. Thus we can form the Poisson-Ore extension A = B[X4;α, δ]P .

Note that δ is locally nilpotent and that we have δα = αδ + δ. Thus by Remark 5.1.2

we have A ∈ P, and we can apply the deleting derivations algorithm (note that there

is only one step in the algorithm). The Poisson algebra A is the Poisson affine space

Kλ′ [T1, T2, T3, T4] where:

λ′ =


0 0 −1 1

0 0 −1 1

1 1 0 0

−1 −1 0 0

 ,

and where T1 = X1, T2 = X2, T3 = X3 + (X1 + X2)X−1
4 and T4 = X4. The canonical

embedding is the map ϕ from P.Spec (A) to P.Spec (A) defined by:

P 7−→

 PS−1 ∩A X4 /∈ P,

g−1(P/〈X4〉P ) X4 ∈ P,

where S is the multiplicative set of A generated by X4, and where:

g : A −→ A

〈X4〉P
,
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Ti 7−→ Xi + 〈X4〉P for i = 1, . . . , 4.

Firstly we show that {4} ∈ W ′P ⊆ W = P([[1, 4]]). Set P := 〈X4〉P = 〈X4, X1 + X2〉.

One can check that P ∈ P.Spec (A). Since X4 ∈ P , we can define a Poisson algebra

isomorphism A/P ∼= A/ϕ(P ) by sending Xi + P to Ti + ϕ(P ) for 1 ≤ i ≤ 4 (this will

be done in more generality in Lemma 5.4.18 later). Therefore we have T4 ∈ ϕ(P ) and

T1, T2, T3 /∈ ϕ(P ). Hence ϕ(P ) ∈ P.Spec {4}(A) and {4} ∈ W ′P (more generally the set of

Cauchon diagrams of A is computed in Appendix B.).

Secondly, since {4} ∈ W ′P , Theorem 5.4.14 tells us that the set ϕ
(
P.Spec {4}(A)

)
is a

non-empty closed subset of P.Spec {4}(A). We will show that this inclusion is strict. For

Q ∈ P.Spec {4}(A) we have T4 ∈ ϕ(Q) ∈ P.Spec {4}(A), thus 〈T4, T1 + T2〉 ⊆ ϕ(Q) by

Lemma 5.4.7. Hence we have the following inclusion:

ϕ
(
P.Spec {4}(A)

)
⊆ {P ∈ P.Spec {4}(A) | T4 ∈ P, T1 + T2 ∈ P} ⊆ P.Spec {4}(A).

But it is clear that 〈T4〉 ∈ P.Spec {4}(A). Thus:

ϕ
(
P.Spec {4}(A)

)
 P.Spec {4}(A).

In a similar fashion we can also show that {3, 4} ∈W ′P and that:

ϕ
(
P.Spec {3,4}(A)

)
 P.Spec {3,4}(A).

To conclude this section we prove two results. We give a criterion for a Poisson prime

ideal to belong to the image of the canonical embedding, and we exhibit a non empty

subset of W ′P .

Proposition 5.4.16. Let w ∈ W ′P , P ∈ P.Specw(A) and Q ∈ P.Specw(A) such that

ϕ(P ) ⊆ Q. Then Q ∈ Im(ϕ).

Proof. We prove by induction that Q ∈ Im(fj) for all 1 ≤ j ≤ n. When j = 1 the result

is trivial since f1 is the identity on P.Spec (A). Suppose that Q ∈ Im(fj−1) for some

2 ≤ j ≤ n. Since fj = fj−1 ◦ ϕj it is enough to show that f−1
j−1(Q) ∈ Im(ϕj). First
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we remark that ϕ(P ) ⊆ Q implies that f−1
j−1(ϕ(P )) ⊆ f−1

j−1(Q) by Lemma 5.4.13 (with j

replaced by j − 1). We now distinguish between two cases.

Assume that Uj /∈ f−1
j (ϕ(P )). Then by Corollary 5.4.11 we have Tj /∈ ϕ(P ) and so

j /∈ w. But then by Lemma 5.4.12 we have Uj /∈ f−1
j−1(Q) and thus f−1

j−1(Q) ∈ Im(ϕj) by

Lemma 5.4.7.

Assume that Uj ∈ f−1
j (ϕ(P )). Then:

Nj ⊆ ϕj
(
f−1
j (ϕ(P ))

)
= f−1

j−1(ϕ(P )) ⊆ f−1
j−1(Q),

and Lemma 5.4.7 shows that f−1
j−1(Q) ∈ Im(ϕj).

This concludes the induction. The result follows by taking j = n.

Proposition 5.4.17. Set W := {w ∈ W | δi = 0 for all i ∈ w}. Then W ⊆ W ′P .

Moreover for w ∈W we have ϕ
(
P.Specw(A)

)
= P.Specw(A).

Proof. Let w ∈ W and set Q := 〈Ti | i ∈ w〉 ∈ P.Specw(A). We show that Q ∈ Im(ϕ).

For, we will prove by induction that Q ∈ Im(fj−1) for all 2 ≤ j ≤ n + 1. For j = 2

the result is clear. Now suppose that Q ∈ Im(fj−1) for some 2 ≤ j ≤ n. To show that

Q ∈ Im(fj) it is enough to show that f−1
j−1(Q) ∈ Im(ϕj) since fj = fj−1 ◦ϕj . As previously

we set Pj := f−1
j−1(Q) ∈ P.Spec (Cj). By Lemma 5.4.7 we have Pj ∈ Im(ϕj) if and only

if either Xj,j+1 /∈ Pj , or Nj ⊆ Pj . We now distinguish between two cases. First suppose

that j /∈ w. Then Tj /∈ Q and by Lemma 5.4.11 we have Xj,j+1 /∈ Pj , i.e. Pj ∈ Im(ϕj).

Now suppose that j ∈ w. Next Tj ∈ Q and by Lemma 5.4.11 we get Xj,j+1 ∈ Pj . But

since j ∈ w we have δj = 0 and Nj = 〈Xj,j+1〉. Therefore Nj ⊆ Pj and Pj ∈ Im(ϕj).

The second assertion follows from Proposition 5.4.16 since we just showed that for all

w ∈W we have 〈Ti | i ∈ w〉 ∈ Im(ϕ).

In particular this proposition shows that we always have {∅, {1}} ⊆W ′P for A ∈ P.

5.4.5 Poisson prime quotients of A and A

In this section we study the behaviour of the Poisson prime quotients of a Poisson algebra

A ∈ P under the deleting derivations algorithm.
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5.4.5.1 Poisson prime quotients of Cj+1 and Cj

Fix 2 ≤ j ≤ n, let P ∈ P.Spec (Cj+1) and set Q := ϕj(P ) ∈ P.Spec (Cj). As usual, to

simplify notation we set Ui := Xi,j+1 and Vi := Xi,j for all i. We also set D := Cj+1/P

and E := Cj/Q. Finally, we set di := Ui + P and ei := Vi +Q for all 1 ≤ i ≤ n.

Lemma 5.4.18. If dj = 0, then there is a Poisson algebra isomorphism between E and

D sending ei to di for all 1 ≤ i ≤ n.

Proof. dj = 0 means that P ∈ Γ1
j (Cj+1) and Q = g−1

j (P/〈Uj〉P ). Thus we have a surjective

Poisson algebra homomorphism:

Cj −→
Cj+1/〈Uj〉P
P/〈Uj〉P

∼= Cj+1/P,

whose kernel is Q.

Lemma 5.4.19. Assume that dj 6= 0 and set Sj := {dnj | n ≥ 0}. Then there is an

injective Poisson algebra homomorphism Λ : E → DSj
−1

defined by:

Λ(ei) :=


di i ≥ j,∑
k≥0

1
ηkj
Dj,k(Ui)d

−k
j i < j,

where Dj,k(Ui) := Dj,k(Ui) + P .

Proof. By assumption P ∈ Γ0
j (Cj+1), so QS−1

j = PS−1
j is an ideal in CjS

−1
j = Cj+1S

−1
j

and we have the following identifications:

CjS
−1
j

QS−1
j

=
Cj+1S

−1
j

PS−1
j

∼= DSj
−1
.

Thus the canonical embedding of Cj in CjS
−1
j induces a well-defined injective Poisson

algebra homomorphism Λ from E to DSj
−1

whose expression is clear from the equalities:

Vi =


Ui i ≥ j,∑
k≥0

1
ηkj
Dj,k(Ui)U

−k
j i < j.
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From Lemma 5.4.18 and Lemma 5.4.19, we can state:

Corollary 5.4.20. D and E have the same Poisson field of fractions (if Uj /∈ P , we

identify E with its image in DS−1
j by Λ so that we have DSj

−1
= ESj

−1
).

5.4.5.2 Poisson prime quotients of A and A

From the previous section we deduce the following results about the Poisson prime quo-

tients of A and A. Let P be a Poisson prime ideal of A and set Q := ϕ(P ). For all

2 ≤ j ≤ n+ 1 we set:

• Pj := ϕj ◦ · · · ◦ ϕn(P ) ∈ P.Spec (Cj), in particular Pn+1 = P and P2 = Q;

• Dj := Cj/Pj , D = Dn+1 = A/P and D := D2 = A/ϕ(P );

• di,j := Xi,j + Pj and ti = di,2 for all 1 ≤ i ≤ n.

Finally we set G := Frac (D). From Corollary 5.4.20 we deduce that all the algebras Dj

have the same Poisson field of fractions G.

Proposition 5.4.21. Let 2 ≤ j ≤ n + 1. There is a Poisson algebra homomorphism

γj : Cj → G sending Xi,j to di,j for 1 ≤ i ≤ n. Its image is Dj and its kernel is Pj.

Lemma 5.4.18 and Lemma 5.4.19 give us an algorithm to obtain the generators di,j of

Dj from the generators di,j+1 of Dj+1.

Proposition 5.4.22. Let 2 ≤ j ≤ n.

(1) If dj,j+1 = 0 then di,j = di,j+1 for all 1 ≤ i ≤ n.

(2) If dj,j+1 6= 0, then dj,j+1 is invertible in G and we have:

di,j =


di,j+1 i ≥ j,∑
k≥0

1
ηkj
γj+1

(
Dj,k(Xi,j+1)

)
d−kj,j+1 i < j.

Let w the element in W ′P such that P ∈ P.Spec w(A). Then Q ∈ P.Spec w(A) and for

all 1 ≤ i ≤ n we have:

ti 6= 0 ⇐⇒ i /∈ w.
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Set w = W \w and let Π be the multiplicative set of D generated by the ti for i ∈ w. For

2 ≤ j ≤ n+ 1 we define sets Πj as follows:

Π2 := Π and Πj+1 := Dj+1 ∩Πj .

Proposition 5.4.23. Then we have:

(1) Πj is a multiplicative set of Dj which contains {di,j | j − 1 ≤ i ≤ n and di,j 6= 0},

for all 2 ≤ j ≤ n+ 1.

(2) For all 2 ≤ j ≤ n we have DjΠ
−1
j = Dj+1Π−1

j+1 (as Poisson subalgebras of G).

Proof. (1) We proceed by induction. If j = 2 the result is clear. Assume that assertion

(1) is true for some 2 ≤ j ≤ n. We show that this assertion is still true for j + 1. First

note that it is clear that Πj+1 is a multiplicative set of Dj+1. We now distinguish between

two cases. If dj,j+1 = 0, we have di,j+1 = di,j for all 1 ≤ i ≤ n, so:

{di,j+1 | j ≤ i ≤ n and di,j+1 6= 0} = {di,j | j ≤ i ≤ n and di,j 6= 0} ⊆ Πj ∩Dj+1 = Πj+1.

If dj,j+1 6= 0 we have di,j+1 = di,j ∈ Πj ∩ Cj+1 for all j ≤ i ≤ n thus {di,j+1 | j ≤ i ≤

n and di,j+1 6= 0} ⊆ Πj+1. Thus assertion (1) is shown.

(2) Let 2 ≤ j ≤ n. If dj,j+1 = 0, we have di,j+1 = di,j for all 1 ≤ i ≤ n and

the result follows. Assume that dj,j+1 6= 0. Assertion (1) tells us, in particular, that

Sj = {dnj,j+1 | n ≥ 0} ⊆ Πj+1. Since dj,j+1 = dj,j we also have Sj ⊆ Πj and by Proposition

5.4.20 we obtain:

Dj+1 ⊆ Dj+1Sj
−1

= DjSj
−1 ⊆ DjΠ

−1
j .

We can then conclude as in Proposition 5.3.1.

We deduce the following theorem on the Poisson structure of the fields of fractions of

the Poisson prime quotients of A.

Theorem 5.4.24. There exists a multiplicative set S ′ in A/P such that (A/P )S ′−1 =

(A/Q)Π−1 and thus Frac (A/P ) = Frac (A/Q).

In particular this theorem says that in order to prove the quadratic Poisson Gel’fand-

Kirillov problem for the Poisson prime quotients of A it is enough to prove it for the Poisson
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prime quotients of the Poisson affine space A. We retrieve Assertion (2) of Theorem 3.3.1

with the addition that the ideal Q is now characterised by the canonical embedding.

5.4.6 Conditions under which Ti belongs to Q ∈ Im(ϕ)

As usual let P ∈ P.Spec (A) and set Q := ϕ(P ) ∈ P.Spec (A). In this section we prove a

result which gives conditions under which a generator Ti of A belongs to Q. We now fix

some notation. For 2 ≤ j ≤ n+ 1 set Pj := ϕj ◦ · · · ◦ ϕn(P ) ∈ P.Spec (Cj) (P = Pn+1 and

Q = P2), as well as D := Cj+1/Pj+1 and E := Cj/Pj . For 2 ≤ j ≤ n + 1 we denote by

C<jj+1 (resp. C<jj ) the Poisson subalgebra of Cj+1 (resp. Cj) generated by Ui (resp. Vi)

for all 1 ≤ i < j. More precisely we have:

C<jj+1 = K[U1][U2;α2, δ2]P · · · [Uj−1;αj−1, δj−1]P ,

C<jj = K[V1][V2;α2, δ2]P · · · [Vj−1;αj−1, δj−1]P .

In particular by Proposition 5.2.2 there is a Poisson algebra isomorphism θj from C<jj+1 to

C<jj sending Ui to Vi for all 1 ≤ i < j.

Fix 2 ≤ j ≤ n and assume that Uj /∈ Pj+1. We denote by D<j (resp. E<j) the Poisson

subalgebra of D (resp. E) generated by di := Ui + Pj+1 (resp. ei := Vi + Pj) for all

1 ≤ i < j. The following lemma shows that we can induce the homomorphism θj to the

quotient under certain conditions.

Lemma 5.4.25. Assume that Uj /∈ Pj+1 and that Dj,k(C
<j
j+1∩Pj+1) ⊆ Pj+1 for all k ≥ 0.

Then there exists a unique Poisson algebra homomorphism θj from D<j to E<j sending

di to ei for all 1 ≤ i < j.

Proof. Note that it is enough to show that θj(C
<j
j+1∩Pj+1) ⊆ C<jj ∩Pj . For c ∈ C<jj+1∩Pj+1

we have:

θj(c) =
∑
k≥0

1

ηkj
Dj,k(c)U

−k
j ∈ C<jj .

Since Uj /∈ Pj+1 we have Pj = Pj+1S
−1
j ∩Cj where S−1

j is the multiplicative set generated

by Uj . By assumption, for all k ≥ 0 we have Dj,k(c) ∈ Pj+1, so for all k ≥ 0:

1

ηkj
Dj,k(c)U

−k
j ∈ Pj+1S

−1
j .
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Thus θj(c) ∈ C<jj ∩ Pj , and the proposition is proved.

We can now state the main result of this section.

Proposition 5.4.26. Assume that Dl,k(C
<l
l+1∩Pl+1) ⊆ Pl+1 for all k ≥ 0 and all 1 ≤ l ≤ j.

If:

Xj,j+1 ∈ Pj+1 ⇒ Xi,j+1 ∈ Pj+1

for some 1 ≤ i < j, then Ti ∈ Q.

Proof. We first prove by a decreasing induction that Xi,l ∈ Pl for all i < l ≤ j + 1.

The base of the induction is precisely the hypothesis of the proposition. Assume that

Xi,l+1 ∈ Pl+1 for some i < l ≤ j.

Case 1: If Tl = Xl,2 = Xl,l+1 ∈ Pl+1, then by Lemma 5.4.18 there is a Poisson algebra

isomorphism between Cl/Pl and Cl+1/Pl+1 sending Xi,l + Pl to Xi,l+1 + Pl+1 for all 1 ≤

i ≤ n. Thus Xi,l+1 ∈ Pl+1 implies that Xi,l ∈ Pl and the result is shown in that case.

Case 2: If Tl = Xl,2 = Xl,l+1 /∈ Pl+1, then by Lemma 5.4.25 there is a Poisson algebra

homomorphism between (Cl+1/Pl+1)<l and (Cl/Pl)
<l sending Xi,l+1 + Pl+1 to Xi,l + Pl

for all 1 ≤ i < l. Therefore Xi,l+1 ∈ Pl+1 implies that Xi,l ∈ Pl and the result is shown in

that case.

In particular when l = i + 1 we obtain Xi,i+1 ∈ Pi+1. Then by Lemma 5.4.11 we

conclude that Ti ∈ Q and the proposition is shown.

5.5 Torus action and the Poisson deleting derivations algo-

rithm

We keep notation from the previous sections. In particular A is a Poisson algebra of the

class P. In Section 5.5.1 we introduce a rational torus action by Poisson automorphisms

on A and study its compatibility with the deleting derivations algorithm. In particular,

this allows us to improve Theorem 5.4.14. In Section 5.5.2 we introduce a partition of

P.Spec (A), the so-called H-stratification, where H is a torus acting rationally by Poisson

automorphisms on A. The H-stratification is defined in [15, Section 4] and is a Poisson
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version of the Goodearl-Letzter H-stratification (see [6, II.2]), which is used to deal with

spectra of certain noncommutative noetherian rings. Finally in Section 5.5.3 we com-

pare the canonical partition of P.Spec (A) with the H-stratification, and show that they

coincide.

5.5.1 Compatibility of the torus action and the Poisson deleting deriva-

tions algorithm

Let A ∈ P and r > 0. Suppose that the torus H = (K×)r is acting rationally by Poisson

automorphisms on A such that each Xi is an H-eigenvector. We study the compatibility

of the deleting derivations algorithm with this action. The action of H on A uniquely

extends to FracA. The following lemma shows that for all 2 ≤ j ≤ n + 1 the torus H is

also acting rationally by Poisson automorphisms on the algebra Cj such that each Xi,j is

an H-eigenvector.

Lemma 5.5.1. For h ∈ H set h(Xi) = µiXi, where µi ∈ K× for all 1 ≤ i ≤ n. Assume

that h
(
Dj,k(Xi)

)
= µkjDj,k

(
h(Xi)

)
for all 1 ≤ i < j ≤ n and k ≥ 0. Then h(Vi) = µiVi

for all 1 ≤ i ≤ n.

Proof. Recall that Vi = Xi,j for all 1 ≤ i ≤ n. Thus the result is trivial when j = n + 1.

Assume that the result is true for the rank j + 1, i.e. that we have h(Ui) = µiUi for all

1 ≤ i ≤ n. If i ≥ j we have h(Vi) = µiVi since Vi = Ui. If i < j then

h(Vi) =
∑
k≥0

1

ηkj
h
(
Dj,k(Ui)

)
h(U−kj )

=
∑
k≥0

1

ηkj
µkjDk

(
h(Ui)

)
µ−kj U−kj

=
∑
k≥0

1

ηkj
Dk

(
µiUi

)
U−kj

= µiVi.

In particular H acts rationally by Poisson automorphisms on the Poisson affine space

A, and for all 1 ≤ i ≤ n the indeterminate Ti is an H-eigenvector.
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Remark 5.5.2. If charK = 0, the hypothesis of Lemma 5.5.1 can be simplified. We claim

that, for a fixed h ∈ H, the assumption:

h
(
Dj,k(Xi)

)
= µkjDj,k

(
h(Xi)

)
for all 1 ≤ i < j ≤ n and k ≥ 0,

is trivially satisfied. Indeed we show by induction that for all k ≥ 0, all h ∈ H and all

1 ≤ i < j ≤ n we have:

h
(
δkj (Xi)

)
= µkj δ

k
j

(
h(Xi)

)
. (5.2)

This will prove the claim since when charK = 0, we have Dj,k =
δkj
k! for all k ≥ 0 and all

2 ≤ j ≤ n. We now proceed with the induction. Fix h ∈ H and set h(Xi) = µiXi, where

µi ∈ K× for all 1 ≤ i ≤ n. Suppose k = 1. For 1 ≤ i < j ≤ n we have:

h
(
δj(Xi)

)
= h({Xj , Xl} − αj(Xl)Xj)

= µjµl({Xj , Xl} − λjlXlXj)

= µjµlδj(Xl) = µjδj
(
h(Xl)

)
.

Now suppose that equation (5.2) is satisfied for a rank k. We have:

h
(
δk+1
j (Xi)

)
= h

(
{Xj , δ

k
j (Xl)} − αjδkj (Xl)Xj

)
= {h(Xj), hδ

k
j (Xl)} − h

(
δkj αj(Xl)− ηjkδj(Xl)

)
h(Xj)

= µk+1
j {Xj , δ

k
j h(Xl)} − µj

(
hδkj (λjlXl)− ηjkhδkj (Xl)

)
Xj

= µk+1
j

(
{Xj , δ

k
j h(Xl)} −

(
λjlδ

k
j h(Xl) + ηjkδ

k
j h(Xl)

)
Xj

)
= µk+1

j

(
{Xj , δ

k
j h(Xl)} −

(
δkj αjh(Xl) + ηjkδ

k
j h(Xl)

)
Xj

)
= µk+1

j

(
{Xj , δ

k
j h(Xl)} − αjδkj h(Xl)Xj

)
= µk+1

j δjδ
k
j h(Xl) = µk+1

j δk+1
j h(Xl).

This concludes the induction.

Recall that an ideal I of a given algebra endowed with a torus action is h-invariant

(with h ∈ H) if h(I) = I. If h(I) = I for all h ∈ H, then I is said H-invariant. Let
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1 ≤ j ≤ n. For an ideal I in Cj+1 we set:

(H : I) :=
⋂
h∈H

h(I).

Equivalently (H : I) is the largest H-invariant ideal contained in I. Moreover if I is a

Poisson ideal then (H : I) is a Poisson ideal. Indeed since each h ∈ H acts by Poisson

automorphisms on Cj+1 the ideal h(I) is a Poisson ideal for all h ∈ H. However when I is

a prime ideal is it not clear whether (H : I) is also prime. It is true under the assumptions

that K is infinite and that the algebra we are working with is noetherian, see for instance

[6, Proposition II.2.9]. For simplicity we assume that charK = 0 for the remainder of

this chapter. In particular Remarks 5.1.2 and 5.5.2 apply. The subset of P.Spec (Cj+1)

consisting of H-invariant ideals is denoted by H-P.Spec (Cj+1). By the previous discussion

if P ∈ P.Spec (Cj+1) then (H : P ) ∈ H-P.Spec (Cj+1).

Recall that 〈Uj〉P is the smallest Poisson ideal in Cj+1 containing Uj (equivalently

containing 〈Uj〉).

Lemma 5.5.3. The ideal 〈Uj〉P is an H-invariant ideal of Cj+1.

Proof. Set I := (H : 〈Uj〉P ). We will show that I = 〈Uj〉P . Note that Uj ∈ I since Uj is

an H-eigenvector. Therefore we have:

〈Uj〉 ⊆ I ⊆ 〈Uj〉P .

Since 〈Uj〉P is a Poisson ideal, the ideal I is a Poisson ideal, and by minimality of 〈Uj〉P

we conclude that 〈Uj〉P = I. This shows that 〈Uj〉P is H-invariant.

We can now prove that h ∈ H commutes with the embedding ϕj .

Lemma 5.5.4. Let 2 ≤ j ≤ n. If P ∈ P.Spec (Cj+1) and h ∈ H we have:

ϕj
(
h(P )

)
= h

(
ϕj(P )

)
.

Proof. Recall that Sj = {Unj | n ≥ 0}. Assume first that P ∈ Γ0
j (Cj+1), i.e. that

Uj /∈ P . Since Uj is an h-eigenvector (Lemma 5.5.1) we have h(P ) ∈ Γ0
j (Cj+1). Thus
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ϕj(h(P )) = Cj ∩ h(P )S−1
j = Cj ∩ h(PS−1

j ) and:

ϕj
(
h(P )

)
= h(Cj) ∩ h(PS−1

j ) = h
(
Cj ∩ PS−1

j

)
= h

(
ϕj(P )

)
.

Assume now that P ∈ Γ1
j (Cj+1). By Lemma 5.5.3 the ideal 〈Uj〉P is H-invariant, so h ∈ H

induces a Poisson automorphism h of Cj+1/〈Uj〉P sending Ui + 〈Uj〉P to h(Ui) + 〈Uj〉P .

Recall from Lemma 5.4.2 the Poisson homomorphism gj : Cj → Cj+1/〈Uj〉P sending Vi to

Ui + 〈Uj〉P . In view of Lemma 5.5.1 the diagram of Figure 5.1 is commutative.

Cj Cj+1/〈Uj〉P

Cj Cj+1/〈Uj〉P

gj

h

gj

h

Figure 5.1

Since 〈Uj〉P ⊆ P we have 〈Uj〉P ⊆ h(P ) and h(P/〈Uj〉P ) = h(P )/〈Uj〉P . Thus, using

the commutativity of the diagram of Figure 5.1 and the fact that h and h are bijec-

tive maps, we have g−1
j (h(P )/〈Uj〉P ) = h

(
g−1
j (P/〈Uj〉P )

)
. This means that ϕj

(
h(P )

)
=

h
(
ϕj(P )

)
.

We deduce that h ∈ H commutes with the canonical embedding.

Lemma 5.5.5. Let P ∈ P.Spec (A) and h ∈ H. We have:

(1) ϕ
(
h(P )

)
= h

(
ϕ(P )

)
.

(2) If P ∈ P.Spec w(A) for some w ∈W ′P , then h(P ) ∈ P.Spec w(A).

Proof. Assertion (1) comes from Lemma 5.5.4 and the equality ϕ = ϕ2 ◦ · · · ◦ ϕn. If

P ∈ P.Spec w(A), then ϕ(P ) ∈ P.Specw(A). Since Ti is an h-eigenvector for all 1 ≤ i ≤ n

we have ϕ
(
h(P )

)
= h

(
ϕ(P )

)
∈ P.Specw(A), thus h(P ) ∈ P.Specw(A).

Recall that, by Proposition 3.4.4, the only H-invariant Poisson prime ideals of the

Poisson affine space A are the ideals:

Jw = 〈Ti | i ∈ w〉,
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for all w ∈ W = P([[1, n]]), provided that Hypotheses 3.4.1 is satisfied (recall that we

assume that charK = 0). We can now state the following improvement of Theorem

5.4.14.

Theorem 5.5.6. Assume that Hypothesis 3.4.1 is satisfied and let w ∈W ′P . Then:

ϕ
(
P.Specw(A)

)
= P.Specw(A).

Proof. By Theorem 5.4.14, ϕ
(
P.Specw(A)

)
is a closed subset of P.Specw(A) so there exists

a proper ideal I in A containing Jw = 〈Ti | i ∈ w〉 such that:

ϕ
(
P.Specw(A)

)
=
{
Q ∈ P.Specw(A) | Q ⊇ I

}
.

Let Q ∈ ϕ
(
P.Specw(A)

)
, and write Q = ϕ(P ) for some P ∈ P.Specw(A). For h ∈ H we

have h(Q) = ϕ
(
h(P )

)
∈ ϕ

(
P.Specw(A)

)
by Lemma 5.5.5 and thus I ⊆ h(Q). By setting

J := (H : Q), we have Jw ⊆ I ⊆ J ⊆ Q, so:

(
{T1, . . . , Tn} ∩ Jw

)
⊆
(
{T1, . . . , Tn} ∩ J

)
⊆
(
{T1, . . . , Tn} ∩Q

)
.

But since J ∈ H-P.Spec (A) we can write J = Jw′ for some w′ ∈ W by Proposition 3.4.4.

Hence w ⊆ w′ ⊆ w, so Jw′ = Jw and I = Jw.

Remark 5.5.7. In particular this theorem shows that the Poisson algebra A from example

5.4.15 cannot be endowed with a rational action satisfying Hypothesis 3.4.1 and such that

the generators of A are eigenvectors.

5.5.2 Stratification of P.Spec (A)

In this section we present another partition of P.Spec (A) for A ∈ P. This partition

was introduced in [15, Section 4] for Poisson algebras endowed with torus actions. More

precisely, let r > 0 and suppose that B is a Poisson K-algebra and that a torus H = (K×)r

acts on B by Poisson automorphisms. For any J ∈ H-P.Spec (B) of B we set:

P.Spec J(B) = {P ∈ P.Spec (B) | (H : P ) = J},
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and we obtain a partition:

P.Spec (B) =
⊔

J∈H-P.Spec (B)

P.Spec J(B),

since for all P ∈ P.Spec (B) we have (H : P ) ∈ H-P.Spec (B) (recall that charK = 0).

This partition is called the H-stratification of P.Spec (B) and each set P.Spec J(B) is called

an H-stratum. For the remainder of this chapter we want to consider both the canonical

partition and the H-stratification for a given algebra A ∈ P. We gather the assumptions

we need for this in the following list. For A ∈ P we suppose that:

• a torus H = (K×)r is acting rationally by Poisson automorphisms on A such that

each Xi is an H-eigenvector,

• H satisfies Hypothesis 3.4.1,

• charK = 0.

Note that by Lemma 5.5.1 these assumptions imply that H acts rationally by Poisson

automorphisms on Cj for all 2 ≤ j ≤ n+1. Thus we can consider theH-strata P.Spec J(Cj)

for all J ∈ H-P.Spec (Cj).

5.5.3 Canonical partition and H-stratification

In this section we show that the canonical partition and the H-stratification are actually

the same partition of P.Spec (A).

Lemma 5.5.8. Let ε ∈ {0, 1}, 2 ≤ j ≤ n, and J ∈ H-P.Spec (Cj+1). If J ∈ Γεj(Cj+1),

then:

P.Spec J(Cj+1) ⊆ Γεj(Cj+1).

Similarly, if J ∈ H-P.Spec (Cj) ∩ Γεj(Cj), then:

P.Spec J(Cj) ⊆ Γεj(Cj).

Proof. Assume that J ∈ H-P.Spec (Cj+1) and recall that Uj = Xj,j+1. If ε = 1, we have

Uj ∈ J and if P ∈ P.Spec J(Cj+1) we deduce that Uj ∈ P , since J ⊆ P . Assume that ε = 0,

so that Uj /∈ J , and suppose that there exists P ∈ P.Spec J(Cj+1) such that Uj ∈ P . Then,
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since Uj is an H-eigenvector we have Uj ∈ (H : P ) = J , and we reach a contradiction.

Thus Uj /∈ P . We deal similarly with the second assertion of the lemma.

We obtain the following result on the image of a H-strata in P.Spec (Cj+1) under the

embedding ϕj .

Lemma 5.5.9. Let 2 ≤ j ≤ n and J ∈ H-P.Spec (Cj+1). Then:

(1) J ′ = ϕj(J) ∈ H-P.Spec (Cj).

(2) ϕj
(
P.Spec J(Cj+1)

)
⊆ P.Spec J ′(Cj).

Proof. We obtain assertion (1) by Lemma 5.5.4 since for all h ∈ H we have:

h(J ′) = h(ϕj
(
J)
)

= ϕj
(
h(J)

)
= ϕj(J) = J ′.

Let P ∈ P.Spec J(Cj+1) and set Q := ϕj(P ). We have (H : P ) = J and we want to show

that (H : Q) = J ′. Let ε ∈ {0, 1} such that J ∈ Γεj(Cj+1). Then we have P ∈ Γεj(Cj+1)

by Lemma 5.5.8. So Q and J ′ belong to Yε := ϕj
(
Γεj(Cj+1)

)
. Recall that Yε is a closed

subset of Γεj(Cj) (Proposition 5.4.4), thus there exists an ideal I ∈ Cj such that:

Yε = {T ∈ Γεj(Cj) | T ⊇ I}.

Since J ⊆ P and ϕj is increasing on Γεj(Cj+1), we have J ′ ⊆ Q. But J ′ is H-invariant

so we have J ′ ⊆ (H : Q). We set J ′′ := (H : Q). Since Q ∈ Γεj(Cj), Lemma 5.5.8 shows

that J ′′ ∈ Γεj(Cj). Since J ′ ∈ Yε, we have I ⊆ J ′ ⊆ J ′′, so that J ′′ ∈ Yε. In particular

J ′′ ∈ Im(ϕj) and we set J ′′′ := ϕ−1
j (J ′′) ∈ Γεj(Cj+1). For h ∈ H, we have J ′ ⊆ J ′′ ⊆ h(Q)

i.e.:

ϕj(J) ⊆ ϕj(J ′′′) ⊆ ϕj(h(P )).

Recall that J and J ′′′ belong to Γεj(Cj+1). Moreover h(P ) ∈ Γεj(Cj+1) since h(P ) ∈

P.Spec J(Cj+1) and J ∈ Γεj(Cj+1), see Lemma 5.5.8. By Proposition 5.4.4 we deduce that

J ⊆ J ′′′ ⊆ h(P ) for all h ∈ H. Therefore we have:

J ⊆ J ′′′ ⊆ (H : P ) = J,

so that J ′′′ = J . Thus ϕj(J
′′′) = ϕj(J) and we obtain (H : Q) = J ′ as desired.
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The following lemma shows in particular that there are only finitely many ideals in

H-P.Spec (A).

Lemma 5.5.10. Let J ∈ H-P.Spec (A) and w ∈W ′P such that J ∈ P.Spec w(A). Then:

(1) ϕ(J) = Jw.

(2) P.Spec J(A) ⊆ P.Spec w(A).

Proof. By Lemma 5.5.5 we have:

ϕ(J) = ϕ
(
h(J)

)
= h

(
ϕ(J)

)
for all h ∈ H, so ϕ(J) ∈ H-P.Spec (A). Since moreover ϕ(J) ∈ P.Spec w(A) we obtain

ϕ(J) = Jw by Proposition 3.4.4. This proves assertion (1).

By Lemma 5.5.9 we have ϕ(P.Spec J(A)) ⊆ P.Spec ϕ(J)(A) = P.Spec Jw(A), and asser-

tion (2) will follow if we show that P.Spec Jw(A) ⊆ P.Spec w(A). Let Q ∈ P.Spec Jw(A).

Then Jw ⊆ Q and we have:

{Ti | i ∈ w} = Jw ∩ {T1, . . . , Tn} ⊆ Q ∩ {T1, . . . , Tn}.

Assume that there exists i ∈ w := [[1, n]] \ w such that Ti ∈ Q. Then Ti ∈ (H : Q) = Jw

since Ti is an H-eigenvector, a contradiction. Therefore Q ∈ P.Specw(A) and assertion

(2) is proved.

We can thus conclude by the following theorem.

Theorem 5.5.11. Let A ∈ P and suppose that a torus H = (K×)r is acting rationally by

Poisson automorphisms on A such that each Xi is an H-eigenvector. Moreover assume

that H satisfies Hypothesis 3.4.1 and that charK = 0. Then, the canonical partition:

P.Spec (A) =
⊔

w∈W ′P

P.Specw(A)

coincides with the H-stratification:

P.Spec (A) =
⊔

J∈H-P.Spec (A)

P.Spec J(A).
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The canonical partition is independent of the choice of the torus H, and the H-

stratification is independent of the expression of A as an iterated Poisson-Ore extension,

thus we obtain the following corollary.

Corollary 5.5.12. With the hypotheses of Theorem 5.5.11, the H-stratification is inde-

pendent of the choice of the torus H, and the canonical partition of the expression of A as

an iterated Poisson-Ore extension.
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Chapter 6

Poisson primitive spectrum

In this chapter we turn our attention to the Poisson primitive spectra of the algebras of

the class P. In particular the Poisson deleting derivations algorithm allows us to prove the

Poisson Dixmier-Moeglin equivalence for these algebras when charK = 0. We first recall

what is the Poisson Dixmier-Moeglin equivalence in Section 6.1. Then in Section 6.2, we

give the proof of this equivalence for the Poisson algebras of the class P. Even better,

we show that the Poisson primitive ideals are exactly the Poisson prime ideals that are

maximal in their strata. Finally in Section 6.3 we prove a transfer result for the Poisson

Dixmier-Moeglin equivalence of Poisson-Ore extensions. For, we first need to generalise

some results of Chapter 5. In all this chapter we assume that charK = 0.

6.1 Poisson Dixmier-Moeglin equivalence

In representation theory one often wants to classify the simple modules of a given algebra.

It is usually a difficult problem and one can focus first on studying their annihilators,

the so-called primitive ideals. Dixmier [10] and Moeglin [30] studied these ideals for en-

veloping algebras of finite dimensional Lie algebras. They gave algebraic and topological

characterisations for primitive ideals in these algebras. Let R be a noetherian algebra. A

prime ideal P of R is said rational provided that the field Z(FracR/P ) is algebraic over

the ground field. The ideal P is said to be locally closed if the point {P} is locally closed

in Spec (R) (with respect to the Zariski topology). Dixmier and Moeglin showed that for

all finite dimensional complex Lie algebras g, the set of primitive ideals, rational ideals and

111



locally closed ideals of U(g) are equal. More generally, we say that the Dixmier-Moeglin

equivalence holds for a given noetherian algebra if the sets of primitive ideals, locally closed

ideals and rational ideals coincide. This equivalence has been proved for several families

of algebras such as quantised coordinate rings, see [21] for instance, or twisted coordinate

rings [4].

A Poisson version of the Dixmier-Moeglin equivalence for Poisson algebra is investi-

gated in [32], [15] or [3] for instance. Let A be a Poisson K-algebra and P ∈ P.Spec (A).

The ideal P is said locally closed if the point {P} is a locally closed point of P.Spec (A). Re-

call that the Poisson centre of a Poisson algebra B is the Poisson subalgebra ZP (B) := {a ∈

B | {a,−} ≡ 0}. The ideal P is said Poisson rational provided the field ZP
(
Frac (A/P )

)
is algebraic over the ground field K. For J an ideal of A, there is a largest Poisson ideal

contained in J that is called the Poisson core of J . Poisson cores of maximal ideals of A

are called Poisson primitive ideals. As recalled in [16], for a solvable finite dimensional

complex Lie algebra g, the set of primitive ideals of U(g) is homeomorphic to the set

of Poisson primitive ideals in S(g), the symmetric ideal of g endowed with the Kirillov-

Kostant-Souriau Poisson bracket (see 4 of Examples 1.1.3). Moreover it is shown in [31,

Corollary 8] that the annihilator of a simple Poisson module is a Poisson primitive ideal.

We say that the Poisson Dixmier-Moeglin equivalence holds for the Poisson algebra A if

the following sets coincide:

(1) the set of Poisson primitive ideals;

(2) the set of locally closed Poisson ideals;

(3) the set of Poisson rational ideals.

It is shown in [32] that we have the inclusions (2) ⊆ (1) ⊆ (3) for all finitely generated

Poisson algebras over a base field of characteristic zero. However the inclusion (3) ⊆ (2) is

not always satisfied as there exist counter-examples in all Krull dimension d ≥ 4, see [3].

The Poisson Dixmier-Moeglin equivalence holds for several families of Poisson algebras

such as Poisson tori [32], Poisson algebras supporting torus action [15], [18] and Poisson

algebras with generalised Jacobian Poisson structures [26] for instance. In the next section

we show that the algebras of the the class P also satisfy the Poisson Dixmier-Moeglin

equivalence.
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6.2 Poisson Dixmier-Moeglin equivalence for the algebras

of the class P

It is known that Poisson affine spaces satisfy the Poisson Dixmier-Moeglin equivalence,

see [15, Example 4.6] for instance. In this section this fact together with the canonical

embedding will allow us to prove the Poisson Dixmier-Moeglin equivalence for all algebras

of the class P. All algebras of the class P are finitely generated, therefore it only remains

to show the Poisson rational ideals of A ∈ P are also locally closed. We will freely continue

to use the notation of Chapter 5. Recall that for an ideal I of a Poisson algebra A we set:

VP (I) = {Q ∈ P.Spec (A) | Q ⊇ I} and WP (I) = {Q ∈ P.Spec (A) | Q 6⊇ I}.

The following lemma is a Poisson version of [6, Lemma II.7.7].

Lemma 6.2.1. Let A be a Poisson algebra and P ∈ P.Spec (A). Then P is locally closed

if and only if the intersection of all the Poisson prime ideals properly containing P is an

ideal properly containing P .

Proof. Let I be the intersection of all the Poisson prime ideals of A properly containing

P . If P  I, then W (I) ∩ V (P ) = {P}, i.e. {P} is a locally closed point of P.Spec (A).

Conversely, if P is locally closed, then there are ideals I and L in A such that V (I) ∩

W (L) = {P}. Let Q ∈ P.Spec (A) such that P  Q. Then Q ∈ V (I) and so Q /∈ W (L),

i.e. L ⊆ Q and L ⊆ I. We conclude that P  L+ P ⊆ I.

Hence P is locally closed if and only if the intersection of all non trivial Poisson prime

ideals in A/P is non trivial.

Proposition 6.2.2. Let A ∈ P. Then Poisson rational ideals of A are Poisson locally

closed ideals.

Proof. Recall that by applying the Poisson deleting derivations algorithm to the Poisson

algebra A we get a sequence of Poisson algebras Cj where j runs from n+ 1 to 2 such that

Cn+1 = A and C2 = A is a Poisson affine space. We will show by an increasing induction

on j that all Poisson rational ideals of Cj are locally closed. When j = 2 the algebra A is

a Poisson affine space and the result comes from [15, Example 4.6]. Assume that for some
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2 ≤ j ≤ n the Poisson rational ideals of Cj are locally closed. Let P ∈ P.Spec (Cj+1) be a

Poisson rational ideal. We distinguish between two cases: either Uj ∈ P , or Uj /∈ P .

Case 1: If Uj ∈ P , then by Lemma 5.4.18 we get a Poisson algebra isomorphism between

Cj+1/P and Cj/ϕj(P ). Thus we get:

ZP

(
Frac

(Cj+1

P

))
∼= ZP

(
Frac

( Cj
ϕj(P )

))
,

and the Poisson prime ideal ϕj(P ) is rational in Cj since by assumption P is rational in

Cj+1. Therefore by the induction hypothesis ϕj(P ) is locally closed in Cj . By Lemma

6.2.1 we can write:

⋂
Q 6=0

Q 6= {0}, where Q ∈ P.Spec
(
Cj/ϕj(P )

)
,

or equivalently using the isomorphism Cj+1/P ∼= Cj/ϕj(P ):

⋂
Q6=0

Q 6= {0}, where Q ∈ P.Spec
(
Cj+1/P

)
,

which means that P is locally closed in Cj+1.

Case 2: If Uj /∈ P , then by Lemma 5.4.19 we get the equality:

CjS
−1
j /QS−1

j = Cj+1S
−1
j /PS−1

j ,

which leads to the isomorphism:

ZP

(
Frac

(Cj+1

P

))
∼= ZP

(
Frac

( Cj
ϕj(P )

))
.

Therefore ϕj(P ) ∈ P.Spec (Cj) is Poisson rational, and so is locally closed. We now

introduce a few pieces of notation:

F0
j := {Q ∈ P.Spec (Cj) | ϕj(P )  Q and Vj /∈ Q},

F1
j := {Q ∈ P.Spec (Cj) | ϕj(P )  Q and Vj ∈ Q},

F0
j+1 := {Q ∈ P.Spec (Cj+1) | P  Q and Uj /∈ Q},

F1
j+1 := {Q ∈ P.Spec (Cj+1) | P  Q and Uj ∈ Q},
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T 0
j :=

⋂
Q∈F0

j

Q, T 1
j :=

⋂
Q∈F1

j

Q, T 0
j+1 :=

⋂
Q∈F0

j+1

Q, and T 1
j+1 :=

⋂
Q∈F1

j+1

Q.

Let I be the intersection of all the Poisson prime ideals of Cj+1 properly containing P .

We have:

(
P locally closed

)
⇐⇒

(
P  I

)
⇐⇒

(
P  

(
T 0
j+1 ∩ T 1

j+1

))
. (6.1)

By the induction hypothesis we have:

ϕj(P )  
(
T 0
j ∩ T 1

j

)
so that ϕj(P ) = PS−1

j ∩ Cj  T
0
j .

Since the map ϕj restricts to an homeomorphism from F0
j+1 to F0

j we have:

ϕj(P )  T 0
j ⇐⇒ P  T 0

j+1.

Therefore there exists a ∈
(
T 0
j+1 \ P

)
. Moreover by definition we have Uj ∈

(
T 1
j+1 \ P

)
.

Since P is a prime ideal and a, Uj /∈ P it clear that:

aUj ∈
(
T 0
j+1 ∩ T 1

j+1 \ P
)
,

and by (6.1) we obtain that P is locally closed. This concludes the induction. The case

j = n gives us the result for Cn+1 = A.

We are now ready to state the main results of this section.

Theorem 6.2.3. Let A ∈ P. Then A satisfies the Poisson Dixmier-Moeglin equivalence.

We deduce the following corollary which links the Poisson primitive ideals of A with

the Poisson primitive ideals of A.

Corollary 6.2.4. Let A ∈ P. Then for all P ∈ P.Spec (A) we have the following equiva-

lence:

P is Poisson primitive in A ⇐⇒ ϕ(P ) is Poisson primitive in A.

We can also describe the primitive ideals of A ∈ P inside their strata, namely they are

exactly the maximal ideals in their respective strata.
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Proposition 6.2.5. Let A ∈ P. Suppose that w ∈W ′P and let P ∈ P.Specw(A). Then:

P is Poisson primitive ⇐⇒ P is maximal in P.Specw(A).

Proof. First suppose that P is a Poisson primitive ideal. Then ϕ(P ) ∈ P.Specw(A) is

Poisson primitive in A by Corollary 6.2.4. By [15, Theorem 4.3, Example 4.6], ϕ(P )

is maximal in P.Specw(A). Now let P ′ ∈ P.Specw(A) be such that P ⊆ P ′. Since ϕ

induces an homeomorphism from P.Specw(A) to ϕ(P.Specw(A)) ⊆ P.Specw(A), we have

ϕ(P ) ⊆ ϕ(P ′) inside P.Specw(A). By maximality of ϕ(P ) we get ϕ(P ) = ϕ(P ′), i.e.

P = P ′, and P is maximal in P.Specw(A).

Conversely, suppose that P is maximal in P.Specw(A). Then ϕ(P ) is maximal in

ϕ
(
P.Specw(A)

)
by Theorem 5.4.14. Recall that ϕ

(
P.Specw(A)

)
⊆ P.Spec w(A) by The-

orem 5.4.14, and let Q ∈ P.Spec w(A) such that ϕ(P ) ⊆ Q. By Proposition 5.4.16 we

have Q ∈ Im(ϕ), i.e. Q ∈ ϕ
(
P.Spec w(A)

)
and by maximality of ϕ(P ) in ϕ

(
P.Specw(A)

)
we have Q = ϕ(P ). Therefore ϕ(P ) is maximal in P.Specw(A). By [15, Theorem 4.3,

Example 4.6] this shows that ϕ(P ) is Poisson primitive in A. We conclude by Corollary

6.2.4 that P is Poisson primitive in A.

Example 6.2.6. The algebra A of Example 5.4.15 satisfies the Poisson Dixmier-Moeglin

equivalence. Note that this algebra is not covered by [15, Theorem 4.3].

6.3 A transfer result for Poisson-Ore extensions

In this section we prove a transfer result for Poisson-Ore extensions. More precisely, we

show that, under certain assumptions on δ, if the Poisson-Ore extension A[X;α]P satis-

fies the Poisson Dixmier-Moeglin equivalence, then the Poisson-Ore extension A[X;α, δ]P

satisfies the Poisson Dixmier-Moeglin equivalence. We first need to extend some results

of Section 5.4. We will construct a canonical embedding for a Poisson-Ore extension

B := A[X;α, δ]P which can be “deleted” (i.e. satisfying the assumptions of Theorem

2.2.2).
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6.3.1 Poisson deleting derivation homomorphism and canonical embed-

ding for A[X;α, δ]P

We recall the Poisson deleting derivation homomorphism in characteristic zero.

Theorem 6.3.1. [18, Theorem 3.7], or see also [Theorem 2.2.2]. Let B := A[X;α, δ]P

be a Poisson-Ore extension, where A is a Poisson K-algebra. Suppose that [δ, α] = ηδ for

some nonzero scalar η. Then there is a Poisson algebra isomorphism from A[Y ±1;α]P to

A[X±1;α, δ]P such that:

θ(a) =
∑
i≥0

1

ηi
δi(a)

i!
X−i,

and θ(Y ) = X.

Set S := {Xi | i ≥ 0}, so that BS−1 = A[X±1;α, δ]P . Note that we define a Poisson

derivation of A′ := θ(A) by setting α′ := θ ◦ α ◦ θ−1.

Corollary 6.3.2. The Poisson subalgebra B := θ(A[Y ;α]P ) = θ(A)[X;α′]P of BS−1 is

Poisson isomorphic to A[Y ;α]P , and we have BS−1 = BS−1.

We will now define an embedding from P.Spec (B) to P.Spec (B). First, we partition

P.Spec (B) and P.Spec (B) by the following sets:

Γ0(B) = {P ∈ P.Spec (B) | X /∈ P}, Γ1(B) = {P ∈ P.Spec (B) | X ∈ P},

Γ0(B) = {P ∈ P.Spec (B) | X /∈ P}, Γ1(B) = {P ∈ P.Spec (B) | X ∈ P}.

Since BS−1 = BS−1, contraction and extension of ideals provide bijections between Γ0(B)

and Γ0(B).

Lemma 6.3.3. There is an homeomorphism ϕ0 : Γ0(B) → Γ0(B) given by ϕ0(P ) :=

PS−1∩B for P ∈ Γ0(B). Its inverse is defined by (ϕ0)−1(Q) := QS−1∩B for Q ∈ Γ0(B).

We denote by 〈X〉P the smallest Poisson ideal of B containing X and by a the image

of a ∈ A in the Poisson algebra B/〈X〉P .

Lemma 6.3.4. There is a surjective Poisson algebra homomorphism g : B → B/〈X〉P .
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Proof. First notice that there is a Poisson algebra homomorphism f from θ(A) to B/〈X〉P

given by f
(
θ(a)

)
:= a for all a ∈ A. Now since:

{X, f
(
θ(a)

)
} = {X, a} = α(a)X = f

(
α′(θ(a))

)
X

for all a ∈ A, the Poisson algebra homomorphism f extends by universal property of

Poisson-Ore extension (see Proposition 1.1.16) to a Poisson algebra homomorphism g

from B = θ(A)[Y ;α′]P to B/〈X〉P , sending Y to X. The map g is clearly surjective.

Set N := ker(g). Then there is an homeomorphism:

ϕ1 : Γ1
j (B)→ {P ∈ P.Spec (B) | N ⊆ P}

defined by ϕ1(P ) := g−1(P/〈X〉P ) for P ∈ Γ1(B). Since X ∈ N we have:

{P ∈ P.Spec (B) | N ⊆ P} ⊆ Γ1(B).

Therefore we obtain the following lemma.

Lemma 6.3.5. There is an increasing and injective map ϕ1 : Γ1(B)→ Γ1(B) defined by

ϕ1(P ) = g−1(P/〈X〉P ) for P ∈ Γ1(B), which induces an homeomorphism on its image.

We define a map ϕ : P.Spec (B)→ P.Spec (B) by setting:

ϕ(P ) =

 ϕ0(P ) if X /∈ P,

ϕ1(P ) if X ∈ P.

We have:

Proposition 6.3.6. The map ϕ : P.Spec (B) → P.Spec (B) is injective. For ε ∈ {0, 1},

the map ϕ induces an homeomorphism from Γε(B) to ϕ
(
Γε(B)

)
which is a closed subset

of Γε(B).

We now study the behaviour of the Poisson prime quotients of a Poisson-Ore extension

B = A[X;α, δ]P under the deleting derivation homomorphism. Let P ∈ P.Spec (B) and

set Q := ϕ(P ) ∈ P.Spec (B).
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Lemma 6.3.7. If X ∈ P , then there is a Poisson algebra isomorphism between B/Q and

B/P .

Proof. Since X ∈ P , we have P ∈ Γ1(B) and Q = g−1(P/〈X〉P ). Thus there is a surjective

Poisson algebra homomorphism:

B −→ B

〈X〉P
−→ B/〈X〉P

P/〈X〉P
∼= B/P,

whose kernel is Q.

We set S := {Xi + P | i ≥ 0} and S′ := {Xi +Q | i ≥ 0}.

Lemma 6.3.8. If X /∈ P , then there is a Poisson algebra isomorphism
(
B/Q

)
S′
−1 ∼=(

B/P
)
S
−1

.

Proof. By assumption P ∈ Γ0(B), so QS−1 = PS−1 is an ideal in BS−1 = BS−1. Thus:

(
B/Q

)
S
′−1 ∼=

BS−1

QS−1
=
BS−1

PS−1
∼=
(
B/P

)
S
−1
.

Both isomorphisms come from the fact that P ∩ S = Q ∩ S = ∅.

6.3.2 Transfer result

We now prove our transfer result for Poisson-Ore extensions. The proof is essentially the

same as the proof of Proposition 6.2.2.

Theorem 6.3.9. Let A be a finitely generated Poisson K-algebra, α ∈ DerP (A) and δ

be a locally nilpotent Poisson α-derivation such that δα − αδ = ηδ for some nonzero

scalar η. If the Poisson-Ore extension A[X;α]P satisfies the Poisson Dixmier-Moeglin

equivalence, then the Poisson-Ore extension A[X;α, δ]P satisfies the Poisson Dixmier-

Moeglin equivalence.

Proof. Since A is finitely generated, B =: A[X;α, δ]P is finitely generated. Thus, by [32],

locally closed Poisson ideals of B are Poisson primitive ideals, and Poisson primitive ideals

are Poisson rational ideals. Therefore it only remains to show that Poisson rational ideals
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of B are locally closed Poisson ideals. Note that since the algebra B = θ(A)[X;α′]P is

Poisson isomorphic to A[X;α]P , the assumption of the theorem tells us that B satisfies

the Poisson Dixmier-Moeglin equivalence. Let P ∈ P.Spec (B) be a Poisson rational ideal.

Recall that P is locally closed if and only if the intersection of all non trivial Poisson prime

ideals in B/P is non trivial. We distinguish between two cases: either X ∈ P , or X /∈ P .

Case 1: If X ∈ P , then by Lemma 6.3.7 we get a Poisson algebra isomorphism between

B/P and B/ϕ(P ), and the result follows.

Case 2: If X /∈ P , then by Lemma 6.3.8 we obtain the isomorphism:

ZP

(
Frac

(B
P

))
∼= ZP

(
Frac

( B

ϕ(P )

))
.

Therefore ϕ(P ) ∈ P.Spec (B) is Poisson rational, and so is locally closed. We set:

F0 := {Q ∈ P.Spec (B) | ϕ(P )  Q and X /∈ Q},

F1 := {Q ∈ P.Spec (B) | ϕ(P )  Q and X ∈ Q},

H0 := {Q ∈ P.Spec (B) | P  Q and X /∈ Q},

H1 := {Q ∈ P.Spec (B) | P  Q and X ∈ Q},

T 0 :=
⋂

Q∈F0

Q, T 1 :=
⋂

Q∈F1

Q, R0 :=
⋂

Q∈H0

Q, and R1 :=
⋂

Q∈H1

Q.

Let I be the intersection of all the Poisson prime ideals of B properly containing P . We

have:

(
P locally closed

)
⇐⇒

(
P  I

)
⇐⇒

(
P  

(
R0 ∩R1

))
. (6.2)

By the induction hypothesis we have ϕ(P )  
(
T 0 ∩ T 1

)
, so that ϕ(P )  T 0. Since the

map ϕ restricts to an homeomorphism from H0 to F0 we obtain:

ϕ(P )  T 0 ⇐⇒ P  R0.

Therefore there exists a ∈
(
R0 \P

)
. Moreover by definition we have X ∈

(
R1 \P

)
. Since

P is a prime ideal and a,X /∈ P it clear that:

aX ∈
(
R0 ∩R1 \ P

)
,
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and by (6.2) we obtain that P is locally closed.

We also get for free the following corollary.

Corollary 6.3.10. For all P ∈ P.Spec (B) we have the following equivalence:

P is Poisson primitive in B ⇐⇒ ϕ(P ) is Poisson primitive in B.
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Chapter 7

Comparison of Spectra and

Poisson spectra

In this chapter we study the link between the spectrum of a quantum algebra and the

Poisson spectrum of its Poisson analogue. More precisely, Cauchon [8] uses his deleting

derivations algorithm to obtain information on the spectra of the algebras of a class Q

of iterated Ore extensions (i.e. the algebras satisfying the hypotheses of [8, Section 3.1]).

Often the algebras of the class Q are deformations of Poisson algebras of the class P.

In the algebraic deformation context we can see both a given algebra R of the class Q

and its Poisson analogue A as quotients of the same iterated Ore extension. The goal of

this chapter is to compare the spectrum of R with the Poisson spectrum of A in such a

situation. We now make precise the context we will work with in this chapter.

7.1 A class of iterated Ore extensions and a question

Suppose that Rt is an iterated Ore extension over K[t±1]:

Rt = K[t±1][x1][x2;σ2,∆2] · · · [xn;σn,∆n],

such that for all 2 ≤ i ≤ n:

• R<it denotes the subalgebra of Rt generated by t±1, x1, . . . , xi−1,
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• σi is the automorphism of R<it such that σi(t) = t and σi(xj) = tλijxj for all

1 ≤ j < i, where the λijs are integers,

• ∆i is a locally nilpotent σi-derivation of R<it such that ∆i(t) = 0,

• σi∆i = tηi∆iσi for some integer ηi ∈ K×,

• ∆k
i (R

<i
t ) ⊆ (t− 1)k(k)!tηiR

<i
t for all k ≥ 0,

• A := Rt/(t− 1)Rt is commutative.

Notation. We denote by R the class of algebra satisfying such hypotheses.

Let Rt ∈ R. For a non root of unity q ∈ K× the element t− q is central in Rt and we

denote by Rq the quotient algebra Rq := Rt/(t − q)Rt. Recall from [8, Section 3.1] that

an iterated Ore extension:

R = K[x1][x2;σ2,∆2] · · · [xn;σn,∆n],

belongs to the class Q if for all 1 < i ≤ n:

• σi is an automorphism of the appropriate subalgebra such that σi(xj) = qijxj with

qij ∈ K× for all 1 ≤ j < i,

• ∆i is a locally nilpotent σi-derivation of the appropriate subalgebra,

• σi∆i = li∆iσi for a non root of unity li ∈ K×.

Thus it is clear that Rq ∈ Q. Moreover the algebra A = Rt/(t− 1)Rt is a Poisson algebra

which belongs to the class P thanks to Theorem 4.1.3. In the language of Section 1.2 the

algebra Rq is a deformation of the Poisson algebra A, and A is the semiclassical limit of

the algebra Rt at t− 1.

Fix a non root of unity q ∈ K× and consider the algebra Rq. Since Rq ∈ Q, Cauchon’s

deleting derivations algorithm can be applied. In particular we obtain a partition of the

spectrum Spec (Rq) of Rq indexed by a subset W ′ of W = P([[1, n]]) (see [8, Notation

4.4.1]). On the other hand the Poisson algebra A belongs to the class P and, as shown in

Section 5.4.2, we obtain a partition of the Poisson spectrum P.Spec (A) of A indexed by

a subset W ′P of W . Recall that the set W ′ is the set of Cauchon diagrams of Rq and W ′P

is the set of Cauchon diagrams of A. As it is often the case in deformation-quantisation

theory that quantum objects and their Poisson analogues share similarities, it is natural

to ask whether or not these sets coincide.
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Question 7.1.1. Let Rt ∈ R and assume that charK = 0. Do the sets W ′ and W ′P

coincide?

In Section 7.2 we answer positively Question 7.1.1 for two examples in small dimensions.

The general strategy is the same: in both situations we describe explicitly the sets W ′

and W ′P . Firstly, using Lemma 5.4.7 it is possible to exclude some elements of W . Then

we exhibit ideals belonging to the remaining strata. The major difficulty, especially in the

second example, is that at some point we have to check the primality of some given ideals.

This is doable here because of the small dimensions we are working with, but this won’t

generalise in higher dimensions, especially when the algorithm involves several steps. A

third example is given in Appendix B.

In Section 7.3 we answer positively Question 7.1.1 for the algebra of m × p quantum

matrices over K[t±1], that we denote by Rt := Ot
(
Mm,p(K[t±1])

)
. It is well known that

the algebra Rt belongs to the class R (the details are given in Section 4.2.1). Cauchon

gave a combinatorial description of the set W ′ in [9, Théorème 3.2.1]. More precisely there

is a bijection between W ′ and the set G consisting of all m× p grids with black or white

boxes satisfying the property that if a box is black, then every box strictly to its left is

black or every box strictly above it is black. We will show that, when charK 6= 2, the

set W ′P of Cauchon diagrams for the matrix Poisson variety A = O
(
Mm,p(K)

)
is also in

bijection with the set G answering positively Question 7.1.1 for Ot
(
Mm,p(K[t±1])

)
.

When charK = 2 the Poisson algebra A = O
(
Mm,p(K)

)
is a Poisson affine space. In

that case, the Poisson deleting derivations algorithm is trivial and we have W ′P = W .

However W ′ (W since the deformation parameter q is not a root of unity. To generalise

Question 7.1.1 to positive characteristic one would like to compare the Cauchon diagrams

of A with the Cauchon diagrams ofRq when q is a root of unity. For instance, in charK = 2,

one would like to compare W ′P with the set W ′ obtained by taking q to be a primitive

second root of unity. However there is no primitive second root of unity in a field of

characteristic 2. More generally, in a field of characteristic p > 0 there is no primitive

root of unity of order divisible by p. This shows that Question 7.1.1 cannot be directly

adapted to the positive characteristic case.
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7.2 Examples

In this section we answer positively Question 7.1.1 for two examples. We suppose that

charK = 0.

7.2.1 The quantum-Weyl algebra and its Poisson analogue

We recall from Example 4.1.2 the Ore extension Rt = K[t±1][x][y;σ,∆] where σ is the

automorphism of K[t±1][x] such that σ(x) = tx and σ(t) = t, and ∆ is the σ-derivation of

K[t±1][x] such that ∆(x) = t− 1 and ∆(t) = 0. In particular we have:

• yx = txy + t− 1,

• ∆σ = tσ∆,

• ∆k(x) ∈ (t− 1)k(k)!tK[t±1, x].

Thus Rt ∈ R. We first consider the Poisson algebra A := Rt/(t − 1)Rt ∈ P, then the

algebra Rq := Rt/(t − q)Rt ∈ Q for a non root of unity q ∈ K×. In this small example

we will actually be able to describe explicitly all the elements of the non empty strata of

Spec (Rq) and P.Spec (A). We require the field K to be algebraically closed.

7.2.1.1 Poisson Spectrum of A

We have A = K[X][Y ;α, δ]P with α := X∂X and δ := ∂X . The Poisson deleting derivations

algorithm returns (after one step) the Poisson affine space A = K[X ′][Y ;α]P with X ′ =

X + Y −1. Since 〈Y 〉P = 〈Y, 1〉 = A, Lemma 5.4.7 gives us the following equivalence. For

all Q ∈ P.Spec (A) we have:

(
Q ∈ Im(ϕ)

)
⇐⇒

(
Y /∈ Q

)
. (7.1)

Therefore for all P ∈ P.Spec (A) we have ϕ(P ) = PS−1 ∩A, where S = {Y i | i ≥ 0}. We

want to find the set W ′P ⊆ W = {∅, {1}, {2}, {1, 2}} of Cauchon diagrams of A. Recall

that by Proposition 5.4.17, we always have {∅, {1}} ⊆ W ′P . From the equivalence (7.1) it

is easy to see that:

w ∈ W ′P ⇐⇒ 2 /∈ w.
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Thus W ′P = {∅, {1}}. In the remainder of this section we describe the non empty strata

of A.

Lemma 7.2.1. We have P.Spec ∅(A) = {〈0〉}.

Proof. We denote by T the localisation of A at the multiplicative set consisting of its

(nonzero) monomials. Then T = K1[X ′±1, Y ±1] is a Poisson torus and there is a 1 − 1

correspondence:

P.Spec ∅(A) = {P ∈ P.Spec (A), X ′, Y /∈ P} ←→ {Q ∈ P.Spec (T )}.

By Lemma 1.3.2 we have ZP (T ) = K and so P.Spec (T ) = {〈0〉}. Therefore we obtain

P.Spec ∅(A) = {〈0〉} since ϕ
(
P.Spec ∅(A)

)
⊆ P.Spec ∅(A).

We now consider the stratum P.Spec {1}(A).

Lemma 7.2.2. We have:

P.Spec {1}(A) = {〈XY + 1〉, 〈XY + 1, Y − λ〉, λ ∈ K×}.

Proof. Since P.Spec ∅(A) = {〈0〉} we obtain ϕ
(
P.Spec {1}(A)

)
= P.Spec {1}(A) by Lemma

5.4.1, and therefore to understand P.Spec {1}(A) it is enough to understand P.Spec {1}(A).

There is a 1− 1 correspondence:

{P ∈ P.Spec (A) | 〈X ′〉 ⊆ P} ←→ P.Spec
(
A/〈X ′〉

)
,

and we have:

P.Spec
(
A/〈X ′〉

) ∼= P.Spec (K[Y ]) = Spec (K[Y ]) = {〈Y − λ〉 | λ ∈ K}.

So we conclude that:

P.Spec {1}(A) = {〈X ′〉, 〈X ′, Y − λ〉 | λ ∈ K×}.

To finish the proof we need to compute ϕ−1
(
P.Spec {1}(A)

)
. First we will show that
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ϕ(〈XY + 1〉) = 〈X ′〉. We have:

{XY + 1, X} = X(XY + 1),

{XY + 1, Y } = −Y (XY + 1).

So 〈XY + 1〉 is a Poisson ideal. Moreover we have A/〈XY + 1〉 ∼= K[Z±1], so 〈XY + 1〉 is

a prime ideal. Therefore 〈XY + 1〉 ∈ P.Spec (A). We now compute the image of 〈XY + 1〉

by the canonical embedding.

ϕ(〈XY + 1〉) = 〈XY + 1〉S−1 ∩A = {(XY + 1)fY −i | f ∈ A, i ≥ 0} ∩A.

So X ′ = X + Y −1 = (XY + 1)Y −1 ∈ ϕ(〈XY + 1〉) and:

〈X ′〉 ⊆ ϕ(〈XY + 1〉). (7.2)

We now show that 〈XY + 1〉 ⊆ ϕ−1(〈X ′〉). It is clear that 〈X ′〉 ∈ Im(ϕ), and we have:

ϕ−1(〈X ′〉) = 〈X ′〉S−1 ∩A = {X ′fY −i | f ∈ A, i ≥ 0} ∩A.

Thus XY + 1 = X ′Y ∈ ϕ−1(〈X ′〉) so that:

〈XY + 1〉 ⊆ ϕ−1(〈X ′〉). (7.3)

Notice that by definition we have ϕ−1(〈X ′〉) ∈ P.Spec {1}(A). Moreover 〈XY + 1〉 also

belongs to P.Spec {1}(A). Indeed, we already showed that X ′ ∈ ϕ(〈XY + 1〉), and if

Y ∈ ϕ(〈XY + 1〉), then Y ∈ 〈XY + 1〉, a contradiction. Thus both ϕ−1(〈X ′〉) and

〈XY +1〉 belong to P.Spec {1}(A). Since ϕ induces an homeomorphism from P.Spec {1}(A)

to P.Spec {1}(A) we deduce from equations (7.2) and (7.3) that:

ϕ(〈XY + 1〉) ⊆ ϕ
(
ϕ−1(〈X ′〉)

)
⊆ ϕ(〈XY + 1〉),

i.e. ϕ(〈XY + 1〉) = 〈X ′〉. In the same way we can show that for all λ ∈ K× we have:

ϕ(〈XY + 1, Y − λ〉) = 〈X ′, Y − λ〉.
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Therefore we obtain:

P.Spec {1}(A) = {〈XY + 1〉, 〈XY + 1, Y − λ〉 | λ ∈ K×}.

We conclude that the Poisson spectrum of A can be represented as follows:

〈0〉 ⊆ 〈XY + 1〉 ⊆ 〈XY + 1, Y − λ〉, (7.4)

for all λ ∈ K×. The Poisson primitive ideals are those which are maximal in their strata

(Proposition 6.2.5), i.e. the ideals:

〈0〉 and 〈XY + 1, Y − λ〉 for all λ ∈ K×.

Remark 7.2.3. For all λ ∈ K× we have:

〈XY + 1, X − λ〉 = 〈XY + 1, Y + λ−1〉,

since X−λ = −λ
(
(XY + 1)−X(Y +λ−1)

)
. This explains the apparent lack of symmetry

in X and Y in (7.4).

7.2.1.2 Spectrum of Rq

Let q ∈ K× be a non root of unity. Rq is the Ore extension Rq = K[x][y;σ,∆] with

σ(x) = qx and ∆(x) = q − 1, so that:

yx = qxy + q − 1.

Note that this algebra is isomorphic to the first quantum-Weyl algebra Aq1(K) since q 6= 1.

We will show that the set of Cauchon diagrams for Rq is also W ′ = {∅, {1}}. We denote by

ϕ the canonical embedding from Spec (Rq) to Spec (Rq) (see [8, Definition 4.4.1]), where

the algebra Rq is a quantum affine plane in the generators x′ := x+ y−1 and y.

Suppose that 2 ∈ w ∈ W ′ and let P ∈ Specw(Rq). Then y ∈ ϕ(P ), i.e. y ∈ P by [8,
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Lemme 4.3.3]. But then:

q − 1 = yx− qxy ∈ P,

a contradiction. This shows that W ′ ⊆ {∅, {1}}.

• Secondly suppose that 2 /∈ w ∈W . Then y does not belong to any ideal in Specw(Rq).

Thus Specw(Rq) ⊆ Im(ϕ) by [8, Lemme 4.3.1] and so w ∈W ′P .

Therefore we have W ′ = {∅, {1}}. In particular W ′ = W ′P and Question 7.1.1 is

positively answered for the algebra Rt. We will now compute the strata Spec ∅(Rq) and

Spec {1}(Rq).

Lemma 7.2.4. We have:

Spec ∅(Rq) = {〈0〉},

Spec {1}(Rq) = {〈xy + 1〉, 〈xy + 1, y − λ〉 | λ ∈ K×}.

Proof. Recall that q is not a root of unity and that the field K is algebraically closed.

Therefore, by [6, II.1.2] we obtain:

Spec ∅(Rq) = {〈0〉},

Spec {1}(Rq) = {〈x′〉, 〈x′, y − λ〉 | λ ∈ K×}.

Since ϕ
(
Spec ∅(Rq)

)
⊆ Spec ∅(Rq) we obtain that Spec ∅(Rq) = {〈0〉}. Notice that the

element xy + 1 is normal in Rq and that, since Rq/〈xy + 1〉 ∼= K[X±1], the ideal 〈xy + 1〉

is prime in Rq. We now show that:

ϕ(〈xy + 1〉) = 〈x′〉. (7.5)

Since:

ϕ(〈xy + 1〉) = 〈xy + 1〉S−1 ∩Rq,

where S = {yi | i ≥ 0}, the equality x′ = (xy + 1)y−1 shows that:

〈x′〉 ⊆ ϕ(〈xy + 1〉). (7.6)
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Now note that 〈x′〉 ∈ Spec {1}(Rq) ⊆ Im(ϕ). So we have:

ϕ−1(〈x′〉) = 〈x′〉S−1 ∩Rq,

and the equality xy + 1 = x′y gives us

〈xy + 1〉 ⊆ ϕ−1(〈x′〉). (7.7)

It is easy to see that both ϕ−1(〈x′〉) and 〈xy+ 1〉 belong to Spec {1}(Rq). Since ϕ induces

an homeomorphism from Spec {1}(Rq) to Spec {1}(Rq) we deduce from equations (7.6) and

(7.7) that:

ϕ(〈xy + 1〉) ⊆ ϕ
(
ϕ−1(〈x′〉)

)
⊆ ϕ(〈xy + 1〉),

i.e. ϕ(〈xy + 1〉) = 〈x′〉. In a similar way we obtain that:

ϕ(〈xy + 1, y − λ〉) = 〈x′, y − λ〉,

for all λ ∈ K×. Since ϕ
(
Spec {1}(Rq)

)
= Spec {1}(Rq), this shows that:

Spec {1}(Rq) = {〈xy + 1〉, 〈xy + 1, y − λ〉 | λ ∈ K×}.

We can now represent the spectrum of Rq as follows:

〈0〉 ⊆ 〈xy + 1〉 ⊆ 〈xy + 1, y − λ〉,

for all λ ∈ K×. Note that from our descriptions of Spec (Rq) and P.Spec (A) we can easily

deduce that these two spectra are homeomorphic.

7.2.2 An example with a two step algorithm

Let Rt be the iterated Ore extension over K[t±1] given by:

Rt := K[t±1][x][y;σ1,∆1][z;σ2,∆2],
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where:

• σ1 is the automorphism of K[t±1][x] such that σ1(x) = t−1x and σ1(t) = t,

• ∆1 is the σ1-derivation of K[t±1][x] such that ∆1(x) = t− 1 and ∆1(t) = 0,

• σ2 is the automorphism of K[t±1][x][y;σ1,∆1] such that σ2(x) = tx, σ2(y) = t−1y

and σ2(t) = t,

• ∆2 is the σ2-derivation of K[t±1][x][y;σ1,∆1] such that ∆2(x) = (t − 1)yk for some

integer k ≥ 1 and ∆2(y) = ∆2(t) = 0.

Therefore we have t ∈ Z(Rt) and the relations:

yx = t−1xy + t− 1, zx = txz + (t− 1)yk and zy = t−1yz.

One can check that we have:

∆1σ1 = t−1σ1∆1 and ∆2σ2 = t1+kσ2∆2.

Moreover for all i ≥ 0 we have:

∆i
1(x) ∈ (i)!t−1(t− 1)iK[t±1][x] and ∆i

2(x) ∈ (i)!tk+1(t− 1)iK[t±1][x][y;σ1,∆1].

Finally, it is clear that the quotient algebra A := Rt/(t− 1)Rt is commutative. Therefore

Rt ∈ R.

7.2.2.1 Cauchon diagrams for A

A is the iterated Poisson-Ore extension:

A = K[X][Y ;α1, δ1]P [Z;α2, δ2]P ,

where α1 = −X∂X , α2 = X∂X − Y ∂Y , δ1 = ∂X and δ2 = Y k∂X . We have:

{Y,X} = −XY + 1,

{Z,X} = XZ + Y k,

{Z, Y } = −Y Z.
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Note that this is actually a Jacobian Poisson structure whose potential is:

W := XY Z +
1

k + 1
Y k+1 − Z.

In particular we have K[W ] ⊆ ZP (A). When k = 2 we retrieve the Poisson algebra given

in Remark 5.4.9. Note that the derivation δ1 (resp. δ2) extends to a locally nilpotent

iterative higher (−1, α1)-skew (resp. (k + 1, α2)-skew) Poisson derivation on K[X] (resp.

K[X][Y ;α1, δ1]P ).

We now compute the set W ′P of Cauchon diagrams of A. The deleting derivations

algorithm gives us new indeterminates:

X ′ = X +
1

k + 1
Y kZ−1,

Y ′ = Y,

X ′′ = X ′ − Y −1 = X +
1

k + 1
Y kZ−1 − Y −1,

with a sequence of iterated Poisson-Ore extensions:

A4 := K[X][Y ;α1, δ1]P [Z;α2, δ2]P = A,

A3 := K[X ′][Y ;α1, δ1]P [Z;α2]P ,

A2 := K[X ′′][Y ;α1]P [Z;α2]P = A.

The algebra A is the Poisson affine space Kλ[X ′′, Y, Z], where λ12 = −λ13 = λ23 = 1. Note

that we have W = X ′′Y Z. The canonical embedding is the composite map ϕ = ϕ2 ◦ ϕ3,

where ϕ3 : P.Spec (A4) −→ P.Spec (A3) and ϕ2 : P.Spec (A3) −→ P.Spec (A2) are defined

as in Section 5.4.1.

Lemma 7.2.5. We have W ′P = {∅, {1}}.

Proof. Let w ∈ W ′P and P ∈ P.Spec w(A). Suppose first that 2 ∈ w. Then Y ∈ ϕ(P )

and by Corollary 5.4.11 we obtain Y ∈ ϕ3(P ). We now distinguish between two cases:

either Z ∈ ϕ3(P ), or Z /∈ ϕ3(P ). Suppose that Z ∈ ϕ3(P ), then the Poisson algebra

isomorphism A/P ∼= A3/ϕ3(P ) (Lemma 5.4.18) shows that Y ∈ P . Suppose now that

Z /∈ ϕ3(P ). Then:

Y ∈ ϕ3(P )[Z−1] ∩A = P.
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Therefore in both cases we have Y ∈ P . But then:

1 = {Y,X}+XY ∈ P,

a contradiction to the primality of P . Thus 2 /∈ w.

Suppose now that 3 ∈ w. Then Z ∈ ϕ(P ), and Z ∈ P by Corollary 5.4.11. But then:

Y k = {Z,X} −XZ ∈ P,

and by primality of P we have Y ∈ P . We conclude as previously that this is impossible

and 3 /∈ w.

We proved thatW ′P ⊆ {∅, {1}}. The reverse inclusion can be obtained from Proposition

5.4.17. Thus we have W ′P = {∅, {1}}.

In the remainder of this section we compute explicitly the preimage of the ideal 〈X ′′〉 ∈

P.Spec {1}(A). We claim that the ideal 〈W 〉 of A is a Poisson prime ideal such that

ϕ(〈W 〉) = 〈X ′′〉. We start by justifying that 〈W 〉 ∈ P.Spec (A).

First we show that W is irreducible in A. Suppose that W = G1G2 with G1, G2 ∈

K[X,Y, Z]. Since degX(W ) = 1 we can suppose that G1 = AX + B and G2 = C, where

A,B,C ∈ K[Y,Z]. But then we have AC = Y Z and BC = 1
k+1Y

k+1 − Z. From the first

equality we deduce that up to a nonzero scalar we have C ∈ {1, Y, Z, Y Z}. Suppose that

C 6= 1. Then from the second equality, either Y or Z must divides 1
k+1Y

k+1 − Z. This is

a contradiction and G2 = C = 1, i.e. W is irreducible. We conclude that 〈W 〉 is a prime

ideal since A is a unique factorisation domain. Moreover since W ∈ ZP (A) it is clear that

〈W 〉 is a Poisson ideal.

Now consider the ideal 〈X ′Y −1〉 of A3. It is easy to check that 〈X ′Y −1〉 ∈ P.Spec (A3),

and that Y,Z /∈ 〈X ′Y − 1〉. In particular we have:

ϕ2(〈X ′Y − 1〉) = 〈X ′Y − 1〉[Y −1] ∩A,

and since X ′′ = (X ′Y − 1)Y −1, it is clear that 〈X ′′〉 ⊆ ϕ2(〈X ′Y − 1〉). Thus we have
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X ′′ ∈ ϕ2(〈X ′Y − 1〉) and Y,Z /∈ ϕ2(〈X ′Y − 1〉), so:

〈X ′Y − 1〉 ∈ P.Spec {1}(A3) := ϕ−1
2

(
P.Spec {1}(A)

)
.

Note that 〈X ′′〉 ∈ Im(ϕ2) since Y /∈ 〈X ′′〉, and so we have:

ϕ−1
2 (〈X ′′〉) = 〈X ′′〉[Y −1] ∩A3.

Because X ′′Y = X ′Y − 1 it is clear that 〈X ′Y − 1〉 ⊆ ϕ−1
2 (〈X ′′〉). Since both the ideals

〈X ′Y−1〉 and ϕ−1
2 (〈X ′′〉) belong to P.Spec {1}(A3) and since ϕ2 induces an homeomorphism

from P.Spec {1}(A3) to P.Spec {1}(A) we obtain that:

ϕ2(〈X ′Y − 1〉) = 〈X ′′〉.

We have Z /∈ 〈X ′Y − 1〉, so 〈X ′Y − 1〉 ∈ Im(ϕ2) and:

ϕ−1
3 (〈X ′Y − 1〉) = 〈X ′Y − 1〉[Z−1] ∩A.

Since W = X ′′Y Z = (X ′Y − 1)Z we have 〈W 〉 ⊆ ϕ−1
3 (〈X ′Y − 1〉). On the other hand by

a degree argument one easily deduce that Y,Z /∈ 〈W 〉. Thus we have:

ϕ3(〈W 〉) = 〈W 〉[Z−1] ∩A3.

Therefore we get that 〈X ′Y − 1〉 ⊆ ϕ3(〈W 〉) since X ′Y − 1 = WZ−1. It is clear that

ϕ−1
3 (〈X ′Y − 1〉) belongs to P.Spec {1}(A). Moreover we deduce from Y, Z /∈ 〈W 〉 that

Y, Z /∈ ϕ(〈W 〉), and that X ′′ = WY −1Z−1 ∈ ϕ(〈W 〉). Therefore ϕ(〈W 〉) ∈ P.Spec {1}(A)

and 〈W 〉 ∈ P.Spec {1}(A). Since ϕ3 induces an homeomorphism from P.Spec {1}(A) to

P.Spec {1}(A3) we finally obtain that:

ϕ3(〈W 〉) = 〈X ′Y − 1〉.

We conclude that:

ϕ(〈W 〉) = ϕ2 ◦ ϕ3(〈W 〉) = ϕ2(〈X ′Y − 1〉) = 〈X ′′〉.
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7.2.2.2 Cauchon diagrams for Rq

We now consider the algebra Rq := Rt/(t − q)Rt for a non root of unity q ∈ K×. We

express Rq as an iterated Ore extension as follows:

Rq = K[x][y;σ1,∆1][z;σ2,∆2],

where the σis and the ∆is are defined analogously as at the beginning of the section,

replacing t by q. We have the relations:

yx = q−1xy + q − 1,

zx = qxz + (q − 1)yk,

zy = q−1yz,

where k ≥ 1 is an integer. We can apply Cauchon’s deleting derivations algorithm to Rq,

and we will compute the set W ′ of Cauchon diagrams of Rq. We can show that:

{∅} ⊆W ′ ⊆ {∅, {1}}

similarly to the way we showed that {∅} ⊆ W ′P ⊆ {∅, {1}} in the previous section. The

tools needed are either in [8], or can be easily deduced from it. Only one detail requires

explanation. Suppose that yk ∈ P for some prime ideal P ∈ Spec (Rq). To pass from

yk ∈ P to y ∈ P , we need complete primeness of P . One can show that all prime ideals

of Rq are completely prime by [6, Theorem II.6.9]. Indeed there is an action of the torus

K× on Rq given by λ(x) = λx, λ(y) = λ−1y and λ(z) = λ−1−kz for λ ∈ K× and satisfying

the appropriate assumptions.

We will now show that {1} ∈ W ′. For this, we need the following elements that we

obtain by deleting the variables z and y.

x′ := x+ qk
q − 1

qk+1 − 1
ykz−1,

x′′ := x′ − qy−1 = x+ qk
q − 1

qk+1 − 1
ykz−1 − qy−1,

w := x′′yz = xyz + qk+1 q − 1

qk+1 − 1
yk+1 − qz.
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Note that w ∈ Z(Rq). We denote by 〈w〉 the ideal generated by w inside Rq and by 〈x′′〉

the ideal generated by the normal element x′′ inside Rq. Since Rq is a quantum affine

space it is clear that 〈x′′〉 ∈ Spec (Rq). We will show that ϕ(〈w〉) = 〈x′′〉. First we need to

justify that 〈w〉 ∈ Spec (Rq). We denote by Σ the multiplicative set generated by y and z

in Rq. If we denote by S the multiplicative set generated by y and z in Rq one can show,

adapting [8, Proposition 3.3.1], that both Σ and S satisfy the Ore conditions, that Σ = S

and that we have the equality:

RqΣ
−1 = RqS

−1.

The prime ideal 〈x′′〉 of Rq induces a prime ideal J in RqΣ
−1. Since w = x′′yz, the ideal

J is generated by w (inside RqΣ
−1 = RqS

−1). Set I := J ∩Rq ∈ Spec (Rq). We will show

that I = 〈w〉, proving that 〈w〉 is a prime ideal. Since w ∈ J ∩Rq it is clear that 〈w〉 ⊆ I.

Reciprocally let u ∈ I. Since u ∈ J we can write u = wa, where a ∈ RqΣ−1 = RqS
−1.

Therefore there exists s ∈ S such that as ∈ Rq. All elements of S are of the form βyizj

for some scalar β ∈ K× and integers i, j ≥ 0. Thus by rescaling u if necessary we can

assume that β = 1. Now choose i, j minimal such that uyizj = wa′ with the property

that a′ := ayizj belongs to Rq. We will show that i = j = 0. Suppose that j ≥ 1. Then

all monomials in wa′ = uyizj must contain z. Write a′ =
∑
rlz

l ∈ Rq where the ris are

polynomials in x and y. Then:

wa′ =
∑

wrlz
l =

∑
rlwz

l =
∑

rl(xy − q)zl+1 +
∑

rlαz
l,

where α ∈ K[y] is nonzero. But then, since uyizj = wa′ we must have r0α = 0, i.e. r0 = 0.

Therefore we can write a′ = a′′z for some a′′ ∈ Rq. But then we have:

uyizj−1 = wa′′,

for some a′′ ∈ Rq, contradicting the minimality of j. We conclude that j = 0. Suppose

now that i ≥ 1. Then all monomials in uyi = wa′ must contains y. We now decompose a′

in the basis {xu1zu2yu3 | u = (u1, u2, u3) ∈ N3} of Rq (this is indeed a basis since y and z

q-commute). We express a′ in this basis:

a′ =
∑
u

λux
u1zu2yu3 ∈ Rq,
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where the scalars λu are almost all zero. Then by writing w = qxzy + µyk+1 − qz, where

µ ∈ K× we have:

wa′ =
∑
u

λux
u1wzu2yu3

=
∑
u

λuq
u2+1xu1+1zu2+1yu3+1

+
∑
u

µλuq
u2(k+1)xu1zu2yu3+k+1

−
∑
u

λuqx
u1zu2+1yu3 .

But then, since uyi = wa′, all monomials of wa′ must contain y. Therefore we must have

λu = 0 when u3 = 0, i.e. a′ = a′′y for some a′′ ∈ Rq. But then uyi−1 = wa′′ with a′′ ∈ Rq.

This contradicts the minimality of i, so i = 0, and, finally, u = wa for some a ∈ Rq, i.e.

u ∈ 〈w〉. We have shown that I = 〈w〉, in particular 〈w〉 is a prime ideal in Rq. It is now

easy to check that ϕ(〈w〉) = 〈x′′〉 thanks to the equality w = x′′yz.

We can finally conclude that W ′ = {∅, {1}} = W ′P , answering positively Question 7.1.1

for the algebra Rt.

7.3 Cauchon diagrams for matrix Poisson varieties

In this section we give a combinatorial description of Cauchon diagrams for the matrix

Poisson varieties. Assume that charK 6= 2. Recall from Section 4.2.1 that the coordinate

ring of the variety of m× p Poisson matrices A = O
(
Mm,p(K)

)
is the polynomial algebra

K[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ p ] endowed with the Poisson bracket given by:

{Xij , Xkl} =



XijXkl if i < k and j = l,

XijXkl if i = k and j < l,

0 if i < k and j > l,

2XilXkj if i < k and j < l.

We showed in Section 4.2.1 that A is the semiclassical limit of an iterated Ore extension

belonging to the class R. Therefore the Poisson algebra A belongs to the class P. In

Section 7.3.1 we will show how the Poisson deleting derivations algorithm applies to A.
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As usual we will denote by W ′P ⊆ W = P
(
[[1,m]] × [[1, p]]

)
the set of Cauchon diagrams

for A.

We denote by G the set consisting of all m× p grids whose boxes are colored either in

black or in white. There is a bijection:

ξ : W −→ G

w 7−→ Cw,

where Cw is the m×p grid such that for all (i, j) ∈ [[1,m]]× [[1, p]] the box in position (i, j)

is black if and only if (i, j) ∈ w. For later purpose we set wC := ξ−1(C) ∈ W for C ∈ G.

We want to understand the set of Cauchon diagrams W ′P under this bijection. We denote

by G the subset of G defined as follows.

Definition 7.3.1. The set G consists of all m×p grids with black or white boxes satisfying

the following property. If a box is black, then every box strictly to its left is black or every

box strictly above it is black. We will refer to this property as the Cauchon property.

Figure 7.1: An example of an element C ∈ G for m = 4 and p = 5.

For the element C ∈ G of Figure 7.1 we have:

ξ−1(C) = {(1, 1), (1, 2), (1, 4), (2, 4), (3, 1), (3, 2),

(3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 4)} ∈ P
(
[[1, 4]]× [[1, 5]]

)
.

In Section 7.3.3 we will prove that ξ induces by restriction a bijection between W ′P and

G.
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7.3.1 Poisson deleting derivations algorithm and matrix Poisson vari-

eties

From Section 4.2.1 we obtain the following:

• A can be expressed as an iterated Poisson-Ore extension:

A = K[X11][X12;α12, δ12]P · · · [Xmp;αmp, δmp]P

for suitable maps αuv and δuv, where the indeterminates are ordered in the lexico-

graphic order.

• For all (1, 2) ≤ (u, v) ≤ (m, p) the Poisson αuv-derivation δuv extends to an iterative,

locally nilpotent higher (2, αuv)-skew Poisson derivation (Duv,k) on the appropriate

Poisson subalgebra. A short computation (based on the formula of Proposition 4.1.1)

leads to:

Duv,k

(
Xij

)
=


Xij k = 0

−2XivXuj k = 1

0 k > 1,

for all (1, 1) ≤ (i, j) < (u, v).

We now make explicit the Poisson deleting derivations algorithm in the context of

matrix Poisson varieties. For u ∈
(
([[1,m]]× [[1, p]]) \ {(1, 1), (m, p)}

)
, we will often denote

by u− (respectively u+) the largest (respectively smallest) element of [[1,m]]×[[1, p]] which is

smaller (respectively larger) than u, with respect to the lexicographic order. By convention

we set (1, 1)+ := (1, 2), (m, p)− := (m, p− 1) and (m, p)+ := (m, p+ 1).

The Poisson deleting derivations algorithm (Section 5.2) returns for all (1, 2) ≤ (u, v) ≤

(m, p)+ a matrix
(
X

(u,v)
ij

)
ij
∈ Mm,p

(
FracA

)
. For (u, v) = (m, p)+ the matrix is given by(

X
(m,p)+

ij

)
ij

:=
(
Xij

)
ij

. Then, assuming that the matrix
(
X

(u,v)+

ij

)
ij

is known, the matrix(
X

(u,v)
ij

)
ij

is obtained as follows:

X
(u,v)
ij :=

 X
(u,v)+

ij if i ≥ u or j ≥ v,

X
(u,v)+

ij −X(u,v)+

iv X
(u,v)+

uj

(
X

(u,v)+

uv

)−1
if i < u and j < v.
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Set (u, v)− := (u−, v−). The subalgebra of FracA generated by the X
(u,v)
ij is denoted

by C(u,v). This is an iterated Poisson-Ore extension of the form:

C(u,v) = K[X
(u,v)
11 ] · · · [X(u,v)

u−v− ;α′u−v− , δ
′
u−v− ]P [X(u,v)

uv ;α′uv]P · · · [X(u,v)
mp ;α′mp]P ,

for suitable maps α′ij and δ′ij . We have C(m,p)+ = A and we set A := C(1,2), and
(
Tij
)
ij

:=(
X

(1,2)
ij

)
ij

. In particular A is a Poisson affine space in mp indeterminates. For all w ∈ W

we set:

Jw := 〈Tij | (i, j) ∈ w〉 ∈ P.Specw(A).

7.3.2 Some reminders

In this section we recall some results from Section 5.4 adjusting notation to the context

of matrix Poisson varieties. Let (1, 2) ≤ (u, v) ≤ (m, p). There is an injective map ϕ(u,v)

from P.Spec (C(u,v)+) to P.Spec (C(u,v)) defined by:

ϕ(u,v)(P ) =

 PS−1
(u,v) ∩ C(u,v) if X

(u,v)+

uv /∈ P,

g−1
(u,v)

(
P/〈X(u,v)+

uv 〉P
)

if X
(u,v)+

uv ∈ P,

where S(u,v) is the multiplicative set of C(u,v)+ generated by X
(u,v)+

uv = X
(u,v)
uv , and where:

g(u,v) : C(u,v) −→
C(u,v)+

〈X(u,v)+
uv 〉P

X
(u,v)
ij 7−→ X

(u,v)+

ij + 〈X(u,v)+

uv 〉P ,

is a surjective Poisson algebra homomorphism. By setting ϕ := ϕ(1,2) ◦ · · · ◦ ϕ(m,p), we

obtain the canonical embedding ϕ : P.Spec (A) → P.Spec (A). We also define for all

(1, 1) ≤ (u, v) ≤ (m, p) an injective map f(u,v) from P.Spec (C(u,v)+) to P.Spec (A) by

setting f(1,1) := idP.Spec (A) and f(u,v) := f(u,v)− ◦ ϕ(u,v). For Q ∈ Im(ϕ), we set P(u,v) :=

f−1
(u,v)−(Q) ∈ P.Spec (C(u,v)) for all (1, 2) ≤ (u, v) ≤ (m, p)+ and P := P(m,p)+ = ϕ−1(Q).

Note that we have P(1,2) = Q. We now recall the following membership criterion for

Im(ϕ(u,v)), where N(u,v) := ker(g(u,v)).

Proposition 7.3.2. [Lemma 5.4.7] Let Q ∈ P.Spec (C(u,v)). Then:

Q ∈ Im(ϕ(u,v)) ⇐⇒
(

either X(u,v)
uv = X(u,v)+

uv /∈ P(u,v), or N(u,v) ⊆ Q
)
.
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Corollary 7.3.3. [Corollary 5.4.11] Let (1, 1) ≤ (u, v) ≤ (m, p), and Q ∈ Im(ϕ). We

have the following equivalence:

Tuv = X(1,2)
uv ∈ Q ⇐⇒ X(u,v)+

uv ∈ P(u,v)+ .

We will often use this corollary without reference in the following.

7.3.3 Cauchon diagrams for O
(
Mm,p(K)

)
In this section we give a combinatorial description of the set W ′P of Cauchon diagrams for

the Poisson algebra O
(
Mm,p(K)

)
. More precisely we prove that ξ(W ′P ) = G. The following

definition will make the next proofs more readable.

Definition 7.3.4. Let R be a K-algebra. The matrix M = (mij) ∈Mm,p(R) is a Cauchon

matrix provided that for all (i, j) ∈ [[1,m]]× [[1, p]] we have:

(
mij = 0

)
⇐⇒

(
mkj = 0 for all k ≤ i, or mil = 0 for all l ≤ j

)
.

Note that to a Cauchon matrix M = (mij) ∈ Mm,p(R) we can associate a unique

element CM of G (of size m× p) by colouring in black the box in position (i, j) if and only

if mij = 0. We are just saying that the shape of the 0s in M forms an element of G.

Proposition 7.3.5. We have ξ(W ′P ) ⊆ G.

Proof. Let w ∈W ′P . We have to show that Cw := ξ(w) ∈ G. Since w ∈W ′P , there exists an

ideal Pw ∈ Im(ϕ) ∩ P.Specw(A), and we set P(u,v) := f−1
(u,v)−(Pw) for all (1, 2) ≤ (u, v) ≤

(m, p)+, so that P(1,2) = Pw. Note that Cw ∈ G if and only if
(
Tij + Pw

)
ij
∈Mm,p

(
A/Pw

)
is a Cauchon matrix. We prove, by a decreasing induction on (u, v), that the matrix(
X

(u,v)
ij + P(u,v)

)
ij
∈ Mm,p

(
C(u,v)/P(u,v)

)
is a Cauchon matrix for all (m, p)+ ≥ (u, v) ≥

(1, 2). The case (u, v) = (1, 2) will give the result.

Initialisation: Assume (u, v) = (m, p)+. If X
(m,p)+

ij ∈ P(m,p)+ , then:

{X(m,p)+

ij , X
(m,p)+

st } = −2X
(m,p)+

it X
(m,p)+

sj ∈ P(m,p)+
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for all s < i and all t < j. On the other hand, if X
(m,p)+

sj /∈ P(m,p)+ for some s < i,

then we have X
(m,p)+

it ∈ P(m,p)+ for all t < j by primality of P(m,p)+ . This concludes the

initialisation.

Induction step: Assume now that
(
X

(u,v)+

ij + P(u,v)+
)
ij
∈Mm,p

(
C(u,v)+/P(u,v)+

)
is a Cau-

chon matrix for some (m, p) ≥ (u, v) ≥ (1, 2) and let us show that
(
X

(u,v)
ij + P(u,v)

)
ij
∈

Mm,p

(
C(u,v)/P(u,v)

)
is also a Cauchon matrix. Assume that X

(u,v)
ij ∈ P(u,v).

Case 1: If (i, j) < (u, v), then we conclude in the same manner as in the initialisation.

Case 2: If (i, j) = (u, v), then we have X
(i,j)
ij = X

(i,j)
uv ∈ P(i,j) so X

(i,j)+

ij ∈ P(i,j)+ and

the induction hypothesis tells us that X
(i,j)+

it ∈ P(i,j)+ for all 1 ≤ t ≤ j, or X
(i,j)+

sj ∈ P(i,j)+

for all 1 ≤ s ≤ i.

Since X
(i,j)+

ij ∈ P(i,j)+ , Lemma 5.4.18 gives us a Poisson algebra isomorphism between

C(i,j)+/P(i,j)+ and C(i,j)/P(i,j) sending the coset of X
(i,j)+

ab to the coset of X
(i,j)
ab for all

(1, 1) ≤ (a, b) ≤ (m, p). Therefore we have X
(i,j)
it ∈ P(i,j) for all 1 ≤ t ≤ j, or X

(i,j)
sj ∈ P(i,j)

for all 1 ≤ s ≤ i, and this concludes this case.

Case 3: If (i, j) > (u, v), then we distinguish between 2 cases.

Case 3.1: If X
(u,v)+

uv ∈ P(u,v)+ , then the isomorphism C(u,v)+/P(u,v)+
∼= C(u,v)/P(u,v)

allows us to conclude in the same manner as in Case 2 above.

Case 3.2: Assume now that X
(u,v)+

uv /∈ P(u,v)+ . Since (i, j) > (u, v) we have i ≥ u, and:

X
(u,v)+

ij = X
(u,v)
ij ∈ P(u,v) ∩ C(u,v) ⊆ P(u,v)+ .

The induction hypothesis tells us that X
(u,v)+

it ∈ P(u,v)+ for all 1 ≤ t ≤ j, or X
(u,v)+

sj ∈

P(u,v)+ for all 1 ≤ s ≤ i. Note that these two cases are not symmetric.

Case 3.2.1: If X
(u,v)+

it ∈ P(u,v)+ for all 1 ≤ t ≤ j, then, since i ≥ u, we have:

X
(u,v)
it = X

(u,v)+

it ∈ P(u,v)+ ∩ C(u,v) ⊆ P(u,v) for all 1 ≤ t ≤ j.

This concludes this case.
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Case 3.2.2: If X
(u,v)+

sj ∈ P(u,v)+ for all 1 ≤ s ≤ i, then for all 1 ≤ s ≤ i we have:

X
(u,v)
sj =

 X
(u,v)+

sj when s ≥ u or j ≥ v,

X
(u,v)+

sj −X(u,v)+

sv X
(u,v)+

uj

(
X

(u,v)+

uv

)−1
when s < u and j < v.

So when s ≥ u or j ≥ v, we have X
(u,v)
sj ∈ P(u,v)+ ∩ C(u,v) ⊆ P(u,v) for all 1 ≤ s ≤ i.

Otherwise, when s < u and j < v, we have:

X
(u,v)
sj = X

(u,v)+

sj −X(u,v)+

sv X
(u,v)+

uj

(
X(u,v)+

uv

)−1 ∈ P(u,v)+
(
S(u,v)+

)−1 ∩ C(u,v) = P(u,v)

since X
(u,v)+

sj and X
(u,v)+

uj belong to P(u,v)+ as s, u ≤ i (recall that S(u,v)+ is the multi-

plicative set of C(u,v)+ generated by X
(u,v)+

uv ). So X
(u,v)
uj ∈ P(u,v) for all 1 ≤ s ≤ i and this

concludes the induction.

Conversely, we will prove that ξ−1(G) ⊆W ′P in the next proposition. For this purpose,

we use Proposition 7.3.2 which requires an explicit description of N(u,v). This is the goal

of the next lemma. Recall that charK 6= 2.

Lemma 7.3.6. We have

N(u,v) =

 〈X
(u,v)
uv 〉 if u = 1 or v = 1,

〈X(u,v)
uv , X

(u,v)
u−l,vX

(u,v)
u,v−k | (l, k) ∈ [[1, u− 1]]× [[1, v − 1]]〉 otherwise.

Proof. For convenience of notation we write Yij = X
(u,v)+

ij for all (1, 1) ≤ (i, j) ≤ (m, p).

By Remark 5.4.9 if we show that the ideal:

I :=< Yuv, δuv(Ykl) | (k, l) ≤ (u, v)− >

is a Poisson ideal of C(u,v)+ , then the lemma is proved since we have:

I =

 < Yuv > if u = 1 or v = 1,

< Yuv, YkvYul | (k, l) ∈ [[1, u− 1]]× [[1, v − 1]] > otherwise.

Firstly it is clear that {Yuv, a} ∈ I for all a ∈ C(u,v)+ . This solves the case where u = 1 or

v = 1. We now assume that u and v are both strictly greater than 1. It remains to prove

that {YkvYul, Yij} ∈ I for all (k, l) ∈ [[1, u− 1]]× [[1, v − 1]] and all (i, j) ∈ [[1,m]]× [[1, p]],
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by considering all the possible cases. If (i, j) > (u, v), then an easy computation prove

that {YkvYul, Yij} ∈ I for all (k, l) ∈ [[1, u− 1]]× [[1, v − 1]]. Now if (i, j) ≤ (u, v), then we

set:

f := {YkvYul, Yij} = Ykv{Yul, Yij}+ Yul{Ykv, Yij}.

We will prove that f ∈ I by examining all possible cases for (1, 1) ≤ (i, j) ≤ (u, v).

• If (i, j) = (u, v), then f = 2YkvYulYuv ∈ I.

• If i = u and l < j < v, then f = YkvYulYuj ∈ I.

• If (i, j) = (u, l), then f = 0 ∈ I.

• If i = u and 1 ≤ j < l, then f = −YkvYulYuj ∈ I.

• If k < i < u and v < j ≤ p, then f = 2YkjYulYiv ∈ I, since YulYiv ∈ I.

• If k < i < u and j = v, then f = YkvYulYiv ∈ I.

• If k < i < u and l < j < v, then f = 0 ∈ I.

• If k < i < u and j = l, then f = −YkvYulYil ∈ I.

• If k < i < u and 1 ≤ j < l, then f = −2YujYkvYil ∈ I since YujYkv ∈ I.

• If i = k and v < j ≤ p, then f = YkvYulYkj ∈ I.

• If (i, j) = (k, v), then f = 0.

• If i = k and l < j < v, then f = −YkvYulYkj ∈ I.

• If (i, j) = (k, l), then f = −2YkvYulYkl ∈ I.

• If i = k and 1 ≤ j < l, then f = −2YkvYujYkl − YkvYulYkj ∈ I since YkvYuj ∈ I.

• If 1 ≤ i < k and v < j ≤ p, then f = 0.

• If 1 ≤ i < k and j = v, then f = −YkvYulYiv ∈ I.

• If 1 ≤ i < k and l < j < v, then f = −2YulYivYkj ∈ I since YulYiv ∈ I.

• If 1 ≤ i < k and j = l, then f = −2YulYivYkj − YkvYulYil ∈ I since YulYiv ∈ I.
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• If 1 ≤ i < k and 1 ≤ j < l then f = −2YkvYujYil − 2YulYivYkj ∈ I since YkvYuj ∈ I

and YulYiv ∈ I.

We are now ready to prove the remaining inclusion.

Proposition 7.3.7. We have ξ−1(G) ⊆W ′P .

Proof. Let C ∈ G. We want to show that wC := ξ−1(C) ∈ W ′P . Note that to show

that wC ∈ W ′P it is enough to show that JwC ∈ Im(ϕ). We show by induction that

JwC ∈ Im(f(u,v)) for all (1, 1) ≤ (u, v) ≤ (m, p). The case (u, v) = (m, p) will then give the

result since f(m,p) = ϕ.

If (u, v) = (1, 1) we have f(u,v) = idP.Spec (A) and the result is trivial.

Assume that JwC ∈ Im(f(u,v)−) for some (1, 2) ≤ (u, v) ≤ (m, p), and set:

P(u,v) := f−1
(u,v)−(JwC) ∈ P.Spec (C(u,v)).

Since f(u,v) = f(u,v)− ◦ ϕ(u,v) it is enough to prove that P(u,v) ∈ Im(ϕ(u,v)).

Case 1: If Tuv /∈ JwC , then Tuv = X
(u,v)+

uv = X
(u,v)
uv /∈ P(u,v) and P(u,v) ∈ P0

(u,v)(C(u,v)).

So by Proposition 7.3.2 we have indeed P(u,v) ∈ Im(ϕ(u,v)).

Case 2: If Tuv ∈ JwC , then Tuv = X
(u,v)+

uv = X
(u,v)
uv ∈ P(u,v) and P(u,v) ∈ P1

(u,v)(C(u,v)).

By Proposition 7.3.2, we have P(u,v) ∈ Im(ϕ(u,v)) if and only if N(u,v) ⊆ P(u,v). Therefore,

by Lemma 7.3.6, we will get the result if we show that X
(u,v)
ul ∈ P(u,v) for all 1 ≤ l ≤ v, or

that X
(u,v)
kv ∈ P(u,v) for all 1 ≤ k ≤ u. Since C ∈ G, the matrix

(
Tij + JwC

)
ij

is a Cauchon

matrix. Therefore, Tuv ∈ JwC implies that Tul ∈ JwC for all 1 ≤ l ≤ v, or Tkv ∈ JwC for all

1 ≤ k ≤ u.

Case 2.1: If Tul ∈ JwC for all 1 ≤ l ≤ v, then we prove by induction on j that

X
(u,j)
ul ∈ P(u,j) for all l ≤ j ≤ v. If j = l, the result comes from the equivalence:

Tul ∈ JwC ⇐⇒ X
(u,l)+

ul = X
(u,l)
ul ∈ P(u,l) (Corollary 7.3.3).
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Assume now that X
(u,j)
ul ∈ P(u,j) for some j ∈ {l, . . . , v − 1}. We show that X

(u,j)+

ul ∈

P(u,j)+ .

Case 2.1.1: If X
(u,j)
uj /∈ P(u,j), then we have:

P(u,j)+ = P(u,j)

(
S(u,j)+

)−1 ∩ C(u,j)+ .

Therefore:

X
(u,j)
ul = X

(u,j)+

ul ∈ P(u,j) ∩ C(u,j)+ ⊂ P(u,j)+ ,

as required.

Case 2.1.2: If X
(u,j)
uj ∈ P(u,j), then we have:

P(u,j) = g−1
(u,j)

( P(u,j)+

〈X(u,j)+

uj 〉P

)
.

In particular:

g(u,j)(X
(u,j)
ul ) ∈

P(u,j)+

〈X(u,j)+

uj 〉P
,

i.e. (
X

(u,j)+

ul + 〈X(u,j)+

uj 〉P
)
∈

P(u,j)+

〈X(u,j)+

uj 〉P
.

Thus X
(u,j)+

ul ∈ P(u,j)+ as desired.

So in all cases, by taking j = v, we get that X
(u,v)
ul ∈ P(u,v) for all 1 ≤ l ≤ v, which

proves the result in that case.

Case 2.2: If Tkv ∈ JwC for all 1 ≤ k ≤ u, then we prove by induction on (i, j) that

X
(i,j)
kv ∈ P(i,j) for all 1 ≤ k ≤ u and all (1, 2) ≤ (i, j) ≤ (u, v). If (i, j) = (1, 2), we have

X
(1,2)
kv = Tkv ∈ JwC = P(1,2) for all 1 ≤ k ≤ u. Assume now that for some (1, 2) ≤ (i, j) <

(u, v) we have X
(i,j)
kv ∈ P(i,j) for all 1 ≤ k ≤ u, and let us show that X

(i,j)+

kv ∈ P(i,j)+ for

all 1 ≤ k ≤ u. As usual we distinguish between 2 cases.

Case 2.2.1: If X
(i,j)
ij ∈ P(i,j), then by Lemma 5.4.18 we obtain a Poisson algebra iso-

morphism C(i,j)/P(i,j)
∼= C(i,j)+/P(i,j)+ sending for all (1, 1) ≤ (u, v) ≤ (m, p) the coset

of X
(i,j)
uv to the coset of X

(i,j)+

uv . Thus X
(i,j)
kv ∈ P(i,j) implies that X

(i,j)+

kv ∈ P(i,j)+ for all

1 ≤ k ≤ u, as desired.
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Case 2.2.2: If X
(i,j)
ij /∈ P(i,j), then P(i,j)+ = P(i,j)

(
S(i,j)+

)−1 ∩ C(i,j)+ . Now for all

1 ≤ k ≤ u we have:

X
(i,j)
kv =

 X
(i,j)+

kv if k ≥ i or v ≥ j,

X
(i,j)+

kv −X(i,j)+

kj X
(i,j)+

iv

(
X

(i,j)+

ij

)−1
if k < i and v < j.

Since X
(i,j)+

kj = X
(i,j)
kj , X

(i,j)+

iv = X
(i,j)
iv and X

(i,j)+

ij = X
(i,j)
ij , we get:

X
(i,j)+

kv =

 X
(i,j)
kv if k ≥ i or v ≥ j,

X
(i,j)
kv +X

(i,j)
kj X

(i,j)
iv

(
X

(i,j)
ij

)−1
if k < i and v < j.

Moreover k and i are smaller than u, so we have X
(i,j)
kv ∈ P(i,j) and X

(i,j)
iv ∈ P(i,j). Thus:

X
(i,j)
kj X

(i,j)
iv

(
X

(i,j)
ij

)−1 ∈ P(i,j)

(
S(i,j)+

)−1
, and so:

X
(i,j)+

kv ∈ P(i,j)

(
S(i,j)+

)−1 ∩ C(i,j)+ = P(i,j)+ .

This finishes the induction.

We conclude this case by taking (i, j) = (u, v) to get X
(u,v)
kv ∈ P(u,v) for all 1 ≤ k ≤ u,

as desired.

By gathering Propositions 7.3.5 and 7.3.7 together, we get the following result:

Theorem 7.3.8. Let w ∈W . The following are equivalent:

(1) w ∈W ′P ,

(2) Jw ∈ Im(ϕ),

(3) Cw ∈ G,

(4) ϕ−1
(
P.Specw(A)

)
6= ∅.

Since Jw ⊆ Q for all Q ∈ P.Specw(A), Proposition 5.4.16 and the equivalence (1) ⇐⇒

(2) shows that for all w ∈W ′P we have P.Specw(A) ⊆ Im(ϕ). Therefore we have:

ϕ
(
P.Spec w(A)

)
= P.Specw(A) when w ∈W ′P ,

i.e. the inclusion of Theorem 5.4.14 is actually an equality in the case of matrix Poisson
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varieties. When K is infinite, this could also have been deduced from Theorem 5.5.6 since

there exists a torus action on A satisfying the appropriate assumptions.

Theorem 7.3.8 also shows in particular that there is a bijection between the sets W ′P

and G. This answers positively Question 7.1.1 in this situation, since the set of Cauchon

diagrams W ′ for the algebra of m × p quantum matrices is also in bijection with G as

shown in [9, Théorème 3.2.1].

It is conjectured in [16] that Spec
(
Oq(Mm,p(K)

)
and P.Spec

(
O(Mm,p(K)

)
should be

homeomorphic. Our work on the combinatorial side goes in the same direction as this

conjecture. In future work we would like to compare topologically these two spectra using

both Cauchon’s algorithm and our algorithm.
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Appendix A

The algorithm in an example

In this appendix, we apply the Poisson deleting derivations algorithm to a polynomial

Poisson algebra of dimension 5. In this example there are 3 steps in the algorithm. We

express the generators of the Poisson algebras obtained at each step in terms of the gener-

ators of the Poisson algebra we started with. Then, using the properties of the canonical

embedding derived in Chapter 5, we compute the set of Cauchon diagrams for this Poisson

algebra. Let K be an arbitrary field.

We endow the polynomial algebra A = K[X1, . . . , X5] with the Poisson structure given

by:

{X1, X2} = X1X2, {X2, X4} = X3,

{X1, X3} = X2, {X2, X5} = 1−X2X5,

{X1, X4} = 1−X1X4, {X3, X4} = X3X4,

{X1, X5} = −X1X5, {X3, X5} = X4,

{X2, X3} = X2X3, {X4, X5} = X4X5.

The algebra A is an iterated Poisson-Ore extension:

A = K[X1][X2;α2]P [X3;α3, δ3]P [X4;α4, δ4]P [X5;α5, δ5]P ,
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where:

αi(Xi−1) = −Xi−1, δi(Xi−1) = 0,

αi(Xi−2) = 0, δi(Xi−2) = −Xi−1,

αi(Xi−3) = Xi−3, δi(Xi−3) = −1,

αi(Xi−4) = Xi−4, δi(Xi−4) = 0,

with the convention that αi and δi are defined on Xi−j only when 1 ≤ j < i ≤ 5. It is

shown in Section 4.2.6 that the Poisson algebra A is the semiclassical limit of a suitable

iterated Ore extension. It is then easy to show that A ∈ P. In particular, for 3 ≤ i ≤ 5,

the derivation δi extends to an iterative, locally nilpotent higher (1, αi)-skew Poisson

derivation (Di,k)
∞
k=0 on K[X1, . . . , Xi−1]. Thanks to Proposition 4.1.1 we can be more

explicit:

Di,k(Xj) =
∆k
i (xj)

(t− 1)k(k)!t

∣∣∣
t=1

for all 1 ≤ j < i, and all k ≥ 0, where the map ∆i is defined in Section 4.2.6. Thus, we

can give the values of theses higher derivations on the generators of A. We obtain:

D3,k(X1) =


X1 k = 0

−X2 k = 1

0 k > 1,

and D3,k(X2) = 0 for all k > 0. Also:

D4,k(X1) =


X1 k = 0

−1 k = 1

0 k > 1,

D4,k(X2) =


X2 k = 0

−X3 k = 1

0 k > 1,
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and D4,k(X3) = 0 for all k > 0. Finally D5,k(X1) = 0 for all k > 0,

D5,k(X2) =


X2 k = 0

−1 k = 1

0 k > 1,

D5,k(X3) =


X3 k = 0

−X4 k = 1

0 k > 1,

and D5,k(X4) = 0 for all k > 0.

A.1 Poisson deleting derivations algorithm

Since A ∈ P we can apply the Poisson deleting derivations algorithm. First, for all

1 ≤ i ≤ 5 we relabel the generators of A by setting Xi,6 := Xi, and we set C6 := A. For

each 2 ≤ j ≤ 5 we will compute the generators of the Poisson algebra Cj . The first step

of the algorithm corresponds to deleting the derivation δ5. We obtain the Poisson algebra

C5:

C5 = K[X1,5][X2,5;α2]P [X3,5;α3, δ3]P [X4,5;α4, δ4]P [X5,5;α5]P ,

where:

X5,5 = X5,6 = X5

X4,5 = X4,6 = X4

X3,5 = X3,6 −X4,6X
−1
5,6 = X3 −X4X

−1
5

X2,5 = X2,6 −X−1
5,6 = X2 −X−1

5

X1,5 = X1,6 = X1.

These generators are obtained from the deleting derivation homomorphism formula (see

Theorem 2.2.2) and the higher derivation (D5,k)k computed above. For instance, since
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η5 = 1, we have:

X3,5 =
∑
k≥0

D5,k(X3,6)X−k5,6 = X3,6 −X4,6X
−1
5,6 .

Similarly we obtain the Poisson algebra:

C4 = K[X1,4][X2,4;α2]P [X3,4;α3, δ3]P [X4,4;α4]P [X5,4;α5]P ,

where:

X5,4 = X5,5 = X5,

X4,4 = X4,5 = X4,

X3,4 = X3,5 = X3 −X4X
−1
5 ,

X2,4 = X2,5 −X3,5X
−1
4,5 = X2 −X3X

−1
4 ,

X1,4 = X1,5 −X−1
4,5 = X1 −X−1

4 .

The Poisson algebra C3 is given by:

C3 = K[X1,3][X2,3;α2]P [X3,3;α3]P [X4,3;α4]P [X5,3;α5]P ,

where:

X5,3 = X5,4 = X5,5 = X5,

X4,3 = X4,4 = X4,5 = X4,

X3,3 = X3,4 = X3,5 = X3 −X4X
−1
5 ,

X2,3 = X2,4 = X2,5 −X3,5X
−1
4,5 = X2 −X3X

−1
4 ,

X1,3 = X1,4 −X2,4X
−1
3,4 = X1 −

X2 −X−1
5

X3 −X4X
−1
5

= X1 −
X2X5 − 1

X3X5 −X4
.

Since there are no more derivations to delete, the algorithm terminates. So we obtain the

Poisson affine space A = C2 = C3 generated by:

T5 = X5,

T4 = X4,

T3 = X3 −X4X
−1
5 ,
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T2 = X2 −X3X
−1
4 ,

T1 = X1 −
X2X5 − 1

X3X5 −X4
.

The Poisson brackets between these generators are given by:

{T5, T4} = −T4T5, {T4, T2} = 0,

{T5, T3} = 0, {T4, T1} = T1T4,

{T5, T2} = T2T5, {T3, T2} = −T2T3,

{T5, T1} = T1T5, {T3, T1} = 0,

{T4, T3} = −T3T4, {T2, T1} = −T1T2.

A.2 Cauchon diagrams

We compute the set of Cauchon diagrams W ′P ⊆ W = P([[1, 5]]) for the Poisson algebra

A. Recall that we have the following injective maps:

ϕ5 : P.Spec (C6) −→ P.Spec (C5),

ϕ4 : P.Spec (C5) −→ P.Spec (C4),

ϕ3 : P.Spec (C4) −→ P.Spec (C3).

It is easy to check that 〈X5,6〉P = C6, 〈X4,5〉P = C5 and 〈X3,4〉P = 〈X2,4, X3,4〉. Therefore

by Lemma 5.4.7 we have:

P ∈ P.Spec (C5) ∩ Im(ϕ5) ⇐⇒ X5,6 = X5,5 /∈ P,

Q ∈ P.Spec (C4) ∩ Im(ϕ4) ⇐⇒ X4,5 = X4,4 /∈ Q,

I ∈ P.Spec (C3) ∩ Im(ϕ3) ⇐⇒
(
X3,4 = T3 /∈ I or 〈T2, T3〉 ⊆ I

)
.

(A.1)

We have P.Spec (A) = P.Spec (C6) and P.Spec (A) = P.Spec (C3), and the canonical em-

bedding is the injective map ϕ from P.Spec (A) to P.Spec (A) defined by ϕ := ϕ3 ◦ϕ4 ◦ϕ5.

• Firstly it is easy to show that:

{
∅, {1}, {2}, {1, 2}

}
⊆W ′P ⊆P([[1, 3]]).
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The first inclusion comes from Proposition 5.4.17 since δ1 = δ2 = 0. Moreover

suppose that 5 ∈ w ∈ W ′P and let P ∈ P.Spec w(A). Then T5 ∈ ϕ(P ), and by

Corollary 5.4.11 we have X5,6 ∈ ϕ5(P ) ∈ Im
(
ϕ5), a contradiction to (A.1). We show

similarly that 4 /∈ w for all w ∈W ′P .

• Moreover one can show that if 3 ∈ w ∈ W ′P , then 2 must belong to w, i.e. that

we have {3} /∈ W ′P , and {1, 3} /∈ W ′P . Suppose that 3 ∈ w ∈ W ′P and let P ∈

P.Specw(A). We have T3 = X3,4 ∈ ϕ(P ). Since ϕ(P ) ∈ Im
(
ϕ3), we must have

〈T2, T3〉 ⊆ ϕ(P ). This implies that T2 ∈ ϕ(P ) and that 2 ∈ w.

• We reduced our investigation to the following situation:

{
∅, {1}, {2}, {1, 2}

}
⊆W ′P ⊆

{
∅, {1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}

}
.

We will show that the undecided sets {2, 3} and {1, 2, 3} also belong to W ′P . For, we

exhibit ideals belonging to the appropriate strata. The details are left to the reader;

methods from Section 7.2 can be used for instance. We have:

ϕ(〈X2X5 − 1, X3X5 −X4〉) = ϕ3 ◦ ϕ4(〈X2,5, X3,5〉)

= ϕ3(〈X2,4, X3,4〉)

= 〈T2, T3〉,

so that 〈X2X5 − 1, X3X5 −X4〉 ∈ P.Spec {2,3}(A). Also we have:

ϕ(〈X1X4 − 1, X2X5 − 1, X3X5 −X4〉) = ϕ3 ◦ ϕ4(〈X1,5X4,5 − 1, X2,5, X3,5〉)

= ϕ3(〈X1,4, X2,4, X3,4〉)

= 〈T1, T2, T3〉,

so that 〈X1X4 − 1, X2X5 − 1, X3X5 − X4〉 ∈ P.Spec {1,2,3}(A). One can also find

elements of the strata associated to {1}, {2} and {1, 2}:

ϕ(〈X1X3X5 −X2X5 −X1X4 + 1〉) = ϕ3 ◦ ϕ4(〈X1,5X3,5 −X2,5〉)

= ϕ3(〈X1,4X3,4 −X2,4〉)

= 〈T1〉,

154



ϕ(〈X2X4 −X3〉) = ϕ3 ◦ ϕ4(〈X2,5X4,5 −X3,5〉)

= ϕ3(〈X2,4〉)

= 〈T2〉,

ϕ(〈X1X4 − 1, X2X4 −X3〉) = ϕ3 ◦ ϕ4(〈X1,5X4,5 − 1, X2,5X4,5 −X3,5〉)

= ϕ3(〈X1,4, X2,4〉)

= 〈T1, T2〉.

We conclude that W ′P =
{
∅, {1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}

}
. Note that in this example

we have W  W ′P .
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Appendix B

Question 7.1.1 for an algebra

without torus action

In this appendix we answer positively Question 7.1.1 for the following algebra. Let Rt be

the iterated Ore extension:

Rt = K[t±1][x1, x2][x3, σ3][x4;σ4,∆4],

where:

• σ3 is the automorphism of K[t±1][x1, x2] such that σ3(t) = t, σ3(x1) = tx1 and

σ3(x2) = tx2,

• σ4 is the automorphism of K[t±1][x1, x2][x3, σ3] such that σ4(t) = t, σ4(x1) = t−1x1,

σ4(x2) = t−1x2 and σ4(x3) = x3,

• ∆4 is the σ4-derivation of K[t±1][x1, x2][x3, σ3] such that ∆4(t) = ∆4(x1) = ∆4(x2) =

0 and ∆4(x3) = (t− 1)(x1 + x2).

It is easy to check that Rt ∈ R. Suppose charK = 0. We now compute the sets W ′P

and W ′ of Cauchon diagrams for the algebras A := Rt/(t− 1)Rt and Rq := Rt/(t− q)Rt,

for a nonzero non root of unity q ∈ K.
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B.1 Cauchon diagrams for A := Rt/(t− 1)Rt

The Poisson algebra A is the Poisson-Ore extension A = Kλ[X1, X2, X3][X4;α, δ]P , where

λ12 = 0, λ13 = λ23 = −1, α := −X1
∂

∂X1
−X2

∂
∂X2

and δ := (X1 +X2) ∂
∂X3

. We have:

{X4, X1} = −X1X4, {X3, X1} = X1X3,

{X4, X2} = −X2X4, {X3, X2} = X2X3,

{X4, X3} = X1 +X2, {X2, X1} = 0.

Note that this Poisson algebra appears in Example 5.4.15. Since the derivation δ is locally

nilpotent and that we have [δ, α] = δ, the derivation δ uniquely extends to an iterative,

locally nilpotent higher (1, α)-skew Poisson derivation:

(Di)i =
(δi
i!

)
i

on Kλ[X1, X2, X3]. The deleting derivations algorithm (there is only one step) leads to

the Poisson affine space A = Kλ′ [T1, T2, T3, T4] where:

λ′ =


0 0 −1 1

0 0 −1 1

1 1 0 0

−1 −1 0 0

 ,

and where T1 := X1, T2 := X2, T3 := X3 + (X1 + X2)X−1
4 and T4 := X4. The canonical

embedding is the map ϕ from P.Spec (A) to P.Spec (A) defined by:

P 7−→

 PS−1 ∩A X4 /∈ P,

g−1(P/〈X4〉P ) X4 ∈ P,

where S is the multiplicative set of A generated by X4, and where:

g : A −→ A

〈X4〉P
,

Ti 7−→ Xi + 〈X4〉P .
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Let w ∈W and assume that 4 /∈ w. Then 〈Ti | i ∈ w〉 ∈ Im(ϕ) by Lemma 5.4.7 and:

ϕ−1(〈Ti | i ∈ w〉) ∈ P.Specw(A).

In particular this shows that P([[1, 3]]) ⊆ W ′P (alternatively, we obtain the same result

from Proposition 5.4.17). We can actually be more precise and give the explicit preimages

of the ideals 〈Ti | i ∈ w〉 for w ∈P([[1, 3]]):

ϕ−1(∅) = ∅,

ϕ−1(〈T1〉) = 〈X1〉,

ϕ−1(〈T2〉) = 〈X2〉,

ϕ−1(〈T3〉) = 〈X1 +X2 +X3X4〉,

ϕ−1(〈T1, T2〉) = 〈X1, X2〉,

ϕ−1(〈T1, T3〉) = 〈X1, X2 +X3X4〉,

ϕ−1(〈T2, T3〉) = 〈X2, X1 +X3X4〉,

ϕ−1(〈T1, T2, T3〉) = 〈X1, X2, X3〉.

The methods we use to prove these equalities are the same as the one used in Section 7.2

and in Appendix A.2. We illustrate the case w = {3}. Let Q := 〈T3〉. Since T4 /∈ Q we

have Q ∈ Im(ϕ) and:

ϕ−1(Q) = QS−1 ∩A = {fT3T
−i
4 | f ∈ A, i ≥ 0} ∩A.

Set P := 〈X1 +X2 +X3X4〉. Since:

X1 +X2 +X3X4 = X4

(
X3 + (X1 +X2)X−1

4

)
= T4T3 ∈ ϕ−1(Q),

we have P ⊆ ϕ−1(Q). It is easy to see that X1 +X2 +X3X4 ∈ ZP (A), so the ideal P is a

Poisson ideal. Moreover one can check that X1 + X2 + X3X4 is irreducible in A, so P is

also a prime ideal. Therefore P ∈ P.Spec (A). It is clear that X4 /∈ P so we have:

ϕ(P ) = PS−1 ∩A = {f
(
X1 +X2 +X3X4

)
X−i4 | f ∈ A, i ≥ 0} ∩A.
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Since:

T3 = X3 + (X1 +X2)X−1
4 =

(
X3X4 +X1 +X2

)
X−1

4 ∈ ϕ(P ),

we have Q ⊆ ϕ(P ).

We know that X4 = T4 /∈ ϕ(P ), and that T3 ∈ ϕ(P ). One can check that T1 and T2

do not belong to ϕ(P ) as follows. Suppose that T1 = X1 ∈ ϕ(P ) and write:

T1 = X1 = f(X1 +X2 +X3X4)X−i4 ,

for some f ∈ A and some i ≥ 0. We have:

X1X
i
4 = f(X1 +X2 +X3X4), (B.1)

and by a degree argument we deduce that f ∈ K[X2, X3, X4]. By seeing equation (B.1) as

an equality of two polynomials in the variable X1 and with coefficients in K[X2, X3, X4]

we obtain:

f = Xi
4, and 0 = (X2 +X3X4)f,

which is impossible. Thus T1 = X1 /∈ ϕ(P ). We conclude similarly that we have

T2 = X2 /∈ ϕ(P ). Therefore we have P ∈ P.Spec {3}(A). Note that by definition we

have ϕ−1(Q) ∈ P.Spec {3}(A). Since ϕ induces an homeomorphism from P.Spec {3}(A) to

ϕ
(
P.Spec {3}(A)

)
, the inclusions P ⊆ ϕ−1(Q) and Q ⊆ ϕ(P ) give us ϕ(P ) = Q, i.e.:

ϕ−1(〈T3〉) = 〈X1 +X2 +X3X4〉.

We now deal with the remaining elements of W . Assume that 4 ∈ w ∈ W ′P and let

Q ∈ P.Spec w(A) ∩ Im(ϕ). By Lemma 5.4.7 we must have:

〈T1 + T2, T4〉 ⊆ Q,

or equivalently:

〈X1 +X2, X4〉 ⊆ ϕ−1(Q).
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Thus for 4 ∈ w ∈W ′P and Q ∈ P.Specw(A)∩Im(ϕ) we must have the following equivalence:

(
1 ∈ w

)
⇔
(
T1 ∈ Q

)
⇔
(
X1 ∈ ϕ−1(Q)

)
⇔
(
X2 ∈ ϕ−1(Q)

)
⇔
(
T2 ∈ Q

)
⇔
(
2 ∈ w

)
.

This means that the sets {1, 4}, {2, 4}, {1, 3, 4} and {2, 3, 4} do not belong to W ′P . On the

other hand it is easy to see that:

〈X1 +X2, X4〉 ∈ P.Spec {4}(A),

〈X1 +X2, X3, X4〉 ∈ P.Spec {3,4}(A),

〈X1, X2, X4〉 ∈ P.Spec {1,2,4}(A),

〈X1, X2, X3, X4〉 ∈ P.Spec {1,2,3,4}(A),

using the fact that when X4 ∈ P ∈ P.Spec (A), there is a Poisson algebra isomorphism

from A/P to A/ϕ(P ) sending Xi+P to Ti+ϕ(P ) for 1 ≤ i ≤ 4 (Lemma 5.4.18). Therefore

we obtain:

W ′P = P([[1, 3]]) ∪
{
{4}, {3, 4}, {1, 2, 4}, {1, 2, 3, 4}

}
.

B.2 Cauchon diagrams for Rq = Rt/(t− q)Rt

The algebra Rq is given by generators x1, x2, x3, x4 and relations:

x2x1 = x1x2, x4x1 = q−1x1x4,

x3x1 = qx1x3, x4x2 = q−1x2x4,

x3x2 = qx2x3, x4x3 = x3x4 + (q − 1)(x1 + x2).

Rq can be expressed an in iterated Ore extension, and Cauchon’s deleting derivations

algorithm can be applied. The algebra Rq is the quantum affine space in the generators:

t1 := x1, t2 := x2, t3 := x3 + q(x1 + x2)x−1
4 , and t4 := x4,

associated to the matrix λ′ defined in the previous section. We denote again by ϕ the

canonical embedding from Spec (Rq) to Spec (Rq) ([8, Definition 4.4.1]). By [8, Proposition

4.3.1] it is clear that all ideals in Spec (Rq) which do not contain t4 belong to Im(ϕ). Thus
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if 4 /∈ w ∈W then w ∈W ′ since:

〈ti | i ∈ w〉 ∈ Im(ϕ).

Now suppose that x4 ∈ P ∈ Spec (Rq). Then the image of P by ϕ is given by:

g−1(P/〈x4〉),

where g is the surjective algebra homomorphism from Rq to Rq/〈x4〉 sending ti to xi+〈x4〉

for all i ([8, Notation 4.3.1]). Thus a prime ideal Rq containing t4 will belong to Im(ϕ) if

and only if it contains ker g. There is a vector space isomorphism Ψ from Rq to Rq sending

ti11 t
i2
2 t

i3
3 t

i4
4 to xi11 x

i2
2 x

i3
3 x

i4
4 for all i1, i2, i3, i4 ≥ 0. So we can write g = π ◦Ψ where π is the

canonical projection, and thus it is enough to understand 〈x4〉 since ker g = Ψ−1(〈x4〉).

First note that we have:

x1 + x2 =
[x4, x3]

q − 1
∈ 〈x4〉.

One can check that 〈x4〉 = Rqx4 + Rq(x1 + x2), where by Rqx4 we denote the right ideal

generated by x4. It is now easy to see that:

ker g = Rqt4 +Rq(t1 + t2).

Thus a prime ideal in Rq containing t4 belongs to Im(ϕ) if and only if it contains t1 + t2.

This shows that if 4 ∈ w, then w ∈W ′ if and only if
(
(1 ∈ w) ⇐⇒ (2 ∈ w)

)
. In particular

we have:

ϕ−1(ker g) ∈ Spec {4}(Rq),

ϕ−1(〈ker g, t3〉) ∈ Spec {3,4}(Rq),

ϕ−1(〈t1, t2, t4〉) ∈ Spec {1,2,4}(Rq),

ϕ−1(〈t1, t2, t3, t4〉) ∈ Spec {1,2,3,4}(Rq).

We conclude that:

W ′ = P([[1, 3]]) ∪
{
{4}, {3, 4}, {1, 2, 4}, {1, 2, 3, 4}

}
,

so that W ′ = W ′P , and Question 7.1.1 is verified for the algebra Rt.
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[7] W. Bruns and U. Vetter, Determinantal Rings, Lecture Notes in Mathematics 1327,

Springer-Verlag, Berlin Heidelberg, 1988.
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