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Abstract

This paper builds on the two-factor model developed by Cairns et al.
(2006) and updated by Cairns et al. (2009) for projecting future mortality.
It is shown that these two factors do not follow a random walk, as proposed
by Cairns et al. (2006), but should instead be modelled as a random
fluctuation around a trend, the trend changing periodically. Projecting
mortality rates in this way suggests much greater uncertainty over future
mortality improvements.
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1 Introduction

In recent years, there have been a number of models developed to try to as-
certain future changes in mortality rates. The most well-known of these is the
model developed by Lee and Carter (1992), but this has seen many develop-
ments, such as the more robust treatment of errors by Brouhns et al. (2002)
and the addition of cohort effects by Renshaw and Haberman (2003, 2006).
There are also continuous time variants such as those developed by Milevsky
and Promislow (2001), Dahl (2004), Dahl and Møller (2005), Milterson and
Persson (2005), Biffis (2005) and Schrager (2006). The version I consider, how-
ever, has its roots in a discrete time model developed by Cairns et al. (2006). A
more robust version of this model is given as model M5 in Cairns et al. (2009).
This re-bases the age used to calculate the age-related component of the model,
centring it around the average age of the data. Cairns et al. (2009) also describe
a number of more complex versions of the original formulation. However, the
simplicity of the original model, retained in model M5, is attractive and better
allows the demonstration of the approach in this paper. I therefore use the M5
formulation, which I call the CBD model.

The CBD model is an innovative two-factor model. It assumes that each
of the two parameters follows a random walk with drift, the rate of drift being
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constant and changes in the parameters being correlated. This approach is
well-suited for the pricing of mortality-related derivatives with a term of a few
years; however, when considering the very long-term, it becomes clear that the
patterns for these two factors do not necessarily resemble a random walk with
drift process; for most periods each of the factors can be modelled as a random
fluctuation around a trend, the trend changing periodically.

This is not the first research to question the use of a random walk with a
single rate of drift as the appropriate method of mortality projection. Booth et
al. (2002) find that the level of drift for Australian data is not constant, and
allow for this by fitting their model only for the period where a linear trend
in mortality is apparent. Using the same dataset, De Jong and Tickle (2006)
allow for varying rates of drift over time, and suggest improvements such as
the addition of an autoregressive process to the parameters used; however, like
Booth et al. (2002), mortality rates are assumed to follow a random walk.

The CBD model describes the logit of the initial mortality rate with a slope
term and an intercept term, allowing for the number of deaths to follow a Poisson
distribution. Future stochastic simulations are then obtained by projecting these
two terms as following correlated random walks. In other words:

log

(

qx,y

1 − qx,y

)

= k1,y + [(x − x̄) × k2,y] + ex,y (1)

where qx,y is the initial mortality rate for a life aged x in year y; x̄ is the
average of the ages x used in the analysis; k1,y is the intercept term in year
y; k2,y is the slope term in year y; and ey is an error term. The parameters
k1,y and k2,y are members of sets described by k1 = {k1,y : y = 1 . . . Y } and
k2 = {k2,y : y = 1 . . . Y }, and k1 and k2 are equivalent to the parameters
described in the CBD model as kappa 1 and kappa 2 respectively.

The CBD model is calibrated using data for England and Wales males from
age 60 to 89 over the period 1961 to 2002. However, this is a relatively short
time scale which has seen a generally steady pattern of improvements in life
expectancy. It is not reasonable to expect this constancy to continue indefinitely
into the future, something which can be seen by considering past mortality rate
improvements over a longer period. One way of appreciating these past changes
is to fit the CBD model over a larger dataset, covering the period from 1841 to
2005, still using England and Wales males age 60 to 89. Here, clear patterns can
be seen in k1,y and k2,y, as shown in (1). The data used for these calculations
is obtained from the Human Mortality Database (2008). Figure 1 suggests that
both k1,y and k2,y exhibit variation around a trend rather than following random
walks. They also suggest that these trends change suddenly and definitely, that
changes in the trend for k1,y and k2,y tend to happen at the same time, and
that there is strong negative correlation between the direction of these trend
changes.

These sudden changes in the trend are what one would expect, consider-
ing changes that have happened over the last 160 years or so. Cutler et al.
(2006) describe three phases of change in mortality rates. From the mid eigh-
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Figure 1: k1,y and k2, y for the CBD Model, 1841-2005
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teenth century to the mid nineteenth century, they see mortality rates falling
as a result of improved nutrition and economic growth; in the late nineteenth
and early twentieth centuries, improvement is seen as a result of clean water,
better treatment of effluent and better health information, all of which became
necessary as a result of urbanisation; and the 1930’s onwards is characterised as
the decade of big medicine with immunisation, antibiotics, and ever increasing
medical technology. Another phenomenon that continues to have a major effect
on mortality rates is the effect of the reduction in smoking in the last quarter
of the twentieth century, as described by Humble and Wilson (2008).

The negative correlation is also understandable. From (1) it can be seen
that at time t, k1,y represents the level of the logit of mortality, and k2,y the
extent to which the logit of mortality varies with age. The second variable
therefore reflects changes in the relative levels of mortality at different ages, but
the first variable determines the underlying change in mortality around which
the relative changes are based.

The organisation of this paper is, then, as follows. First, I consider ways
in which change-points in the trend can be determined. I then fit trends to
different sections of the data. Within each of these sections, I then consider
whether the observations are trend- or difference-stationary. Next, I propose
an approach for projection mortality rates based on this structure, and finally
I show the results of some of these projections.

2 Determining the Change-Points in the Trend

Looking at (1), it is clear that there are breaks in the trend for both k1 and
k2. However, it is not necessarily clear exactly where these breaks occur, and
whether any changes are significant enough to be considered changes in trend.

One way of investigating possible changes-points is to fit lines to sections of
k1 and k2 and to calculate the Durbin-Watson (DW) statistic, using the test
designed by Durbin and Watson (1950, 1951). Under the null hypothesis that a
fitted line covers data within a single trend, then the DW statistic should show
no evidence of significant serial correlation between subsequent values of k1,y

or k2,y. However, if a line covers, say two periods where the rate of change is
lower in the second period than the first, then the first and last sections of the
data would lie below the line whilst the middle section would lie above it. This
would lead to the DW statistic showing significant positive serial correlation in
these variables, suggesting that the null hypothesis could be rejected and that
there was evidence for a break in the trend. The DW test also incorporates a
middle ground of uncertainty, where the test is inconclusive. This approach is
not exact, but gives some clues as to where breaks might occur.

The methodology used for the above approach is to fit a line for each year
y where y = 1841 to 2003 (so using at least three years of data to calculate
the DW statistic) and, within each year for each period p where p = 3 to 2005
−y. This approach can point to broad areas where changes in trend might
occur; however, when fitting a series of lines to this data, some trial and error
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is required to get a good fit.

3 Fitting a Model

Having identified potential breakpoints both visually and using the DW test, the
results are verified using more exact approaches. The broad approach used to
fit lines to k1,y and k2,y is a weighted least squares approach. This is necessary
because of the heteroskedasticity present in both k1,y and k2,y the variance
decreases substantially over time. There are several possible causes for this.
The first is simply that the quality of data is likely to have improved over the
period of observation. However, as life expectancies have improved, so have
the number of lives over age 60. This leads to less stochastic variation in the
mortality rates calculated, and thus less variation in the estimates of k1,y and
k2,y from year to year. A third possibility is that improved understanding and
treatment of infections diseases together with improved air and water quality
reduced the incidence of various epidemics that also led to significant year-to-
year variation in mortality.

The weights used are the reciprocals of the variances for the seven years
centred on the observation in question. The weights for the first three obser-
vations are set equal to the fourth observation; the weights for the last three
observations are set equal to the fourth from last observation.

I first consider k1. Let the final year of a trend (and the first year of the
next) within k1 be identified as bk1,n(k1) where n (k1) = 1 . . .N (k1) − 1. This
means that the number of break points is N (k1) − 1 and the number of lines
is N (k1). Each line is expressed as a constant, αk1,n(k1) plus a slope, βk1,n(k1),
the latter being multiplied by the year. This means that the estimate of k1,y is
described as follows:

k̂1,y =



















αk1,1 + βk1,1y if y ≤ bk1,1

αk1,1 + βk1,1y if bk1,1 < y ≤ bk1,2

...
αk1,N(k1) + βk1,N(k1)y if y > bk1,N(k1)−1

(2)

Similarly, the estimate of k2,y is described as follows:

k̂2,y =



















αk2,1 + βk2,1y if y ≤ bk2,1

αk2,1 + βk2,1y if bk2,1 < y ≤ bk2,2

...
αk2,N(k2) + βk2,N(k2)y if y > bk2,N(k2)−1

(3)

It can also be said that:

k1,y = k̂1,y + ǫk1,y (4)

and
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k2,y = k̂2,y + ǫk2,y (5)

where ǫk1,y and ǫk2,y are residuals. Initially, N (k1) is set equal to N (k2).
Furthermore, all bk1,n(k1) are set equal to bk2,n(k2). This second point seems
sensible, since a visual inspection of k1,y and k2,y suggests that changes in
trends occur at about the same time in one as in the other, although there
are perhaps some instances when a significant change occurs in only one series.
There is also a rationale for expecting changes in k1,y and k2,y to occur at the
same time, since a change in both determines the age around which relative
changes in mortality pivot. This is investigated below.

When fitting the lines, all potential changes in trend are considered initially.
The lines are then fitted by minimising the sum of squared errors subject to the
restriction that:

αk1,n(k1) + βk1,n(k1)bk1,n(k1) = αk1,n(k1)+1 + βk1,n(k1)+1bk1,n(k1) (6)

and:

αk2,n(k2) + βk2,n(k2)bk2,n(k2) = αk2,n(k2)+1 + βk2,n(k2)+1bk2,n(k2) (7)

for n (k1) = 1 . . .N (k1) − 1 and n (k2) = 1 . . .N (k2) − 1. The first test I
carry out is a Chow test, as described by Chow (1960). Under the Chow test,
the null hypothesis is that αk1,n(k1) = αk1,n(k1)+1 and βk1,n(k1) = βk1,n(k1)+1 for
consecutive groups of data within k1, the same being true for k2. To calculate
the test statistic, a single line is fitted covering both groups, and the test statistic
is given as:

CT =
(SSRAll − (SSR1 + SSR2)) /v

(SSR1 + SSR2) / (N1 + N2 − 2v)
∼ F v

N1+N2−2v (8)

where SSR1, SSR2 and SSRAll are the sums of squared residuals from
the first section of data, the second section of data and the combined dataset
respectively. The number of variables, given by v, is two, and the numbers of
observations in the first and second groups of data are given by N1 and N2. The
Chow test is helpful in examining structural breaks since it considers not the
extent to which individual observations represent a change from an established
trend, but rather the extent to which two groups of variables display different
patterns.

The restrictions in (6) and (7) effectively mean that the slope parameters
are optimised subject to restrictions on the level parameters. I therefore look at
the difference between successive slope parameters to identify where any change
in slope is not statistically significant, calculating a t-statistic using the joint
standard error calculated assuming unequal sample sizes and unequal variances
in each sample, the null hypothesis being that there is no change in slope.
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I also consider the DW statistic for the various sections. If separate trends are
combined, then this may be highlighted by significant positive serial correlation,
suggesting that a change in trend has been missed.

Looking first at k1, a number of break points appear to be less than con-
vincing, suggesting the need for further investigation; however, the only break
point not strongly suggested by the Chow Tests in k2 is the first.

Trying various combinations of the trends and examining the various statis-
tics suggests that the breakpoints identified in Tables 3 and 4, below, better
describe the data.
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Table 1: Parameters for Fitted Values of k1

First
Year of
Trend

k1 Intercept
(SE)

k1 Slope
(SE)

DW
Statistic

DF Statistic Change in
k1 Slope

Chow Test
Statistic

1841 -2.966830 0.000168 1.701532 -3.518565 *
(4.994174) (0.002700) 0.006502 ** 3.694137 **

1860 -15.054700 0.006671 1.219745 + -2.279956 (0.002856)
(5.491361) (0.002943) -0.007657 *** 2.668865 *

1873 -0.720550 -0.000986 1.496792 -4.129292 ** (0.002069)
(2.678539) (0.001419) -0.005125 *** 13.189975 ***

1902 9.021928 -0.006111 1.256072 ++ -3.055781 (0.001407)
(2.679251) (0.001399) -0.001805 0.355020

1930 12.504380 -0.007917 1.042455 ++ -2.349303 (0.002875)
(7.156921) (0.003695) 0.008425 5.760253 **

1945 -3.874190 0.000509 1.974323 -2.828847 (0.006203)
(15.239244) (0.007817) -0.003804 3.221651 *

1955 3.558806 -0.003295 1.950550 -4.133678 ** (0.005403)
(2.530577) (0.001289) -0.011955 *** 26.251961 ***

1973 27.133480 -0.015250 1.784664 -3.667513 ** (0.001123)
(1.875906) (0.000948) -0.009425 ** 23.103952 ***

1988 45.851490 -0.024675 2.584364 -5.415041 *** (0.003682)
(10.024917) (0.005033) -0.008391 48.665600 ***

1998 62.607600 -0.033066 1.951402 -2.331239 (0.005222)
(10.800210) (0.005396)

Significance level: *** 1%; ** 5%; * 10%.
Serial correlation: ++ evidence of significant positive serial correlation (statistic<dL); + evidence of possible positive serial correlation
(dL<statistic<dU).
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Table 2: Parameters for Fitted Values of k2

First
Year of
Trend

k2 Intercept
(SE)

k2 Slope
(SE)

DW
Statistic

DF Statistic Change in
k2 Slope

Chow Test
Statistic

1841 0.019917 0.000031 2.503566 -5.360380 ***
(0.150937) (0.000082) -0.000344 ** 1.727529

1860 0.658869 -0.000313 1.148115 + -2.600994 (0.000126)
(0.272553) (0.000146) 0.000385 *** 12.562046 ***

1873 -0.060940 0.000072 1.535067 -4.872952 *** (0.000092)
(0.080100) (0.000042) 0.000574 *** 94.695468 ***

1902 -1.152990 0.000646 2.402800 -6.538536 *** (0.000041)
(0.078094) (0.000041) -0.000800 *** 76.076018 ***

1930 0.389713 -0.000154 1.348259 + -4.161198 ** (0.000073)
(0.178596) (0.000092) 0.000512 *** 40.616383 ***

1945 -0.605620 0.000358 2.369726 -3.530067 * (0.000141)
(0.339579) (0.000174) -0.000430 *** 85.953783 ***

1955 0.234761 -0.000072 2.138283 -4.409199 *** (0.000125)
(0.108824) (0.000055) 0.000430 *** 29.847510 ***

1973 -0.613360 0.000358 1.178452 + -2.773581 (0.000056)
(0.110733) (0.000056) 0.000141 ** 11.426100 ***

1988 -0.892990 0.000499 2.166787 -4.649186 *** (0.000064)
(0.142363) (0.000071) -0.000346 *** 69.007492 ***

1998 -0.202820 0.000154 1.330504 + -2.244186 (0.000063)
(0.107361) (0.000054)

Significance level: *** 1%; ** 5%; * 10%.
Serial correlation: ++ evidence of significant positive serial correlation (statistic<dL); + evidence of possible positive serial correlation
(dL<statistic<dU).
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Table 3: Revised Parameters for Fitted Values of k1

First
Year of
Trend

k1 Intercept
(SE)

k1 Slope
(SE)

DW
Statistic

DF Statistic Change in
k1 Slope

Chow Test
Statistic

1841 -2.966830 0.000168 1.696690 -3.518565 *
(4.994174) (0.002700) 0.006537 ** 5.133120 ***

1860 -15.120000 0.006706 1.220154 + -2.279956 (0.002856)
(5.491361) (0.002943) -0.007700 *** 8.041144 ***

1873 -0.705050 -0.000995 1.495064 -4.129292 ** (0.002069)
(2.678539) (0.001419) -0.005182 *** 16.802856 ***

1902 9.145043 -0.006176 1.447660 ++ -4.727278 *** (0.001046)
(1.434794) (0.000746) 0.003530 *** 6.216409 ***

1945 2.282530 -0.002646 1.673548 -4.705058 *** (0.000809)
(1.673403) (0.000854) -0.012966 *** 33.455055 ***

1973 27.852100 -0.015612 1.885997 -3.667513 ** (0.000992)
(2.180101) (0.001101) -0.008897 ** 100.169916 ***

1988 45.522080 -0.024510 2.629184 -5.415041 *** (0.003612)
(9.768575) (0.004904) -0.008834 32.807038 ***

1998 63.162860 -0.033343 2.030812 -2.331239 (0.005106)
(10.588903) (0.005290)

Significance level: *** 1%; ** 5%; * 10%.
Serial correlation: ++ evidence of significant positive serial correlation (statistic<dL); + evidence of possible positive serial correlation
(dL<statistic<dU).
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Table 4: Revised Parameters for Fitted Values of k2

First
Year of
Trend

k2 Intercept
(SE)

k2 Slope
(SE)

DW
Statistic

DF Statistic Change in
k2 Slope

Chow Test
Statistic

1841 0.255659 -0.000097 1.863737 -5.240416 ***
(0.069743) (0.000038) 0.000127 *** 3.351952 **

1873 0.017483 0.000030 1.903972 -6.725793 *** (0.000038)
(0.071755) (0.000038) 0.000619 *** 109.848615 ***

1902 -1.159045 0.000649 2.419991 -2.656571 *** (0.000040)
(0.078098) (0.000041) -0.000803 *** 71.745047 ***

1930 0.389737 -0.000154 1.331124 + -3.071266 ** (0.000074)
(0.181001) (0.000093) 0.000512 *** 40.299153 ***

1945 -0.605591 0.000358 2.377781 -3.264308 * (0.000141)
(0.338518) (0.000174) -0.000430 *** 79.795420 ***

1955 0.234785 -0.000072 2.133573 -3.613035 *** (0.000125)
(0.109126) (0.000056) 0.000430 *** 30.105090 ***

1973 -0.613332 0.000358 1.215524 + -3.819187 (0.000055)
(0.107336) (0.000054) 0.000141 ** 7.237369 ***

1988 -0.892961 0.000499 2.105288 -3.912770 *** (0.000065)
(0.146787) (0.000074) -0.000346 *** 58.677171 ***

1998 -0.202798 0.000154 1.414360 -3.978984 (0.000063)
(0.101564) (0.000051)

Significance level: *** 1%; ** 5%; * 10%.
Serial correlation: ++ evidence of significant positive serial correlation (statistic<dL); + evidence of possible positive serial correlation
(dL<statistic<dU).

1
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Again, looking first at k1, the Chow test statistic strongly suggests breaks
at all the points remaining. However, the change-in-trend test also suggests
changes in all but one of these instances, and further combining the trends in
the one instance where no change is suggested results in significant positive
serial correlation. In fact, one of the combinations carried out has also resulted
in a single case of positive serial correlation; however, looking at the results in
Figure 2 suggest that this is more likely to be a result of random clustering than
two separate trends having been combined.

The single change in k1 is less controversial the Chow test and the change
in trend analysis both suggest that no further changes are needed, and the DW
statistics do not suggest that any trends have been combined incorrectly.

Once reported statistic has not been discussed in detail: the Dickey-Fuller
(DF) statistic. Under the null hypothesis of the test designed by Dickey and
Fuller (1979) the time series under investigation follows a random walk with
drift in other words, it has a unit root. The alternative hypothesis is that the
time series consists of random deviations from a trend. For k1, the DF test
suggests that the data follows random deviations around a trend in six out of
eight periods; for k2, the figure is seven out of nine periods. In most case, the
level of significance is 1%.

Ideally, the DF statistic would be calculated for the whole period. However,
since the calculation of the statistic involves regression against a time trend and
it has already been shown that this trend changes over time, such a test is not
straightforward. In particular, changes in the direction of the trend of either
the level or the slope parameter will result in unreliable results. The change-
of-trend issues is also why this test is considered now, rather than before the
investigations into the break-points in the trend. One possible modification
to the DF test in the presence of a changing trend is to substitute the linear
time trend with a series constructed from the slope parameters. If the slope
in year y for parameter k1 is yβk1, then this replacement trend for k1 can be
calculated as yzk1 =y βk1 +y−1 βk1, where 1zk1 =1 βk1. Note that yβk1, the
slope parameter in year y, should not be confused with βk1,N(k1), the slope
parameter for all y falling in trend N(k1). Similarly, the replacement trend for
k2 can be calculated as yzk2 =y βk2 +y−1 βk2, where 1zk2 =1 βk2. Using this
approach, the null hypothesis for the data series as a whole is rejected at the
1% level of significance, with the test statistics for k1 and k2 being -10.317059
and -13.064194 respectively. This provides strong evidence that each parameter
follows a trend-stationary process, albeit with a trend that changes periodically.

Figure 2 shows how the fitted lines described in Table 3 and Table 4 relate
to the parameters shown in Figure 1. However, the scale of these diagrams is
such that it is difficult to see the extent to which the trend does actually change.
Figure 3 and Figure 4 are therefore given. These show the values of k1,y and
k2,y for each consecutive pairs of trends, as described in Table 3 and Table 4.
They also show the fitted line for the first trend extended to the period covered
by the second trend. This is intended to show the extent to which a change in
trend occurs. In most cases the change is marked; in others it is less definitive
but nonetheless apparent.
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Figure 2: k1,y and k2, y for the CBD Model, 1841-2005
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Figure 3: Changes in Trend for k1,y Slope – Post-Change Observations vs Pre-
Change Fitted Line
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Figure 4: Changes in Trend for k2,y Slope – Post-Change Observations vs Pre-
Change Fitted Line
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4 A Projection Approach

Having fitted a model to the data, I next look at an approach to projecting
mortality rates. The first stage here is to consider how the parameters behave
in the historical data.

Since (6) and (7) mean that the changes in αk1,n(k1) and αk2,n(k2) are defined
by the changes in βk1,n(k1) and βk2,n(k2), it is only the latter that we need to
consider when looking at changes of the trends in k1,y and k2,y. The trend in
k1,y changes 7 times out of a possible 164 times, a probability of 0.036585; the
trend in k2,y changes 8 times in the same period, a probability of 0.054878.
However, βk1,n(k1) and βk2,n(k2) change together only six of these times. This
means that:

• the probability of only βk1,n(k1) changing is 1 in 164, or 0.006098;

• the probability of only βk2,n(k2) changing is 2 in 164, or 0.012195;

• the probability of both βk1,n(k1) and βk2,n(k2) changing is 6 in 164, or
0.036585.

These changes can therefore be modelled by simulating a uniform random
variable, 0 ≤ ∆β < 1, such that:

• if 0 ≤ ∆β < 0.006098 then βk1,n(k1) only changes;

• if 0.006098 ≤ ∆β < 0.042683 then βk1,n(k1) and βk2,n(k2) change (since
0.042683− 0.006098 = 0.036585);

• if 0.042683 ≤ ∆β < 0.054878 then βk2,n(k2) only changes (since 0.054878−
0.042683 = 0.012195; and

• if ∆β ≥ 0.054878 then neither βk1,n(k1) nor βk2,n(k2) change (since 0.006098+
0.012195 + 0.036585 = 0.054878, or 8/164.

The next stage is to look at the variation in βk1,n(k1) and βk2,n(k2) when
they change. One approach would be to consider the root mean square (RMS)
of the deviation of each variable from its previous value and use this to define
the volatility. This would mean essentially assuming that the expectation was
for the current trends in k1,y and k2,y to continue indefinitely, with each being
as likely to accelerate as to decelerate. The alternative is to use the standard
deviation. This would give a lower level of volatility, but would require an
assumption that changes in k1,y and k2,y would be expected to accelerate or
decelerate (depending on whether the average was positive or negative). This
latter view seems unrealistic, as it suggests that both k1,y and k2,y would eventu-
ally tend towards positive or negative infinity, leading to biologically unrealistic
mortality rates. I therefore use approach based on the RMS, describe above.
I also calculate a measure of correlation between βk1,n(k1) and βk2,n(k2) when
both change using a similar approach, calculating a measure of covariance based
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on deviations from zero rather than from the mean, then dividing the result by
the RMS of βk1,n(k1) and βk2,n(k2). The correlation calculated by this method
– effectively an “RMS correlation coefficient” – is -0.301142, compared with the
“true” correlation coefficient – calculated as the actual covariance of βk1,n(k1)

and βk2,n(k2) divided by the standard deviation of each – of 0.380513. As dis-
cussed above, there is a good reasons to use the RMS instead of the standard
deviation when measuring volatility. This reason – that using the standard de-
viation would lead to unrealistic mortality rates – also applies to the measure
of correlation. This suggests that the RMS correlation coefficient is more ap-
propriate than the true one. This view is strengthened by the observation that
the two lines in Figure 2 diverge in a reasonably consistent fashion over the full
period of investigation. Divergence and convergence are both consistent with a
negative correlation coefficient; a positive coefficient would suggest that the two
series should move in broadly the same direction.

When both βk1,n(k1) and βk2,n(k2) change, the RMS of the former is 0.008406
(compared with a standard deviation of 0.005597) and of the latter is 0.000405
(compared with a standard deviation of 0.000352). However, the RMS for
βk1,n(k1) using all changes is 0.015998 (compared with a standard deviation
of 0.013719), and for βk2,n(k2) is 0.000332 (compared with a standard deviation
of 0.000287). An F-test suggests that the volatility differs for k1,y, but only at
the 10% level; there is no significant difference for βk2,n(k2). However, the small
number of observations means that it is difficult to draw any strong conclusions.
In the analysis below, I use the same volatility when only one variable changes
or both change.

Finally, given that the data is to be modelled assuming random volatility
around a trend, the nature of this volatility needs to be investigated. Analysis
of the standard deviation of the errors, ǫk1,y and ǫk2,y, shows that the volatility
decreases successively in each period, but there is a particularly large and sus-
tained fall for both βk1,n(k1) and βk2,n(k2) in 1973. I therefore assume that the
volatility around the trend is given by the volatility calculated using data since
this date, 0.012098 for ǫk1,y and 0.000627 for ǫk2,y.

Having determined the parameters for the projection of mortality, I then
project mortality forward stochastically. This is done by projecting values for
βk1,n(k1) and βk2,n(k2). A uniform random variable taking values between 0 and
1 is generated in each period. The value of the random variable determines
whether either or both of βk1,n(k1) and βk2,n(k2) change, as described earlier.
If either variable changes, then another random variable is generated with a
mean of zero and an standard deviation taken as the RMS of past changes in
βk1,n(k1) or βk2,n(k2). If both change, then the random variables are generated
assuming an RMS correlation as given above. The correlated random variables
are generated using Cholesky decomposition, as described in Wilmott (2006) and
elsewhere. If βk1,n(k1) and/or βk2,n(k2) change, then αk1,n(k1) and/or αk2,n(k2)

also change as described in (6) and (7) – in other words, they change in such a
way as to avoid there being a discontinuity at the point that the trend changes.
These values are used to calculate projected values of k̂1,y and k̂2,y, extrapolating
the relationship in (2) and (3).

19



As discussed earlier, k̂1,y and k̂2,y are only estimators, an there is uncertainty
in these estimates. This is given by ǫk1,y and ǫk2,y, as described in (4) and (5).

The projected results for k̂1,y and k̂2,y are therefore modified by the addition
of further random variables, and , which are independent and normally dis-
tributed with means of zero and standard deviations of 0.012098 and 0.000627
respectively, reflecting the volatility in recent years.

5 Projection Results

Using the method and data above, I carry out 1,000 simulations of k1,y and k2,y.
I then use these to calculate the period life expectancy of a 60-year old male for
the fifty year period from 2006 to 2056. I show the results in Figure 5. Displayed
are the median and various percentile limits, together with three sample paths.

This shows that the range of results in early years is relatively narrow, but
uncertainty does grow rapidly. To illustrate, the 90% confidence interval –
calculated as the difference between the 5th and the 95th centiles – for period
life expectancy in 2056 is 18.7 years (37.6 years for the 95th centile less 18.9 years
for the 5th centile). Dowd et al. (2008) perform similar calculations to arrive
at cohort (rather than period) life expectancies for 65 year old males for the
same projection period (2006 to 2056), using a version of the CBD model that
allows for cohort effects. If parameter uncertainty is ignored, the 90% confidence
interval in 2056 spans 3.6 years; even if parameter uncertainty is allowed for, the
range rises to only 7.6 years. In other words, this trend-change model suggests
more than twice as much uncertainty as the cohort-adjusted CBD model with
parameter uncertainty over a fifty-year time horizon, and the shape of the funnel
suggests that the difference in uncertainty continues to increase.

6 Conclusion

If a two parameter model of the type described by Cairns et al. (2006) is used
to model mortality, then the parameters follow clear trends that change pe-
riodically. The changes in the parameters frequently occur at the same time
and are negatively correlated. Within each trend, the parameters do seem to
be random fluctuations around a trend rather than random walks with drift.
Modelling mortality into the future this way suggests a much greater degree of
uncertainty than that implied by random walks with drift.

This has important consequences for risk management and pricing, in par-
ticular when considering longer term insurance products such as annuities. The
greater uncertainty over mortality rates in the distant future suggests that higher
reserves are needed than those suggested by a random walk with drift approach
inherent in the original CBD model. The need for higher reserves should also
be reflected in pricing.

Another consequence of this pattern of changing mortality rates is that a low
level of volatility in mortality rates over a given period should not be interpreted
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Figure 5: Historical and Projected Period Life Expectancy for 65 Year Old
Males, England and Wales, 1841-2056
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as a fall in the level of risk – a change in the trend rate of mortality improvement
could occur at any point in time, potentially causing a large change in predicted
mortality rates.

The potential application of this trend-change approach is not confined to
CBD-type models. In particular, it could also be applied to the model pro-
posed by Lee and Carter (1992) as well as those based on this approach. In
this way, it would act as an additional extension to those suggested by De Jong
and Tickle (2006). As discussed earlier, this paper has several suggestions for
dealing with unstable trends, including taking care over the choice of parame-
terisation period and adding an autoregressive element to the description of the
parameters. However, allowing a random change in the trend rates of mortality
improvement combined with volatility around the trend rate would give greater
long-term variation in mortality rates than any of the approaches suggested by
De Jong and Tickle (2006).

In conclusion, then, the approach I propose suggests that there should be
much greater allowance for uncertainty in mortality rates in the distant future.
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