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Abstract5

Statistical analysis of ecological data may require the estimation of the size of6

a population, or of the number of species with a certain population. This task fre-7

quently reduces to estimating the discrete parameter N representing the number of8

trials in a binomial distribution. In Bayesian methods, there has been a substantial9

amount of discussion on how to select the prior for N . We propose a prior for10

N based on an objective measure of the worth that each value of N has in being11

included in the model space. This prior is compared (through the analysis of the12

popular snowshoe hare dataset) with the scale prior which, in our opinion, cannot13

be understood from solid objective considerations.14

Keywords abundance, binomial, Kullback–Leibler divergence, loss function,15

objective prior16

1 Introduction17

In this paper we discuss objective prior distributions for the discrete parameter N of a18

binomial distribution, with specific applications to estimation of population or species19
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sizes. In particular, we argue that in statistical applications the scale prior π(N) ∝ 1/N20

should not be emplyoed for it is lacking a probabilistic interpretation.21

In the statistical analysis of ecological data it is frequent to deal with data that comes22

from binomial outcomes, such us the size of a population or the number of species. The23

capture-recapture models for closed population introduced by Otis et al. (1978) represent24

an example on how the estimation of N proceeds in wildlife data analysis.25

A common choice of objective prior for N is the scale prior, that is π(N) ∝ 1/N .26

Recently, (Link, 2013) has shown its support to the scale prior for N on the basis of27

its better performance in comparison to the uniform prior and, in addition, that it has28

been proposed by Berger et al. (2012). We argue that there is no real motivation in the29

use of the scale prior; on the countrary, it appears to be anad-hoc solution rather than30

the result of specifi probabilistic considerations. In other words, π(N) ∝ 1/N has no31

“meaning”. We believe that a way of defining an objective prior for N has to take into32

considerations the reason why a particular value of the parameter has been included in33

the parameter space N = {1, 2, . . .}. In particular, the objective approach defines losses34

instead of probabilities. This idea is discussed in Villa & Walker (2013a) and Villa &35

Walker (2013b).36

It is noteworthy to point out that the scale prior has been used by Wang et al. (2007),37

King & Brooks (2008) (and the references therein), for applications in ecology, and by38

Basu & Ebrahimi (2001), for an example of an application in capture-recapture models39

in software reliability.40

The organisation of the paper is as follows. In Section 2 we discuss some background41

on objective priors for N , and define the prior we propose. Section 3 shows a comparison42

of the scale prior with our by analysing the popular snowshoes hare data. Finally, Section43

4 includes some discussion points and general considerations.44
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2 Objective priors for N45

Consider x ∼ Bin(N, p), whereN ∈ N = {1, 2, . . .} represents the number of independent46

Bernoulli trials, and p ∈ (0, 1) the probability of success at each trial. The aim is to make47

inference on the discrete parameter N , assuming p is unknown.48

The task of assigning an objective prior to a discrete parameter is not a trivial and, in49

the past, has represented an interesting challenge. The main reason comes from the fact50

that common objective approaches such as Jeffreys’ rule (Jeffreys, 1961) and reference51

analysis (Berger et al., 2009) are not suitable for discrete parameters and, when they are,52

they do not provide sensible results. Note that the uniform prior π(N) ∝ 1, which may53

appear to be a natural choice to represent ignorance about N , is not suitable for inference54

as, for when p is unknown, leads to an improper posterior (Berger et al., 1999, 2012).55

A motivation behind the choice of 1/N is that, although Jeffreys himself never dis-56

cussed the prior for N when p is unknown, the choice of π(N) ∝ 1/N is assumed as57

natural (Berger et al., 2012), as it is the prior Jeffreys recommends for (continuous) scale58

parameters. Link (2013), in addition to the above motivation, recommends the scale59

prior as it solves estimation problems related to the use of the uniform prior (when N is60

finite).61

The choice of 1/N as an objective prior for N is questionable for the following reasons.62

The motivation for Jeffreys prior in a discrete setting is obsolete. Jeffreys rule is based on63

invariance property under one-to-one transoformations of the parameter of interest, and64

this notion has no meaning for a discrete parameter space. Furthermore, Kahn (1987),65

shows that if we assign a Beta prior to p, π(p) ∼ Be(a, b), and assume the parameters66

of the binomial independent a prior, then π(N) ∝ 1/N c yields a proper posterior for N67

if a + c > 1. It is therefore legitimate to wonder why c has to be chosen as equal to68

one. Why not, for example, π(N) ∝ 1/N2 or π(N) ∝ 1/N3? This fact adds a level of69
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subjectivity and arbitrariness to the whole procedure, making the process not as objective70

as intended.71

One may argue that the scale prior is the result of a different objective procedure

as well. Berger et al. (2012) use an approach which consists in embedding the discrete

problem into a continuous one and then apply reference analysis. However, as there exist

more than one embedding procedure, they obtain two different priors: the scale prior and

π(N) ∝
√
N{N + 4/(n+ 3)}

where n is the size of indepdent and identically distributed random variables: Xi ∼72

Bin(N, p), i = 1, . . . , n. As both priors have similar properties, the recommendation of73

1/N lays in the simplicity of its functional form. Again, the choice of the scale prior does74

not appear to be truly objective.75

It is fundamental to highlight that in an applied (statistical) setting, such as in ecology,76

an objective prior needs an idea which is well supported. Unlike academic statisticians,77

who can discourse on objective priors on theoretical grounds, applied statisticians have to78

put the motive first: an objective prior needs to have a meaning. In fact, the derivation79

of π(N) should be the result of a process where there is a clear explanation on why a80

particular prior is chosen and what it represents; we find, for example, that in Link (2013)81

this explanation is missing, and that the justification in adopting the scale prior is just a82

reminder to someone else’s work.83

84

The prior we propose is based on the idea of assigning a worth to each element N ∈ N .85

The worth is objectively measured by assessing what is lost if that parameter value is86

removed from N , and it is the true one. Once the worth has been determined, this will87

be linked to the prior probability by means of the self-information loss function (Merhav88
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& Feder, 1998) − log π(N). A detailed illustration of the idea can be found in Villa &89

Walker (2013a) and Villa & Walker (2013b), but here is an overview.90

Let us indicate by fN the binomial distribution with parameters N , give p (for the91

moment assumed to be known). The utility (i.e. worth) to be assigned to fN is a92

function of the Kullback–Leibler divergence (Kullback & Leibler, 1951) measured from93

the model to the nearest one; where the nearest model is the one defined by N ′ 6= N94

such that DKL(fN‖fN ′) is minimised. In fact (see Berk (1966)) N ′ is where the posterior95

asymptotically accumulates if N is excluded from N . The objectivity of how the utility96

of fN is measured is obvious, as it depends on the choice of the model only.97

Let us now write u1(N) = log π(N) and let the minimum divergence from fN be98

represented by u2(N). Note that u1(N) is the utility associated with the prior probability99

for model fN , and u2(N) is the utility in keeping N in N . We want u1(N) and u2(N) to100

be matching utility functions, as they are two different ways to measure the same utility101

in N . As it stands, −∞ < u1 ≤ 0 and 0 ≤ u2 < ∞, while we actually want u1 = −∞102

when u2 = 0. The scales are matched by taking exponential transformations; so exp(u1)103

and exp(u2)− 1 are on the same scale. Hence, we have104

eu1(N) = π(N) ∝ eg{u2(N)}, (1)

where105

g(u) = log(eu − 1). (2)

By setting the functional form of g in (1), as it is defined in (2), we derive the proposed106

objective prior for the discrete parameter N107
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π(N) ∝ exp

{
min

N 6=N ′∈N
DKL(fN‖fN ′)

}
− 1. (3)

We note that in this way the Bayesian approach is conceptually consistent, as we108

update a prior utility assigned to N , through the application of Bayes theorem, to ob-109

tain the resulting posterior utility expressed by log π(N |x). Indeed, there is an elegant110

procedure akin to Bayes which works from a utility point of view, namely that111

log π(N |x) = K + log fN(x|N) + log π(N),

which has the interpretation of112

Utility(N |x, π) = K + Utility(N |x) + Utility(N |π),

where K does not depend on N . There is then a retention of meaning between the prior113

and the posterior information (here represented as utilities). This property is not shared114

by the usual interpretation of Bayes theorem when priors are objectively obtained; in115

fact, the prior would usually be improper, hence not representing probabilities, whilst116

the posterior is (and has to be) a proper probability distribution.117

In Villa & Walker (2013a) we show that the nearest model to fN is at N ′ = N + 1.118

Thus, the prior for N is given by119

π(N) ∝ 1

(N + 1)(1− p)
exp

{
N∑

x=0

log(N + 1− x)

(
N

x

)
px(1− p)N−2

}
− 1. (4)

The prior in (4) is improper but, with just one observation, yields a proper posterior.120

If p is unknown, the joint prior distribution for the parameters of the binomial is given121
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Figure 1: Snowshoes hare in its natural habitat.

by122

π(N, p) = π(N |p)π(p), (5)

where π(N |p) is the prior in (4) above, and π(p) a suitable prior for the probability of123

success at each trial.124

3 Snowshoes hares analysis125

To illustrate the objective prior we propose, and to compare it with the scale prior, we126

analyse a popular capture-recapture data set. The problem has been originally discussed127

in Otis et al. (1978) and, from a Bayesian perspective, for example in Royle et al. (2007)128

and Link (2013). In particular, Link (2013) has analysed the data using a scale prior for129

N (although using a data augmentation approach).130

131
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Figure 2: Histogram of the posterior distribution for the parameter N for the hare data
using scale prior (a) and our prior (b).

The data consists of a sample of n = 68 hares captured-recaptured, over T = 6 days.132

The encounter frequencies, over the 6 days, gives the set {25, 22, 13, 5, 1, 2}, that is for a133

total of 145 capture-recapture occurrences. For this illustration, we consider model for134

closed populations M0, as defined in Otis et al. (1978), which assumes that the capture-135

recapture probabilities are constant for all the animals and across the 6 days. Thus,136

indicating by yi the detection frequency of animal i, with i = 1, . . . , N , the likelihood137

function is given by138

L(N, p|y) ∝ N !

(N − n)!
p
∑

i yi(1− p)T ·N−
∑

i yi . (6)

We analyse the data by considering both the scale prior and our prior for N . For the139

scale prior, we have π(N, p) = π(N)π(p), assuming prior independence of the parameters.140

When we use the prior (4), the joint prior has the form of (5). In both circumstances we141

set π(p) ∼ Be(1/2, 1/2), that is Jeffreys’ prior. As the posterior distributions are analyt-142

ically intractable, we obtain the marginal distribution for N through MCMC methods.143

The histogram of the posterior distributions are plotted in Figure 2. The posterior for144

N obtained by applying the scale prior π(N) ∝ 1/N is shown in (a), while the posterior145

obtained by applying the prior we propose in (4) is shown in (b). Both distributions are146

positively skewed and accumulate on the same values of N . When the scale prior is used,147

the median is N = 81.5, with 95% credible interval (68.7, 94.3). When our prior is used,148
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we have a median of N = 81.0 and 95% credible interval (68.7, 93.4); note that prior (4)149

gives a smaller credible interval than the one obtained by adopting the scale prior.150

For completeness, we note that for p we have medians p = 0.33 in both cases, with151

95% credible intervals (0.24, 0.43) and (0.24, 0.42), for the scale and our prior respectively.152

4 Discussion153

The choice of an objective prior for N must be based not only on performance, but also on154

solid motivation. If this assumption is not met, it may appear that an objective approach155

is justifiable as long as the adopted prior leads to a posterior distribution that is suitable156

for inference (i.e. proper) and that has appealing performances. In the example of the157

hare data, we have shown that the prior based on losses results in a credible interval that158

is narrover that the one obtained by applying the scale prior for N . Additionally, while159

the latter prior has no probabilistic justification, the former one is the result of a clear160

objective motivation.161

The prior for N can be applied to any of the remaining capture-recapture models162

(Otis et al., 1978), that is when either one or more effects (time effects, behavioral effects,163

heterogeneity effects) are considered. We have not included any example, either simulated164

or based on real data, for models including time, behavioral or heterogeneity effects.165

However, the implementation is similar to the one outlined.166
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